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Abstract
Large Language Models (LLMs) have shown001
impressive performance on existing medical002
reasoning benchmarks. This high performance003
makes it increasingly difficult to meaningfully004
evaluate and differentiate advanced methods.005
We present MEDAGENTSARENA, a carefully006
curated benchmark that focuses on challenging007
medical questions where current models still008
struggle. Drawing from seven established med-009
ical datasets, our benchmark addresses three010
key limitations in existing evaluations: (1) the011
prevalence of straightforward questions where012
even base models achieve high performance,013
(2) inconsistent sampling and evaluation proto-014
cols across studies, and (3) lack of systematic015
analysis of the interplay between performance,016
cost, and inference time. Through experiments017
with various base models and reasoning meth-018
ods, we demonstrate that the latest thinking019
models, DEEPSEEK R1 and OPENAI O3, ex-020
hibit exceptional performance in complex med-021
ical reasoning tasks. Additionally, advanced022
search-based agent methods also perform ef-023
fectively in handling intricate medical queries.024
Our benchmark and evaluation framework025
are publicly available at https://anonymous.026
4open.science/r/MedAgentArena.027

1 Introduction028

Large Language Models (LLMs) have demon-029

strated remarkable capabilities in medical natural030

language processing tasks, from answering clinical031

questions to assisting in diagnostic processes (Sing-032

hal et al., 2025; Jin et al., 2022; Chen et al., 2023;033

Zhou et al., 2023; Gao et al., 2024). However, as034

shown in Figure 1, even OPENAI O3, GPT-4O and035

CLAUDE 3.5 SONNET struggle with complex med-036

ical scenarios that require deep domain expertise037

and multi-step reasoning (Xu et al., 2024; Fan et al.,038

2025; Shi et al., 2024).039

To enhance LLMs’ medical reasoning capabili-040

ties, researchers have proposed various approaches.041

As summarized in Table 1, these methods range042

Figure 1: Performance analysis of large language
models on medical tasks. Overall Pass@1 accuracy
comparison across models in zero-shot setting. The
score is an average of results on all test sets of seven
datasets (MedQA, PubMedQA, MedMCQA, MedBul-
lets, MMLU, MMLU-Pro, and AfriMedQA).
from general-purpose techniques like CHAIN-OF- 043

THOUGHT (COT) and SELF-CONSISTENCY (SC) 044

(Wei et al., 2022; Wang et al., 2022) to domain- 045

specific frameworks such as MEDPROMPT (Chen 046

et al., 2024b). While these traditional approaches 047

provide modest improvements, recent evidence sug- 048

gests that agent-based methods, or "agent work- 049

flows," demonstrate superior performance. Meth- 050

ods like MEDAGENTS (Tang et al., 2023) and 051

MDAGENTS (Kim et al., 2024) leverage multi- 052

agent collaboration frameworks to achieve more 053

robust medical reasoning. However, with the ad- 054

vent of advanced thinking models like OPENAI 055

O3-MINI and DEEPSEEK R1, as well as the de- 056

velopment of search-based agent frameworks, it 057

remains an open question how these models per- 058

form in medical reasoning tasks. 059

Several critical challenges impede the evaluation 060

of those thinking models and more effective agent 061

frameworks for medical reasoning. (a) As shown in 062

Appendix A Table 4, while existing medical reason- 063

ing datasets are extensive, many are derived from 064
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Method Description
CHAIN-OF-THOUGHT (Wei et al., 2022) Elicits reasoning in large language models
SELF-CONSISTENCY (Wang et al., 2022) Improves chain of thought reasoning in language models
MEDPROMPT (Chen et al., 2024b) Multi-round prompting with ensemble voting for medical question answering
MULTI-PERSONA (Wang et al., 2023) Task-solving agent through multi-persona self-collaboration
SELF-REFINE (Madaan et al., 2024) Iterative refinement with self-feedback
MEDAGENTS (Tang et al., 2023) Collaborative multi-agent framework for zero-shot medical decision making
MDAGENTS (Kim et al., 2024) Dynamic multi-agent collaboration framework for medical reasoning
AFLOW (Zhang et al., 2024) Automating agentic workflow generation
SPO (Xiang et al., 2025) Self-supervised prompt optimization

Table 1: Overview of Methods. Survey of methods used for medical reasoning and question answering.
General-purpose methods , domain-specific methods , and search-based methods are shown.

