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Abstract

Large Language Models (LLMs) have shown
impressive performance on existing medical
reasoning benchmarks. This high performance
makes it increasingly difficult to meaningfully
evaluate and differentiate advanced methods.
We present MEDAGENTSARENA, a carefully
curated benchmark that focuses on challenging
medical questions where current models still
struggle. Drawing from seven established med-
ical datasets, our benchmark addresses three
key limitations in existing evaluations: (1) the
prevalence of straightforward questions where
even base models achieve high performance,
(2) inconsistent sampling and evaluation proto-
cols across studies, and (3) lack of systematic
analysis of the interplay between performance,
cost, and inference time. Through experiments
with various base models and reasoning meth-
ods, we demonstrate that the latest thinking
models, DEEPSEEK R1 and OPENAI 03, ex-
hibit exceptional performance in complex med-
ical reasoning tasks. Additionally, advanced
search-based agent methods also perform ef-
fectively in handling intricate medical queries.
Our benchmark and evaluation framework
are publicly available at https://anonymous.
4open.science/r/MedAgentArena.

1 Introduction

Large Language Models (LLMs) have demon-
strated remarkable capabilities in medical natural
language processing tasks, from answering clinical
questions to assisting in diagnostic processes (Sing-
hal et al., 2025; Jin et al., 2022; Chen et al., 2023;
Zhou et al., 2023; Gao et al., 2024). However, as
shown in Figure 1, even OPENAI 03, GPT-40 and
CLAUDE 3.5 SONNET struggle with complex med-
ical scenarios that require deep domain expertise
and multi-step reasoning (Xu et al., 2024; Fan et al.,
2025; Shi et al., 2024).

To enhance LLMs’ medical reasoning capabili-
ties, researchers have proposed various approaches.
As summarized in Table 1, these methods range
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Figure 1: Performance analysis of large language
models on medical tasks. Overall Pass@1 accuracy
comparison across models in zero-shot setting. The
score is an average of results on all test sets of seven
datasets (MedQA, PubMedQA, MedMCQA, MedBul-
lets, MMLU, MMLU-Pro, and AfriMedQA).

from general-purpose techniques like CHAIN-OF-
THOUGHT (COT) and SELF-CONSISTENCY (SC)
(Wei et al., 2022; Wang et al., 2022) to domain-
specific frameworks such as MEDPROMPT (Chen
et al., 2024b). While these traditional approaches
provide modest improvements, recent evidence sug-
gests that agent-based methods, or "agent work-
flows," demonstrate superior performance. Meth-
ods like MEDAGENTS (Tang et al., 2023) and
MDAGENTS (Kim et al., 2024) leverage multi-
agent collaboration frameworks to achieve more
robust medical reasoning. However, with the ad-
vent of advanced thinking models like OPENAI
03-MINI and DEEPSEEK R1, as well as the de-
velopment of search-based agent frameworks, it
remains an open question how these models per-
form in medical reasoning tasks.

Several critical challenges impede the evaluation
of those thinking models and more effective agent
frameworks for medical reasoning. (a) As shown in
Appendix A Table 4, while existing medical reason-
ing datasets are extensive, many are derived from
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Method

Description

CHAIN-OF-THOUGHT (Wei et al., 2022)
SELF-CONSISTENCY (Wang et al., 2022)
MEDPROMPT (Chen et al., 2024b)
MULTI-PERSONA (Wang et al., 2023)
SELF-REFINE (Madaan et al., 2024)
MEDAGENTS (Tang et al., 2023)
MDAGENTS (Kim et al., 2024)

AFLOW (Zhang et al., 2024)

SPO (Xiang et al., 2025)

Elicits reasoning in large language models
Improves chain of thought reasoning in language models

Multi-round prompting with ensemble voting for medical question answering
Task-solving agent through multi-persona self-collaboration

Iterative refinement with self-feedback

Collaborative multi-agent framework for zero-shot medical decision making
Dynamic multi-agent collaboration framework for medical reasoning

Automating agentic workflow generation
Self-supervised prompt optimization

Table 1: Overview of Methods.

