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ABSTRACT

Current molecular understanding approaches predominantly focus on the descrip-
tive aspect of human perception, providing broad, topic-level insights. However,
the referential aspect, i.e., linking molecular concepts to specific structural com-
ponents, remains largely unexplored. To address this gap, we propose a molecular
grounding benchmark designed to evaluate a model’s referential abilities. This
benchmark emphasizes fine-grained understanding and interpretability, challeng-
ing models to answer queries such as “What?”, “Where?”, and “Which ones?”
across various cognitive levels. We align molecular grounding with established
conventions in NLP, cheminformatics, and molecular science, showcasing the
potential of recent NLP techniques to advance molecular understanding within
the AI for Science movement. Specifically, we introduce the largest molecu-
lar grounding benchmark to date, consisting of 187k QA pairs across five tasks,
each targeting a distinct cognitive level. Extensive evaluations of both general-
purpose and domain-specific (M)LLMs highlight the challenges posed by this
benchmark. While existing techniques, such as in-context learning, fine-tuning,
and multi-agent strategies, can improve performance, significant progress is still
needed to enhance referential capabilities. Furthermore, we demonstrate that
molecular grounding can also benefit traditional tasks such as molecular cap-
tioning and Anatomical, Therapeutic, Chemical (ATC) classification. The source
code and data are available at https://anonymous.4open.science/r/
MolGround-2025/.

1 INTRODUCTION

Deep learning models have transformed traditional molecular understanding tasks, including prop-
erty prediction Wu et al.| (2017); |Zaidi et al.[(2023)); Zhang et al.| (2024b)), molecular generation |Xu
et al.| (2019); |[Fang et al.[(2024b); |Song et al.| (2024), and reaction prediction [Fooshee et al.| (2018));
Chen et al.| (2025)); [Tavakoli et al.| (2024). Recently, tasks like molecular captioning |Edwards et al.
(2021); [Zhang et al.| (2025) and molecule-language translation [Edwards et al.| (2024) have gained
significant attention due to advancements in large language models|Li et al.| (2024); |Pei et al.|(2024)).
These models represent molecular structures as sequences of tokens, enabling the generation of nat-
ural language descriptions by leveraging sophisticated sequence-to-sequence learning techniques.

While having yielded promising results, these approaches primarily mimic the descriptive aspect of
human perception (Cocchiarella) (1974); |Geach| (1950); Kamp & Reyle|(1993), focusing on broad,
topic-level understanding. The referential aspect of perception, which associates concepts with
specific molecular components (e.g., atoms, functional groups, rings), has been overlooked. For
example, consider the SMILES CC(=0)O0 (acetic acid). In molecular captioning, a typical output
might be: “This is acetic acid, commonly known as the main component of vinegar. It is used in-
dustrially in production and exhibits toxic effects at high concentrations.” While this description
is highly informative, it is descriptive in nature. From a referential perspective, it is more critical
to identify which specific part of the molecule contributes to its toxicity. In this case, the carbonyl
group (C=0) is responsible for the molecule’s corrosive effects, as it facilitates the release of pro-
tons (H+), which can damage biological tissues. This referential understanding not only enhances
interpretability but also generalizes to other similar compounds, such as formic acid C(=0)0, oxalic
acid C(=0)(0)C(=0)0, and trichloroacetic acid C(CIl)(CI)(Cl)(=0)0.
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Figure 1: A multimodal referential framework for fine-grained molecular grounding, comprising
five tasks: Chemical Name Entity Recognition, Name-Structure Mapping, Referential Substructure
Localization, Substructure Relationship Grounding, and Substructure Frequency Analysis, demon-
strated through a running example.

While the complementary nature of descriptive and referential perceptions has long been modeled
in cognitive science, such as in Fregean Semantics |Cocchiarellal (1974)), Russell’s Theory of De-
scriptions (Geach| (1950), and Discourse Representation Theory (DRT) by Hans Kamp and Uwe
Reyle [Kamp & Reyle (1993), it has also been successfully implemented recently in vision-language
research [Deitke et al.| (2025)); |Arai & Tsugawal (2024); Liu et al.| (2023). The integration of visual
grounding Xiao et al.|(2024);|Deng et al.| (2021)), which mimics referential perception by linking tex-
tual concepts to specific image regions, has significantly advanced the performance, interpretability,
and generalization of vision-language models. These models, which traditionally relied solely on
image-caption pairs for training, have greatly benefited from this approach.

Believing that molecular understanding research is at a similar turning point, we propose a ground-
ing benchmark to assess a model’s ability to explicitly associate molecular concepts with specific
structural components. This benchmark emphasizes fine-grained understanding and interpretability,
enabling models to identify, explain, and reason about the roles of particular molecular features.
Unlike visual grounding, where a model is primarily tasked with identifying the locations of con-
cepts, molecular grounding requires the identification of specified components at multiple cognitive
levels, including concept instances, structural locations, and compositional facts. From a semantic
interpretation perspective, molecular grounding differs from existing molecular understanding tasks
that focus on general and broad content interpretation. Instead, it emphasizes providing answers to
fine-grained queries such as “What are the contextual entities?”, “Where are they?”, and “Which
ones?”. Figure|[I]illustrates the proposed molecular grounding tasks including Chemical Name En-
tity Recognition (CNER), Name-Structure Mapping (NSM), Referential Substructure Localization
(RSL), Substructure Relationship Grounding (SRG), and Substructure Frequency Analysis (SFA).
This paper serves as a pilot study aimed at formulating molecular grounding by aligning it with
established conventions in NLP, cheminformatics, and molecular science. Our findings demonstrate
that NLP techniques can play a critical role in advancing molecular understanding within the broader
Al for Science movement. In addition to creating the largest molecular understanding benchmark
to date and conducting extensive evaluations on existing (M)LLMs and NLP techniques, we also
demonstrate that the grounding molecular can be successfully integrated to enhance conventional
tasks like molecular captioning and ATC (anatomical, therapeutic, chemical) classification. Our
findings underscore the importance of referential understanding in improving interpretability, gen-
eralization, and practical applications in molecular science.

