
Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

SEQUENCE-LEVEL CERTAINTY REDUCES HALLU-
CINATION IN KNOWLEDGE-GROUNDED DIALOGUE
GENERATION

Yixin Wan
University of California, Los Angeles
elaine1wan@cs.ucla.edu

Fanyou Wu & Weijie Xu & Srinivasan H. Sengamedu
Amazon Science
{fanyouwu, weijiexu, sengamed}@amazon.com

ABSTRACT

In this work, we propose sequence-level certainty as a common theme over hallu-
cination in Knowledge Grounded Dialogue Generation (KGDG). We explore the
correlation between the level of hallucination in model responses and two types
of sequence-level certainty: probabilistic certainty and semantic certainty. Empir-
ical results reveal that higher levels of both types of certainty in model responses
are correlated with lower levels of hallucination. We further propose Certainty-
based Response Ranking (CRR), a decoding-time hallucination mitigation method
that samples several response candidates, ranks them based on sequence-level cer-
tainty, and outputs the response with the highest certainty level. Aligning with our
definitions of sequence-level certainty, we design 2 types of CRR approaches:
Probabilistic CRR (P-CRR) and Semantic CRR (S-CRR). P-CRR ranks individ-
ually sampled model responses using the arithmetic mean log-probability of the
entire sequence. S-CRR approaches certainty estimation from meaning-space,
and ranks model response candidates based on their semantic certainty level as
measured by an entailment-based Agreement Score (AS). Through extensive ex-
periments across 3 KGDG datasets, 3 decoding methods, and 4 KGDG models,
we validate the effectiveness of CRR for reducing hallucination in KGDG task.

1 INTRODUCTION

Previous works have researched the problem of hallucination in Knowledge-Grounded Dialogue
Generation (KGDG) task (Li et al., 2019; Shuster et al., 2021; Santhanam et al., 2021; Honovich
et al., 2021; Dziri et al., 2022b; Rashkin et al., 2021). For KGDG, a dialogue model is given a piece
of textual knowledge and a series of conversation history, and is expected to generate informative
and meaningful responses to the previous dialogue with the provided knowledge (Li et al., 2022). A
model response is therefore defined to be “hallucinated” if it is inconsistent or unsupported by the
knowledge given in the model input (Filippova, 2020; Dziri et al., 2022a).

Our work proposes and investigates sequence-level certainty as a general common theme over hal-
lucinations in KGDG. We dissect sequence-level model certainty into two categories: probabilistic
certainty and semantic certainty. To measure semantic certainty, our study proposes Agreement
Score (AS), which is defined as the overall level of semantic entailment of each candidate with all
other candidates. We first prove through experiments that higher levels of both types of certainty are
correlated with lower levels of hallucination in model outputs. Furthermore, we propose Certainty-
based Response Ranking (CRR) to mitigate the hallucination of KGDG models during decoding
time. Specifically, aligning with our categorization of sequence-level certainty, we establish 2 types
of CRR approaches: Probabilistic CRR (P-CRR), and Semantic CRR (S-CRR). P-CRR simply
ranks several independently sampled model responses by their probabilistic certainty, measured by
the arithmetic mean log-probability over entire sequences. S-CRR approaches certainty estimation
from a semantic perspective, and ranks various independently sampled model response candidates
by their semantic certainty.

We validate the effectiveness of our P-CRR and S-CRR methods through extensive experiments on 3
KGDG datasets, 3 different decoding methods, and 4 KGDG models with varied sizes. Experiment
results demonstrate that both P-CRR and S-CRR significantly reduce hallucinations in model outputs
across all experiment settings. Our work provides novel and significant findings on the relationship
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Figure 1: Illustration of the proposed Certainty-based Response Ranking approach. CRR ranks
a number of independently-sampled model responses by their probabilistic certainty or semantic
certainty, and ultimately outputs the best response candidate.

between sequence-level certainty and hallucination on KGDG task, opening up a new direction for
future research to further explore and understand the hallucination phenomenon.

2 SEQUENCE-LEVEL CERTAINTY

This study proposes sequence-level certainty as a more general common theme across hallucination
phenomena in KGDG task. Different from previously proposed token-level certainty estimation ap-
proaches, sequence-level certainty measures certainty by considering an output sequence as a whole.
We further dissect sequence-level certainty into probabilistic certainty and semantic certainty.

