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Abstract

Particularly in low-data regimes, an outstanding challenge in machine learning is1

developing principled techniques for augmenting our models with suitable priors.2

This is to encourage them to learn in ways that are compatible with our understand-3

ing of the world. But in contrast to generic priors such as shrinkage or sparsity,4

we draw inspiration from the recent successes of large-scale language models5

(LMs) to construct task-specific priors distilled from the rich knowledge of LMs.6

Our method, Language Model Priors (LMPriors), incorporates auxiliary natural7

language metadata about the task—such as variable names and descriptions—to en-8

courage downstream model outputs to be consistent with the LM’s common-sense9

reasoning based on the metadata. Empirically, we demonstrate that LMPriors im-10

prove model performance in settings where such natural language descriptions are11

available, and perform well on several tasks that benefit from such prior knowledge,12

such as feature selection, causal inference, and safe reinforcement learning.13

1 Introduction14
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Figure 1: A flowchart of the Language Model
Prior (LMPrior) framework. We leverage the rich
knowledge base of a pretrained LM to incorporate
task-relevant prior knowledge into our learning
algorithm f . Our method uses natural language
metadata Dmeta to return a specialized learner f̃ ,
whose outputs given the dataset D are encouraged
to remain consistent with both the metadata and
real-world knowledge as distilled in the LM.

Much of modern-day machine learning is data-15

driven—given training examples, we aim to16

learn a function that minimizes an objective17

corresponding to a particular downstream task.18

This paradigm has led to tremendous success19

in data-rich domains such as protein structure20

prediction for drug discovery [1], game play-21

ing [2, 3, 4], automating medical diagnoses22

[5], computational sustainability [6, 7], and cli-23

mate modeling [8, 9]. However, the recent fail-24

ures of such algorithms as in shortcut learn-25

ing and vulnerability to adversarial examples26

[10, 11, 12, 13, 14] seem to suggest that purely27

data-driven approaches have a long way to go28

from becoming truly intelligent agents.29

One facet of intelligence which separates human30

agents from artificial ones is prior knowledge31

about the world that can be combined with in-32

ferences derived purely from data. Consider33

a prediction setting that aims to determine the34

length of one’s commute time. Although an algorithm may discover a relationship between commute35

time and favorite color, our intuition tells us that this relationship is most likely spurious. Additionally,36
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an autonomous driving agent may require several expert demonstrations before it learns that it should37

not veer off a cliff; a generative model may need to see an extremely large number of faces before it38

learns that earrings should not be placed on someone’s head. These failure modes are surprising to us39

precisely because they violate deeply-ingrained prior beliefs about how the world works. Artificial40

agents, on the other hand, lack such grounding in real-world contexts and are thus limited in their41

ability to reason about the semantic relationships between entities present in data. This problem42

becomes even more pertinent in low-data regimes where our algorithms are prone to overfitting.43

Two key observations guide this work. The first is that auxiliary metadata, often in the form of natural44

language descriptions such as variable names that ground the features in real-world entities, are45

becoming increasingly more abundant [15]. The second is that in spite of this, most conventional46

learning algorithms are designed to ignore this valuable information. This approach is understandable47

due to the subjective and qualitative nature of prior information elicited from experts or algorithm48

designers, combined with the difficulty of scaling up approaches to thousands or millions of variables.49

Inspired by the recent successes of large-scale pretrained language models (LMs) across a wide range50

of domains and data modalities [16, 17, 18, 19, 20], we propose to leverage the LM’s rich knowledge51

base as a heuristic for prior knowledge about the world. This provides a pathway for algorithmically,52

scalably, and repeatedly generating relevant inductive biases from task-specific metadata such as53

variable names and descriptions. Our framework, which we call Language Model Priors (LMPriors),54

then serves as a way to construct task-specific priors tailored to any learning setting where natural55

language descriptions of the task are available. We provide an illustrative flowchart of how LMPriors56

fit into the conventional machine learning pipeline in Figure 1.57

Empirically, we demonstrate that our LMPriors are able to perform well on a variety of downstream58

tasks which benefit from auxiliary sources of information. Concretely, the contributions of our work59

can be summarized as follows:60

1. We introduce LMPriors, a framework for algorithmically incorporating semantically-relevant61

prior knowledge into learning problems via use of a prior distribution extracted from a LM.62

2. We explicitly specify LMPriors for feature selection, causal discovery, and reinforcement63

learning tasks. Each LMPrior is a mapping from a set of task-specific metadata Dmeta to a64

learning procedure with a bespoke inductive bias.65

3. We show empirically that LMPriors achieve strong performance on feature selection, causal66

discovery, and safe reinforcement learning tasks, and demonstrate that it can also serve as a67

useful preprocessing wrapper around existing algorithms to boost their performance.68

2 Preliminaries69

2.1 Neural Language Modeling70

Language modeling seeks to learn a probability distribution pLM(x) over variable-length sequences71

of text x = (x1, . . . ,x|x|), drawn from an underlying distribution ptext(x), such that pLM(x) ≈72

ptext(x). Although several approaches exist for parameterizing pLM(x), conventional neural LMs73

posit an autoregressive factorization over pLM(x) =
∏|x|
i=1 pLM(xi|x<i) and are trained via maximum74

likelihood [21, 22]. When predicting the next token xi, the preceding tokens x<i are known as the75

context or prompt c.76

Modern LMs are trained on large corpora consisting of billions of tokens over diverse sources of77

text including encyclopedias, news websites, emails, books, and scientific papers [23]. In order to78

successfully predict the next token over such a diverse set of contexts, LMs implicitly possess rich79

knowledge about concepts in the training data. This allows them to solve a startling variety of tasks80

from simple descriptions of the task itself, a setting known as zero-shot learning [17]. We seek to81

leverage this rich knowledge base as the foundation of our approach.82

Prompt design. Since the largest LMs are currently proprietary1, we assume black-box access to the83

underlying LM and avoid cases where our method would need to fine-tune or access internal statistics84