2 RELATED WORK

Molecular understanding has been a long-standing field of research, predating the recent surge of
interest in Al for Science. The tasks in this field can be broadly grouped into three categories based
on their popularity: 1) Property prediction|Wu et al.| (2017); Walters & Barzilay|(2021));|Zhang et al.
(20244a) and representation learning |Xiaomin Fang & Wang|(2022);|Zhang et al.| (2024b), which are
the most extensively studied and widely popular. 2) Structure prediction Jumper et al.|(2021));|Song
et al.| (2024)), captioning |L1 et al.| (2024); [Edwards et al.| (2021}, and generation | Xu et al.| (2019);
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Hua et al.| (2024), which have recently gained significant attention. 3) Emerging studies on tasks
such as reaction prediction and optimization [Fooshee et al.| (2018), interaction prediction Tavakoli
et al.| (2024)), simulations and dynamics |Vander Meersche et al.| (2024), toxicity and safety assess-
ment|Sahu & Poler|(2024)), and visualization and explainability Janissen et al.|(2024). The popularity
of the first two groups largely stems from the ease of directly applying sophisticated machine learn-
ing models to these tasks. Early approaches relied on methods like Bayesian classifiersLangley et al.
(1992), logistic regressionHosmer Jr et al.|(2013)), and SVMs Hearst et al.| (1998)), while more recent
efforts have widely adopted CNNs |O’Shea (2015), GNNs |Wu et al.| (2020), and Transformer-based
models|Vaswani| (2017). Most of these models follow a pipeline of encoding molecules into embed-
dings and predicting outputs such as labels or textual descriptions, reflecting the way these models
were initially designed. However, these implementations tend to be descriptive, as they focus on
high-level concepts by treating a molecule as a whole, rather than addressing its internal compo-
nents. The third group, on the other hand, signals a shift toward more fine-grained modeling and
improved interpretability. This shift is driven by two factors: 1) The needs of identifying subcompo-
nents in molecular science, such as reaction tracing Smith & March|(2007);|Le1 Fang & Lou|(2022));
Umit V. Ucak| (2021) and understanding molecule-target interactions [Lipinski et al.| (1997)); [Segler
et al.[(2018). 2) Advancements in machine learning for interpretability and generalization (Gao &
Guanl (2023));/[Zhang et al.|(2025). Ultimately, these developments highlight the growing demand for
models with referential perception, enabling them to go beyond high-level descriptions and address
specific components within a molecule.

Table 1: QA pair distribution comparison across descriptive (Des.) and referential (Ref.) perceptions
with existing molecular understanding benchmarks (ChemBench4K(CB4)|Zhang et al.[(2024a) and
MoleculeQA (MQA) Lu et al. _(2024)).

Bench. Tasks #QA Des.% Ref.% Bench. Tasks #QA Des.% Ref.%
i Property 6,267 100.0 0.00
Caﬂgonzn.ml goo ?7'75 2.25 Usage 3074 1000 000
Mol2Caption 299 1000 0.00 MQA Source 13630 100.0  0.00
Iljarge PCOEV- ;(9)3 gzg; g (1) ? Structure 38,603  83.62 1638

10d. Fred. . .
gy Yield Pred. 300 1000 0.00 Total 61,574 9119 881
Temp. Pred. 202 98.98 1.02 (BZII:IIEII\Q/I 1 i , zlt g? 18(?8 1800.8
Solv. Pred. 300 87.66 1234 MolGround Rgp s18>7 000 1000
Retrosynth. 300 96.00 4.00 (ours) SRG 82: 132 0.00 100.0
Prop. Pred. 709  59.23  40.77 SFA 35,992 0.00 100.0
Total 4009  90.88 9.12 Total 187,567 0.02  99.98

The complementary relationship between descriptive and referential perceptions has been exten-
sively explored in cognitive science, as seen in Fregean Semantics (senses and references) |(Coc-
chiarella (1974), Russell’s Theory of Descriptions (definite descriptions and proper names) |Geach
(1950), and Discourse Representation Theory (descriptions and referents) [Kamp & Reyle (1993).
However, referential perception has not been explicitly modeled or systematically evaluated in
molecular understanding. From this perspective, Table [I] summarizes commonly adopted bench-
marks like ChemBench4K [Zhang et al.| (2024a), and MoleculeQA [Lu et al.| (2024). It is clear that
this is an area requiring more focused and explicit attention. While recent advancements in mod-
els have made strides toward incorporating referential perception, with promising results observed
in integrating referential perception-oriented visual grounding (e.g., RefFormer [Wang et al.| (2024),
ClawMachine Ma et al.|(2024), DOrA [Wu et al.|(2024)), significant challenges remain. This results
from the heavy reliance on costly human expertise for benchmark construction and the lack of a sys-
tematic formulation of the problem. As highlighted in Table[I], our proposed MolGround represents
an initial effort to address these challenges. It scales up to 3 times larger than existing benchmarks
and introduces fine-grained definitions to better align with the requirements of referential perception.