2.1 PROBABILISTIC CERTAINTY

We define probabilistic sequence-level certainty of a generated sequence to be the arithmetic mean
log-probability of the entire sequence, as defined in previous works (Kuhn et al., 2023; Murray
& Chiang, 2018). Given a generated sequence s with length N , the sequence-level probabilistic
certainty can be calculated as: 1

N

∑N
i=1 log p(si|s<i), where p(si|s<i) is the conditional probability

of generating token si in sequence s given past tokens.

2.2 SEMANTIC CERTAINTY

We define semantic sequence-level certainty to be the level of confidence of a model generating the
semantic contents of a response. To estimate the certainty in meaning-space, we propose to use
Agreement Score (AS) as a proxy of semantic certainty, which is explained below.

Agreement Score (AS) Given a context x, we individually sample N model response candidates
to constitute set S = {s(1), s(2), ..., s(N)}. Let the relation Entailment(·, ·) denote the probability
that two generated sequences entail each other, or semantically support each other. Then, the AS of
model response s(i) can be calculated as: AS(s(i)) =

∑N
j=1 Entailment(s(i), s(j)) , which is the

summed probability of semantic entailment between s(i) and all other candidates.

3 CERTAINTY-BASED RESPONSE RANKING
3.1 METHOD

Based on our categorization of sequence-level certainty, we further propose two types of Certainty-
based Response Ranking (CRR) to mitigate model hallucination during decoding time: Probabilis-
tic CRR (P-CRR) and Semantic CRR (S-CRR). Given the same input, we individually sample
several response candidates generated by a KGDG model. Then, we calculate each response’s proba-
bilistic sequence-level certainty for P-CRR and semantic certainty for S-CRR. Eventually, the model
ranks candidates based on their certainty level and outputs the response candidate with the highest
certainty. An illustration of CRR is demonstrated in Figure 1.

3.2 EXPERIMENTS

3.2.1 EXPERIMENT SETUP

Model Choices We experimented with 4 different KGDG models, which are fine-tuned from 4
different base models of different sizes and structures: GPT2-small, GPT2-medium (Radford et al.,
2019), T5-base (Raffel et al., 2020), and OpenLlama (Geng & Liu, 2023). Details for fine-tuning
and inferencing KGDG models are in Appendix A. For calculating AS, we utilize an off-the-shelf
RoBERTa-Large-based (Liu et al., 2019) Natural Language Inference (NLI) model (Nie et al., 2020).
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For hallucination evaluation, we follow the method in Dziri et al. (2022a) to use FaithCritic, an off-
the-shelf RoBERTa-Large-based hallucination classification model.
Baselines To prove the effectiveness of CRR for hallucination mitigation, we conduct experiments
using 3 decoding methods: Beam Search (BISIANI, 1992), Top-k Sampling (Fan et al., 2018), and
Nucleus Sampling (Holtzman et al., 2019) with Top-k. We also compare CRR with the uncertainty-
aware beam search method proposed by Xiao & Wang (2021), which is most related to our approach.
Datasets We fine-tune the 4 KGDG models on FaithDial (Dziri et al., 2022a)’s training dataset.
Evaluations for baseline approaches and CRR methods are conducted on FaithDial, CMU-
DoG (Zhou et al., 2018) and TopicalChat (Gopalakrishnan et al., 2019)’s test datasets.
Reported Metrics We first show statistical results to prove that higher probabilistic and semantic
sequence-level certainties are significantly correlated with lower hallucination in model responses.
For experiments on CRR, we report the percentage of faithful responses in experiments.
3.3 RESULTS

3.3.1 SEQUENCE-LEVEL CERTAINTY AND HALLUCINATION

We conducted statistical testing to prove that: (1) faithful responses have higher certainty than
hallucinated answers, and (2) higher certainty levels positively and significantly correlate with
lower hallucination levels. Additional details for hypotheses testing are provided in Appendix C.

Hypothesis 1 We conduct t-testing with the Alternative Hypothesis (H1) being that faithful model
responses have higher certainty levels than hallucinated ones, and Null Hypothesis (H0) indicating
no significant difference in certainty levels. Results in Table 1 validates H1, indicating that both
probablistic and semantic sequence-level certainties are significantly higher in faithful outputs
than in hallucinated ones..

Hypothesis Model probabilistic semantic

p value signif. p value signif.