Survey of methods used for medical reasoning and question answering.

General-purpose methods , domain-specific methods , and search-based methods are shown.

US medical licensing examinations and contain a
substantial proportion of straightforward questions.
On these easier questions, even base LLMs achieve
high performance (see Table 3, "FULL" columns),
making it difficult to assess the improvements
brought by advanced agent frameworks meaning-
fully. (b) Furthermore, since most existing datasets
were designed for evaluating smaller models in
the pre-LLM era, they often contain thousands of
questions, leading current agent-based studies to
arbitrarily subsample around 300 questions for eval-
uation (Tang et al., 2023). This inconsistent sam-
pling across different works, coupled with varying
evaluation protocols, makes fair comparison chal-
lenging. (c¢) Additionally, there exists a complex in-
terplay between performance, computational costs,
and inference time that current benchmarks fail to
systematically capture.

This landscape motivates our work on MEDA -
GENTSARENA, a benchmark for evaluating LLMs’
medical reasoning capabilities. Drawing from
seven established medical datasets (MedQA,
PubMedQA, MedMCQA, MedBullets, MMLU,
MMLU-Pro, and AfriMedQA), we curate a chal-
lenging subset of questions that specifically test
advanced reasoning capabilities. As shown in Fig-
ure 2, we select questions that current models find
particularly challenging, allowing for a more nu-
anced evaluation of model performance. Addition-
ally, recognizing the importance of data quality in
model evaluation, we analyze potential data leak-
age, as presented in Appendix C Figure 5.

2 MedAgentsArena

MEDAGENTSARENA is a carefully curated bench-
mark specifically designed to evaluate complex
medical reasoning tasks. Drawing from seven
established medical datasets (MedQA (Jin et al.,
2021), PubMedQA (Jin et al., 2019), MedM-
CQA (Pal et al., 2022), MedBullets (Chen et al.,
2024a), MMLU (Hendrycks et al., 2020), MMLU-

Pro (Wang et al., 2024), and AfriMedQA (Olatunji
et al., 2024)), we systematically construct a chal-
lenging subset that focuses on more complex rea-
soning scenarios. As shown in Table 2, these source
datasets vary significantly in size (from 174 to
2,816 questions), average token length (18.7 to
316.1), and number of options (3 to 10), providing
diverse evaluation contexts. Our hard set selection
process follows three key criteria:

(1) Model Performance Distribution As visu-
alized in Figure 2, we analyze the proportion of
models that correctly answer each question (k/N
ratio). Questions where less than 50% of models
provide correct answers (left of the dashed line in
Figure 2) are categorized as hard candidates. This
ensures our benchmark focuses on truly challeng-
ing questions that current models struggle with.
(2) Question Diversity We maintain the relative
proportion of questions from each source dataset
to ensure broad coverage of medical knowledge
domains. Specifically, from each dataset, we select:
MedQA: 94 questions (particularly from USMLE-
style complex scenarios); PubMedQA: 78 ques-
tions (focusing on biomedical research comprehen-
sion); MedMCQA: 156 questions (from specialized
medical entrance exams); MedBullets: 82 ques-
tions (emphasizing clinical diagnosis); MMLU:
86 questions (covering broad medical concepts);
MMLU-Pro: 64 questions (targeting advanced
medical knowledge); AfriMedQA: 34 questions
(incorporating global healthcare contexts).

(3) Reasoning Depth We prioritize questions
that require multi-step reasoning (selected and ver-
ified by four M.D. students), as evidenced by the
performance gap between base models and agent-
based approaches. As shown in Table 3, while mod-
els achieve high accuracy on the FULL set (e.g.,
GPT-40: 87.8% on MedQA), their performance
drops significantly on our HARD subset (e.g., GPT-
40: 35.0% on MedQA-Hard), confirming the in-
creased difficulty.



