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ABSTRACT

Multimodal learning plays a crucial role in enabling machine learning models to
fuse and utilize diverse data sources, such as text, images, and audio, to support a
variety of downstream tasks. A unified representation across various modalities is
particularly important for improving efficiency and performance. Recent binding
methods, such as ImageBind (Girdhar et al., [2023)), typically use a fixed anchor
modality to align multimodal data in the anchor modal embedding space. In this
paper, we mathematically analyze the fixed anchor binding methods and uncover
notable limitations: (1) over-reliance on the choice of the anchor modality, (2)
failure to capture intra-modal information, and (3) failure to account for inter-
modal correlation among non-anchored modalities. To address these limitations,
we propose CentroBind, a simple yet powerful approach that eliminates the need
for a fixed anchor; instead, it employs adaptively adjustable centroid-based anchors
generated from all available modalities, resulting in a balanced and rich representa-
tion space. We theoretically demonstrate that our method captures three crucial
properties of multimodal learning: intra-modal learning, inter-modal learning,
and multimodal alignment, while also constructing a robust unified representation
across all modalities. Our experiments on both synthetic and real-world datasets
demonstrate the superiority of the proposed method, showing that adaptive anchor
methods outperform all fixed anchor binding methods as the former captures more
nuanced multimodal interactions.

1 INTRODUCTION

Multimodal alignment is defined as identifying and exploiting relationships and correspondences
between multiple modalities (e.g., text, image, audio) viewing common phenomena to establish
meaningful connections between their representations (Baltrusaitis et al.,2018)). This process allows
machine learning models to analyze heterogeneous data holistically, facilitating comprehensive
decision-making. A common approach is learning a shared embedding space (Tu et al., 2022} \Girdhar
et al., 2023 |Liang et al.,2024b}; Zhu et al.,[2024), which aims to project data from multiple modalities
into a common embedding space by clustering similar items together for direct comparison and
linkage. This approach leverages well-trained single-modal embeddings, aligning them with auxiliary
objective functions like contrastive loss (Oord et al.l |2018) or triplet loss (Wang et al., [2020b) to
minimize distances between similar items and maximize distances between dissimilar ones across
modalities.

Instead of training separate models for each modality, ImageBind (Girdhar et al., 2023)) pairs images
with other modalities and projects them into a common image embedding space. Similarly, Zhu
et al.| (2024)) shows that pairing texts with other modalities (LanguageBind) improves retrieval
task performance when language is specified as the anchor modality. This approach has inspired
various “-Bind” methods tailored to align different modalities for specific domains, such as molecular
modeling (Xiao et al., 2024), medical imaging (Gao et al., [2024)), brain signals (Yang et al., [2024b),
and music selection for videos (Teng et al., |2024). These models commonly use image or text
as the anchor embedding due to the abundance of data, with other modalities projected into this
anchor representation.

We define the aforementioned approaches as Fixed-Anchor-Bind (FABIND) methods, where the
embedding space of the primary anchor modality remains fixed during the alignment process. Many
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(a) FABIND vs. CENTROBIND. (b) Graphical illustration of CENTROBIND.

Figure 1: Fixed anchor bind methods (FABIND) binds representations to the fixed anchor modality,
while CENTROBIND uses adaptive anchors. (a) Colors and shapes represent different modalities and
semantic information, respectively. Z denotes the unified representation space. (b) CENTROBIND
forms adaptive anchors from the centroids of positive augmentation pairs.

“-Bind”-like approaches maximize mutual information I(Z1; Z;) between the representation Z; of
the anchor modality and the representations Z;,i € {2, --- , M} of other modalities. Although these
approaches are practically useful and widely adopted in learning unified multimodal representation,
they have severe limitations, as demonstrated through theory and experiment in this paper.

Issues with fixed anchor binding. First, selecting which modality to serve as an anchor is crucial
but challenging, as it depends on both embedding quality and task suitability. Common choices like
images or text can be suboptimal, especially when no single modality has the dominant information
about the source. Second, fixing an anchor can result in loss of semantic information that is well
represented only in other modalities. For instance, while fext may describe ‘a dog barks loudly,” sound
could reveal mood, and an image could add facial expression, a holistic combination that a fixed
alignment might miss. Third, optimizing only for anchor-to-other-modality overlooks information
complementarity between non-anchored modalities. These issues are the primary motivation for
the proposed CENTROBIND alternative to fixed modality anchoring methods. We formally analyze
deficiencies of FABIND approaches in Section 2]

Adaptive anchor alignment. We propose an alternative to fixed anchor alignment by replacing
fixed anchors with “adaptive” anchors computed from paired samples. Our proposed method,
CENTROBIND, described in Section [3] removes the need for selecting a fixed anchor modality,
instead calculates the centroid over the aggregate of all modality’s representations and generates an
multimodal anchor representation, as shown in Figure Encoders are then trained to minimize
the ensemble of InfoNCE loss (Oord et al., [2018)) between the representation of this adaptive anchor
and the fixed modality representations. The main intuition is that a desirable anchor should be
representative of all modalities, capturing the most comprehensive information, with well-trained
encoders producing representations that naturally cluster around this shared centroid, reflecting their
underlying semantic alignment.

Our theoretical analysis demonstrates that CENTROBIND effectively addresses three critical compo-
nents of multimodal learning: 1) capturing intra-modal mutual information, 2) capturing inter-modal
mutual information, and 3) performing multimodal alignment by maximizing embedding similar-
ity measures. By incorporating these elements, CENTROBIND outperforms other multimodality

"While our focus is on centroid-based adaptive anchors, generalizing this approach to other methods, such as
median or weighted average, is a possible extension. For further discussion, please refer to Appendix@
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alignment methods, as shown empirically on both synthetic and real-world datasets in retrieval
and classification tasks. The proposed approach yields an unified representation space and, in the
the perspective of Huh et al.| (2024), who contend that multimodal representations better align as
they move toward a platonic representation that captures the semantic information of all modalities
simultaneously.

2 PROBLEM FORMULATION

In this section, we describe general representation learning and representation binding problems
in multimodal learning. Then, we analyze fixed-anchor-bind (FABIND) methods such as Image-
Bind (Girdhar et al.| [2023), that bind multimodal representations to a user selected fixed modality.

2.1 REPRESENTATION LEARNING FRAMEWORK

Notation. Boldface upper case letters (e.g., X) denote random vectors, and a realization is denoted
by the boldface lower case letters (e.g., €); Forn € N, [n] := {1,2,--- ,n}; Px and Px y denote
the marginal and the joint distributions of X and (X,Y), respectively.

Given M datasets D = {D;}} |, let D; = {(x; ;,y; ])}jvzl be the dataset from the i-th modality,
where z; ; € &; and y, ; € V; are respectively the j-th input instance (e.g., feature vector) and the
corresponding label in i-th modality, and we assume that (z; j,y; ;) bR Px, v, | We assume that j
indexes paired samples among modalities. For instance, . and x3 . are features having similar
semantic information (e.g., dog image and dog sound) in D; and Ds. The goal of representation
learning is to build M encoders f; : X; — Z; for each modality, which maps the input instances x; ;
to its embedding z; ; = fi(«; ;), preserving as much information about x; ; as possible.

For the uni-modal case (M = 1), keeping maximum information about x; ; at its embedding 21 ; is
generally preferred based on the “InfoMax” principle (Linsker, |1988), under which the objective is to
maximize mutual information I(X;; f(X;)) between X; and f(X;). Throughout the paper, we call
I(X;; f(X;)) intra information on X;. For the multimodal case (M > 2), on top of the InfoMax
principle, “minimal sufficiency” is proposed in (Tian et al.;|2020)), which suggests maximizing shared
information I( f;(X;); f1(X;)) between f;(X;) and f;(X;), while minimizing the unique information
I(Xy; fi(X3){X }is:). Although minimal sufficiency often leads to an efficient encoder with better
performance in numerous multimodal downstream tasks, it is not always a good strategy as there
exist exceptions where the unique information on an individual modality is crucial (Liang et al.,
2024b}; [Wang et al.,2022). In other words, the optimality of minimal sufficiency is task-dependent.
To avoid task dependency, we do not consider minimal sufficiency; instead, we maximize intra and
shared information without reducing unique information. Next, we formalize the notion of sufficient
embedding.