US medical licensing examinations and contain a065

substantial proportion of straightforward questions.066

On these easier questions, even base LLMs achieve067

high performance (see Table 3, "FULL" columns),068

making it difficult to assess the improvements069

brought by advanced agent frameworks meaning-070

fully. (b) Furthermore, since most existing datasets071

were designed for evaluating smaller models in072

the pre-LLM era, they often contain thousands of073

questions, leading current agent-based studies to074

arbitrarily subsample around 300 questions for eval-075

uation (Tang et al., 2023). This inconsistent sam-076

pling across different works, coupled with varying077

evaluation protocols, makes fair comparison chal-078

lenging. (c) Additionally, there exists a complex in-079

terplay between performance, computational costs,080

and inference time that current benchmarks fail to081

systematically capture.082

This landscape motivates our work on MEDA-083

GENTSARENA, a benchmark for evaluating LLMs’084

medical reasoning capabilities. Drawing from085

seven established medical datasets (MedQA,086

PubMedQA, MedMCQA, MedBullets, MMLU,087

MMLU-Pro, and AfriMedQA), we curate a chal-088

lenging subset of questions that specifically test089

advanced reasoning capabilities. As shown in Fig-090

ure 2, we select questions that current models find091

particularly challenging, allowing for a more nu-092

anced evaluation of model performance. Addition-093

ally, recognizing the importance of data quality in094

model evaluation, we analyze potential data leak-095

age, as presented in Appendix C Figure 5.096

2 MedAgentsArena097

MEDAGENTSARENA is a carefully curated bench-098

mark specifically designed to evaluate complex099

medical reasoning tasks. Drawing from seven100

established medical datasets (MedQA (Jin et al.,101

2021), PubMedQA (Jin et al., 2019), MedM-102

CQA (Pal et al., 2022), MedBullets (Chen et al.,103

2024a), MMLU (Hendrycks et al., 2020), MMLU-104

Pro (Wang et al., 2024), and AfriMedQA (Olatunji 105

et al., 2024)), we systematically construct a chal- 106

lenging subset that focuses on more complex rea- 107

soning scenarios. As shown in Table 2, these source 108

datasets vary significantly in size (from 174 to 109

2,816 questions), average token length (18.7 to 110

316.1), and number of options (3 to 10), providing 111

diverse evaluation contexts. Our hard set selection 112

process follows three key criteria: 113

(1) Model Performance Distribution As visu- 114

alized in Figure 2, we analyze the proportion of 115

models that correctly answer each question (k/N 116

ratio). Questions where less than 50% of models 117

provide correct answers (left of the dashed line in 118

Figure 2) are categorized as hard candidates. This 119

ensures our benchmark focuses on truly challeng- 120

ing questions that current models struggle with. 121

(2) Question Diversity We maintain the relative 122

proportion of questions from each source dataset 123

to ensure broad coverage of medical knowledge 124

domains. Specifically, from each dataset, we select: 125

MedQA: 94 questions (particularly from USMLE- 126

style complex scenarios); PubMedQA: 78 ques- 127

tions (focusing on biomedical research comprehen- 128

sion); MedMCQA: 156 questions (from specialized 129

medical entrance exams); MedBullets: 82 ques- 130

tions (emphasizing clinical diagnosis); MMLU: 131