Distribution of Correct Answers Across Datasets
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Figure 2: Distribution of model performance across six medical datasets (MedQA, MedMCQA, PubMedQA,
MedBullets, MMLU-Pro, and MMLU). Each subplot shows the number of questions answered correctly by
different proportions of models (x-axis: k/N, where k is the number of correct models and N is the total number of
models). Questions are categorized as either hard (left of the dashed line, < 50% of models correct) or easy (right of
the dashed line, > 50% of models correct), with selected questions highlighted in darker shades. The total question

count for each dataset is indicated in the subplot titles. AfriMedOA is in Appendix D.

In summary, firstly we evaluate each candi-
date question across multiple model architectures
(as shown in Table 3) to ensure the difficulty is
architecture-independent. Secondly, using MELD
(Memorization affects Levenshtein Detector), we
analyze potential data leakage. As shown in Fig-
ure 5, we maintain low similarity scores (20-40%)
between model outputs and question text, suggest-
ing questions test genuine reasoning rather than
memorization. Finally, the final question set is
reviewed by four medical professionals (M.D. stu-
dents) to verify clinical relevance and reasoning
complexity. The resulting MEDAGENTSARENA
benchmark contains 594 questions with an average
token length of 134.8.

3 Experiments
3.1 Experimental Setup

We conduct experiments to evaluate both base
models and reasoning methods. For base mod-
els, we consider both closed-source and open-
source variants. The closed-source models in-
clude GPT-40, GPT-40-MINI, CLAUDE-3.5-
SONNET, CLAUDE-3.5-HAIKU, O1-MINI, and
03-MINI, while the open-source models com-
prise DEEPSEEK-V3, DEEPSEEK-R1, LLAMA-
3.3-70B, and QWQ-32B. In terms of reason-
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Figure 3: Performance analysis of agents and models
on MEDAGENTSARENA. Cost-performance trade-off
analysis showing Pass@1 accuracy versus cost per sam-
ple (in log scale), with marker sizes indicating inference
time. Different markers represent various prompting
methods , while colors distinguish different models. The
Pareto frontier (red dashed line) indicates optimal cost-
performance trade-offs.

ing methods, we evaluate 11 different approaches
spanning five categories: (1) baseline methods
(ZERO-SHOT, FEW-SHOT, CHAIN-OF-THOUGHT,
& SELF-CONSISTENCY), (2) advanced general
prompting methods (MULTI-PERSONA, SELF-