Definition 1 (Z;-Sufficient embedding of X; for X;). For an embedding space Z;, the embedding
fi(X;) is Z;-sufficient for X; if and only if the embedding f;(X;) achieves the maximum mutual
information between f;(X;) and X;. Specifically,

fi Eargfmax I(f(X;); X)). (1

Xi—Z;

We call f; sufficient encoder of X; for Xj.

We note that if ¢ = [, the sufficient encoder provides embeddings with maximum intra information,
and if ¢ # [, it gives embeddings with maximum shared information between i-th and [-th modalities

In the context of contrastive representation learning having the goal of attaining sufficient en-
coders in Definition |1} InfoNCE loss Incr(X;Y") is often employed since it relates to mu-
tual information. Specifically, InfoNCE provides a lower bound on mutual information, i.e.,
I(X;Y) > —Ince(X;Y) (Oord et al.| 2018), and thus minimizing InfoNCE leads to an increase in

*In self-supervised learning, labels might not exist, which corresponds to the case that Yy, ; are empty.

*With a proper choice of Z; ensuring maxy.x. =z, 1(f(X;); X;) = I(X;;X;), Definition [1| says that
zi,; = fi(x,;) is a sufficient statistic (Polyanskiy & Wu, [2024) of «; ; for @; ; as the encoding entails no
information loss.
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mutual information. InfoNCE loss between embeddings U and V can be written as follows:

1 exp(UTV/7)
g N )
exp(UTV/7)+ >0 exp(UTV,/7)

INCE(U§ V|T) = EPU,V’H«]LV:I Py, ?

where the expectation is taken with respect to the distribution Py v Hf\il Py,. Here, we say
(U, V) is a positive pair if (U, V) ~ Py v and (U, V) is a negative pair if (U, V;) ~ PyPy,.
In @), N > 1 and 7 > 0 are hyper-parameters, specifying the number of negative samples and the
temperature parameter. For simplicity, in this paper we assume that embeddings are normalized (Wang
& Isola, 2020) to unit vectors and are of the same dimensionality. Then, the exponent Uu'v /T in (IZ])
is proportional the cosine similarity score between U and V.

2.2 BINDING REPRESENTATION SPACES

In addition to the objective of capturing intra and shared information, multimodal learning often takes
into account multimodal alignment (Radford et al., 2021} |Duan et al.| 2022). Without multimodal
alignment, each modality can only access its own embedding structure depending on its encoder.
For example, embeddings of cat and dog images, respectively, locate around (1,0) and (0, 2) in
R?, whereas embeddings of cat and dog text can lie around (0,2) and (1, 0). Such a misalignment
can happen even for sufficient encoders (Definition|[T)), since the mutual information is invariant to
one-to-one mappings (Polyanskiy & Wul |[2024).

To align multimodal embedding spaces, a unified representation space (Radford et al., 2021} Zhou
et al., |2023) or multimodal alignment (Wang et al.| 2023} |Liang et al.,|2024c)) have been proposed
for multimodal representation learning, in which embeddings of multimodal features having similar
semantic should near each other in embedding space. Several FABIND methods have been proposed
(see Appendix [A]for a summary of FABIND methods) that include ImageBind (Girdhar et al.| 2023).
ImageBind sets the image modality as the fixed anchor modality, and then InfoNCE loss is minimized
between the embeddings of the anchor modality and the other modalities. FABIND (e.g., ImageBind)
aims to find encoders f'® for all modalities, except the anchor modality, such that

fi® =arg min_ Ixce(fi(X1); fi(X)), Vi€ {2,---, M}, 3)
fiiXi—Z;
where f; is the encoder for the anchor modality (an image encoder in ImageBind). Note that FABIND
freezes fi, initialized by an existing pretrained model, during the optimization.

2.3 ANALYSIS OF FABIND

In this section, we characterize theoretical limitations of FABIND. To this end, we rewrite (3) as

P =arg max I(Au(X0); fi(X0), Vi € {2, M}, “)

reflecting the fact that minimizing InfoNCE loss is equivalent to maximizing mutual informationﬂ
Let FABIND encoders from (@) for each modality be defined as 75 = {f;, fiB, ... fiP}L
The anchor encoder f; is fixed during the entire FABIND procedure. Moreover, we assume that
I(f1(X1); fFB(X)) = I(f1(X1); X;) is the maximum value that can be achieved by (@) due to
data processing inequality (Polyanskiy & Wul 2024). We next demonstrate that the quality of anchor
embedding f;(X) significantly impacts the performance of FB in terms of shared information.
The following propositions show the dependency of FABIND on anchor embedding quality.

Proposition 1 (FABIND with sufficient anchor). Let fi*!(Xy) be a sufficient embedding of the
anchor X1, and let X;,i € [M], be a discrete random variable. Assume that ffB i € {2,--- M}
are obtained by @) with a sufficient anchor encoder fi = f{", ie., I(f{"1(Xy); fFB(X;)) =
I(f5"(X1); X;). Then,

IO (Xa): PP (X)) = I(Xa3 X,), Vi € {2, M}, ©)

“In contrast to @, fFB in (@) might not be aligned with other modalities due to the one-to-one mapping
invariant property of mutual information. However, we here do not analyze multimodal alignment of FABIND
from (@), but rather investigate the performance of encoders in terms of the sufficiency in Deﬁnitionm
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Proof. The proof is in Appendix [B.1] O

Proposition 2 (FABIND with insufficient anchor). Let fi%$(X;) be an insufficient embedding of
the anchor X for Xy, in the sense that there exists some € > 0 such that 1( f{**(X1); X1) < e <
maxy I(f(X1);X1). Assume that ffB i € {2,---, M} are obtained by @) with fi = fi, i.e.,
I(f™(Xa)s [P (X)) = I(fi™(X1); Xi). Then,

I(f™(X0); fiP (X)) <€, Vi€ {2, M} (©)
Proof. The proof is in Appendix [B.2] O

Proposition shows that the FABIND encoders F'® learned with a sufficient anchor embedding can
achieve the maximum shared information between the anchor and the other modalities. However, it
does not guarantee shared information between non-anchored modalities I(f;(X;); f1(X;)), 4,1 # 1,
which can also be seen from (). Proposition [2] establishes that an insufficient anchor may lead to
a reduction of shared information between the anchor and the other modalities, implying that the
performance of FABIND may overly depend on the quality of the arbitrarily selected anchor.

The above Propositions reveals several limitations in FABIND. Firstly, achieving maximum shared
information requires sufficient anchor representation, which depends on having both an informative
modality and a sufficient encoder. Without these conditions, FABIND may not effectively capture
shared information. Secondly, even with sufficient anchor representation, FABIND may not provide
encoders with maximum intra information. This is because its objective function () does not take
into account intra information. Thirdly, the objective function of FABIND (@) focuses solely on
learning shared information between pairs of anchor and non-anchored modalities, while disregarding
shared information among non-anchor modalities. This implies that FABIND may not capture shared
information among non-anchored modalities. This limitation renders FABIND less effective when
crucial shared information exists among non-anchored modalities. Lastly, the representation produced
by FABIND may not approximate an ideal representation, such as the “Platonic representation”
of (Huh et al., 2024). While integrating all modalities is needed in order to effectively represent
the information in all modalities, FABIND falls short of this ideal. In the sequel, we introduce an
alternative multimodal representation that, fully leverages fine-grained, sample-level information in
all modalities.

In summary, FABIND exhibits the following weaknesses:

P1: over-reliance on a single anchor modality;
P2: failure to capture intra information;

P3: absence of shared information among non-anchored modalities;

Next, we propose our method CENTROBIND, which does not require selecting a single anchor
modality and is thus capable of capturing intra and shared information.