3 MOLECULAR GROUNDING TASKS

We define five groups of grounding tasks by aligning to the common conventions in NLP, chem-
informatics, and molecular science. The alignment and challenges of each task are summarized in
Table[2]
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Table 2: Grounding tasks with Bloom’s Cognitive Levels, corresponding challenges, and required
abilities.

Cognitive levels | Tasks Challenges Required Abilities
Remember CNER Diverse Entity Forms Chemical Knowledge Recall; Syntax Understanding
Understand BNSM Multimodal Transformation Semantic Understanding; Syntax Understanding
Apply SFA-Atom Multi-instances; Coreference Resolution Substructure Matching; Pattern Recognition
SFA-Heteroatoms Type Similarity Differentiation Categorization
SFA-Monocyclic Ring Type | Structural Similarity Pattern Recognition; Categorization
Analyze SFA-Non-exist Ring Absence Detection Negative Pattern Recognition
SRG Multidimensional Relations Structural Understanding; Relationship Inference
Singular RSL Multi-instances Spatial Reasoning; Pattern Recognition
SFA-Ring Multiple Representation forms Structural Comparison; Quantitative Analysis
Evaluate SFA-Substructure Structural Variability Pattern Recognition; Logical Deduction
Multiple RSL Multiple Structures; Diverse Relation Types | Contextual Reasoning

Chemical Named Entity Recognition (CNER): Recognize and extract chemical entity names (e.g.,
molecule names, substructure names, or functional groups) as a set N from a given caption X as
N : X = N
X ={z;}, N = {n;} (1)
where x; is the i'" token in the sequence X', and n; is a quadruple (c;, b;, l;,7;) consisting of the j*"

extracted name entity ¢; and its role r; € R, beginning position 0 < b; < ||.X ||, and length /;. Note
‘R is a set of predefined roles (e.g., donor, acceptor) which are contextual and application-specific.

This task reflects referential perception by linking textual mentions of chemical entities to their
semantic roles and serves as a foundation for molecular grounding by identifying key entities
for downstream tasks. While similar to Named Entity Recognition (NER) in NLP, CNER ex-
tends the task by additionally identifying the roles of extracted entities. Furthermore, unlike
NER, where entities are typically proper nouns or noun phrases, chemical entities are signifi-
cantly more diverse and technically complex. For instance, the drug acetaminophen exempli-
fies this complexity: it has multiple IUPAC names, such as N-(4-hydroxyphenyl)acetamide, 4’-
hydroxyacetanilide, and p-hydroxyacetanilide; a molecular formula, CSHINO?2; an InChl represen-
tation, InChl=1S/CS8HINO2/c1-6(10)9-7-2-4-8(11)5-3-7/h2-5,11H,1H3,(H,9,10); as well as various
SMILES representations and trade names like Tylenol, Panadol, and Calpol. As illustrated in Fig-
ure [2a] a CNER model must accommodate these diverse forms, demanding the ability to recall
chemical domain knowledge and a deep understanding of chemical syntax and representation con-
ventions.

Bidirectional Name-Structure Mapping (BNSM): Translate chemical names N into correspond-
ing structural representations (e.g., SMILES, InChl, molecular graphs) S or convert given structural
representations back into their corresponding names as

fn25 :N'_) S
fsQn : S = N
N ={n;}, S = {s;} 2)

where structural representation S is sequences of textual codes in SMILES, InChl, or molecular
graphs wrapping atoms (nodes) and bonds (edges).

This task bridges textual and structural representations, embodying referential perception by ground-
ing a molecule’s name to its physical structure and vice versa. It aligns with semantic-vision ali-
ment tasks in multimedia and structure-based prediction tasks in cheminformatics. As illustrated
in Figure [2a] unlike the sequence-to-sequence framework used in semantic-vision aliment, this task
introduces an additional multimodal challenge. This complexity arises from the hierarchical and
graph-based nature of molecular structures, which are governed by spatial and chemical constraints.
Furthermore, this task exhibits extremely low error tolerance, as even a minor mistake in structural
representation can result in a fundamentally different molecule. For instance, the molecules repre-
sented by CI=CC=CC=CI and CI=NC=CC=C] differ by only a single atom, yet correspond to
entirely distinct chemical entities.

Referential Substructure Localization (RSL): Identify the specific occurrences of substructures
(e.g., functional groups, rings, or chains) within a molecule’s structural representation G, based on
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Nickname: PCPDTBT
Chemical Formula: C33H,4N,S;

Smiles :

1.CC1=CC2=C(S1)C(SC(C3=CC=C \ = TUPAC : 4-(44-bis(2-ethylhexyl)-6-
(C4=NSN=C34)C)=C5)=C5C2(CC( methyl-4H-cyclopenta[2,1-b:3,4-
CC)CCCC)CC(CC)CCCC b]dithiophen-2-yl)-7-methylbenzo(c]
[1,2,5]thiadiazole
2.CCCCC(CC)CCI(CC(CCCC)CO)e InChI=1S/C33HA4N2S3/
2cc(-c3c4c(c(C)ee3)nsnd)sc2- 1-7-11-13-23(9-3)19-33(20-24(10-4) 14-12-8- ne
c2clec(s2)C 2)26-17-22(6)36-31(26)32-27(33)18-28(37-32
...... )25-16-15-21(5)29-30(25)35-38-34-29/
h15-18,23-24H,7-14,19-20H2,1-6H3
(@ (b)