Method \ MedQA | PubMedQA | MedMCQA |  MedBullets | MMLU |  MMLU-Pro |  AfriMedQA |
Base Model | 4om | 40 | DS | 40w | 40 | DS | 4om | 40 | DS | 4om | 40 | DS | 4om | 40 | DS | 4om | 40 | DS | 4om | 40 | DS |
ZERO-SHOT 190 | 350 | 150 | 90 8.0 | 13.0 | 160 [ 27.0 220 | 9.0 | 180 | 157 | 137 | 288 | 123 120 | 150 | 120 | 156 219 | 62 |
FEW-SHOT 28.0 | 27.0 | 21.0 | 19.0 | 22.0 | 18.0 | 250 | 28.0 25.0 | 225 | 213 | 18.0 | 27.4 | 17.8 | 192 9.0 | 6.0 | 260 | 188 [344 | 125 |
CoT 230 [ 390 | 300 | 130 130 | 150 | 240 [ 310 [ 310 | 180 | 21.3 | 19.1 | 260 | 30.1 | 32.9 | 38.0 | 420°] 36.0 | 156 188 | 250 |
COT-SC 200 [390 | 250 | 130 7.0 | 13.0 | 260 [ 310 240 | 157 | 225 | 169 | 260 | 28.8 | 31.5 | 360 [ 4207] 320 | 156 219 | 281 |
MULTIPERSONA ~ 30.0 [[450| 320 | 160 13.0 | 24.0 | 22.0 [[3407 [ 310 | 18.0 [ 295 | 19.1 | 21.9 | 342 | 27.4 | 350 [ 400°] 333 | 156 219 [ 344 |
SELF-REFINE 240 | 420 | 30.0 | 13.0 9.0 | 17.0 | 27.0 | 300 26.0 | 19.1 [ 292 | 23.6 | 26.0 | 342 | 24.7 [39.0 | 37.0 | 36.0 | 156 219 | 21.9 |
MEDPROMPT 310 [ 350 | 150 | 150 12,0 | 13.0 | 27.0 | 260 21.0 | 157 | 22.5 | 10.1 | 247 | 26.0 | 15.1 [ 340 | 23.0 | 120 | 188 188 | 1838 |
MEDAGENTS 240 [43.07] 320 | 120 150 | 13.0 | 220 [ 300 26.0 | 157 [ 27.0 | 19.1 | 247 | 288 | 23.3 80 | 80 | 70 | 125 188 | 219 |
MDAGENTS 220 | 360 [44.0 | 23.0 11.0 | 150 | 16.0 | 22.0 | 27.0 | 14.6 | 21.3 | 23.6 | 17.8 | 247 | 233 9.0 | 80 | 11.0 | 188 [ 312 | 312 |
SPO 19.0 | 310 | 22.0 [ 250 [3L07| 18.0 | 20.0 | 30.0 | 28.0 | 22.5 | 292 | 157 | 192 [ 329 | 247 320 | 360 | 31.0 | 188 219 | 125 |
AFLOW 30.0 |48:07| 28.0 | 150 18.0 | 18.0 | 250 [ 310 22.0 | 157 [[3487] 169 | 24.7 [3847] 164 290 | 37.0 | 21.0 | 12.5 [ 28.1 | 156 |

Table 2: Performance heatmap by reasoning methods and data sets. All the tasks are evaluated on the HARD set.
For each dataset, three base models are used in order: GPT-40-MINI, GPT-40, and DEEPSEEK-V 3. Accuracy is in
%. The best values and the second-best values are highlighted.

Model MedQA PubMedQA MedMCQA MedBullets MMLU MMLU-Pro AfriMedQA
FULL | HARD | FULL | HARD | FULL | HARD | FULL | HARD | FULL | HARD | FULL | HARD | FULL | HARD
GPT-40-MINI | 734 190 | 762 | 90 | 660 | 160 | 536 | 90 | 843 | 137 | 575 | 120 | 759 | 156 |
GPT-40 | 878 350 77927 80 | 766 | 270 | 705 | 180 | 913 | 288 | 69.1 | 150 |U8L67| 219 |
DEEPSEEK-V3 | 793 150 | 736 | 130 | 743 | 220 | 610 | 157 | 897 | 123 | 647 | 120 | 759 | 62 |
O1-MINI | 899 410 | 774 | 150 | 732 | 250 | 73.1 | 393 | 907 | 342 | 678 | 90 | 787 | 156 |
03-MINI | 927 520 | 796 | 130 | 77.1 | 250 | 821 | 50.6 | 934 | 342 | 700 | 140 | 770 | 188 |
QWQ-32B | 713 180 | 772 | 100 | 67.6 | 180 | 497 | 67 | 869 | 137 | 689 | 320 | 695 | 156 |
DEEPSEEK-R1 | 920 470 | 762 | 120 | 819 | 340 | 792 | 438 | 950 | 411 | 796 | 370 | 793 | 28.1 |
LLAMA-3.3-70B | 768 120 | 778 | 130 | 714 | 180 | 617 | 191 | 852 | 110 | 617 | 100 | 764 | 125 |
CLAUDE-3.5-SONNET | 777 170 | 764 | 90 | 688 | 110 | 565 | 112 | 869 | 164 | 642 | 130 | 759 | 94 |
CLAUDE-3.5-HAIKU | 634 130 | 738 | 120 | 629 | 230 | 494 | 79 | 797 | 110 | 575 | 110 | 707 | 156 |

Table 3: Performance heatmap by base models and data sets. For each task, accuracy values are in percentages,
with separate columns for FULL and HARD. The best values and the second-best values are highlighted.