Certainty (faithful responses)
>

Certainty (hallucinated responses)

GPT2-small 7.51E-210 ✓ 2.61E-148 ✓
GPT2-medium 2.32E-157 ✓ 7.51E-115 ✓
T5-base 9.17E-169 ✓ 9.16E-19 ✓
OpenLlama-3B 9.17E-169 ✓ 2.79E-47 ✓

Table 1: Experiment results. Across all 4 models, levels of both probabilistic certainty and semantic
certainty of faithful model responses are significantly higher than that of hallucinated responses.

Hypothesis 2 We use the Point-Biserial Correlation Coefficient (PBCC) to show correlation between
certainty level and probability of hallucination for response candidates. Table 2 shows that both types
of certainty in model responses are negatively and significantly correlated with the probability of
hallucination, meaning that higher sequence-level certainty corresponds to lower hallucination.

Model # Params Point-Biserial Correlation Coeff. with Hallucination Probability

Probabilistic Certainty Semantic Certainty

GPT2-small 117M −0.265 (p-value ≪ 0.01) −0.165 (p-value ≪ 0.01)
GPT2-medium 345M −0.231 (p-value ≪ 0.01) −0.146 (p-value ≪ 0.01)
T5-base 220M −0.205 (p-value ≪ 0.01) −0.067 (p-value ≪ 0.01)
OpenLlama-3B 3B −0.173 (p-value ≪ 0.01) −0.110 (p-value ≪ 0.01)

Table 2: Experiment results. Both types of sequence-level certainty are negatively and significantly
correlated with hallucination probability, as measured by Point-Biserial Correlation..

3.3.2 EFFECTIVENESS OF CRR FOR HALLUCINATION MITIGATION

Table 3 shows experiment results using different hallucination mitigation methods on GPT2-small.
Both P-CRR and S-CRR improve response faithfulness. Among different decoding methods, Nu-
cleus Sampling with Top-k and P-CRR achieves the best performance, with 97.6% faithful gener-
ations. What’s more, Xiao & Wang’s method (row 2) 1 fails to achieve faithfulness improvement,
indicating that controlling token-level uncertainty cannot effectively reduce hallucination on KGDG.

1Note that since Xiao & Wang’s method is specifically designed for beam search, it cannot be applied to
other decoding methods.
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Decoding Method Mitigation Method Dataset

FaithDial ↑ CMU-DoG ↑ TopicalChat ↑
Beam Search None 66.0 43.2 12.1

Uncertainty-Aware 65.0 43.7 13.2
P-CRR 73.9 42.9 11.6
S-CRR 71.6 44.8 13.2

Top-k Sampling None 83.4 32.1 12.4
P-CRR 95.6 46.3 16.5
S-CRR 89.9 34.2 14.3

Nucleus Sampling None 91.2 38.3 14.6
P-CRR 97.6 50.0 16.7
S-CRR 95.7 40.8 15.1

Table 3: Experiment results on GPT2-small with different decoding methods across 3 datasets.
Faithful percentages of responses are reported. Best-performing methods and scores are bolded.

Generalizability To Different Models Table 4 shows experiment results on GPT2-medium, T5-
base, and OpenLlama-3B to show the generalizability of CRR to different KGDG models. Similar
to trends in Table 3, both P-CRR and S-CRR achieve significant improvements in faithful response
percentages over the baselines in most settings.