3 TOWARD A DESIRABLE UNIFIED REPRESENTATION SPACE

The main intuition deriving CENTROBIND is as follows: 1) A desirable multimodal embedding
should not favor any specific modality; 2) A desirable unified embedding should attain the highest
alignment in similarity. To this end, we generate an anchor representation that is the centroid of
the multiple modality representations. Then, we train the encoders toward minimizing the InfoNCE
loss between anchor and other modalities, similarly to FABIND. We note that other dynamic
anchors, such as median and weighted average (refer to Appendix@]for further discussion), are
also possible alternatives to the centroid. However, we focus on CENTROBIND, as the centroid
represents the geometric center, aligning with the objective in achieving multimodal alignment in the
embedding space (e.g., R%). Next, we formally defind CENTROBIND, and show that the method
aligns multimodal representations and simultaneously maximizes intra and shared information.
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Algorithm 1 CENTROBIND

1: Initialize encoders fl(o) 2(0), e ,f](\g).

2: fort =0,1,...,tnax do

3: Sample a batch dataset B from multimodal datasets {D; };.

4 Generate anchor embeddings {a; } jez, using a; = mean({ f; (t) ) in {@)
5 fori=1,...,M do

6: Optimize fi(t+ ) toward minimizing Lop( f |T) in (8)

7 end for

8: end for

3.1 CENTROBIND

Consider M modalities with corresponding encoders {f;},. The CENTROBIND algorithm is
presented in Algorithm [I] and a graphical illustration is glven in Figure[Tb] In the following, we
describe each step of the algorithm.

Initial encoders. We initialize M encoders f; : X; — Z, Vi € [M] for the M modalities. These
encoders can either be pretrained models (i.e., backbones) or parameterized models with random
weights. The primary constraint for these initial encoders is that their output space must be the
modality-independent embedding space Z. When using pretrained encoders that produce embeddings
in different output spaces, these are projected onto the common space Z, ensuring consistency of
output space across modalities.

Anchor embedding. Recall that x; ; € D; denotes the j-th feature in the ¢-th modality, where j
indexes positive pairs of features (e.g., different views of the same object). In each training iteration
of CENTROBIND, we need to compute an anchor embedding a; for the j-th multimodal positive
features {x; ;}£,. This anchor a; serves as a desirable aligned embedding for these features. The
anchor a; is calculated as follows:

a; = mean ({fi(x; ;)}i) , 0

where mean(-) denotes the mean operator that computes the average of its input, and a:’ j represents
an augmented version of ; ;. If {z; ;}, are available in multimodal datasets, the anchor is given
by a; = 57 Zfil fi(z; ;). If only m < M positive pairs are present among M modalities, the
anchor is given by a; = % Zz’ezj fi(z], ;)» where Z; is the set of indices of modalities having the m
available features.

Binding encoders to the anchor. Once anchor embeddings {a; }; are derived from a batch of data
B = {«; ;} j, CENTROBIND aligns each modality-specific encoder embedding with the anchor
embedding by minimizing the InfoNCE loss. Specifically, let A = mean({ f;(X;)}:) represent the an-
chor embedding variable. Then, CENTROBIND aims to minimize the InfoNCE loss Incr (A; fi(X;))
across all modalities ¢ € [M]. A detailed expression for this loss is provided in (8).

CENTROBIND optimizes the following symmetrized loss function:

Les(filT) = Ince(A; fi(Xs)|T) + Incr(fi(Xs); AlT), (8

where Lcop(fi|7) denotes the loss function for the i-th modality. In particular, with a batch data
| €

B ={x; ;i€ [M],j € Ip}, the loss can be computed as
|Z5]
exp a, fl(:cl k)/T)
I A f; = log d 9
weB(A X0 = 7 e @ ) o
\IB\ T
INCE(fi( ) A|T |I | Zl eXp(ak fz(xz k)/T) (9b)

Y ez, p(f (@ik)a;/T)
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3.2 THEORETICAL ANALYSIS OF CENTROBIND
We start by providing a lower bound on the ob]ectlve function of CENTROBIND Lcg(fi|7) @) in
Theorem|1] followed by an analysis of the minimizer of Lcg(f;|7).

Theorem 1. Consider B = {x; ; : i € [M],j € I} with a set of indices Lg, where x;_; is the j-th
sample of i-th modality. Then, for any encoders { f;}; and for any T > 0, (9d) is bounded as

IZ5|

M 1

Ince (A; fi(Xi) Ince <fl 1); fi(Xi) > — = D _10gCri; (10)
* s |Z 1) ~ o] 2 8O
T ’ . P
where Cr 1. i = 7@;6:“;-#2;:;) with g(1, j|k, 1) := exp (IZBm (a;lj\;)fl(ml’”)

= i 1,jlk,i), and 355, = L, jlk, ). 11
CFohi zemﬂﬂl}?ezjgg(’j‘ 1), and cE le[]\fﬁ?j}éIBQ(J| 1) (11)
Proof. The proof is in Appendix [B.3] O

Theorem [1] provides a lower bound of Inck (A; fi(X;) | 7) in (9a), which is a part of the CEN-
TROBIND objective function L (fi|7). Thus CENTROBIND minimizes a lower bound (T0) that

consists of two terms, Z;\il IncE (fl(X;); fi(X5) ‘ \}ij) and — Z\ Zp] 1 log Cr ;. We next pro-

vide intuition on why a minimization of the lower bound is justified.

The effect of minimizing Zl”il IncE (fl (X)) fi(Xy)
Z;\il Ince(fi(X)); fi(Xs) | %) is to reduce several InfoNCE losses. Here, each term in the
sum represents the InfoNCE loss between embeddings f; (X’ ) from modality [ and fl( ;) from

modality %, wit ‘I I

divided into two components: 1) Intra Information: When [ = i, the term measures the similarity
between embeddings within the same modality. Minimizing this loss enhances the representation of
modality 4, improving intra information; 2) Shared Information: When [ # 4, the term measures the
similarity between embeddings from different modalities. Minimizing these losses helps in learning
shared information between modalities, contributing to a more representative multimodal embedding.

%) The objective of minimizing

By optimizing this summation, CENTROBIND effectively captures both intra and shared information.
As shown below, this generally results in a more balanced representation for the modalities. In contrast,
as noted in Section[2.3] FABIND does not adequately capture intra information and shared information
between non-anchored modalities. This limitation highlights the advantage of CENTROBIND in
achieving a more integrated multimodal representation than fixed anchor binding methods.

The effect of minimizing — Zl 5| 1 log Cr ;. We show the effect of growing Cr i, in terms of

max
cosine similarity score between embeddings. Since C'r  ; = (\f + \/7 ) with v = ﬁlﬁ i>1,

]-_
maximizing Cr 1 ; is equivalent to simultaneously maximizing CF%.; and minimizing c?lz For
ease of the analy51s we assume that the encoders are reasonably well- tralned Then, since a positive

pair of embeddings normally yields higher similarity score, ¢Z%; is attained by choosing [ = ¢

max

and j = k in ([I) as such choices make z; ; be positive pair with x; ;. Thus, 2%, is roughly

ax

proportional to the similarity score of a positive pair of embeddings. Conversely, c%”,; corresponds to

the similarity scores of negative pairs, which tend to be low. Hence, minimizing — Zl 5| 1108 Cr s
enhances the similarity scores for positive pairs and reduces those for negative pairs, 1mprov1ng the
overall multimodal alignment.

These comments sugget that CENTROBIND addresses the limitations P1, P2, and P3 of FABIND
identified in Section[2.3] We argure that the unified representation of CENTROBIND is closer to an
ideal platonic representation (Huh et al.l 2024) as compared to the representation used by FABIND.
A platonic representation is defined as an ideal representation of the aggregate set of all modalities
that maximally captures all multimodality information. From this perspective, a representation
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derived solely from a single modality, without leveraging others, is not ideal. This suggests that
CENTROBIND’s unified space is likely to retain a more comprehensive representation of all modalities.

4 EXPERIMENT
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Figure 2: Accuracy as a measure of the representation space quality. Abbreviation: X;-B or CB:
applying FABIND with anchor X; or applying CentroBind; acc(Z;) or acc(All): accuracy of Z; or of

concatenated embeddings (Z1, - - - , Zyy); (rnd): if random backbones are used.
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Figure 3: Representation visualization via UMAP.