(such as gradients or embeddings) of the model. Given this assumption, our control over the model’s85

1We note that this status quo is quickly changing with open-source tools such as HuggingFace [24].
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predictions relies entirely on our choice of prompt. Effective prompt design is a key challenge when86

utilizing modern LMs, and one that has been widely studied [25, 26, 27, 28, 29].87

2.2 Task-Specific Knowledge in Data-Driven Learning88

To motivate our framework, we first consider a generic parameter estimation problem. Given a dataset89

D consisting of n data points xi ∈ X drawn from an underlying distribution p(·|θ), our goal is to90

estimate θ ∈ Θ. We define a learning procedure, or learner, as a function f : Xn → Θ to do so.91

For instance, in a linear regression task where the dataset D consists of (x, y) pairs, the learner f92

may return the solution of a least-squares fit between the x and y samples in the dataset. For a93

probabilistic independence testing problem, where we again have a dataset D consisting of (x, y)94

pairs, the learner f would return a probability of independence between the two variables: p(x ⊥⊥ y).95

In the common empirical risk minimization (ERM) setting, we use a learning procedure with an96

f(D) = arg minθ′
∑n
i `(θ

′,xi) for some loss `.We may even view reinforcement learning (RL) as97

a sequential instantiation of this problem, where we sequentially observe samples from a Markov98

Decision Process (MDP) and must estimate the optimal policy—a function of the MDP’s parameters.99

Challenges in learning. However, several challenges arise when designing an effective learning100

procedure f . The most common is inaccurate estimation of θ in a low-data setting. In fact, given finite101

samples without access to the underlying data generating process, we cannot guarantee that our esti-102

mate θ̂ will equal the true θ. While procedures such as ERM do guarantee that we will recover the true103

θ in the infinite data regime (under some regularity conditions) [30], in general there are no meaningful104

bounds on the number of samples needed for this convergence with modern deep learning architectures.105

Therefore, we must resort to approximate algorithms with few guarantees. A variety of “no-free-lunch”106

theorems [31] tell us that when averaged over all possible data generating processes, all predictive107

algorithms perform equally well. An approach that performs better on some particular distribution of108

data must make up for it by performing worse on another. Thus to find an effective learning procedure109

for a particular dataset, we must incorporate some assumptions about the data generating distribution.110

Incorporating task-relevant metadata. A key observation is that the above loss-minimization111

framework actually discards task-relevant information. Concretely, f is agnostic to any contextual112

metadata that may give more information about the dataset D. For example, in a regression setting113

the variable names and textual descriptions of x, y are not used—f operates directly on their values.114

However, such variable names can provide valuable information which we can exploit in our design115

of f . For example, if we know that the output of a prediction task represents age, we can construct116

f such that the predictor it produces is always constrained to be non-negative. Similarly if we117

know that our task is to predict a magnetic field, we may design f so its output is a vector field118

with zero divergence. In this way the variable names can be used to introduce task-relevant bias119

into f by incorporating auxiliary information that is not present in the dataset D. This should120

help generalization, as it encourages the learning algorithm to recover f that is consistent with the121

information we have from the context and grounds the learning task in real-world entities. This122

becomes particularly important in low-data regimes, where f is prone to overfitting [32].123

Machine learning practitioners today already incorporate such auxiliary information—they explicitly
set prior distributions, choose models known to perform well on similar datasets, and drop a-priori
irrelevant features from consideration. We can view this procedure as abstractly utilizing some addi-
tional metadata Dmeta which consists of variable names, data collection details, and other contextual
information not contained in the dataset itself to develop a task-relevant bias to give f . Abstractly,
the action of the practitioner Pexpert may be represented as the following functional transformation:

Pexpert(Dmeta)(f) = f̃

where f̃ is a new learning procedure with a useful task-specific bias. Such metadata is becoming124

increasingly available, standardized, and descriptive [15]. Given this abundance of metadata, our goal125

is to develop a procedure which can assist practitioners by automatically constructing a task-relevant126

bias which can incorporated into a learning procedure f .127

3 The LMPrior Framework128

From the above observation, we consider how to combine task-relevant natural-language metadata129

Dmeta into our algorithm f . To do so, we introduce Language Model Priors (LMPriors), a framework130
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for leveraging a pretrained LM as the method to algorithmically interpret Dmeta. We emphasize that131

LMPriors can only handle situations where textual information about x and y (such as descriptions)132

are available; without them, we must return to the standard learning setting.133

LMPrior as a function transform. We define LMPriors as a family of functions P which take134

some relevant metadata Dmeta which is not used by the traditional learning process f . The LMPrior135

then transforms f to f̃ which exhibits a bias towards outputs which are consistent with the metadata136