Figure 2: Challenges of the proposed grounding tasks. (a) Diversity in naming conventions and
multimodal gaps between textual and structural representations. (b) Two rings, e.g., the thiophene
ring (yellow) and the selenophene ring (blue) which share a “functional integration” relationship,
are not necessarily physically adjacent.

their names or descriptions N as

fr:WN,G) = L
N={n},G=V,¢),G g,
L={L;} e{G}xgG 3)

where V is the set of atoms (nodes) and & is the set of bonds (edges), G; = (V;,&;) is the
substructure graph for n;, and L£; is the location indicator for G; within the molecular graph G.
L; = (,C;-m’m, Ef‘md) consists of indices of G;’s atoms and bonds within the molecular graph G,
where £¢°™ = {m|v,, € V;} and L2 = {(m, n)|(vim,vs) € &}

This task emphasizes referential perception by mapping textual or conceptual references to their
precise structural counterparts. It is analogous to object detection in vision and token-level alignment
in NLP. Building upon CNER and BNSM, the new challenge imposed in RSL is the existence of
multiple instances of the target and possible distractors. Those distractors are often with similar
structures as the target, further challenging the low tolerance at fine grained level. Examples can
be found in Figure Selenophene rings, differing by only one atom from thiophene, may further
complicate localization.

Substructure Relationship Grounding (SRG): Identify the relationships (e.g., composition, di-
rected attachment or functional integration) between substructures within a molecule, as represented
by a caption X and the corresponding molecular graph G as

f]( : (X,g) — K
X = {l‘i}, g = (Vag)a giagj - ga
K ={ki;} € {Gi} x {G;} 4)

where G; and G; are the it" and j'" substructure graphs, and k; ; 1s their identified relationship.

This task builds on referential perception by modeling the interactions and dependencies between
molecular substructures, providing insights into their functional roles. It draws parallels to object
relation analysis in image and video scene understanding, and interaction modeling in molecular
sciences. The key challenge in this task lies in the multidimensional nature of the relationships. Un-
like conventional visual question answering or image-text alignment—where relationships are often
defined through semantic or co-occurrence-based correlations, SRG relationships are multidimen-
sional, incorporating chemical, spatial, physical, and hierarchical factors. More specifically, this
complexity means that chemical relationships, such as composition, directed attachment, or func-
tional integration, are intricately intertwined with their associated physical factors. This contrasts
sharply with common semantic relationships in NLP or vision-language tasks (e.g., is-a, is-part-of),
which are often straightforwardly defined. Figure|2b|illustrates this challenge.
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Substructure Frequency Analysis (SFA): Count the number of occurrences of a specified sub-
structure (indicated by its name n; € N') within the structural representation G of a given molecule
as

fF : (J\/':g)*_> F
N={N},G6=(V,€),G: g,
F={fi}eN ®)

where f; is the frequency of n; counted by the occurrences of its substructure graph G; within G.

This task extends referential perception by quantifying the presence of referenced substructures,
supporting downstream molecular grounding tasks such as property prediction or functional analy-
sis. It aligns with object counting in multimedia and motif detection in cheminformatics. However,
this goes beyond a simple counting task. The complexity arising from multiple representation forms,
hierarchical definitions, multidimensionality, and multiresolution makes the target of counting dy-
namic and context-dependent.

4 BENCHMARKING

Benchmarking in the chemical domain is expensive, largely due to its heavy reliance on human
expertise. To build the largest molecular understanding benchmark to date, we adopt an interac-
tive approach based on the Spiral Model Boehm| (1986). Specifically, we develop a prototype of a
grounding agent to facilitate the process. The agent automates data collection, cleaning, and struc-
turing, after which the data is validated, corrected, or filtered by human experts. Data entries rejected
and refined by human experts are recorded by the agent and the agent updates the follow-up results
for further review. This iterative interaction between humans and the agent continues until conver-
gence is achieved. Throughout this process, the agent itself is iteratively improved as part of an
exploration into effective grounding methodologies, while simultaneously enhancing both the scale
and quality of the benchmark.

4.1 DATA COLLECTION AND PREPROCESSING

We collected molecules from existing molecular captioning datasets, such as ChEBI-20 Edwards
et al.| (2021) and LPM-24 [Edwards et al.| (2024). Additionally, we extended our collection with
molecules published in chemical literature [Nagasawa et al.. In total, this resulted in a dataset of
55,989 molecules. The collected molecules exhibit varying levels of structural complexity. Specif-
ically, the number of atoms per molecule ranges from 1 to 574, with a median value of 33. The
number of atom type is 70. The number of rings varies from 0 to 69, while the number of bonds
spans from 0 to 642.

For molecules lacking captions, we utilized GPT-40 |OpenAl & Josh Achiam| (2024) to generate
detailed captions. This was achieved by inputting the molecule’s IUPAC name, SMILES repre-
sentation, relevant literature, and molecular structure image into GPT-40, along with prompt tem-
plates designed by chemical experts (details provided in Appendix [E). The templates were tailored
to generate fine-grained substructure-focused content, such as identifying the substructures within
a molecule, describing how they are connected, and outlining their properties. Besides, we also
include the conjugation system (such as m — 7 bonds, p — 7 atoms and aromatic systems) and stere-
ochemistry (such as chiral centers) in the caption. As a result, we constructed a dataset of 55,989
molecule-caption pairs.