4.1 EXPERIMENTS WITH SYNTHETIC DATASET

Synthetic datasets. We employ a latent variable model (Bishop & Nasrabadil [2006)) for generating
synthetic multimodal datasets. A latent variable model is a statistical model for data X € R%  under
which X is generated according to a conditional probability distribution Px |z, where Z € R is the
latent variable. In terms of the representation learning framework, Z can be seen as a low dimensional
representation of X. We assume that the class label Y € [K] and the latent variable Z are jointly
distributed according to Pz y. In our setting, we exploit Gaussian mixture model (GMM) (Bishop

il 2000) for the latent variable Z, and we generate M modalities X; = g;(Z) + N, € | M
with random noise N and some non-linear projections g; : R% — R% . We choose the projections in
a way such that each model can be ranked in ascending order, i.e., X; is the worst, and X is the best
modality in terms of their inherent correlation with the latent variable. The class label Y is set to the
component id of GMM (for details, see Appendix [C.).
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Table 1: Zero-shot one-to-one and two-to-one retrieval accuracy. (V: video, .A: audio, 7 text)

One-to-One Two-to-One
Method Retrieval Top-1 Top-5 Top-10 Method Retrieval Top-1 Top-5 Top-10
FABIND 0446 0.719 0.822 .
centroBino VT 0483 0764 0gso AR Lo 020 00y 078!
" FABIND 0.077 0238 0367 ’
CENTROBIND A—=T 0233 0517 0678 CENTROBIND 0.745 0957 0.978
FABIND 0.812 0946 0978
CENTROBIND T—-V 0591 0839 0909 FABIND Ay 0.180 0401 0.513
" FABIND 0.058 0.154 0226 ’
CENTROBIND A=V 0052 0184 0284 CENTROBIND 0.388 0.646  0.768
FABIND 0.201 0438 0.584
CENTROBIND T—oA 0290 0.572  0.706 FABIND TVA 0099 0.257 0364
" FABIND 0.051 0.155 0223 ?

centrRoBiN VA o, ) - CENTROBIND 0232 0490  0.625

Experiment results. Figure[2]shows the classification accuracies with a synthetic dataset of M = 4
modalities. To obtain the results in Figure 2a] we initialize pretrained backbones for each modality,
apply FABIND (X;-B) with anchor X; or CENTROBIND (CB), and evaluate accuracy (acc(Z;)) with
embeddings from i-th modality. We provide acc(Z;), without any binding, for a reference. Figure 23]
verifies our analysis of FABIND (Section@) and CentroBind (Section @): (1) the comparison
between X -B and X4-B shows the importance of choosing an anchor modality; (2) the comparison
between acc(Z,4) and X;-B: acc(Z,) shows a performance deterioration by FABIND , demonstrating
the impact on performance of FABIND failure to capture intra information; (3) the proposed CB
consistently outperforms FABIND, indicating that CB successfully captures elements that FABIND
overlooks, including intra information and shared information among non-anchored modalities.

Figure[2blincludes accuracies of FABIND and CB with random backbones. Similarly, CB outperforms
all baselines. Somewhat surprisingly, CB with random backbones (green curves) also performs better
than FABIND with pretrained backbones (red curves). This further supports our analysis that
CENTROBIND is robust to backbone quality as it optimizes intra and shared information, whereas
FABIND is sensitive to the backbone quality. Overall, these empirical results validate our findings.
For clarity, we summarize the final accuracies in Table[3] We provide additional experimental results
on synthetic datasets with M = 6, 8 in Appendix [C.I] With the larger number of modalities, CB still
outperforms the baselines, strengthening CB regarding scalability.

In addition, we visualize the embeddings learned by FABIND and CENTROBIND using
UMAP (Mclnnes et al., [2018) in Figure E| (for more details and additional visualizations using
t-SNE (Van der Maaten & Hinton| [2008)), see Appendix [C.1). Figure 3] shows that CENTROBIND
embeddings are better clustered, whereas FABIND embeddings appear more scattered, implying that
CENTROBIND achieves a superior embedding structure compared to FABIND.

In terms of convergence, we empirically examine the convergence speed of both CENTROBIND and
FABIND. In Figure[6] we plot the training loss curves, which show similar behavior, suggesting that
the adaptive anchor does not introduce issues related to convergence or stability. Detailed discussions
can be found in Appendix [C1]

4.2 EXPERIMENTS WITH REAL-WORLD DATASET

In this section, we provide experiment results with a real-world dataset. We compare CENTROBIND,
FABIND anchored at text modality,UniBind (Lyu et al.,2024)), AudioCLIP (Guzhov et al.|2022)), and
ViT-Lens (Lei et al.| 2024) (see implementation detail in Appendix [C.2). We utilize the MUStARD
dataset (Castro et al.,[2019) for its rich combination of multimodal data with more than two modalities.
It consists of 690 video clips (including audio) and text for sarcasm detection with labels such as
sarcasm indicators and speaker names. For the backbones in FABIND and CENTROBIND , we use the
pretrained VideoMAE model (Tong et al.| [2022)) for video data, the pretrained WaveLM model (Chen
et al., [2022) for audio data, and the pretrained BERT model (Devlin et al.,[2019) for text data. A
detailed description of the training setting is provided in Appendix|C.2]

Downstream tasks. We perform evaluations in zero-shot binary and multi-class classification tasks,
One-to-One cross-modal retrieval, and Two-to-One cross-modal retrieval. For classification tasks,
we use a Multi-Layer Perceptron (MLP) to perform sarcasm detection as a binary classification and
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speaker classification with 23 multi-class categories. In particular, MLP is trained on embeddings in
a single modality (denoted by Tr in Table|2)) and accuracy is evaluated on another modality (denoted
by Ev in Table[2). In retrieval tasks, we measure the accuracy of correct retrieval. For One-to-One
case, we retrieve data sample in different modality by choosing the closest embedding from a single
input embedding, while for Two-to-One case we choose the closest embedding from the centroid of
two input embeddings in two modalities. We denote input and target modalities with — in Table[T]

Results on cross-modal retrieval. Table[I|shows the performance for one-to-one and two-to-one
retrieval tasks. CENTROBIND consistently excels in one-to-one retrieval for text and audio modalities,
while FABIND performs better for video retrieval. This might be due to a power of text to describe,
which may be suitable for FABIND anchored at text modality. A notable observation is that the
centroid of video and audio embeddings achieves the best text retrieval performance. This implies
complementary information exists and is captured by CENTROBIND.

Results on sarcasm & speaker classification.

Table [2] presents results for sarcasm detection Table 2: Accuracy results for Sarcasms and Speak-
. . . 1 . 1 . : *

and speaker classification tasks, where Sar- ers. (V: video, A: audio, T text). Asterisks

1 indicates Top-1 accuracy for sarcasm, and denote accuracy evaluated in different settings.

Spk-k, k = 1, 3,5 represent Top-k accuracies

for speaker classification. It is important to Method  Tr, (Ev) Sar-1 Spk-1 Spk-3 Spk-5
highlight that CENTROBIND and FABIND are FABIND 0.706 0378  0.614  0.730

: : : UniBind 0544 0170 0328 0478
trained on a single modality (Tr) and evalu- \yocpe (1) 0501 009 0258 0388
ated on a different modality (Ev) in a zero- ViT-Lens* 0506 0097 0343 0449
shot setting, which can effectively measure abil- CextrROBIND 0716 0474 0736 0.836

ity of multmimodal alignment. In this experi- UniBind 0628 0290 039 0301

ment, CENTROB¥NP COHSiStently oqtperforn}s AudioCLIP* A (T) 0486 0.094 0214 0322
FABIND and UniBind across all pairs of train ViT-Lens* 0484 0077 0214 0313
and evaluation modalities, which can be dis- _CENTROBIND 0.691  0.290 0.546 0.714
tributed to CENTROBIND generally learning a EA%INB 8422733 8-%;3 8-;‘613 8-2(3)2
. : nibin . . . .