Dmeta. In the following section we describe several specific instantiations of LMPriors, describing in137

each case how the metadata is used to elicit a common-sense judgment which is then incorporated138

into the learning procedure f̃ .139

3.1 Task Overview140

Feature selection. In a feature selection task, where the goal is to select a subset of the dataset’s141

most informative features while discarding irrelevant ones, the LMPrior acts as a regularizer. We142

assume that the metadataDmeta consists of all variable names, descriptions of all variables, and a short143

sentence of context. The goal is to elicit the prior probability that a variable x is predictive of the144

target y given the variable names and context; we describe the explicit prompt used as a function of145

the metadata in Figure 3.2. For example, in a setting where our data source has been corrupted by an146

auxiliary dataset, we would like to filter out those nuisance variables that would hurt f ’s performance147

on the original data D. We use the LM to generate the probability that variables are relevant, and148

remove them from the dataset if the probability is less than a specified threshold τ . This acts as a149

form of regularization on the subset of features selected for a downstream prediction task.150

Reinforcement learning. In reinforcement learning (RL) we face a more general learning task. The151

input D is a Markov Decision Process (MDP) consisting of a tuple (S,A, p0, q, r, γ), where S,A are152

state and action spaces, p0 and q are the initial state distribution and dynamics, r(s, a) : S ×A → R153

is the reward function, and γ is the discount factor. The goal is to find a policy f : S → A which154

maximizes the expected distribution of rewards under the dynamics. Similarly to how practictioners155

add in inductive biases to the desired behaviour via reward shaping, the role of the reinforcement156

learning LMPrior PRL is to modify the MDP via reward shaping. We assume that the metadata157

consists of a mapping from the raw state and action variables to a natural language description, such158

as a method to convert a set of pixels to a textual description. The metadata also consists of a set159

of examples of hypothetical (state, action) pairs and judgments of their value. The goal is to elicit160

a shaped reward including a bonus that should be given to the agent for the current state and action.161

For example, the common-sense reward awarded should be negative for a self-driving car crashing,162

or positive for a puzzle-solving agent collecting a key. Note that if we are specifically concerned with163

possible suboptimality in the original MDP after training with reward shaping, we may use potential-164

based reward shaping [33], where optimality with respect to r̃ guarantees optimality with respect to r.165

Concretely, we combine the metadata into a prompt forcing the LM to classify the state,action166

pair as good or bad. We then obtain a new reward function r̃(s, a) = r(s, a) +167

Et∼pLM(·|c(s,a,Dmeta)) [1good[t]− 1bad[t]], where c(s, a) is the current (state,action)-dependant prompt168

and 1good, 1bad are the indicator functions over the output tokens good and bad respectively. In this169

work, we study the application of an RL LMPrior to the problem of safe RL: leveraging pre-existing170

knowledge about the desirability of entering hazardous areas to reduce violations of safety constraints.171

Causal discovery. As a special case of binary hypothesis testing, we investigate the use of LMPriors
in causal discovery. Here our goal is to elicit the relative prior probability of the possible relationships
between two variables x and y: x→ y or y→ x. For example, in an econometric setting we may
a-priori believe that increasing inflation levels causes an increase in wages, before looking at any
data. Many recent works have been developed to infer the causal direction from observational data
[34, 35, 36]. We assume access to a probabilistic data-driven causal inference procedure f returning
log p(H1) − log p(H0). Here H0 is the hypothesis that the causal direction is x → y and H1 the
hypothesis that the causal direction is y→ x. The causal discovery LMPrior PCD requires metadata
consisting of names and descriptions of x and y, as well as a sentence of brief context. These are
then included in a prompt c(Dmeta) (described explicitly in figure 4.3) designed to elicit either the
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sentence X → Y or Y → X. The LMPrior then augments f by adding on the prior likelihood:

PCD(f)(D) = log

(
pLM(x→ y|c(Dmeta))

pLM(y→ x|c(Dmeta))

)
+ f(D)

In this setting, PCD(f) returns the (log) posterior for the most likely causal structure for x and y.172

3.2 Model Architecture and API173

Model Details. We use the Davinci GPT-3 model for the LM backbone for LMPrior, as it has the174

largest number of parameters available (175B) and achieves strong performance on a number of bench-175

marks [17]. We use the davinci-instruct-beta variant, and access GPT-3 via the OpenAI API.176

Prompt Format. Although we adapt the prompt for each of our downstream tasks, we largely177

keep its overall format consistent following the best practices in [28]. Specifically, we utilize a178

template consisting of: (1) a natural language description of the task which contextualizes the179

following examples in the prompt; (2) a small number of examples instructing GPT-3 with the180

desired behavior; and (3) an explanation intended to guide GPT-3 with some intuition for the correct181

answers. The inclusion of the explanation ensures that the context has examples of thoughtful182

reasoning. It can also serve as a useful tool to understand erroneous predictions, as it indicates183

some amount of reasoning behind the prediction. We illustrate our prompts in Figures 4.3 and 3.2.184

Figure 2: An example of a prompt used in LMPri-
ors for the feature selection task in Section 4.1.2.
The prompt c consists of a textual description of
the feature selection task, the variable name, a
short description of the variable, and the correct
answer followed by an explanation. We substi-
tute NAME and DESCRIPTION with the appropriate
values when querying GPT-3.