86 questions (covering broad medical concepts); 132

MMLU-Pro: 64 questions (targeting advanced 133

medical knowledge); AfriMedQA: 34 questions 134

(incorporating global healthcare contexts). 135

(3) Reasoning Depth We prioritize questions 136

that require multi-step reasoning (selected and ver- 137

ified by four M.D. students), as evidenced by the 138

performance gap between base models and agent- 139

based approaches. As shown in Table 3, while mod- 140

els achieve high accuracy on the FULL set (e.g., 141

GPT-4o: 87.8% on MedQA), their performance 142

drops significantly on our HARD subset (e.g., GPT- 143

4o: 35.0% on MedQA-Hard), confirming the in- 144

creased difficulty. 145
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Figure 2: Distribution of model performance across six medical datasets (MedQA, MedMCQA, PubMedQA,
MedBullets, MMLU-Pro, and MMLU). Each subplot shows the number of questions answered correctly by
different proportions of models (x-axis: k/N, where k is the number of correct models and N is the total number of
models). Questions are categorized as either hard (left of the dashed line, < 50% of models correct) or easy (right of
the dashed line, ≥ 50% of models correct), with selected questions highlighted in darker shades. The total question
count for each dataset is indicated in the subplot titles. AfriMedQA is in Appendix D.

In summary, firstly we evaluate each candi-146

date question across multiple model architectures147

(as shown in Table 3) to ensure the difficulty is148

architecture-independent. Secondly, using MELD149

(Memorization affects Levenshtein Detector), we150

analyze potential data leakage. As shown in Fig-151

ure 5, we maintain low similarity scores (20-40%)152

between model outputs and question text, suggest-153

ing questions test genuine reasoning rather than154

memorization. Finally, the final question set is155

reviewed by four medical professionals (M.D. stu-156

dents) to verify clinical relevance and reasoning157

complexity. The resulting MEDAGENTSARENA158

benchmark contains 594 questions with an average159

token length of 134.8.160

3 Experiments161

3.1 Experimental Setup162

We conduct experiments to evaluate both base163

models and reasoning methods. For base mod-164

els, we consider both closed-source and open-165

source variants. The closed-source models in-166

clude GPT-4O, GPT-4O-MINI, CLAUDE-3.5-167

SONNET, CLAUDE-3.5-HAIKU, O1-MINI, and168

O3-MINI, while the open-source models com-169

prise DEEPSEEK-V3, DEEPSEEK-R1, LLAMA-170

3.3-70B, and QWQ-32B. In terms of reason-171
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Figure 3: Performance analysis of agents and models
on MEDAGENTSARENA. Cost-performance trade-off
analysis showing Pass@1 accuracy versus cost per sam-
ple (in log scale), with marker sizes indicating inference
time. Different markers represent various prompting
methods , while colors distinguish different models. The
Pareto frontier (red dashed line) indicates optimal cost-
performance trade-offs.
ing methods, we evaluate 11 different approaches 172

spanning five categories: (1) baseline methods 173

(ZERO-SHOT, FEW-SHOT, CHAIN-OF-THOUGHT, 174

& SELF-CONSISTENCY), (2) advanced general 175

prompting methods (MULTI-PERSONA, SELF- 176
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Method MedQA PubMedQA MedMCQA MedBullets MMLU MMLU-Pro AfriMedQA