bet'ter' unified embeddlng.space than FABIND. o b+ T.0) 0506 0158 0345 046l
UniBind performs poorly in the zero-shot cross- ViT-Lens* 0502 0.168 0323 0423
modal experiment, which we believe is due to  CENTROBIND 0.694 0368 0.670  0.791
its insufficient multimodal alignment. Since FABIND 0.623 0228 0484 0628

iy .. L. UniBind 0.567 0.199 0367 0.514
UniBind ut111ze§ LLM-apgmented descriptions AudioCLIP* A, (V) 0503 0209 0384 0496
for each modality and binds other encoders to ViT-Lens* 0500 0.149 0332 0451
these descriptions, multimodal alignment may _CENTROBIND 0.683 0243 0475 0.632
fail if the descriptions are dispersed across the %ABBI_I‘US 8?82 8332 8-3;3 gggg

. . . nibin . . . K

embedding space. As analyzed in Section2.3]  \ poci e v 4y 0501 0080 0199 0326
and Section [3.2] these results highlight the CEN-  ViT.Lens* 0533 0219 0438 0575
TROBIND’s ability to preserve intra and shared =~ CENTROBIND 0.626 0.326 0.548  0.703
: : ) : FABIND 0.534 0241 0509 0.635
information among modalities, which are useful UniBind 0514 0091 0248 0362

in unknown downstream tasks. Moreover, the AudioCLIP* T,(A) 0477 0088 0309 0.439

zero-shot setting verifies the multimodal align- ViT-Lens* 0475 0070 0214 0329
ment of CENTROBIND. CENTROBIND 0.655 0.346 0.610  0.741

5 CONCLUSIONS

In this paper, we analyze the limitations of fixed-anchor-bind methods (FABIND), including over-
reliance on the choice of anchor modality, and failing to capture both intra and shared information
among non-anchored modalities. To overcome such shortcomings, we propose CENTROBIND, which
aligns multimodal embeddings to adaptive anchors constructed by centroids of the embeddings, hence
removing the need for anchor modality. Moreover, we theoretically study CENTROBIND, showing
that it captures intra- and shared information. Extensive experiments on both synthetic and real-world
datasets show that CENTROBIND significantly outperforms FABIND, providing a robust unified
representation space and validating our analysis on CENTROBIND and FABIND.

10
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A RELATED WORK

A.1 MULTIMODAL LEARNING

Multimodal learning has gained significant attention in recent years due to its potential to enhance
machine learning models by leveraging diverse data modalities, such as text, images, audio, and video.
By combining these modalities, multimodal learning seeks to mimic human-like perception, thereby
improving performance across a wide range of applications, from healthcare to natural language
processing. Common supervised multimodal learning tasks include audio-visual classification (Peng
et al 2022} [Feichtenhofer et al., 2019; [Zhu & Rahtu} [2022)), visual question answering (Antol et al.|
2015} Guo et al.,[2021)), and vision-language tasks (Xu et al.}, 2015} [Radford et al.,[2021), as well as
more complex vision-audio-language tasks (Aytar et al.| 2017 [Harwath et al.| 2018).

Typically, these models integrate unimodal features extracted by modality-specific encoders
let all, 2021} [Nagrani et al. 2021} [Wu et al, 2022} [Wang et al, 2020a; [Peng et al.| 2022). For
instance, Madaan et al.|(2024) introduce inter- and intra-modality modeling frameworks that treat
the target as a composition of multiple modalities. Similarly, propose a late-fusion
approach for supervised multimodal tasks, demonstrating that insufficient feature extraction from
individual modalities negatively affects the model’s generalization ability. Additionally,
(2024) address joint optimization by alternating between unimodal learning scenarios and integrating
modality-specific encoders with a unified head shared across all modalities.

A.2 MULTIMODAL ALIGNMENT

Multimodal learning addresses four key challenges (Liang et al.|[2024¢}; [BaltruSaitis et al.} 2018}, [Liang
et al 2024d): managing interactions among redundant, unique, and synergistic features (Dumas
et al. Liang et al., [2024a:b), aligning fine-grained and coarse-grained information (Wang

et al.} [2023;|20244), reasoning across diverse features (Yang et al.,2023)), and integrating external
knowledge (Shen et al.l 2022} [Lyu et al.,[2024). Among these challenges, multimodal alignment is

one of the core challenges that many researchers aim to solve.

A common method in multimodal alignment is using cross-modal alignment by using attention
mechanisms between pairwise modalities, such as vision-language (Tan & Bansal, 2019) and vision-
language-audio 2019). Another effective approach is leveraging graph neural networks
to align multimodal datasets (Yang et al.| 2021}, [Wilf et al., 2023)). For instance,

transforms unaligned multimodal sequence data into nodes, with edges capturing interactions across
modalities over time. [Wilf et al.|(2023) build graph structures for each modality—visual, textual, and
acoustic—and create edges to represent their interactions.

To enhance the generalizability of cross-modal representations, (2024) employ a unified
codebook approach, facilitating a joint embedding space for visual and audio modalities. Another
prominent method (Radford et all,[2021)) achieves cross-modal alignment by leveraging large collec-
tions of image-text pairs, making it a widely adopted strategy in multimodal learning
2022} [Guzhov et al.l 2022} [Zhou et al.,[2023).

A.3 BINDING METHODS

Recent studies have focused on aligning multimodal datasets by leveraging binding properties
in various modalities. ImageBind (Girdhar et al), [2023) aligns multimodal data by using image
representation as the anchor and aligning each modality embedding with the image embedding.
Similarly, LanguageBind 2024) uses language representation as the anchor, aligning other
modalities into the language space. PointBind learns a joint embedding space
across 3d point, language, image, and audio modalities by designating the point space as the central
representation. Thanks to the efficacy of such a binding idea with a fixed anchor, several “-Bind”

approaches have been studied in numerous domains (Teng et al., 2024} Xiao et al., 2024} [Gao et al}
2024; [Yang et al., [2024b}; Balemans et al., 2024} [Dhakal et al.,[2024; Yang et al., 2024a) While these

methods demonstrate strong performance in zero-shot cross-modality retrieval and classification
tasks, they are constrained by their reliance on an existing single anchor modality.
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Several approaches have integrated additional knowledge into multimodal representation spaces to
address this limitation. Freebind (Wang et al., 2024a)) introduces bi-modality spaces to enhance a
pretrained image-paired unified space. It generates pseudo-embedding pairs across diverse modality
pairs and aligns them with the pre-trained unified space using contrastive learning. Omnibind (Wang
et al.,2024b) leverages multiple pretrained multimodal models to construct pseudo item-pair retrievals
based on top-1 recall across various modality combinations using pairwise cross-modal alignment.
Both methods show promising results in cross-modal retrieval by incorporating extra spaces into
existing pairwise binding spaces. However, they still rely on fixed (pre-trained) representation spaces.

Unibind (Lyu et al., 2024) highlights the imbalanced representation when using image-centered
representation spaces. To address this, Unibind employs large language models (LLMs) to create a
unified and balanced representation space. It constructs a knowledge base with multimodal category
descriptions, establishes LLM-augmented class-wise embedding centers, and aligns other modalities
to these centers through contrastive learning. This approach attempts to balance representations
across modalities but still depends heavily on large-scale pretrained LLMs and centers alignment
around a single unified space, namely, text (language).

ViT-Lens (Lei et al.| 2024) builds upon the Vision Transformer (ViT) (Dosovitskiy et al.}2021) and
multimodal foundational models like CLIP (Radford et al.l [2021) to align multiple modalities. It
extends ViT by incorporating an additional embedding layer and attention layer for each modality,
which are trained via contrastive learning involving embeddings generated by the CLIP and the
ViT models. This approach generalizes FABIND by allowing more than one fixed anchor modality;
specifically, image and text in this case. CENTROBIND could also adopt a similar strategy, leveraging
the powerful ViT model for modality alignment while adaptively computing anchors based on their
centroids.