We note that we tailor the particular description185

as well as the provided examples to the task of186

interest. We outline some more detailed guide-187

lines and empirical findings from formatting the188

various prompt formats in Appendix A.189

Decision Rule. Given the LMPrior’s comple-190

tion to a particular prompt, we can leverage its191

response as either a “soft” or “hard” decision192

rule. Concretely, in the feature selection set-193

ting, a particular threshold value τ determines194

the cutoff as to whether certain features will be195

included in the downstream predictor. For the196

causal inference task, we utilize the LMPrior’s197

outputs as soft probabilities and combine them198

with a data-driven likelihood method approach199

to obtain a posterior belief over the most plau-200

sible structure.201

4 Empirical Evaluations202

In this section, we are interested in empirically203

answering the following questions:204

1. Are LMPriors effective at distilling common-sense knowledge about the world into our205

learning algorithms?206

2. Do the specialized learners returned by LMPriors perform well on downstream tasks such207

as feature selection and causal discovery?208

4.1 Feature Selection209

We evaluate the effectiveness of the feature selection LMPrior Pfs on two tasks. First, we construct a210

semi-synthetic experiment where we simulate a dataset corruption setting. Then, we stress test the211

LMPrior Pfs on a challenging prediction task using data from the US Census Bureau in 2018.212

4.1.1 Robustness to Dataset Corruption213

For the semi-synthetic setting, we leverage a wide range of datasets from the UCI Machine Learning214

repository [37] such as California Housing Prices and Breast Cancer Detection, and ask whether215
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(a) Housing-Wine (b) Housing-Income (c) Cancer-Housing (d) Cancer-Income

Figure 3: Results for the variable separation experiment. For the UCI dataset combinations of (a)
Housing Prices-Wine Quality, (b) Housing Prices-Adult Income, and (c) Breast Cancer-Housing
Prices, we find that LMPrior successfully separates all features from both data sources. For the
(d) Breast Cancer-Adult Income dataset, we find that although LMPrior mixes a few of the dataset
features, the ones it selects from the auxiliary dataset are semantically relevant for the primary task.

(a) LassoNet Features (b) LMPrior Features

Figure 4: Comparison of LassoNet [38] with LMPrior on the feature separation task for the UCI
Breast Cancer-Wine Quality dataset combination. Features are ordered according to importance.
LassoNet selects a larger fraction of nuisance features (in pink) than LMPrior. We also note that
for LMPrior, the features selected are semantically relevant for the downstream task. Some features
returned by LassoNet are tied in importance.

the LMPrior Pfs is able to separate out the features from the two data sources based on their variable216

names. To do so, we use the following prompt structure (specialized for the breast cancer prediction217

task) followed by relevant examples for few-shot learning:218

A medical institute is trying to use characteristics of the cell nuclei219

present in the image as features to predict whether patients have breast220

cancer. Y means the feature is important for the prediction task, N means221

the feature is not important.222

The full prompt for this task is provided in Appendix A.1. We then ask the LMPrior to respond with
a Y or N completion given a variable name and a brief description. The final importance of a feature
is obtained by computing the difference of the log-probabilities of the LM identifying the feature as
important (Y) vs not important (N):

score(c) = log pLM(Y|c)− log pLM(N|c)

and we only retain those features score(c) that exceed some threshold τ . As shown in Figure 3,223

LMPrior achieves complete separation of the two disparate feature sets. Interestingly, we find that in224

cases of no clear separation, the nuisance features which are marked as important by LMPrior are225

semantically meaningful for the corresponding prediction task (e.g. gender and age from the Adult226

Census Income dataset for breast cancer prediction).227

Next, we train downstream classifiers on top of the features selected by LMPrior to evaluate their228

quality. We found that LMPrior selected features which increased the accuracy in classification229

tasks in corrupted datasets for various combinations of datasets. As an example, upon mixing Breast230

Cancer features to those of the Adult Census income dataset, the test accuracy decreased from the231

baseline of 89.4% to 85.1%. Using the features selected by LMPrior, we recovered the original test232

accuracy of 89.4%. We additionally compared our results with baselines such as LassoNet [38],233

which filter features based on their importance in the prediction based on the data. As shown in234

Figure 4, even when LMPrior does not achieve complete separation, it still outperforms data-driven235

feature selection. We provide additional details on the experimental setup in Appendix A.236
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4.1.2 Real-world example with US Census data237

In this experiment, we investigate a suite of real-world datasets derived from the US Census Bureau238

via the folktables API [39]. In particular, the Public Use Microdata Sample (PUMS) of the239

American Community Survey (ACS) dataset is comprised of 286 features such as the total number240

of operating vehicles owned for millions of US households each year. We preprocess data from241

California households in 2018 according to the schema provided in Appendix A and predict whether242

an individual’s commute time exceeds 20 minutes.243

Our goal for this experiment is twofold. We want to not only use an LMPrior to filter out nuisance244

variables that may hinder predictive performance, but also leverage LMPriors as a tool for exploratory245

data analysis to assess which semantically meaningful features should be included. We provide246

the full prompt used for this experiment in Appendix A.2. We compare against the following247

baselines: (a) 16 features (Subset) as in [39]; (b) the entire dataset (Full); and (c) a random baseline248

(Random) which selects the same number of features returned by LMPrior. We also consider249

existing feature selection baselines such as: (d) Lasso (`1-regularization with regularization strength250

C = {0.001, 0.01, 0.1, 1.0, 1.0}); and (e) MRMR [40].251

As shown in Table 1, we find that LMPrior performs favorably relative to baselines, selecting 59/281252

features and leading to improved or on-par performance on the downstream classification task. We253

provide additional experimental details in Appendix A.254

Random Forest Logistic Regression SVM GBM
Subset 0.66 0.64 0.64 0.66

Full 0.74 0.94 0.95 0.86
Random 0.63 ± 0.05 0.62 ± 0.05 0.65 ± 0.16 0.60± 0.02

Lasso (C=0.001) N/A 0.95 0.96 N/A
MRMR [40] 0.73 0.75 0.73 0.71

LMPrior 0.83 0.95 0.96 0.87
Table 1: Classifier accuracies. Higher is better. LMPrior outperforms all baselines.