4.2 GROUNDING AGENT PROTOTYPING

We build a multi-agent system composed of an LLM-based text interpreter, a meta-retriever, a struc-
ture parser, and a structure memory bank to provide initial result and interact with human annotator
for refinement. Specifically, the text interpreter leverages large language models (LLMs) to perform
named entity recognition and relationship analysis based on the collected meta data. The meta-
retriever is built using PubChem APIs [Kim et al.[(2024) and is responsible for collecting molecule
and substructure entity information, e.g., names, properties, structures, and descriptions. The struc-
ture parser is developed using RDKit and handles substructure retrieval, comparison, and validation.



Under review as a conference paper at ICLR 2026

These three agents work collaboratively to perform structurization on each molecule and output
initialized grounding results. More details of the prototype is included in Appendix B}

4.3 HUMAN ANNOTATION

The structuring and annotation process is performed iteratively, enabling the grounding agent to
collaborate effectively with human chemical experts. Specifically, the structurization results are
sequentially reviewed by seven human annotators for verification and refinement. If a result is
rejected and refined by an annotator, the revised output is returned to the agent to generate updated
results for the subsequent steps. This iterative process continues until all structurization outputs
are reviewed and validated by the annotators. Six annotations worked on disjoint subsets, and all
annotations were independently reviewed by two experts. The inconsistency rate between the initial
annotations and expert verifications is 3.84%, and the final dataset is based on the consensus results
agreed upon by both experts. Furthermore, the inter-expert agreement, measured using Cohen’s
kappa, is 0.985, indicating high consistency and annotation quality.

4.4 QA CONSTRUCTION AND BENCHMARK STATISTICS

After annotating each task, we use predefined templates (Appendix [F) to convert the annotations into
question—answer (QA) pairs. As a result, the MolGround benchmark contains 187,567 questions.
Specifically, for each question, we provide both multi-choice and open-ended answer format. The
number of questions for each task is shown in Table [I| Specifically, in order to evaluate the fine-
grained referential ability, MolGround covers 307 fundamental substructures spanning a wide range
of structural types (as shown in Figure[7)in Appendix), including atoms, rings (monocyclic, bicyclic,
tricyclic), chains (straight, branched), functional groups, and composite units. Specifically, the fused
unit collection consists of fused substructures composed of rings, chains, or functional groups that
exhibit repeated patterns (e.g., terthiophene, which contains three thiophene rings connected via
C-C bonds). Besides, we also include isomerism in the grounding tasks. We split the QA data into
training, validation, and test sets using an 80%/10%/10% ratio for each task. There is no individual
molecule appears in more than one split.

5 EXPERIMENTS

5.1 BASELINES

We employ five LLMs as baselines, including general-domain models like GPT-40 |OpenAl &
Josh Achiam|(2024) and LLaMA 3.1 (8B and 70B)|Grattafiori & Abhimanyu Dubey|(2024), as well
as models specifically tailored for molecular understanding, such as ChemLLLM (7B) |[Zhang et al.
(2024a) and Mol-Instructions [Fang et al.| (2024a)). Furthermore, we investigate LLM learning tech-
niques, including In-Context Learning (ICL), i.e., Few-shot learning, and Supervised Fine-tuning
(SFT) using LoRA |Hu et al.| (2022). Given that molecular structures can be represented as graphs,
we also incorporate Multi-modal LLMs (MLLMs) like GPT-40 Vision |OpenAl & Josh Achiam!
(2024) and LLaVA-Next|Liu et al.| (2023)) in our evaluations. The evaluation metrics are included in
the Appendix

5.2 ZERO-SHOT PERFORMANCE OF LLMS AND MLLMS

Table [3a] compares the performance of LLMs and MLLMs across five molecular grounding tasks.
Specifically, we split RSL into singular- and multiple-substructure grounding tasks, where the for-
mer requires locating a single named entity mentioned in the caption, while the latter involves iden-
tifying all named entities. Overall, most tasks remain challenging for all baseline models, with
accuracy generally below 0.5. RSL proves to be the most difficult, with all models achieving ac-
curacies below 0.016. In contrast, SFA exhibits relatively better performance, with the highest
F1-score (0.705) achieved by LLaMa3.1-70B. In addition, models perform well on counting non-
existent rings but struggle with monocyclic ring identification due to subtle structural differences.
In CNER, models excel at named entity recognition but fail to correctly assign roles to extracted
chemical names. For BNSM, models perform well on SMILES-to-Formula translations but poorly
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Table 3: Evaluation of the LLM and MLLMs on the proposed tasks. RSL is spited to singular
substructure localization (S-RSL) and multiple substructures localization (M-RSL).

(a) Zero-shot performance comparison. (b) Performance with ICL, SFT, and Agents.