REFINE), (3) medical-specific prompting methods
(MEDPROMPT), (4) medical-multi-agent-based
methods (MEDAGENTS & MDAGENTS), and
(5) search-based multi-agent methods (SPO, &
AFLOW). All experiments are conducted using
identical prompts and evaluation protocols across
models for a fair comparison. ! 2

3.2 Performance Analysis

Our cost-performance analysis in Figure 3 reveals
several important patterns in medical reasoning
capabilities. First, while model size generally cor-
relates positively with performance, it also leads to
significant increases in computational cost, as in-
dicated by the marker sizes representing inference
time. Despite their specialized design for medical
scenarios, agent-based methods like MEDAGENTS
and MDAGENTS did not perform better than the
latest thinking models, with even heavier computa-
tional overhead.

The comparison of reasoning methods in Table
2 demonstrates the superiority of agent-based ap-

"Methods requiring multi-round reasoning (e.g., MEDA -
GENTS) use two rounds of inference per query.

*Multi-agent approaches (e.g., MULTI-PERSONA) utilize
three distinct agent roles per inference.

proaches to challenging medical questions. CHAIN-
OF-THOUGHT with SELF-CONSISTENCY (COT-
SC) shows moderate improvements over bare COT,
with average gains of 2-3% across datasets. How-
ever, domain-specific methods like MedPrompt
show mixed results. They perform well on specific
datasets but lack consistency across different medi-
cal tasks. The base-model-level analysis in Table 3
reveals a striking performance gap between FULL
and HARD sets. For instance, GPT-40’s perfor-
mance drops from 87.8% to 35.0% on MedQA, val-
idating the effectiveness of our HARD set selection
criteria in identifying truly challenging medical
questions. Interestingly, O3-MINI achieves the best
overall performance on HARD sets. Additionally,
open-source models, particularly DEEPSEEK-R1,
demonstrate competitive performance compared to
their closed-source counterparts.

4 Conclusion

Through MEDAGENTSARENA, we demonstrate
that thinking models, such as DEEPSEEK-R1 and
OPENAI 03-MINI, consistently outperform others
in complex medical reasoning tasks. Additionally,
advanced search-based agent methods also perform
effectively.



Limitations

While MEDAGENTSARENA provides a rigorous
benchmark for evaluating medical reasoning capa-
bilities, several important limitations remain:

First, our benchmark primarily focuses on medi-
cal question-answering tasks based on educational
resources, which may not fully reflect the com-
plexity and nuance of real-world clinical scenarios.
A more comprehensive evaluation would require
incorporating real-world clinical cases, physician-
patient dialogues, and diagnostic decision-making
processes.

Second, despite our efforts to validate the bench-
mark using MD students, we lack systematic veri-
fication of model outputs by practicing clinicians.
This raises concerns about model-generated rea-
soning paths’ reliability and alignment with estab-
lished medical knowledge. Future work should
establish a more rigorous verification framework
involving domain experts to assess answer correct-
ness and the validity of reasoning steps and poten-
tial hallucinations.

Third, while we demonstrate strong performance
from agent-based approaches, we have only evalu-
ated a limited set of reasoning architectures. The
field would benefit from exploring a broader range
of methods, including hybrid approaches combin-
ing symbolic and neural reasoning and techniques
explicitly designed for verifiable medical reason-
ing.

Fourth, our evaluation metrics focus primarily
on accuracy and cost but do not assess other crucial
aspects like verifiability, robustness to distribution
shifts, and calibration of model confidence. Future
work should develop more comprehensive evalu-
ation frameworks that can measure these critical
dimensions of medical Al systems.