4.2 Safe Reinforcement Learning255

Figure 5: The Island Navigation gridworld as in
[41]. The RL agent must navigate to the goal (G)
without touching the water, which is considered to
be an “unsafe” action.

In this experiment, we test the efficacy of the RL256

LMPrior PRL in a safety-relevant environment.257

We apply the LMPrior to the Island Navigation258

task from the AI Safety Gridworlds [41] suite,259

shown in figure A.3. The objective of this260

task is to learn the optimal policy to reach the261

goal, while minimizing the number of safety262

violations, defined as instances where the agent263

enters a water-filled square. Since the agent264

is not given negative reward for entering the265

water squares, a training method that discourages the agent from entering the water must have some266

common-sense knowledge that entering the water is unwise. To extract this knowledge, we use a267

prompt starting as follows:268

This is a series of judgments about decisions of a navigation robot. The269

robot is not waterproof.270

We follow this by several proposed actions and judgments specified as Good, Neutral, or Bad. The271

full prompt c is given in Appendix A.4. We use the provided feature giving the distance of the robot272

from the water, and classify it either as in, close to, neither close nor far from, or far273

from water for the distances (0, 1, 2, 3) from water. The prompt then elicits an answer as to whether274

being the relevant distance away from the water is good, bad or neutral. We then assign the value275

1 to good, 0 to neutral, and −1 to bad. Evaluating this value in expectation over the distribution of276

the next token given by pLM(·|c) then gives us the reward to add, respectively (−1,−0.3, 0.6, 0.95)277

for the four possible distances. We then train a DQN [2] agent for 100,000 steps on the environment,278

with and without reward shaping provided by PRL. We use the stable-baselines3 [42] implementation279

with default hyperparameters and repeat the experiment over ten random seeds.280

7



DQN finds the optimal policy both with and without reward shaping. For the agent without reward281

shaping, we observe 8278± 1079 safety violations during training for the non-reward-shaped policy,282

and 2917± 85 safety violations for the reward-shaped policy, a significant reduction.283

4.3 Causal Discovery284

Setting. In this series of experiments, we show that we can combine LMPriors with data-driven285

methods to increase overall accuracy on a challenging causal inference task. In particular, we consider286

the Tuebingen Cause-Effect Pairs dataset [43]. In this dataset, a series of datasets of (x, y) pairs287

are given, along with a textual description of what x and y represent. The goal is to conclude whether288

the causal relationship between the variables is x→ y, or y → x. The pairs are gathered from a mix289

of several datasets, with (x, y) pairs as diverse as (fine aggregate, compressive strength)290

in the context of concrete manufacturing and (Bytes sent, Open http connections) in a291

networking context. As our data-driven method, we use the RECI algorithm [36], as implemented292

in the Causal Discovery Toolbox2. We standardize the metadata provided in the dataset, collating293

a name and description for each of x and y, and a brief context for the source dataset. As294

is standard practice [35] we remove pairs with either multidimensional x, y or missing values.295

As described in Section 3, we incorporate the causal discovery LMPrior PCD by constructing296

a prior that elicits prior probability judgments consistent with common-sense reasoning. We297

then give several examples of hypothetical x, y pairs along with descriptions, context and judg-298

ment. The full prompt c and experimental details are given in Appendix A.3. Then, we com-299

pute the log probability ratio log pLM(x → y|c) − log pLM(y → x|c) using LMPrior’s comple-300

tion. The output of RECI is a “causal coefficient” ρ ∈ [−1, 1] with ρ = 1 =⇒ x →301

y, ρ = −1 =⇒ y → x, which we interpret probabilistically as p(x → y) = (ρ +302

1)/2. To achieve the final prediction of LMPrior-augmented RECI , we simply add the log-303

probability ratio extracted from the language model to the probabilistically-interpreted RECI output.304

Figure 6: Illustration of the prompt used for the
causal inference task in Section 4.3. The task de-
scription clearly defines the setting, and the two
variables A and B are both provided to the LM-
Prior along with their text descriptions.

305

Results. We find that the RECI algorithm alone306

does not perform particularly well, detecting307

the correct causal direction with an accuracy of308

58.7%. The LMPrior alone does much better,309

achieving an accuracy of 83.5%. When we310

combine the log-probabilities as described311

above, we obtain a combined accuracy of312

84.5%, better than either of the components313

alone. To our knowledge, this is higher than the314

current state-of-the-art performance [35] of a315

purely data-driven algorithm applied to the data,316

which achieves an accuracy of 83.3%. Such317

results illustrate that LMPriors are powerful318

enough sources of prior knowledge such that319

even when they are combined with a weak320

model, they are able to boost the performance321

of the base learning algorithm.322

5 Related Work323

Prior distributions. The problem of choosing a324

suitable prior dates back to the earliest formulations of probability [44]. While it has been long under-325

stood that the prior should in principle describe the exact belief over possible outcomes before data has326

been collected [45, 46], implementing this concretely has generally been considered intractable. In-327

stead, a main focus is on formulating so-called ‘non-informative’ or ‘reference’ priors [47] which aim328

to introduce as little information into the learning procedure as possible. More recent work has aimed329

to guide the choice of priors by reference to their effect on the resulting inference procedure [48, 49].330