Base Model 4O-M 4O DS 4O-M 4O DS 4O-M 4O DS 4O-M 4O DS 4O-M 4O DS 4O-M 4O DS 4O-M 4O DS

ZERO-SHOT 19.0 35.0 15.0 9.0 8.0 13.0 16.0 27.0 22.0 9.0 18.0 15.7 13.7 28.8 12.3 12.0 15.0 12.0 15.6 21.9 6.2

FEW-SHOT 28.0 27.0 21.0 19.0 22.0 18.0 25.0 28.0 25.0 22.5 21.3 18.0 27.4 17.8 19.2 9.0 6.0 26.0 18.8 34.4 12.5

COT 23.0 39.0 30.0 13.0 13.0 15.0 24.0 31.0 31.0 18.0 21.3 19.1 26.0 30.1 32.9 38.0 42.0 36.0 15.6 18.8 25.0

COT-SC 20.0 39.0 25.0 13.0 7.0 13.0 26.0 31.0 24.0 15.7 22.5 16.9 26.0 28.8 31.5 36.0 42.0 32.0 15.6 21.9 28.1

MULTIPERSONA 30.0 45.0 32.0 16.0 13.0 24.0 22.0 34.0 31.0 18.0 29.5 19.1 21.9 34.2 27.4 35.0 40.0 33.3 15.6 21.9 34.4

SELF-REFINE 24.0 42.0 30.0 13.0 9.0 17.0 27.0 30.0 26.0 19.1 29.2 23.6 26.0 34.2 24.7 39.0 37.0 36.0 15.6 21.9 21.9

MEDPROMPT 31.0 35.0 15.0 15.0 12.0 13.0 27.0 26.0 21.0 15.7 22.5 10.1 24.7 26.0 15.1 34.0 23.0 12.0 18.8 18.8 18.8

MEDAGENTS 24.0 43.0 32.0 12.0 15.0 13.0 22.0 30.0 26.0 15.7 27.0 19.1 24.7 28.8 23.3 8.0 8.0 7.0 12.5 18.8 21.9

MDAGENTS 22.0 36.0 44.0 23.0 11.0 15.0 16.0 22.0 27.0 14.6 21.3 23.6 17.8 24.7 23.3 9.0 8.0 11.0 18.8 31.2 31.2

SPO 19.0 31.0 22.0 25.0 31.0 18.0 20.0 30.0 28.0 22.5 29.2 15.7 19.2 32.9 24.7 32.0 36.0 31.0 18.8 21.9 12.5

AFLOW 30.0 48.0 28.0 15.0 18.0 18.0 25.0 31.0 22.0 15.7 34.8 16.9 24.7 38.4 16.4 29.0 37.0 21.0 12.5 28.1 15.6

Table 2: Performance heatmap by reasoning methods and data sets. All the tasks are evaluated on the HARD set.
For each dataset, three base models are used in order: GPT-4O-MINI, GPT-4O, and DEEPSEEK-V3. Accuracy is in
%. The best values and the second-best values are highlighted.

Model MedQA PubMedQA MedMCQA MedBullets MMLU MMLU-Pro AfriMedQA
FULL HARD FULL HARD FULL HARD FULL HARD FULL HARD FULL HARD FULL HARD

GPT-4O-MINI 73.4 19.0 76.2 9.0 66.0 16.0 53.6 9.0 84.3 13.7 57.5 12.0 75.9 15.6

GPT-4O 87.8 35.0 79.2 8.0 76.6 27.0 70.5 18.0 91.3 28.8 69.1 15.0 81.6 21.9

DEEPSEEK-V3 79.3 15.0 73.6 13.0 74.3 22.0 61.0 15.7 89.7 12.3 64.7 12.0 75.9 6.2

O1-MINI 89.9 41.0 77.4 15.0 73.2 25.0 73.1 39.3 90.7 34.2 67.8 9.0 78.7 15.6

O3-MINI 92.7 52.0 79.6 13.0 77.1 25.0 82.1 50.6 93.4 34.2 70.0 14.0 77.0 18.8

QWQ-32B 71.3 18.0 77.2 10.0 67.6 18.0 49.7 6.7 86.9 13.7 68.9 32.0 69.5 15.6

DEEPSEEK-R1 92.0 47.0 76.2 12.0 81.9 34.0 79.2 43.8 95.0 41.1 79.6 37.0 79.3 28.1

LLAMA-3.3-70B 76.8 12.0 77.8 13.0 71.4 18.0 61.7 19.1 85.2 11.0 61.7 10.0 76.4 12.5

CLAUDE-3.5-SONNET 77.7 17.0 76.4 9.0 68.8 11.0 56.5 11.2 86.9 16.4 64.2 13.0 75.9 9.4

CLAUDE-3.5-HAIKU 63.4 13.0 73.8 12.0 62.9 23.0 49.4 7.9 79.7 11.0 57.5 11.0 70.7 15.6

Table 3: Performance heatmap by base models and data sets. For each task, accuracy values are in percentages,
with separate columns for FULL and HARD. The best values and the second-best values are highlighted.