Finally, while our work demonstrates the effec-
tiveness of multi-agent and ensemble approaches
in medical reasoning, we have only scratched the
surface of potential ensemble strategies. Sophisti-
cated ensemble methods like step-wise verification,
task-wise verification, and dynamic agent collab-
oration could potentially yield even better perfor-
mance. For instance, verifying intermediate rea-
soning steps through model consensus, utilizing
heterogeneous model combinations, or implement-
ing adaptive voting strategies based on agent ex-
pertise remain unexplored. Future research could
investigate:

(1)More sophisticated voting and aggregation

strategies beyond simple majority voting. (2) Adap-
tive ensemble methods that dynamically adjust
agent weights based on task characteristics. (3)Hi-
erarchical ensemble approaches that combine both
step-wise and task-wise verification. (4)Methods
for increasing response diversity through system-
atic prompt variation and temperature tuning. (5)In-
tegration of expert knowledge to guide ensemble
selection and verification.

While our current approach shows promising re-
sults, we lack a thorough theoretical understanding
of why specific ensemble configurations outper-
form others in medical reasoning tasks. A more
systematic study of ensemble properties - such as
diversity, correlation, and calibration - could guide
the development of more effective medical reason-
ing systems.
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A Dataset Information

Our MEDAGENTSARENA benchmark draws from
seven established medical datasets spanning di-
verse question types and formats. Table 4 provides
a comprehensive overview of each source dataset:

MedQA consists of 1,273 questions from med-
ical licensing examinations with an average to-
ken length of 167.1 and 4 multiple-choice options.
These questions are designed to test clinical knowl-
edge and diagnostic reasoning that would be ex-
pected of medical professionals.

PubMedQA contains 500 questions focused on
biomedical research comprehension, with longer
contexts (average 316.1 tokens) and 3 answer
options. Questions are derived from PubMed
abstracts, emphasizing scientific and research-
oriented medical knowledge.

MedMCQA comprises 2,816 questions from Al-
IMS & NEET PG entrance exams, featuring con-
cise questions (18.7 tokens on average) with four
options. This represents a challenging set of spe-
cialized medical entrance exam questions.

MedBullets includes 308 questions from an on-
line medical study platform, with detailed clini-
cal scenarios (213.1 tokens on average) and five
options per question. These questions emphasize
practical clinical knowledge and decision-making.

Afrimed-QA contributes 174 questions that cap-
ture diverse medical scenarios from African health-
care contexts, with 30.0 tokens on average and five
options. This dataset helps ensure geographical and
cultural diversity in medical reasoning evaluation.

MMLU contains 1,089 questions covering both
medical and broader academic domains, with mod-
erate length (55.9 tokens) and four options. While
not exclusively medical, it provides important
cross-domain medical knowledge assessment.

MMLU-Pro features 818 questions with vari-
able option count (3-10) and moderate length (57.4
tokens), offering more complex and challenging
scenarios across medical and related domains.

Our MEDAGENTSARENA benchmark synthe-
sizes these sources into a carefully curated set of
594 challenging questions, maintaining an average
length of 134.8 tokens and preserving the variable
option format (3-10 choices) of the source datasets.
The questions are specifically selected to test ad-
vanced reasoning capabilities, with an emphasis
on complex scenarios that require deep medical
knowledge and multi-step reasoning.

B Cost-performance Analysis

B.1 Experimental Setup

To analyze cost-performance trade-offs, we fol-
lowed a standardized evaluation protocol. For API-
based models ( GPT-4 and CLAUDE 3.5), we cal-
culated costs using their published pricing rates
based on total token usage (input + output). Based
on their platform rates, we estimated costs for open-
source models run on Together Al 3. The total cost
of experimentation was $226.17. We measured
inference time as wall-clock time per sample, in-
cluding prompt construction and model inference,
with agent-based methods including their complete
interaction cycles.