Base Model # Params Decoding Dataset

FaithDial ↑ CMU-DoG ↑ TopicalChat ↑

GPT2-medium 345M

Beam Search 71.6 43.3 14.8
+ P-CRR 77.1 45.0 14.9
+ S-CRR 77.4 47.1 16.0

Top-k Sampling 87.3 36.5 15.3
+ P-CRR 96.9 49.5 18.9
+ S-CRR 92.6 41.7 17.1

Nucleus Sampling 93.8 43.4 17.0
+ P-CRR 98.2 53.4 19.5
+ S-CRR 96.8 48.6 18.2

T5-Base 220M

Beam Search 99.3 66.1 27.0
+ P-CRR 99.5 67.1 25.4
+ S-CRR 99.4 67.1 26.6

Top-k Sampling 78.8 38.7 23.2
+ P-CRR 91.6 48.1 25.2
+ S-CRR 80.2 42.0 23.7

Nucleus Sampling 87.7 47.6 26.4
+ P-CRR 95.3 54.8 23.8
+ S-CRR 89.1 52.4 27.9

OpenLlama-3B 3B

Beam Search 68.3 44.1 17.4
+ P-CRR 70.0 41.9 16.4
+ S-CRR 75.3 40.6 16.1

Top-k Sampling 90.9 39.1 21.9
+ P-CRR 97.4 50.4 25.1
+ S-CRR 94.4 42.5 22.9

Nucleus Sampling 95.7 45.1 23.5
+ P-CRR 98.6 53.5 25.9
+ S-CRR 97.2 48.1 23.7

Table 4: Experiment results for the baselines and the proposed CRR approaches. Faithfulness per-
centage is reported for all methods. Best-performing method and reported score are in bold.

Generalizability To Different Number of Response Candidates We conduct ablation experi-
ments to investigate the generalizability of CRR when different numbers of response candidates are
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sampled. Table 5 shows results on GPT2-small on FaithDial’s test set when 5, 10, and 20 response
candidates are sampled during response ranking. S-CRR achieves significant performance improve-
ment with an increase in the number of response candidates. This indicates that by aligning more
candidates with each other, S-CRR better captures the semantic certainty of each response. P-CRR,
on the other hand, does not experience much improvement in performance under the same scenario.

Decoding Method Mitigation Method FaithDial ↑
# seq 5 # seq 10 # seq 20

Beam Search None 66.0 66.0 66.0
Uncertainty-Aware 65.0 65.0 65.0
P-CRR 73.9 73.7 72.9
S-CRR 71.6 76.6 78.1

Top-k Sampling None 83.4 83.4 83.4
P-CRR 95.6 96.5 97.3
S-CRR 89.9 93.2 94.5

Nucleus Sampling None 91.2 91.2 91.2
P-CRR 97.6 98.4 98.7
S-CRR 95.7 97.1 97.7

Table 5: Experiment results. Note that since the original decoding methods and uncertainty-aware
beam search do not rank sampled responses, their reported scores are invariant to the number of
sampled response candidates.

4 BACKGROUND ON UNCERTAINTY AND HALLUCINATION

4.1 UNCERTAINTY ESTIMATION IN GENERATIVE MODELS

Previous researchers (Xiao & Wang, 2021; Kuhn et al., 2023; Zhang et al., 2023; Liu et al., 2024)
have studied probabilistic uncertainty and semantic uncertainty, but mainly in different contexts from
hallucination. Xiao & Wang proposed token-level predictive uncertainty, which formulates the total
predictive uncertainty of a predicted token as its entropy. Kuhn et al.’s work extends the exploration
of uncertainty to the semantic aspect. They establish semantic uncertainty as the entropy of the
random variable representing the output distribution in the semantic event-space, and explored how
it is predictive of model accuracy on Question Answering (QA) tasks.

4.2 ON UNCERTAINTY AND HALLUCINATION

Xiao & Wang’s work was the first to explore the correlation between model uncertainty and hal-
lucination. They observed that on the Image Captioning (IC) task, higher token-level probabilistic
uncertainty corresponds to a higher chance of hallucination. They also proposed uncertainty-aware
beam search, which accounts for the token-level uncertainty during generation to reduce hallucina-
tion. However, their experiments were limited to token-level uncertainty in IC tasks. Additionally,
their uncertainty-aware beam search cannot be applied to other decoding methods such as top-k sam-
pling. Manakul et al.’s work showed that probability-based model uncertainty can be used to detect
hallucinations on QA tasks. However, they neither provide insights on the relationship between
uncertainty and hallucination, nor propose mitigation solutions.

5 CONCLUSION

In this paper, we explore the relationship between sequence-level certainty and hallucination in
KGDG. We dissect sequence-level certainty in model generation into probabilistic certainty and
semantic certainty. Probabilistic certainty measures the statistical likelihood of generating a se-
quence, whereas semantic certainty measures the probability of generating specific semantic con-
tents in a response. Furthermore, we propose Certainty-based Response Ranking (CRR), a decoding-
time method to mitigate hallucination in model generations by outputting candidate responses with
the highest certainty levels. Based on our categorization of certainty, we propose Probabilistic
CRR (P-CRR) and Semantic CRR (S-CRR) to address hallucinations from different perspectives.
Through experimenting on 4 models across 3 decoding methods on 3 datasets, we prove the effec-
tiveness of both P-CRR and S-CRR in reducing model hallucination on the KGDG task.
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A EXPERIMENTAL DETAILS

A.1 TASK DEFINITION

For the KGDG task, a model is provided with a series of dialogue history and a piece of textual
knowledge, and is required to generate a response to the dialogue history according to the given
knowledge. Responses generated by a faithful KGDG model should be truthful to the knowledge
provided in its input.