Model CNER BNSM SRG SFA S-RSL M-RSL Model CNER BNSM SRG SFA S-RSL M-RSL
LLM Baselines Baselines + ICL

GPT4o0 0.197 0345 0.248 0434 0015 0.012 LLaMA3.1-8B  0.022 0.276 0.309 0.552 0.003  0.120

LLaMa3.1-8B 0239 0096 0.185 0424 0.006 0000 Mol-Instructions 0208 0243 0374 0399 0.001  0.001
LLaMa3.1-70B  0.242 0300 0.146 0.705 0.008 0001  Baselines + SFT
chemllm7B  0.005 0031 0.146 0.040 0.000 0.000

LLaMA3.1-8B 0938 0231 0998 0.964 0275 0315
Mol-Instructions 0130 0.021 0.012 0.075 0.000  0.000  pfo] nstructions  0.889  0.115 0.985 0.895 0.295 0337

MLLM Baselines Grounding Agent
GPT4o-Vision 0.197 0.345 0.086 0.494 0.016 0.015 GPT-40 - - - - 0.630 0.541
LLava-Next 0.016 0.146 0.067 0.398 0.010 0.001 LLaMA3.1-8B - - - - 0.334  0.426

on others (e.g., [IUPAC-to-SMILES and nickname-to-InChI). Additionally, complex structure trans-
formations are more challenging than simple mappings, often producing incorrect yet structurally
similar names or structures. SRG results highlight difficulties in establishing substructure relation-
ships, with models misinterpreting textual cues and neglecting structural connections. RSL shows
particularly poor performance, with the best Fl-score (0.016) achieved by GPT-40-Vision. While
models succeed in predicting the number of atom indices for a location, they fail to provide the cor-
rect indices. In addition, they struggle to locate ambiguous named entities (e.g., ‘long alkyl chain’)
that adopt different structural forms in different molecules. MLLMs, which leverage structural im-
ages, outperform LLMs on most tasks, except SRG, where visual distractions hinder their ability to
interpret relations between multiple instances.

5.3 EVALUATION OF ICL, SFT, AND MULTI-AGENT TECHNIQUES

Table [3b|compares the effects of in-context learning (ICL) and supervised fine-tuning (SFT) on task
performance. Overall, both ICL and SFT improve performance on several tasks, particularly those
requiring chemical knowledge recall and pattern recognition (e.g., CNER and SFA). It is worth
noting that SFT also brings significant improvement to the SRG when sufficient learning examples
are provided. With task-specific training data, SFT yields higher performance gains than ICL on
RSL. For instance, LLaMA3.1-8B’s Fl-score rises from 0.006 to 0.275 in singular RSL and from
0.001 to 0.315 in multiple RSL. However, these improvements are not consistent. Both ICL and
SFT degrade performance on BNSM because structural and naming conversion cannot be easily
transferred. For instance, for BNSM, likely because instance-level pairwise relationships depend
not only on what the instances are, but also on where they are located. As illustrated in Figure [I}
the relationship between the furan ring and the long alkyl chain is not always literal as described in
the caption. It depends on the specific instance of the chain being referred to. For example, the long
alkyl chain in the top-left corner is not connected to the furan ring.

We also evaluate the RSL performance of our grounding prototype for comparison. The grounding
agents outperform baseline methods and ICL, SFT techniques in both singular and multiple RSL
tasks. This advantage primarily comes from integrating a subgraph matching tool, which enables
more precise location generation for queried chemical entities and consequently improves ground-
ing accuracy. However, the grounding agents still show significant limitations. Figures [3] and f]
illustrate these issues. In Figure |3| the grounding result for thiophene is shown. While GPT-40
correctly identifies thiophene as a five-membered substructure, its predictions are scattered across
multiple locations. The grounding agent achieves more accurate localization but fails to satisfy the
constraint that thiophene is part of a thieno[3,2-b]thiophene moiety, as described in the caption.
Figure [4 highlights a limitation of the subgraph retrieval technique applied to RSL. Here, the pre-
dicted locations of a chain are overlapped and scattered across different substructures, reflecting the
model’s difficulty in contextual disambiguation.
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Multimodal Query:

Question: Molecular Structure: Molecular SMILES: Caption:
Restricted to the information in the (L,fﬂ s Sy v e Thieno[3,2-b]thiophene
following caption, where are the + <040 ’ + cvieeeeeccocecccccocso | wlfm | is composed of two
thiophene rings located in the VSRR O ( thiophene rings.

9 ~ L “\Q\ 5)84)8%10)C %] 0=C2CY
molecule? . C(CCCO)CC)S% 11

GPT4o grounding agent

Figure 3: Comparison between the ground truth and grounding outputs by GPT-40 and the agent.

Multimodal Query:

Question: Molecular Structure: Molecular SMILES: Caption:

Restricted to the information in the W{f CC(S1)=CC2=CIC(C3=CC(C Two thiophene rings
following caption, where are the hexyl + 2 + )Ci((f c )?(L.LSE((.CJ?(((CL( )33 + are substituted with
chain located in the molecule? P SN=C54)S6)C6=C2C four long alkyl chains

RN CCCCO)=C(CC(CCCO)CO)s to enhance solubility.

Mol-Instructions GPT4o grounding agent

Figure 4: Irrelevant and wrong grounding results generated by Mol-Instructions and the agent.
5.4 CAN GROUND HELP DOWNSTREAM TASKS?

We conducted experiments to evaluate the impact of molecular grounding on molecular captioning
and classification. For molecular captioning, we incorporate grounding results generated by the
grounding agent (GPT4-based) as additional input. As shown in Table [4] (in Appendix [H), this
additional information improved performance across all BLEU metrics.