REFINE), (3) medical-specific prompting methods177

(MEDPROMPT), (4) medical-multi-agent-based178

methods (MEDAGENTS & MDAGENTS), and179

(5) search-based multi-agent methods (SPO, &180

AFLOW). All experiments are conducted using181

identical prompts and evaluation protocols across182

models for a fair comparison. 1 2183

3.2 Performance Analysis184

Our cost-performance analysis in Figure 3 reveals185

several important patterns in medical reasoning186

capabilities. First, while model size generally cor-187

relates positively with performance, it also leads to188

significant increases in computational cost, as in-189

dicated by the marker sizes representing inference190

time. Despite their specialized design for medical191

scenarios, agent-based methods like MEDAGENTS192

and MDAGENTS did not perform better than the193

latest thinking models, with even heavier computa-194

tional overhead.195

The comparison of reasoning methods in Table196

2 demonstrates the superiority of agent-based ap-197

1Methods requiring multi-round reasoning (e.g., MEDA-
GENTS) use two rounds of inference per query.

2Multi-agent approaches (e.g., MULTI-PERSONA) utilize
three distinct agent roles per inference.

proaches to challenging medical questions. CHAIN- 198

OF-THOUGHT with SELF-CONSISTENCY (COT- 199

SC) shows moderate improvements over bare COT, 200

with average gains of 2-3% across datasets. How- 201

ever, domain-specific methods like MedPrompt 202

show mixed results. They perform well on specific 203

datasets but lack consistency across different medi- 204

cal tasks. The base-model-level analysis in Table 3 205

reveals a striking performance gap between FULL 206

and HARD sets. For instance, GPT-4O’s perfor- 207

mance drops from 87.8% to 35.0% on MedQA, val- 208

idating the effectiveness of our HARD set selection 209

criteria in identifying truly challenging medical 210

questions. Interestingly, O3-MINI achieves the best 211

overall performance on HARD sets. Additionally, 212

open-source models, particularly DEEPSEEK-R1, 213

demonstrate competitive performance compared to 214

their closed-source counterparts. 215

4 Conclusion 216

Through MEDAGENTSARENA, we demonstrate 217

that thinking models, such as DEEPSEEK-R1 and 218

OPENAI O3-MINI, consistently outperform others 219

in complex medical reasoning tasks. Additionally, 220

advanced search-based agent methods also perform 221

effectively. 222
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Limitations223