In this framework, priors are classified among reference priors, which aim to have as little effect as331

possible on inference; structural priors, which impose a specific property on the result of inference,332

2https://fentechsolutions.github.io/CausalDiscoveryToolbox/
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such as symmetry or non-negativity; and regularizing priors which aim to make the posterior smoother333

or more stable in the inference procedure, which has many benefits with inference procedures such as334

Hamiltonian Monte-Carlo [50]. This more pragmatic approach aligns with our use of LMPriors to add335

a useful bias to the inference procedure, while also including contextual knowledge in a tractable way.336

Extracting knowledge from language models. As large language models have increased in337

parameter count and training set size, it has become clear that they are able to act as knowledge338

bases. Some large language models are competitive with answering systems that have access to an339

oracle knowledge base [51], while several new datasets have been introduced to explicitly test the340

commonsense reasoning capabilities of LMs [52, 53]. A key finding is that the design of the prompt341

is crucial in eliciting accurate answers to common-sense problems, with a carefully-designed [54] or342

algorithmically generated [55, 26] prompt often resulting in large increases in accuracy. Furthermore,343

it has been shown that the benefits of prompt tuning increase with model capability, with prompt344

tuning approaching the power of explicit fine-tuning for models with over 1010 parameters [25].345

6 Discussion and Conclusion346

Our work presents an initial exploration into how we can effectively leverage the prior knowledge347

distilled in large language models to improve the performance and interpretability of our machine348

learning algorithms. In particular, LMPriors are one such way to algorithmically extract task-relevant349

information without needing to query a domain expert. We demonstrated the effectiveness of350

LMPriors on a variety of tasks which benefit from such metadata such as feature selection and351

causal inference. However, we emphasize the need for caution when utilizing and building upon our352

approach. Our work is not without limitations, and care is required at each step of the approach in353

order to mitigate potential harms and consequences that may directly propagate from the pretrained354

LM model into the downstream learning algorithm itself.355

First, we emphasize that proper prompt design is an extremely important component of LMPriors. In356

line with recent works that investigate the potential of pretrained LMs to propagate harmful or toxic357

content [56, 57, 58], as well as approaches on building better prompt tuning approaches [29, 28],358

we emphasize that a poorly- or maliciously-designed prompt will lead to LMPriors amplifying359

such biases in its decisions. Thus when selecting the variables of interest, providing explanations360

to the model, and curating examples for in-context learning, we must be aware of the risks of361

misrepresentation [59] as well as under- and over-representation [60] of the subjects in our datasets362

as well as metadatasets.363

As another point of caution, we note that we evaluated the performance of the selected features364

in the context of a downstream task (e.g. prediction) for some of our experiments. This purely365

predictive metric may not be desirable for all use cases, and one should be cognizant of propagating366

performance disparities that may neglect certain underrepresented subgroups in the data [61, 62].367

This speaks to the need for interpreting and screening the algorithm’s outputs to ensure that they368

are aligned with human values. More broadly, this work represents the importance of human-AI369

collaboration in the development of future AI systems.370

Broader Impact. This work introduces LMPriors, a method for constructing task-specific priors371

that can be paired with downstream models such that their outputs are consistent with both natural372

language metadata as well as the LM’s common-sense reasoning based on the metadata. We note373

that this may lead to tangible benefits, such as automation of cumbersome feature selection tasks on374

extremely high-dimensional datasets, or more broadly learning agents that learn to behave in ways375

that are grounded in the real-world and aligned with our understanding of the world. However, there376

are also potentially negative societal consequences that must be taken into account. In particular, the377

quality of the pretrained LM heavily depends on the quality of the training data – when querying378

the LM about sensitive attributes, the output of the LM must be screened to ensure that it does379

not propagate biases that it has learned from the training data. Therefore, as with all downstream380

use-cases of pretrained LMs, we very strongly encourage researchers to exercise care.381
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Appendix547

A Additional Experimental Details548

A.1 Semi-Synthetic Experiments549

In this experiment, we merged a secondary (nuisance) dataset with the primary (base) dataset and550

conducted a prediction task on the corrupted dataset using the (primary) labels. The base datasets551

were often subsampled to match the size of the added dataset, such that merging would be possible.552

Simple classifiers such as random forests, support vector classifiers, and logistic regression models553

were used for the classification task. Accuracies were recorded before and after using LMPrior for554

feature selection. We observed that LMPrior could detect the nuisance features and successfully555

improved the classification accuracy as reported in Table 2.556

Base dataset (Number of features) Baseline Nuisance dataset (Number of features) Post Corruption Post LMPrior
Forest cover type (54) 80.7% UCI Breast Cancer (30) 75.43% 78.94%

Adult Census Income (89) 89.47% UCI Breast Cancer (30) 85.08% 89.47%
UCI Breast Cancer (30) 96.66% UCI Wine (16) 91.66% 94.44%
UCI Breast Cancer (30) 94.44% ACS Employment (16) 91.66% 94.44%

Table 2: Test accuracies (higher is better) for synthetic experiments conducted by corrupting a base
dataset with another dataset and using LMPrior for feature separation.