For molecular classification, we investigated the effectiveness of integrating molecular substructure
information into ATC classification (Anatomical, Therapeutic, Chemical). We use ATC-CNN |Cao
et al.| (2022) as the baseline and conduct experiments on ATC-SMILES [Cao et al.| (2022)) dataset
with the resulting substructures. As shown in Table 5] (in Appendix [H), incorporating substructure
information led to significant performance gains across almost all evaluation metrics, including aim-
ing (+3.37%), coverage (+7.59%), accuracy (+4.26%), and absolute true (+1.38%), demonstrating
that molecular grounding enhances drug classification.

6 CONCLUSION

This paper introduces a molecular grounding benchmark aimed at enhancing the referential aspect of
molecular understanding. We present MolGround, a dataset comprising 187k QA pairs across five
subtasks, which represents the largest fine-grained referential benchmark for molecular QA. Our
evaluation shows that both general-domain and molecular large language models ((M)LLMs) strug-
gle with these tasks, although supervised fine-tuning (SFT) and in-context learning (ICL) provide
some improvements. While our multi-agent grounding prototype outperforms existing baselines, in-
cluding SFT and ICL, these grounding tasks remain challenging and warrant further research effort.
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ETHICS STATEMENT

The primary contribution of this work is the introduction of a new benchmark dataset for molecular
grounding, which aims to address the gap in referential aspects of molecular understanding. The
data of our benchmark is derived from public domain chemical database, ensuring no privacy or
licensing issues are involved. The research does not involve human subjects, and we foresee no
direct potential for malicious use. Our goal is to provide a resource that upholds high standards of
scientific excellence and promotes fair and transparent evaluation of model capabilities.

REPRODUCIBILITY STATEMENT

The source code with the QA pair benchmark dataset, is made available at the following
anonymized repository: https://anonymous.4open.science/r/MolGround-2025/.
The appendix of the paper provides comprehensive details regarding the experimental setup. Fur-
thermore, we provide detailed descriptions of the five tasks in our benchmark and the data processing
steps to allow for the complete reconstruction of our results.
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APPENDIX

A THE USE OF LARGE LANGUAGE MODELS (LLMS)

The authors drafted all content in this paper. A large language model was used to assist with gram-
mar, spelling, and language refinement for clarity. The intellectual contributions are entirely the
authors’ own.

B MORE DETAILS OF THE GROUNDING AGENT

We build a multi-agent system composed of a meta-retriever, an LLM-based text interpreter, a struc-
ture parser, and a structure memory bank to provide initial result and interact with human annotator
to get refined annotation. Specifically, the meta-retriever is built using PubChem APIs |Kim et al.
(2024) and is responsible for collecting molecular names, properties, structures, and descriptions.
The text interpreter leverages large language models (LLMs) to perform named entity recognition
and relationship analysis based on the collected meta data. The structure parser is developed using
RDKi and handles substructure retrieval, comparison, and validation. The structure memory bank

'RDKit: Open-source cheminformatics, https://www.rdkit.org
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records the refined result of the name-structure mapping by the experts. These three agents work
collaboratively to perform structurization on each molecule and output initialized CNER, BNSM,
SRG, SFA, and RSL results.

The detail process is given a caption and a molecule, the grounding agent executes a series of steps
for structurization, as outlined in Algorithm The text interpreter first performs a CNER task
on the caption to extract substructure names. For each extracted name, the meta retriever gathers
relevant metadata and supplies it to the text interpreter as examples or contextual information for
in-context learning, enabling the conversion of substructure names into molecular representations.
The structure parser then validates and locates each substructure within the input molecule. After
all instances of the entities are identified, the text interpreter and the structure parser collaborate to
ground relational information, update spatial locations, and compute frequencies.

C HUMAN ANNOTATION DETAILS AND GUIDELINES

Annotation was conducted by seven undergraduate annotators, all of whom possess a basic knowl-
edge of chemistry and are familiar with molecular naming conventions and structural representa-
tions. Prior to the formal annotation process, a briefing session was held to introduce the grounding
guidelines and demonstrate the use of the annotation tool. An example of the RSL annotation in-
terface is shown in Figure[5] Additionally, a dry run was conducted to ensure each annotator could
correctly operate the tool during the annotation process. To further ensure the quality and reliabil-
ity of the annotations, all results were subsequently verified by two chemistry experts engaged in
molecular research, each with at least six months of professional experience. The error rate between
the initial annotation and expert verification was 3.84%, and the final results were generated based
on mutual agreement between the two experts.

C.1 ANNOTATION GUIDELINES

This section outlines the main annotation guidelines used to verify the outputs of each task. The
annotation task is divided into six components, each focusing on a specific aspect of the grounding
output.

1. Molecular Caption Verification
Input: Caption and Molecule.

Objective: Ensure that the caption accurately describes the corresponding molecule. If any
inaccuracies or ambiguities are present, the annotator should revise the caption to provide
a faithful and precise molecular description.

2. Chemical Named Entity Recognition (CNER)
Input: Caption and CNER result.
Objective: Confirm that all relevant chemical entities mentioned in the caption are cor-
rectly identified and extracted. Their corresponding roles are given.

3. Name-Structure Mapping (NSM)
Input: Name-to-structure and structure-to-name results.
Objective: Verify the correctness and the uniqueness of the mappings. External reference
sources such as PubChem or the MolGenie Ontology are available in the tool to assist in
this verification.