While MEDAGENTSARENA provides a rigorous224

benchmark for evaluating medical reasoning capa-225

bilities, several important limitations remain:226

First, our benchmark primarily focuses on medi-227

cal question-answering tasks based on educational228

resources, which may not fully reflect the com-229

plexity and nuance of real-world clinical scenarios.230

A more comprehensive evaluation would require231

incorporating real-world clinical cases, physician-232

patient dialogues, and diagnostic decision-making233

processes.234

Second, despite our efforts to validate the bench-235

mark using MD students, we lack systematic veri-236

fication of model outputs by practicing clinicians.237

This raises concerns about model-generated rea-238

soning paths’ reliability and alignment with estab-239

lished medical knowledge. Future work should240

establish a more rigorous verification framework241

involving domain experts to assess answer correct-242

ness and the validity of reasoning steps and poten-243

tial hallucinations.244

Third, while we demonstrate strong performance245

from agent-based approaches, we have only evalu-246

ated a limited set of reasoning architectures. The247

field would benefit from exploring a broader range248

of methods, including hybrid approaches combin-249

ing symbolic and neural reasoning and techniques250

explicitly designed for verifiable medical reason-251

ing.252

Fourth, our evaluation metrics focus primarily253

on accuracy and cost but do not assess other crucial254

aspects like verifiability, robustness to distribution255

shifts, and calibration of model confidence. Future256

work should develop more comprehensive evalu-257

ation frameworks that can measure these critical258

dimensions of medical AI systems.259

Finally, while our work demonstrates the effec-260

tiveness of multi-agent and ensemble approaches261

in medical reasoning, we have only scratched the262

surface of potential ensemble strategies. Sophisti-263

cated ensemble methods like step-wise verification,264

task-wise verification, and dynamic agent collab-265

oration could potentially yield even better perfor-266

mance. For instance, verifying intermediate rea-267

soning steps through model consensus, utilizing268

heterogeneous model combinations, or implement-269

ing adaptive voting strategies based on agent ex-270

pertise remain unexplored. Future research could271

investigate:272

(1)More sophisticated voting and aggregation273

strategies beyond simple majority voting. (2) Adap- 274

tive ensemble methods that dynamically adjust 275

agent weights based on task characteristics. (3)Hi- 276

erarchical ensemble approaches that combine both 277

step-wise and task-wise verification. (4)Methods 278

for increasing response diversity through system- 279

atic prompt variation and temperature tuning. (5)In- 280

tegration of expert knowledge to guide ensemble 281

selection and verification. 282

While our current approach shows promising re- 283

sults, we lack a thorough theoretical understanding 284

of why specific ensemble configurations outper- 285

form others in medical reasoning tasks. A more 286

systematic study of ensemble properties - such as 287

diversity, correlation, and calibration - could guide 288

the development of more effective medical reason- 289

ing systems. 290
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A Dataset Information422