Our evaluation spans both closed-source mod-
els (GPT-40, GPT-40-MINI, CLAUDE-3.5-
SONNET, CLAUDE-3.5-HAIKU, O1-MINI, 03-
MINTI) and open-source alternatives (DEEPSEEK-
V3, DEEPSEEK-R1, LLAMA-3.3-70B, QWQ-
32B). We further categorize models as thinking or
non-thinking based on their prompt format and rea-
soning approach, as indicated by different markers
in Figure 4.

B.2 Analysis of Cost-Performance Patterns

Our analysis in Figure 3 reveals complex trade-
offs between model performance, computational
cost, and inference time across medical domains.
While larger models generally achieve better per-
formance, they come with significant cost over-
head, as evidenced by GPT-40 achieving 35.0%
accuracy on MedQA-Hard but at approximately 10
times the cost per sample compared to GPT-40-
MINT (19.0% accuracy). Interestingly, open-source
models demonstrate competitive performance at
lower costs, with DEEPSEEK-R1 achieving com-
parable or better performance than some closed-
source alternatives while maintaining lower oper-
ational costs, particularly evident in MedMCQA
and MMLU-Pro tasks.

The effectiveness of structured reasoning be-
comes apparent through the consistent outper-
formance of thinking models (marked with cir-
cles) compared to their non-thinking counterparts
(marked with squares) at similar cost points. This
advantage is particularly pronounced in complex
tasks like MedBullets, where thinking models show
5-10% accuracy improvements. The Pareto fron-
tier (red dashed line) in each subplot reveals op-

3https: //www. together.ai/
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Benchmark Size  Avg Tokens  Options Description
MedQA (Jin et al., 2021) 1273 167.1 4 Multiple choice questions from medical licensing exams
PubMedQA (Jin et al., 2019) 500 316.1 3 Questions based on PubMed abstracts
MedMCQA (Pal et al., 2022) 2816 18.7 4 Questions from AIIMS & NEET PG entrance exams
MedBullets (Chen et al., 2024a) 308 213.1 5 Questions from Medbullets online medical study platform
Afrimed-QA (Olatunji et al., 2024) 174 30.0 5 Diverse medical questions from African healthcare contexts
MMLU (Hendrycks et al., 2020) 1089 55.9 4 Questions covering medical, and other academic domains
MMLU-Pro (Wang et al., 2024) 818 57.4 3-10 Questions covering medical, and other academic domains
MEDAGENTSARENA 594 134.8 3-10 HARD subset across all datasets

Table 4: Overview of Medical Question-Answering Datasets.
curated from medical literature, professional journals, and educational resources.

Survey of knowledge-based QA datasets
Traditional benchmarks ,

recently emerging benchmarks , and general purpose benchmarks are shown with corresponding colors.

timal cost-performance trade-offs, with O3-MINI
frequently appearing as a Pareto-optimal solution.
Agent-based methods also achieve efficient posi-
tioning on this frontier despite moderate computa-
tional costs, suggesting their effectiveness in bal-
ancing performance and resource utilization.

Different medical domains exhibit distinct cost-
performance relationships. MedQA demonstrates
steep performance gains with increased computa-
tional investment, while PubMedQA shows more
gradual improvements, suggesting diminishing re-
turns from larger models. Notably, AfriMedQA
exhibits relatively consistent performance across
cost ranges, indicating that domain knowledge may
be more crucial than model scale in specialized
medical contexts. These variations highlight the
importance of considering domain-specific charac-
teristics when selecting models and methods for
medical reasoning tasks.

C Data Leakage Analysis

To ensure the reliability of our benchmark evalua-
tion, we employ memorization effects Levenshtein
Detector (MELD), initially introduced by Nori et al.
(2023) to analyze potential data leakage across var-
ious datasets and language models. MELD quanti-
fies memorization by measuring the similarity be-
tween model-generated text and the original ques-
tion text, where higher similarity scores indicate
a greater likelihood of memorization rather than
genuine reasoning. MELD splits each question
in the dataset into two halves, providing the first
half is provided as context to the model, which is
then tasked with generating the second half. The
generated output is then compared to the unseen
portion using the Levenshtein distance ratio, which
measures the proportion of matching characters.
The analysis spans GPT-3.5/4, CLAUDE-3.5,
and various open-source LLMs, providing compre-
hensive coverage of different model architectures

and training approaches. MELD exhibits high pre-
cision but unknown recall, meaning that while a
detected match strongly indicates memorization,
the absence of a match does not guarantee that the
data was not seen during training. For instance,
Nori et al. (2023) report that GPT-4 reproduces
SQuAD 2.0 questions with 99% character overlap
in 17% of cases, highlighting significant memoriza-
tion.