A.2 TRAINING AND INFERENCING KGDG MODELS

We conduct experiments on KGDG models to validate the relationship between sequence-level cer-
tainty and hallucination, and to test the proposed CRR method for hallucination mitigation. Follow-
ing the method used in previous work (Dziri et al., 2022a), we select 4 base models to and further
fine-tuned them on the KGDG task to build KGDG models. Training details are provided below.

Model Selection As mentioned in Section 3.2.1, we select 4 different base models of different sizes
and structures as base models: GPT2-small, GPT2-medium (Radford et al., 2019), T5-base (Raffel
et al., 2020), and OpenLlama (Geng & Liu, 2023).

Dataset For training the KGDG models, we utilize FaithDial (Dziri et al., 2022a), a faithful
knowledge-grounded dialogue corpus built from the Wizard of Wikipedia dataset (Dinan et al.,
2019). FaithDial consists of a total of 50, 761 turns spanning from 5, 649 conversations, and spit
into 36, 809, 6, 851, and 7, 101 for training, validation, and testing.

Training Details Following hyper-parameter settings in Dziri et al. (2022a), we train the KGDG
models for 10 epochs with batch size set to 16 and maximum sequence length set to 512. For each
data entry, we include a maximum turn of 1 dialogue history in model input. For optimization, we
use linear scheduler for the AdamW optimizer (Loshchilov & Hutter, 2017), with learning rate set
to 6.25 × 10−5, warmup ratio set to 0.04, epsilon set to 1 × 10−8, and weight decay set to 0. Best
model checkpoints are selected based on validation losses and stored.

B INFERENCE-TIME DECODING METHODS

Below, we provide details for implementing different decoding methods at inference time. For all
decoding methods, we set the maximum number of new tokens to 100.

Baseline Decoding Methods As discussed in Section 3.2.1, we experiment with 3 different base-
line decoding methods at inference time: Beam Search (BISIANI, 1992), Top-k Sampling (Fan
et al., 2018), and Nucleus Sampling (Holtzman et al., 2019) with Top-k. The beam search method in
experiments is based on our implementation of the decoding algorithm. For beam search decoding,
we set the beam size to 5. For top-k sampling decoding, we set the temperature to 1.0, and top k to
50. For nucleus sampling with top-k, we set the temperature to 1.0, top-k to 50, and top-p to 0.9.

Ablation Study Methods We also implement the Uncertainty-Aware Beam Search method pro-
posed by Xiao & Wang (2021) to establish a comparison with the proposed CRR methods. Since
Xiao & Wang (2021)’s proposed approach was originally designed for image captioning tasks, ex-
periments in our paper are based on our modified implementation of the method on KGDG task.
Following the setting in Xiao & Wang (2021)’s implementation, we set the uncertainty lambda to
0.2 when considering the epistemic uncertainty of the model during beam search.

CRR Methods For both CRR methods, we choose to sample and rank 5 response candidates for
each input. As mentioned in Section 3.2.1, an off-the-shelf NLI model (Nie et al., 2020) is used to
calculate the AS between output candidates at inference time.

C RELATIONSHIP BETWEEN SEQUENCE-LEVEL CERTAINTY AND
HALLUCINATION

In Section 3.3, we demonstrated that (1) faithful model responses have significantly higher certainty
than hallucinated answers, ane (2) a higher certainty is positively and significantly correlated with
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a lower level of hallucination using the Point-Biserial Correlation Coefficient, Below, we provide
additional details for the statistical testing experiments.