B PROOFS

B.1 PROOF OF PROPOSITION(]

Using the chain rule of the mutual information, we observe that
I(X, f7(X0); Xa) = 1(X3 X5) + T (X0); X4 Xa)
= T (05 Xa) + (X Xl £7(Xa)), (12)
Since f$Uf(X;) is a deterministic function of X;, we have
I(f7(X0): X41%4) = 0. (13)

Moreover, f{*! obtained in Definition [1| I with proper choice of Z achieves the maximum mutual

information, implying together with I(X;Y) < min{H(X), H(Y)} that I(f;"(X;);X;) =

H(Xy), where H(X;) is the entropy of X (Polyanskiy & Wu, 2024). In other words, we have
H(Xq|f59(X,)) = H(Xy) — I(f$*(X); X1) = 0. This gives

I(X05 X f(Xa)) = H(Xa| f(X0)) = H(Xq |f7 (X0), X3)

=0 (14)
Substituting (13) and (T4) into (T2)) yields
I(X1:Xq) = I(f" (X1); X, (15)

We conclude the proof of Proposition [I] by notmg that the optimality of FABIND (i.e.,
I(f1(X1); Xa) = I(f1(Xa); £ (X0)), Vi€ {2, M}) yields

I(Xq;X5) = T(f (Xq); £72(X0). (16)
B.2 PROOF OF PROPOSITION[Z]

Using the chain rule of mutual information, we have
T(f™(X1); X1, X)) = T(f™(Xq); Xq) + T(f™(X1); X[ Xq)
= T(f1"(Xq); Xo) + T(f1™(X1); X4 X5). (17)
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Moreover, since f1"(X1) is a deterministic function of Xy, we have I(f{"(X;); X;|X;) = 0,
leading to I( m5(X1); X ) = I(fi"(Xq); X;) + I(fi*(X1); X1]X;). Then, using the assumption
I(fi"s(X1); X1) < e, it follows that

e>I( mS(Xl);X )+ I( ms(Xl);X1|Xi)
(%)X

®) .
> I(f"(Xy); £72(X0)), (18)
where the labeled inequalities follow from: (a) the non-negativity of mutual information; (b) the data

processing inequality. This concludes the proof of Proposition

B.3 PROOF OF THEOREM/[I]

To prove Theorem|[I] we leverage the reverse inequality of M -variable Holder inequality (Seol [2013]
eq. (2.8)). For the sake of completeness, we state the inequality in Lemmal[I]

Lemma 1 (Reverse inequality of the M-variable Holder inequality (Seo, 2013)). Consider M
sequences (i ;) jem], © € [M] of n positive scalars such that for some 0 < ¢, < cp < 0,

0< em <5 < ey < 00, Vi, j. (19)

Then,

2

M n % ( + n M %
Ccm +cC
il;[l Z T < 4cmcj;[ Z (H x”> . (20)

j=1 j=1

Now we start by writing the summation of InfoNCE losses for each fl(t) (%) 1), 1 € [M] to fi(X;) as

Tz ) fi(@
IZs| M exp (fl (mz,kifz( z,k)>
I = 1 .
Z NCE fl ft( l ‘I | ZZ Og fLT(mg’k)fi(mi,j)
TS5, exp (L)
Then, the inner summation in (2I)) is bounded as

" exp (fLT(mi,k‘l)—fi(mi,k))

(flT(wf,k)fi(wz‘,j))

2D

T

7Zfl ) 1.) fi(2i ) logHZeXp<$”€)f(mi’j)>

I=1j€Ip
IZ5|

w1 Y (5 ) s
1 atgtan -t (0ra, o (10020

JjEIR =1

b M Ma] fi(xz; ;
® Mm>@mzm(k““}@m&m
- 7|Z5|
Jj€IB
Ma} fi(z; Ma} fi(z;
= |Zp|logexp (akf(wk)> — |Zp|log Z exp (akf(wJ)) — |Z5|10g CF s
7| Z5| : 7|ZB|
JjE€IB
exp (—M"géﬁﬁ“’“))
= |Zp|log —|Z|log CF k., (22)

Ma] fi(zi;)
ZJEIB exp( i‘IB‘ ’ )
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max

2
where the labeled (in)equalities follow from: (a) Lemmaand Crpi= % with

AR i CF R
Foki = peiyezn P T ’
. R (@) fil®ig)
max > 7 ; 23
CFhi = o N eXP ( - 23)
and (b) the definition of anchor embedding (7). Substituting into gives
(J,T 7 T Kk
T
ZINCE AXD; £i(Xi)|m) < == > ||Zs|log —~—~ — [Is[log Cr i,
|IB‘ Z ex M‘lk fl(ml,])
k=1 jeTp XP 1Z5]
= |Zp|IncE (A; fiX ) Z log Cr .. (24)
Rearranging (Z4) and setting 7 = % in 23) and 24) yield
1 U M &
Ince (A; fi(X) | 7) > — ST X)) fi(X; )— log Crpoiy (25
o (A 00 1) 2 703 e (AOKD): 060 | T T 2 8Os 09

which concludes the proof of Theorem ]

C EXPERIMENT DETAILS

C.1 EXPERIMENTS WITH SYNTHETIC DATASETS

Synthetic datasets. We employ a latent variable model (Bishop & Nasrabadil [2006)) for generating
synthetic multimodal datasets. A latent variable model is a statistical model for data X & Ré=,
under which X is generated according to a conditional probability distribution Px,z, where Z € R4
is the latent variable. In terms of the representation learning framework, Z can be seen as a true
representation of X. Moreover, we assume that the class label Y € [K] and the latent variable Z are
jointly distributed according to Pz .

For the marginal distribution of Z, we make use of a Gaussian mixture model (GMM) (Bishop
& Nasrabadi, |2006), and hence the probability density function (PDF) of Z is a weighted sum of
Gaussian densities. In particular, the PDF of Z is defined as follows:

Hwy (23 1y, B), (26)

where K is the number of mixture components, 7, = Pr(Y = y) is the component prior probability,
and NV (z; i, Xy ) denotes Gaussian PDF with mean p1,, € R9= and covariance matrix X,, € R=>4=,
This leads to the conditional PDF of Z as pzy (z|y) = N (z; ,, Xy).

Once a latent variable z is generated from GMM in (26), we generate data samples
(zi1, @52, -+ ,&; n) for i-th modality using the conditional PDFs of X; given z, denoted by
px,|z(wi|z). Specifically, we use the model X; = g;(Z;) + N, where g; : R% — R% is a non-
linear projection from latent space to observation space, and N ~ N(0, I, ) is Gaussian noise with
zero-mean and identity covariance matrix. To make the inherent correlation between X; and Z;
different among modalities, we choose g; such that

9:(Z) = 6Psigmoid (@5”2) , 27)

where sigmoid(z) = 1-&-% is applied element-wise, and @El) € Rd=xd= and @l('z) € Rdexde

are matrices randomly generated from Gaussian distribution. Moreover, after @51),1' € [M] are
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Table 3: Classification accuracies presented in Figure

Backbone Method Unimodal Multimodal
Xl X2 X3 X4 Xl)"' 7X4
X 0.2166 0.2878 0.3536 0.3923 0.6985

FABIND-X;  0.2180 0.2736 0.3210 0.2999 0.5541
FABIND-X,  0.2483 0.3349 0.4207 0.3896 0.7024
CENTROBIND 0.2540 0.3433 0.4162 0.4559 0.6974

X 0.2109 0.2472 0.2597 0.2815 0.6648
FABIND-X; 0.2119 0.2587 0.3034 0.3081 0.5502
FABIND-X, 0.2447 0.3076 0.3826 0.2813 0.6742

CENTROBIND 0.2582 0.3392 0.4224 0.4649 0.7006

Pre-trained

Random

generated, we set arbitrary columns of them all zero, so that the number of all zero columns decreases

in 4. For example, 60% of columns of @gl) are all-zero, while only 10% of columns of @S\y are
all-zero. This enables approximate control the correlation between X; and Z, providing estimates
of best modality (X ;) or worst modality (X;). To have meaningful labels for this latent model,
which requires for downstream tasks, we set the labels Y being the component index in GMM. In
particular, since there are K components in GMM (26)), there exists K categories in Y. We conduct
experiments with three different synthetic datasets by setting M = 4, 6, 8. For all synthetic datasets,
we fix d, = 16, d, = 8, and K = 50.