557

Next, we provide additional details for each of the downstream classification settings we investigated558

per dataset combination.559

UCI Cover Type← UCI Breast Cancer.560

1. Total features: 54 + 30.561

2. Train+test size: 569 rows with an 80-20 split.562

3. Classifier: Random Forest, n_estimators=40563

UCI Adult Income← UCI Breast Cancer.564

1. Total features: 89 (some features were converted to one-hot) + 30565

2. Train+test size: 569 rows with an 80-20 split566

3. Classifier: LogisticRegressionCV567

UCI Breast Cancer← UCI Wine.568

1. Total features: 54 + 30.569

2. Train+test size: 285 rows with a 75-25 split. Since UCI Wine has 178 rows, the remaining570

rows were created using gaussian noise, to account for the small dataset size.571

3. Classifier: LinearSVC572

UCI Breast Cancer← Folktables ACS employment.573

1. Total features: 30 + 16.574

2. Train+test size: 285 rows with an 75-25 split.575

3. Classifier: LinearSVC576
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(a) LassoNet Features

(b) LMPrior Features

Figure 7: Comparison of LassoNet [38] with LMPrior on the feature separation task for the UCI
Breast Cancer-Wine Quality dataset combination. Features are ordered according to importance.
LassoNet selects a larger fraction of nuisance features than LMPrior. We also note that for LMPrior,
the features selected are semantically relevant for the downstream task. Some features returned by
LassoNet are tied in importance.

Prompts used. We provide the prompt we used for this experiment below.577

This is a set of feature selection tasks.578

A medical institute is trying to use characteristics of the cell579

nuclei present in the image as features to580

predict whether patients have breast cancer.581

Y means the feature is important for the prediction task, N means582

the feature is not important.583

584

--585

Variable: lump size586

Description: size of any extra lump mass present on the breast, if any587

Answer: Y588
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Explanation: presence of fibrous tissue is a strong indicator of cancer589

--590

Variable: patient name591

Description: the name of the person coming for a diagnosis592

Answer: N593

Explanation: the name of the patient should not affect the presence of cancer594

--595

Variable: discoloration596

Description: change in skin color or texture597

Answer: Y598

Explanation: breast cancer can cause the change in skin color around the breasts.599

--600

Variable: birthplace of patient601

Description: the city and country where the patient was born602

Answer: N603

Explanation: the birthplace cannot cause someone to get breast cancer604

--605

Variable: {}606

Description: {} is the {}607

Answer:608

A.2 Feature Selection with US Census Data609

In this experiment, we investigate a suite of real-world datasets derived from the US Census Bureau610

via the folktables API [39]. In particular, we leverage the Public Use Microdata Sample (PUMS)611

of the American Community Survey (ACS), which includes data from millions of US households612

each year, as well as the Annual Social and Economic Supplement (ASEC) of the Current Population613

Survey (CPS).614

The ACS dataset consists of 286 numerical and categorical features such as the total number of615

operating vehicles owned, the number of times someone has moved in the past year, etc. that can616

be leveraged to predict various quantities of interest. We specialize to a particular task of predicting617

whether an individual must commute to work for more than 20 minutes (and thus binarize this label,618

which corresponds to the variable JWMNP). We removed 4 features such that we were working with619

282 features (281 excluding the label) total: (1) RT: record type (either person or housing unit); (2)620

SERIALNO: the housing unit or GQ person serial number; (3) NAICSP: North American industry621

classification system recode; and (4) SOCP: standard occupational classification codes. We one-hot622

encoded all categorical features, and standardized the data using the z-score prior to training a623

downstream classifier. Using the ACS data, the goal is to leverage our LMPrior to filter out irrelevant624

variables that may hinder predictive performance, as well as to conduct an initial exploratory data625

analysis to assess whether certain semantically meaningful features should be included.626

We restricted our attention to the state of California collected in the year 2018. We train a variety of627

different classifiers: (1) a random forest classifier with K = 100 decision trees; (2) a logistic regres-628

sion model; (3) a support vector machine with linear decision boundaries; and (4) a gradient-boosted629

decision tree with exponential loss, 100 boosting stages, and max_depth=5 via scikit-learn,630

and use OpenAI’s davinci-instruct-beta engine. We use the open-source implementation for631

MRMR as in https://github.com/smazzanti/mrmr.632

Prompt used. We provide the prompt used in this task below.633

This is a set of variables from the United States census data used to predict the length634

of commute time.635

T means the variable is important for predicting the length of commute time, F means636

the variable is not important for predicting the length of commute time.637

The goal is to remove nuisance variables.638

639

--640

Variable: Favorite color641

Description: which color shade the person likes the most642
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Answer: F643

Explanation: the person’s favorite color is irrelevant for their commute644

--645

Variable: Educational attainment646

Description: highest level of education the person has reached647

Answer: T648

Explanation: a higher education gives the person choices on where to work, which649

affects their commute650

--651

Variable: Disability652

Description: indicates whether the person has a disability653

Answer: T654

Explanation: it is harder for the person to find jobs with disability accommodations655

and to travel to work656

--657

Variable: Social security number658

Description: the social security number is a unique identification code for the person659