C.1 DETAILS FOR PROVING HYPOTHESIS 1

We show that faithful model responses demonstrate higher levels of sequence-level certainty than un-
faithful answers. For evaluation data, we first generate responses on FaithDial (Dziri et al., 2022a)’s
test set. For each data entry, we individually sample 5 candidate responses. We select the nucleus +
top-k sampling decoding method for generation, setting the temperature to 1.0, top k to 50, top p to
0.9, and maximum new tokens to 100. All hyper-parameters for generation are selected to ensure the
best possible quality of the generated text. We classify the faithfulness of each response using Faith-
Critic (Dziri et al., 2022a), and calculate their probabilistic and semantic sequence-level certainties.
We then conduct t-testing with the Null Hypothesis (H0) being that faithful model responses don’t
have higher certainties than hallucinated responses, and the Alternative Hypothesis (H1) being that
faithful model responses have higher certainty levels than hallucinated ones. P-values and levels of
significance are reported.

C.2 DETAILS FOR PROVING HYPOTHESIS 2

We use the same set of generated responses on FaithDial’s test set as in Section C.1 to investigate the
correlation between sequence-level certainty of model responses and the level of hallucination. For
each response, we calculate the probabilistic and semantic sequence-level certainties, and obtain
the probability of hallucination of each response using FaithCritic Dziri et al. (2022a). Since we
establish hallucination detection as a binary classification task and certainty level as continuous
values, we choose to report the Point-Biserial Correlation Coefficient (PBCC) between the two
types of sequence-level certainty and the probability of hallucination in response candidates. We
also show the level of significance for the PBCC tests.

D CASE STUDY: EFFECTIVENESS OF CRR

D.1 CASE STUDY USING S-CRR

Table 6 demonstrates 2 case studies of model responses using the original nucleus sampling with
top-k decoding vs. using Semantic CRR for response ranking. In the first example, we can see that
without S-CRR, the model is making a hallucinated claim to say that Guns N’ Roses have released
“over 100 million albums worldwide”, when the provided information in the knowledge stated that
they have in fact only released six studio albums. With S-CRR, the model outputs a response that
is more cautious in making such hallucinated claims and more faithful to the provided knowledge,
stating the fact that Guns N’ Roses have sold more than 100 million records instead of albums
worldwide.

D.2 CASE STUDY USING P-CRR

Table 7 demonstrates 2 case studies of model responses using the original nucleus sampling with
top-k decoding vs. using Probabilistic CRR for response ranking. In the first example, we can see
that without P-CRR, the model is making a hallucinated claim that the user was “the first modern
bodybuilder in the West”, when the information of whether the user is the first bodybuilder in the
West or not was never provided in the knowledge. With P-CRR, the model outputs a response that
is more faithful to the provided knowledge.

9



Published at ICLR 2024 Workshop on Secure and Trustworthy Large Language Models

Input 1
Knowledge Guns N’ Roses has released six studio albums, accumulating sales of

more than 100 million records worldwide, including 45 million in the
United States, making them the 41st best-selling artist of all time.

Model Response
Nucleus Sampling I know that they have released over 100 million albums worldwide.

+S-CRR I have, and have heard of them, which have sold more than 100 million
records worldwide.

Input 2
Knowledge Presley was born in Tupelo, Mississippi, and relocated to Memphis,

Tennessee, with his family when he was 13 years old.

Model Response
Nucleus Sampling He was born in Memphis, Tennessee.

+S-CRR He was born in Mississippi.

Table 6: Example of model responses using the original Nucleus + Top-k Sampling decoding method
and response using the same decoding method with S-CRR. Hallucinated part of the original model
response is highlighted in red. The corresponding faithful part of model response using S-CRR is
highlighted in green.

Input 1
Knowledge In the 1910s, Eugen Sandow, widely considered to be the first modern

bodybuilder in the West, advocated the use of dietary control to enhance
muscle growth.

Model Response
Nucleus Sampling Interesting, so you were actually the first modern bodybuilder in the

West, did you have dietary control?.
+P-CRR Well, did you know that in the 1910s, Eugen Sandow was considered

the first modern bodybuilder?

Input 2
Knowledge Presley’s first RCA single, ”Heartbreak Hotel”, was released in January

1956 and became a number one hit in the United States.

Model Response
Nucleus Sampling I don’t have many, but his first single came out in 1956 and hit number

one in the US.
+P-CRR I don’t know about his usual fans, but I do know that his first RCA

single, “Heartbreak Hotel”, was released in 1956.

Table 7: Example of model responses using the original Nucleus + Top-k Sampling decoding method
and response using the same decoding method with P-CRR. Hallucinated part of the original model
response is highlighted in red. The corresponding faithful part of model response using P-CRR is
highlighted in green.
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