Experiment details. We initialize two different versions of backbones for all modalities, where
the first is a random backbone (highlighted by (rnd) in figures), and the second is a backbone
pretrained with InfoNCE loss. For each backbone, we use a simple multilayer perceptron (MLP).
Comparing the results with these two versions of backbone provides how much both FABIND and
CENTROBIND are robust to backbone quality. Given the backbones for M modalities, we align the
corresponding embedding spaces using either FABIND with anchor X; (denoted by X-B in figures)
or CENTROBIND (denoted by CB in figures). Finally, with the encoders aligned by either FABIND
or CENTROBIND, we evaluate classification accuracy as a measure of representation quality. We use
a simple MLP for the classifier. To distinguish between accuracy with embeddings from a single
modality and the one with concatenated embeddings from all modalities, we denote by acc(Z;) the
accuracy with embeddings from ¢-th modality and by acc(All) the accuracy with embeddings from
all modalities. Specifically, for acc(All), we fuse the multimodal embeddings using MLP layers.
Therefore, the accuracy of the multimodal case without binding methods (e.g., X method and the
multimodal column in Table 3] can be considered a naive baseline for multimodal learning.

Comparison with baseline methods. Figure 2| shows the validation accuracy of each method
(without binding, FABIND with anchor X;, FABIND with anchor X4, and CENTROBIND). For the
same experimental setting, Figureincludes additional accuracy curves for acc(Z; ) and acc(All).
For better readability, the corresponding accuracy is provided in Table

We conduct experiments with two types of backbone encoders: randomly initialized backbones
and pre-trained backbones. For each type, we extract embeddings using four different methods:
representations without binding (denoted by x in Table [5)), FABIND with anchor modality X,
(denoted as FABIND-X;), FABIND with anchor modality X, (denoted as FABIND-X},), and
CENTROBIND. The embedding quality is then evaluated using classification accuracy. Specifically,
we train five different decoders for each case: four unimodal decoders (one for each modality)
and one multimodal decoder for the concatenated embeddings of all modalities. The results show
that CENTROBIND outperforms the other baseline methods. Notably, CENTROBIND demonstrates
superior performance in the case of randomly initialized backbones, indicating robustness to poor
backbone quality.

Additional experimental results on synthetic datasets with M = 6 and M = 8 modalities are
presented in Figure[7]and Figure 8] respectively. These results exhibit similar trends to those observed
with M = 4 modalities. These experiments verify that CENTROBIND is capable of handling a large
number of modalities effectively.
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Figure 4: Accuracy as a measure of the representation space quality. Abbreviation: X;-B or CB:
applying FABIND with anchor X; or applying CentroBind; acc(Z;) or acc(All): accuracy of Z; or of
concatenated embeddings (Z1, - - - , Zys); (rnd): if random backbones are used.
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Figure 5: Representation visualization via t-SNE and UMAP.

Representation visualization. Figure [5| presents t-SNE (Van der Maaten & Hintonl [2008) and
UMAP (Mclnnes et al.}[2018)) visualizations of embeddings generated by FABIND and CENTROBIND.
For this visualization, we use synthetic datasets with 4 modalities, ensuring that each modality is
equally informative, and plot the embeddings for X;. FABIND is anchored at X, and both binding
methods utilize pre-trained backbones.
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In both t-SNE and UMAP visualizations, CENTROBIND produces more clustered representations,
whereas FABIND results in more scattered embeddings. These findings validate our analysis that
CENTROBIND creates a superior representation space by effectively learning both intra- and shared
information.

Convergence and stability analysis. The conver-

gence rate of CENTROBIND may differ from that of . =t
FABIND due to the replacement of the fixed anchor 2 | FASind
with a dynamic anchor. In Figure[6] we plot the loss
curves of CENTROBIND and FABIND during train-
ing. The results show that the loss of CENTROBIND =
saturates earlier than that of FABIND. We attribute 3
this to the fact that the centroid serves as a minimizer

of embeddings in terms of Euclidean distance, mak-

ing it easier to converge embeddings to their centroid 7

compared to converging them to one specific embed- -

dlng 0 25 50 75 100 125 150 175 200
Epoch

The plot also reveals a crossover point where the

loss curves intersect. We believe this occurs due to ) o

the number of InfoNCE losses optimized by CEN- Figure 6: Training loss.

TROBIND and FABIND. Specifically, with M modal-

ities, CENTROBIND minimizes M InfoNCE losses, while FABIND minimizes M — 1 InfoNCE
losses. This results in a smaller loss for FABIND when the encoders are well-trained, which explains
the crossover point observed in Figure[§]

Table 4: Classification accuracies presented in Figure @ In the experiment in Figure [9af and [9b}
X1, Xo, and X3 are very noisy, and X is highly informative. In the experiment in Figure 9c|and [9d|
X and X, are very noisy, and X3 and X, are highly informative. We choose X, for FABIND for
the best fixed anchor modality for both cases. Weighted average method uses prior knowledge of
modality quality to determine the weights for each modality. Random anchor method without intra
learning uses randomly chosen modality as an anchor for each iteration under fixed anchor encoder,
while with intra learning we train intra modal learning by not freezing the anchor encoder.

Backbone Method Figure and Figure and
Xs Xy Xy, Xy Xy Xy Xy, Xy
X 0.115 0.296 0.566 0.099 0.256 0.537
FABIND-X4 0.124  0.297 0.639 0.115 0.263 0.540
CENTROBIND 0.131  0.363 0.618 0.116 0.336 0.563
Pre-trained Weighted average 0.133  0.342 0.609 0.102  0.338 0.574
Random + intra learning ~ 0.131  0.347 0.613 0.105 0.353 0.554
Random anchor 0.147 0.359 0.619 0.097 0.327 0.579
Median (coordinate-wise) 0.134  0.363 0.634 0.112  0.375 0.582
X 0.092 0.114 0.487 0.067 0.176 0.465
FABIND-X4 0.131 0.143 0.575 0.112  0.153 0.523
CENTROBIND 0.132  0.355 0.626 0.113 0.336 0.559
Random Weighted average 0.115 0.347 0.619 0.109  0.336 0.556
Random + intra learning  0.132  0.333 0.602 0.104 0.309 0.562
Random anchor 0.145 0.354 0.618 0.097 0.324 0.552
Median (coordinate-wise) 0.137  0.347 0.612 0.112  0.330 0.565

Comparison with other adaptive anchor generation. We compare the centroid-based adaptive
anchor method with other potential approaches, such as weighted average, random anchor fixing, and
component-wise median. Figure[Q]illustrates the accuracies of each method under scenarios where
modalities are unevenly distributed. Specifically, we create 4 modalities with differing quality levels.
In experiments (a) and (b) of Figure@ X1, X5, and X3 are set as highly uninformative, while X4
represents a high-quality dataset. Conversely, experiments (c) and (d) use X; and X5 as poor-quality
datasets, while X3 and X are high-quality datasets.
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For the weighted average method (denoted as WAB in Figure[J)), we assign weights based on modality
quality: (0.2,0.2,0.2, 1) for experiments (a) and (b), and (0.2,0.2,0.8,0.8) for experiments (c) and
(d). These weights correspond to the information rate of each modality.

For the random modality dynamic anchor method (denoted as RB in Figure[J), we randomly select
one modality as the dynamic anchor at each iteration, with the anchor encoder frozen. To investigate
the impact of intra-modal learning, we also conduct experiments with a random anchor that includes
intra-information learning (denoted as RB+Intra). In this case, the anchor modality is randomly
selected at each iteration, and the anchor encoder is not frozen, allowing all encoders to be trained.

Since the median is more robust to outliers than the average (Lopuhai & Rousseeuw, |1991), we
additionally evaluate the case of a median-based dynamic anchor. In high-dimensional spaces, rather
than in the univariate case, a coordinate-wise median can be used as a naive generalization of the
univariate median to the multivariate setting, preserving its robustness to outliers. We assess the
dynamic anchor binding method using the coordinate-wise median approach (denoted as MB in
Figure[0). Specifically, for the median anchor, we compute the jth coordinate of the ith anchor as
a; ; = Median(z1, 5, 22,i,j, - » ZM,i,5), Where z,, ; ; denotes the jth coordinate of the embedding
for the ¢th sample in modality m. For improved readability, we summarize the final accuracies for
each method and modality in Table[d]

This scenario, where modal distributions are uneven, is commonly referred to as the modality
imbalance problem (Du et al, 2023} [Peng et al.[2022; [Zhang et al}[2024). Intuitively, in the presence
of modality imbalance, the centroid may produce suboptimal dynamic anchor constructions, and
other methods, such as weighted average, might yield better results. Nevertheless, CENTROBIND
consistently performs better or comparably to weighted average methods, demonstrating its robustness
to the modality imbalance problem.