Answer: F660

Explanation: the social security number is randomly assigned to the person at birth661

so it does not matter for commuting662

--663

Variable: NAME_PLACEHOLDER664

Description: DESCRIPTION_PLACEHOLDER665

Answer:666

A.3 Causal Discovery667

We use a version of the TCEP dataset with the addition of a brief description of each of the x, y pairs,668

along with a brief sentence of context. For example, for the second pair (altitude, weather), the669

final part of the prompt reads670

671

Variable A: Longitude672

Description A: Altitude is the height above sea level673

Variable B: Precipitation674

Description B: Precipitation is the amount of rainfall675

Context: the weather676

677

Judgment:678

As described in the main text, we compute the log-probabilities assigned to the statements ‘x→ y’679

and ‘y→ x’. We can do this by evaluating only a single token, namely the first token generated by the680

model conditioned on the prompt. Since the context has all examples in the format x→ y or y → x681

(with, for instance, no examples of an answer x← y), the predictions are overwhelmingly likely to682

be the first token of the name of either x or y. The spectrum of probabilities for the next token are683

shown in figure 8. For pairs which are comprised of the same tokens initially, such as temperature684

at t and temperature at t+1 in pair 42, we add those shared tokens to the end of the prompt,685

so we are predicting the likelihood of the first non-coinciding tokens for x and y. We drop pairs686

52, 53, 54, 55, 71, 81, 82, 83, 86, 105 to be consistent with prior work, as these pairs contain either687

multidimensional data consisting of several different variables in x and y, or contain missing data.688

The full prompt used was as follows:689

690

This is a set of causal relationship facts.691

A -> B means that A directly causes B.692

The description explains why.693

694

--695

Variable A: Radiation696
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Figure 8: Next token probabilities for GPT-3 davinci-instruct-beta with given context

Description A: Radiation is the average daily amount of ultraviolet radiation697

Variable B: Altitude698

Description B: Altitude is the height of a weather station699

Context: The weather on Earth700

701

Judgment: Altitude -> Radiation702

Explanation: Increasing altitude increases amount of Radiation. There is no mechanism703

for Radiation to change altitude704

--705

706

--707

Variable A: Age708

Description A: Age is how old the abalone is709

Variable B: Width710

Description B: Width is how long the abalone is measured to be711

Context: The marine animal, the abalone712

713

Judgment: Age -> Width714

Explanation: As the abalone grows, it gets wider. Stretching an abalone would not715

change its age716

--717

718

--719

Variable A: Longitude720

Description A: Longitude is the distance measured east from the Greenwich meridian721

Variable B: Temperature722

Description B: Temperature is the average temperature form 1961-1990723

Context: Climate in different places on Earth724

725

Judgment: Longitude -> Temperature726

Explanation: Since increasing temperature doesn’t cause objects to move,727

it must be that longitude causes temperature change728

--729

730

--731

Variable A: Lung cancer rate732

Description A: Lung cancer rate is the incidence of lung cancer733

Variable B: Cigarettes smoked734

Description B: Cigarettes smoked is the daily number of cigarettes smoked735

Context: A large-scale study of public health736
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737

Judgment: Cigarettes smoked -> Lung cancer rate738

Explanation: Cigarettes contain carcinogens that build up in the lungs and can cause739

lung cancer740

--741

742

--743

Variable A: X_NAME_PLACEHOLDER744

Description A: X_NAME_PLACEHOLDER is X_DESCRIPTION_PLACEHOLDER745

Variable B: Y_NAME_PLACEHOLDER746

Description B: Y_NAME_PLACEHOLDER is Y_DESCRIPTION_PLACEHOLDER747

Context: BRIEF_CONTEXT748

749

Judgment:750

A.4 Safe Reinforcement Learning751

For the Island Navigation task we used the safe-grid-gym3 library to provide a openai gym-based752

interface to the gridworld. We made minor modifications to the environment to record total safety753

violations and implement the reward shaping. The full code and instructions are available in the754

supplementary material.755

756

757

This is a series of judgments about decisions of a navigation robot.758

The robot is not waterproof.759

760

Action: The robot decides to enter a blank square761

Judgment: Neutral762

763

Action: The robot decides to enter a square with a pit764

Judgment: Bad765

766

Action: The robot decides to enter a square with money767

Judgment: Good768

769

Action: The robot decides to enter a square DISTANCE water770

Judgment:771

DISTANCE is replaced with either in close to, neither close nor far from, or far from if772

the distance is 0, 1, 2 or 3 from water respectively.773

B Classical Priors as Functional Transforms774

Here we describe how a classical Bayesian prior also fits into our paradigm of adding a specific bias775

to a learning procedure, based on variable names and other existing knowledge. Consider a binary776

hypothesis test with two hypotheses H0 and H1, with a learning algorithm f which is given some777

set of data D. The algorithm returns the likelihood ratio p(H1|D)
p(H0|D) which describes the goodness of fit778

of the two competing hypotheses given the data. However, in the presence of well-specified prior779

metadata Dmeta (which may contain information such as results of previous experiments or expert780

judgments), an accurate probabilistic judgment of the relative probabilities of the two hypotheses781

is given by p(H1|Dmeta)
p(H0|Dmeta)

· p(H1|D)
p(H0|D) . Thus the prior distribution P acts as a transformation on f , with782

P(Dmeta)(f) = f̃ , transforming f to a biased function f̃ where f̃(D) = f(D) · p(H1|Dmeta)
p(H0|Dmeta)

.783

3https://github.com/david-lindner/safe-grid-gym
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