Our MEDAGENTSARENA benchmark draws from423

seven established medical datasets spanning di-424

verse question types and formats. Table 4 provides425

a comprehensive overview of each source dataset:426

MedQA consists of 1,273 questions from med-427

ical licensing examinations with an average to-428

ken length of 167.1 and 4 multiple-choice options.429

These questions are designed to test clinical knowl-430

edge and diagnostic reasoning that would be ex-431

pected of medical professionals.432

PubMedQA contains 500 questions focused on433

biomedical research comprehension, with longer434

contexts (average 316.1 tokens) and 3 answer435

options. Questions are derived from PubMed436

abstracts, emphasizing scientific and research-437

oriented medical knowledge.438

MedMCQA comprises 2,816 questions from AI-439

IMS & NEET PG entrance exams, featuring con-440

cise questions (18.7 tokens on average) with four441

options. This represents a challenging set of spe-442

cialized medical entrance exam questions.443

MedBullets includes 308 questions from an on-444

line medical study platform, with detailed clini-445

cal scenarios (213.1 tokens on average) and five446

options per question. These questions emphasize447

practical clinical knowledge and decision-making.448

Afrimed-QA contributes 174 questions that cap-449

ture diverse medical scenarios from African health-450

care contexts, with 30.0 tokens on average and five451

options. This dataset helps ensure geographical and452

cultural diversity in medical reasoning evaluation.453

MMLU contains 1,089 questions covering both454

medical and broader academic domains, with mod-455

erate length (55.9 tokens) and four options. While456

not exclusively medical, it provides important457

cross-domain medical knowledge assessment.458

MMLU-Pro features 818 questions with vari-459

able option count (3-10) and moderate length (57.4460

tokens), offering more complex and challenging461

scenarios across medical and related domains.462

Our MEDAGENTSARENA benchmark synthe-463

sizes these sources into a carefully curated set of464

594 challenging questions, maintaining an average465

length of 134.8 tokens and preserving the variable466

option format (3-10 choices) of the source datasets.467

The questions are specifically selected to test ad-468

vanced reasoning capabilities, with an emphasis469

on complex scenarios that require deep medical470

knowledge and multi-step reasoning.471

B Cost-performance Analysis 472

B.1 Experimental Setup 473

To analyze cost-performance trade-offs, we fol- 474

lowed a standardized evaluation protocol. For API- 475

based models ( GPT-4 and CLAUDE 3.5), we cal- 476

culated costs using their published pricing rates 477

based on total token usage (input + output). Based 478

on their platform rates, we estimated costs for open- 479

source models run on Together AI 3. The total cost 480

of experimentation was $226.17. We measured 481

inference time as wall-clock time per sample, in- 482

cluding prompt construction and model inference, 483

with agent-based methods including their complete 484

interaction cycles. 485

Our evaluation spans both closed-source mod- 486

els (GPT-4O, GPT-4O-MINI, CLAUDE-3.5- 487

SONNET, CLAUDE-3.5-HAIKU, O1-MINI, O3- 488

MINI) and open-source alternatives (DEEPSEEK- 489

V3, DEEPSEEK-R1, LLAMA-3.3-70B, QWQ- 490

32B). We further categorize models as thinking or 491

non-thinking based on their prompt format and rea- 492

soning approach, as indicated by different markers 493

in Figure 4. 494

B.2 Analysis of Cost-Performance Patterns 495

Our analysis in Figure 3 reveals complex trade- 496

offs between model performance, computational 497

cost, and inference time across medical domains. 498

While larger models generally achieve better per- 499

formance, they come with significant cost over- 500

head, as evidenced by GPT-4O achieving 35.0% 501

accuracy on MedQA-Hard but at approximately 10 502

times the cost per sample compared to GPT-4O- 503

MINI (19.0% accuracy). Interestingly, open-source 504

models demonstrate competitive performance at 505

lower costs, with DEEPSEEK-R1 achieving com- 506

parable or better performance than some closed- 507

source alternatives while maintaining lower oper- 508

ational costs, particularly evident in MedMCQA 509

and MMLU-Pro tasks. 510

The effectiveness of structured reasoning be- 511

comes apparent through the consistent outper- 512

formance of thinking models (marked with cir- 513

cles) compared to their non-thinking counterparts 514

(marked with squares) at similar cost points. This 515

advantage is particularly pronounced in complex 516

tasks like MedBullets, where thinking models show 517

5-10% accuracy improvements. The Pareto fron- 518

tier (red dashed line) in each subplot reveals op- 519

3https://www.together.ai/
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Benchmark Size Avg Tokens Options Description
MedQA (Jin et al., 2021) 1273 167.1 4 Multiple choice questions from medical licensing exams
PubMedQA (Jin et al., 2019) 500 316.1 3 Questions based on PubMed abstracts
MedMCQA (Pal et al., 2022) 2816 18.7 4 Questions from AIIMS & NEET PG entrance exams
MedBullets (Chen et al., 2024a) 308 213.1 5 Questions from Medbullets online medical study platform
Afrimed-QA (Olatunji et al., 2024) 174 30.0 5 Diverse medical questions from African healthcare contexts
MMLU (Hendrycks et al., 2020) 1089 55.9 4 Questions covering medical, and other academic domains
MMLU-Pro (Wang et al., 2024) 818 57.4 3-10 Questions covering medical, and other academic domains
MEDAGENTSARENA 594 134.8 3-10 HARD subset across all datasets

Table 4: Overview of Medical Question-Answering Datasets. Survey of knowledge-based QA datasets
curated from medical literature, professional journals, and educational resources. Traditional benchmarks ,
recently emerging benchmarks , and general purpose benchmarks are shown with corresponding colors.