From these experiments, we conjecture that the specific dynamic anchor generation method may not
significantly impact final performance, provided that all encoders are well-trained during the process.

Addressing the modality imbalance problem typically requires additional information, such as domain
knowledge, labels, or downstream task insights. Since this work focuses on multimodal alignment
under contrastive learning, we do not assume such information is available. We therefore leave the
exploration of the modality imbalance problem for dynamic anchor generation as a direction for
future work.

C.2 EXPERIMENTS WITH REAL-WORLD DATASETS

Training details. We utilize Low-Rank Adaptation for training CENTROBIND
and FABIND , enhancing training efficiency and achieving impressive results with fewer iterations.
For parameter settings, we set a learning rate of 0.001, the AdamW optimizer (Loshchilov & Hutter,
with a batch size of 16, and a temperature of 0.3 for InfoNCE. Training CENTROBIND requires
augmentation. We augment video frames with various transformations, including random perspective
shifts, random flips and rotation, color jitter, Gaussian blur, and auto-contrast adjustment. For the
audio modality, we apply a low-pass filter, speed changes, echo effect, room impulse response
convolution, and background noise. For the text modality, we generate paraphrased sentences using
the Phi-3 language model served using Ollamaﬂ

UniBind We evaluate UniBind as a baseline method, using LLM-generated descriptions as the
anchor modality. Specifically, UniBind generates descriptions for each modality using a large
language model (LLM), ensuring that every modality is paired with corresponding descriptions.
These descriptions collectively form a knowledge base, and UniBind optimizes the InfoNCE loss
between each modality and its paired description from the knowledge base. In this framework, the
anchor modality is the LLM-augmented representation. It is important to note that the LLM-generated
descriptions for different modality pairs can vary, which may hinder effective multimodal alignment
(see Table[2). In our experiments, we generate descriptions for video and audio modalities using the
VideoLLaMAZ2.1-7B-AV audio-visual model from VideoLLaMA2 2024])), and for the
text modality, we use the Qwen2.5-32B-Instruct model from Qwen2.5 2024). We evaluate

>https://ollama.com/library/phi3
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Table 5: Classification accuracy evaluated on each modality (training and evaluation modalities are
the same) with MUStARD dataset. Asterisk* denotes different backbone encoders and pretraining
settings.

Method Modality Sar-1 Spk-1 Spk-3 Spk-5

FABIND 0.606 0.219 0.458 0.632
UniBind 0.600 0.214 0412 0.569
AudioCLIP* T 0.488 0.155 0.280 0.388
ViT-Lens* 0.543 0.172 0342 0.472
CENTROBIND 0.667 0.287 0.507 0.642
FABIND 0.668 0.375 0.587 0.691
UniBind 0.658 0.381 0.641 0.770
AudioCLIP* % 0.504 0.110 0.275 0414
ViT-Lens* 0.697 0.586 0.738 0.797
CENTROBIND 0.670 0.380 0.609 0.726
FABIND 0.639 0.201 0.457 0.599
UniBind 0.633 0.272 0.528 0.691
AudioCLIP* A 0.525 0.158 0.343 0.454
ViT-Lens* 0.686 0.396 0.664 0.8
CENTROBIND 0.616 0.234 0.461 0.609
FactorCL* 0.699 - - -
SimMMDG* 0.725 - - -
FABIND 0.678 0.343 0.554 0.677
UniBind VAT, 0646 0383 0622 0764
AudioCLIP* ' 0.530 0.119 0.261 0.378
ViT-Lens* 0.731 0.506 0.736 0.812
CENTROBIND 0.704 0346 0.594 0.733

UniBind’s performance in two settings: standard classification accuracy (Table [5) and zero-shot
cross-modal classification (Table [2).

AudioCLIP We employ AudioCLIP (Guzhov et al.} [2022)), which aligns image, text, and audio
representations into a unified multimodal space. To extend its capabilities to the video modality in
our experiments, we adapt AudioCLIP to extract embeddings for video, audio, and text modalities
using a pretrained model. For audio, we follow AudioCLIP’s approach, padding audio samples to
ensure uniform input sizes. For text, we utilize its pretrained settings, truncating tokenized text to
77 tokens, which only occurs in one instance. For the video modality, we use the center frame as
a representative image sample. Finally, embeddings from all three modalities are concatenated for
downstream tasks.

ViT-Lens In our experiments, we leverage the pretrained models from ViT-Lens to extract embed-
dings for audio, text, and video modalities. We generally follow the example codeﬂ provided by the
authors. Note that we select the center frame image from the video to extract the embedding.

Classification results. In contrast to the cross-modal retrieval results in Table[I]and zero-shot cross-
modal classification in Table[2] Table[5]presents the classification accuracy of FABIND, UniBind, and
CENTROBIND for each modality as well as for multimodal scenarios. Specifically, embeddings are
extracted using the binding methods, and a simple decoder is trained to classify the embeddings. In
Table[5] we report the sarcasm and speaker classification accuracies of decoders trained and evaluated
on the same modality.

For sarcasm detection, CENTROBIND generally outperforms other baseline methods. While UniBind
performs poorly in cross-modal classification, it achieves better performance in speaker classification
compared to others. This improvement is due to the LLM-augmented descriptions, which provide
additional knowledge (from LLMs) to the embeddings. Notably, UniBind utilizes 4 modalities,
whereas FABIND and CENTROBIND only use 3, which could penalize the performance of FABIND
and CENTROBIND . Nevertheless, CENTROBIND consistently outperforms FABIND. Moreover,

Shttps://github.com/TencentARC/ViT-Lens
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Figure 7: Experiment results with synthetic dataset of M = 6 modalities. Abbreviation: X;-B or
CB: applying FABIND method to backbones with anchor X; or applying CENTROBIND; acc(Z;) or
acc(All): accuracy of Z; or of concatenated embeddings (Z1, - - - , Zs); (rnd): if random backbones
are used for X;-B or CB.

our method can also incorporate LLM-augmented descriptions as an additional modality, potentially
improving its performance further.

Although a direct comparison is not feasible, we also include the sarcasm detection accuracy of
FactorCL (Liang et al.,[2024b), SimMMDG (Dong et al.,[2023)), AudioCLIP (Guzhov et al.|[2022), and
ViT-Lens (Lei et al.} for reference. ViT-Lens, in particular, achieves higher performance than
CENTROBIND due to its use of larger backbone encoders, such as Vision Transformer (ViT)
[2022)) and pretraining on extremely large-scale datasets. However, since ViT-Lens can be
considered a variant of FABind, applying our dynamic anchor method could further improve its
performance. Specifically, ViT-Lens uses a pretrained CLIP model as the anchor encoder, while the
other non-anchored modalities use pretrained ViT models with modality adaptation layers. Within
our framework, CENTROBIND could adopt the pretrained Vision Transformer as backbone encoders,
potentially enhancing its performance further.
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Figure 8: Experiment results with synthetic dataset of M = 8 modalities. Abbreviation: X;-B or
CB: applying FABIND method to backbones with anchor X; or applying CENTROBIND; acc(Z;) or
acc(All): accuracy of Z; or of concatenated embeddings (Z1, - - - , Zs); (rnd): if random backbones
are used for X;-B or CB.
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Figure 9: Comparison of other dynamic anchor generation methods. (a) and (b): Modal qualities
are set to (0.2,0.2,0.2, 1). (c) and (d): Modal qualities are set to (0.2,0.2,0.8,0.8). Abbreviation:
X;-B or CB: applying FABIND method to backbones with anchor X; or applying CENTROBIND;
WAB: weighted average for dynamic anchor with weight identical to the predefined quality for each
modality; RB+Intra: randomly choosing a modality for dynamic anchor in every iteration and intra
information learning; RB: randomly choosing a modality for dynamic anchor in every iteration; MB:
coordinate-wise median for dynamic anchors; acc(Z;) or acc(All): accuracy of Z; or of concatenated
embeddings (Z1, - -, Zps); (ran): if random backbones are used.
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