Interestingly, we observe consistent patterns
across model families. Closed-source models
(GPT-4, CLAUDE-3.5) generally show lower sim-
ilarity scores compared to open-source alterna-
tives, particularly on PubMedQA and MedMCQA
datasets. This suggests potentially more robust
generalization in their medical reasoning capabil-
ities. The variation in similarity scores is notably
smaller for AfriMedQA, likely due to its unique
focus on African healthcare contexts that may be
less represented in model training data.

The boxplot distributions also reveal out-
liers with significantly higher similarity scores
(>60%), particularly in MedBullets and MMLU-
Pro datasets. These cases often correspond to com-
mon medical terminology and standard descrip-
tive phrases rather than wholesale memorization
of question-answer pairs. To validate this interpre-
tation, we manually reviewed a sample of high-
similarity cases and found that the shared text pri-
marily consisted of standard medical terminology
and widely used clinical descriptions.

These findings support the robustness of our
benchmark, indicating that model performance dif-
ferences primarily reflect varying capabilities in
medical reasoning rather than direct memorization
of training examples. The consistently low sim-
ilarity scores across diverse datasets and model
architectures suggest that our HARD set selection
process successfully identifies questions that re-
quire genuine reasoning rather than simple pattern



matching or memorization.

D AfriMedQA Dataset Infomation

Due to the page limit, we visualize the full distribu-
tion (Figure 6) of model performance across seven
medical datasets in the appendix.



Model Performance vs. Cost Trade-off
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Figure 4: Cost-performance analysis across seven medical datasets, comparing open and closed-source
language models. Each subplot shows Pass@1 accuracy (%) versus cost per sample (USD, log scale). Marker
shapes distinguish thinking models from non-thinking models, while colors indicate open-source (blue) versus
closed-source (red) models. Marker sizes represent inference time, and the red dashed line shows the Pareto frontier
of optimal cost-performance trade-offs. Best-performing models and their accuracies are noted in subplot titles.
The analysis includes models like GPT-40, CLAUDE-3.5, DEEPSEEK, and LLAMA-3.3-70B, revealing distinct
performance patterns across different medical domains.
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Data Leakage Analysis Across Question Types
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Figure 5: Data leakage analysis across different medical question-answering datasets using our memorization
affects Levenshtein detector (MELD). Each boxplot shows the similarity percentage between the model-generated
text and the original question text, with higher values indicating potential memorization. Models tested include GPT-
3.5/4, CLAUDE-3.5, and various open-source LLMs. The analysis spans seven datasets: MEDQA, PUBMEDQA,
MEDMCQA, MEDBULLETS, MMLU, MMLU-PRO, and AFRIMEDQA. Lower similarity scores (20-40%) suggest
minimal data leakage, while higher scores may indicate potential memorization of training data.
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Distribution of Correct Answers Across Datasets
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Figure 6: Distribution of model performance across seven medical datasets (MedQA, MedMCQA, PubMedQA,
MedBullets, MMLU-Pro, MMLU, and AfriMedQA). Each subplot shows the number of questions answered
correctly by different proportions of models (x-axis: k/N, where k is the number of correct models and N is the total
number of models). Questions are categorized as either hard (left of the dashed line, < 50% of models correct) or
easy (right of the dashed line, > 50% of models correct), with selected questions highlighted in darker shades. The
total question count for each dataset is indicated in the subplot titles.
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