timal cost-performance trade-offs, with O3-MINI520

frequently appearing as a Pareto-optimal solution.521

Agent-based methods also achieve efficient posi-522

tioning on this frontier despite moderate computa-523

tional costs, suggesting their effectiveness in bal-524

ancing performance and resource utilization.525

Different medical domains exhibit distinct cost-526

performance relationships. MedQA demonstrates527

steep performance gains with increased computa-528

tional investment, while PubMedQA shows more529

gradual improvements, suggesting diminishing re-530

turns from larger models. Notably, AfriMedQA531

exhibits relatively consistent performance across532

cost ranges, indicating that domain knowledge may533

be more crucial than model scale in specialized534

medical contexts. These variations highlight the535

importance of considering domain-specific charac-536

teristics when selecting models and methods for537

medical reasoning tasks.538

C Data Leakage Analysis539

To ensure the reliability of our benchmark evalua-540

tion, we employ memorization effects Levenshtein541

Detector (MELD), initially introduced by Nori et al.542

(2023) to analyze potential data leakage across var-543

ious datasets and language models. MELD quanti-544

fies memorization by measuring the similarity be-545

tween model-generated text and the original ques-546

tion text, where higher similarity scores indicate547

a greater likelihood of memorization rather than548

genuine reasoning. MELD splits each question549

in the dataset into two halves, providing the first550

half is provided as context to the model, which is551

then tasked with generating the second half. The552

generated output is then compared to the unseen553

portion using the Levenshtein distance ratio, which554

measures the proportion of matching characters.555

The analysis spans GPT-3.5/4, CLAUDE-3.5,556

and various open-source LLMs, providing compre-557

hensive coverage of different model architectures558

and training approaches. MELD exhibits high pre- 559

cision but unknown recall, meaning that while a 560

detected match strongly indicates memorization, 561

the absence of a match does not guarantee that the 562

data was not seen during training. For instance, 563

Nori et al. (2023) report that GPT-4 reproduces 564

SQuAD 2.0 questions with 99% character overlap 565

in 17% of cases, highlighting significant memoriza- 566

tion. 567

Interestingly, we observe consistent patterns 568

across model families. Closed-source models 569

(GPT-4, CLAUDE-3.5) generally show lower sim- 570

ilarity scores compared to open-source alterna- 571

tives, particularly on PubMedQA and MedMCQA 572

datasets. This suggests potentially more robust 573

generalization in their medical reasoning capabil- 574

ities. The variation in similarity scores is notably 575

smaller for AfriMedQA, likely due to its unique 576

focus on African healthcare contexts that may be 577

less represented in model training data. 578

The boxplot distributions also reveal out- 579

liers with significantly higher similarity scores 580

(>60%), particularly in MedBullets and MMLU- 581

Pro datasets. These cases often correspond to com- 582

mon medical terminology and standard descrip- 583

tive phrases rather than wholesale memorization 584

of question-answer pairs. To validate this interpre- 585

tation, we manually reviewed a sample of high- 586

similarity cases and found that the shared text pri- 587

marily consisted of standard medical terminology 588

and widely used clinical descriptions. 589

These findings support the robustness of our 590

benchmark, indicating that model performance dif- 591

ferences primarily reflect varying capabilities in 592

medical reasoning rather than direct memorization 593

of training examples. The consistently low sim- 594

ilarity scores across diverse datasets and model 595

architectures suggest that our HARD set selection 596

process successfully identifies questions that re- 597

quire genuine reasoning rather than simple pattern 598
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matching or memorization.599

D AfriMedQA Dataset Infomation600

Due to the page limit, we visualize the full distribu-601

tion (Figure 6) of model performance across seven602

medical datasets in the appendix.603
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Figure 4: Cost-performance analysis across seven medical datasets, comparing open and closed-source
language models. Each subplot shows Pass@1 accuracy (%) versus cost per sample (USD, log scale). Marker
shapes distinguish thinking models from non-thinking models, while colors indicate open-source (blue) versus
closed-source (red) models. Marker sizes represent inference time, and the red dashed line shows the Pareto frontier
of optimal cost-performance trade-offs. Best-performing models and their accuracies are noted in subplot titles.
The analysis includes models like GPT-4O, CLAUDE-3.5, DEEPSEEK, and LLAMA-3.3-70B, revealing distinct
performance patterns across different medical domains.
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Figure 5: Data leakage analysis across different medical question-answering datasets using our memorization
affects Levenshtein detector (MELD). Each boxplot shows the similarity percentage between the model-generated
text and the original question text, with higher values indicating potential memorization. Models tested include GPT-
3.5/4, CLAUDE-3.5, and various open-source LLMs. The analysis spans seven datasets: MEDQA, PUBMEDQA,
MEDMCQA, MEDBULLETS, MMLU, MMLU-PRO, and AFRIMEDQA. Lower similarity scores (20-40%) suggest
minimal data leakage, while higher scores may indicate potential memorization of training data.
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Figure 6: Distribution of model performance across seven medical datasets (MedQA, MedMCQA, PubMedQA,
MedBullets, MMLU-Pro, MMLU, and AfriMedQA). Each subplot shows the number of questions answered
correctly by different proportions of models (x-axis: k/N, where k is the number of correct models and N is the total
number of models). Questions are categorized as either hard (left of the dashed line, < 50% of models correct) or
easy (right of the dashed line, ≥ 50% of models correct), with selected questions highlighted in darker shades. The
total question count for each dataset is indicated in the subplot titles.
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