4. Referential Substructure Localization (RSL)
Input: The predicted locations of a specific entity and the caption.
Objective: Ensure that the locations correctly correspond to the entity mentioned and are
contextually grounded.

5. Substructure Frequency Analysis (SFA)

Input: A frequency of a specific entity in a molecule, the entity, a caption, and the
molecule.

Objective: Validate the total number of localized instances for the entity, ensuring it
matches its real frequency in the molecule or the frequency implied or stated in the caption.
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MolGround Annnotation Tool---RSL

Task 901: PBDTDTffBT-R

Caption: The molecule features eight aromatic and heteroaromatic rings, including
two thiophene rings, one benzene ring, one benzothiadiazole unit, one benzol[1,2-
b:4,5-b']ldithiophen unit, creating an extensively conjugated and aromatic system.

Extracted Entity Name: one benzene ring
NSM: C1=CC=CC=C1

SFA: 1

SRL: [68, 69, 70, 71, 81, 82]

Do you want to edit any of the following attributes?
0. No changes

1. Entity Name

2. NSM

3. SFA

4. SRL

5. Change the caption sentence
Enter the numbers of the attributes you want to edit, separated by commas (e.g.,
1,3).

substructure_isomeric_SMILES Whole molecule with highlighted substructures

50 100 150 200 250 300 350
benzene from PubChem

250 1000

0 50 100 150 200 250 300 350 0 500 1000 1500 2000

Figure 5: The interface of the Molground Annotation Tool on RSL task.

6. Substructure Relations Grounding (SRG)
Input: a predicted relation and the localizations of two instances.

Objective: Verify that the relationship is both contextually and structurally accurate. Let
A and B represent a pair substructure instance. The following are the definitions of the five
supported relationship types:

* BondAttachment: A and B are directly attached via a single bond between an atom
in A and an atom in B, without sharing any atoms.

¢ AtomAttachment: A and B share exactly one atom and are not connected by an
explicit bond.

* Containment: A is contained in B if every component of A is also in B, and A is not
equal to B.

* Fusion: A and B are fused if they are both rings and share two adjacent atoms and
the bond between them (e.g., naphthalene).

* Others: Any relationship not covered by the above definitions.

Annotators should determine which of these relationships are present and ensure they are
accurately reflected in the grounding output.
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Algorithm 1 Grounding Agent

Input: caption X', molecule G, current memory bank B
procedure GROUNDINGAGENT(X, G, B)
Initialize: N, S, L, £, K, F, R « )
N ¢ TextInterpreter. CNER(X)
R < TextInterpreter.Relation(X)
for each n; € N do
meta < MetaRetriever.Collect(n;, B)
s; < TextInterpreter.Name2Struct(n, meta)
if StructureParser. Valid(s;) then
S+ SuU {(’I’L“ S])}
B+ BU {(’/li, Sj)}
g; < StructureParser.Parse(s;)
LA,; + StructureParser.Retrieve(G, g;)
end if
end for
for each (n;,n;,7;) € R do
ii — ﬁ
ij “— EA
for each ins, € [; do
for each ins, € fj do
kp,q < TextInterpreter.Relation(ins,,, ins,)
K KU {(insp, insq, kpq)}
end for
end for
L;, L; < TextInterpreter.RelationCheck(n;, n;, K, ;)
L+ LU{(n;,L;)}
fi ¢+ Length(L;)
f;j < Length(L;)
F = Fu{(ni, fi)}
F = Fu{(ng, f;)}
end for
Output: N, S, L, F, K, B
end procedure

D MOLGROUND DATA SPLIT AND DISTRIBUTION ANALYSIS

We split the QA data into training, validation, and test sets using an 80%/10%/10% ratio for each
task, ensuring that no individual molecule appears in more than one split. To evaluate potential
distribution shifts among these subsets, we performed similarity-based analyses using Morgan fin-
gerprints. Specifically, we computed the mean pairwise Tanimoto similarity of the molecules within
and across the subsets. The average similarities are as follows: train—train (0.304), val-val (0.309),
test—test (0.311), train—val (0.302), train—test (0.304), and val-test (0.303). These consistent values
indicate that, in terms of fingerprint-based chemical similarity, the datasets are well-matched and ex-
hibit no significant distributional divergence. Furthermore, we visualize the molecular distributions
of a random subset using t-SNE embeddings of the fingerprint space, as shown in Figure [6] The
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t-SNE of Molecule Fingerprints
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Figure 6: MolGround Data Distribution Visualization.

significant overlap among the train, validation, and test sets in the 2D projection further supports the
conclusion that the splits are in-distribution.

E MOLECULAR CAPTIONING PROMPT TEMPLATES

The following lists the templates we use to generate molecular captions. After obtaining the caption
using GTP4o, the captions are annotated by the annotators. The average similarity of sentence em-
beddings between the expert caption and (fpup, fgenerals fspecifics fsummarize) are (0.5254, 0.7115,
0.7630, 0.9906). The summarized caption show the highest similarity with the expert one.

foeneratl IUPAC, SMILES): Given a molecular IUPAC name and its SMILES, your task
is to provide a detailed description, including Basic Structure, Functional Groups, Stereo-
chemistry, Molecular Size and Shape, Physicochemical Properties, Reactivity, Safety and
Environmental Impact, etc.

fpublimtion(lz’temture): Given a molecular literature, extract the following information
from the literature: 1) Physicochemical Properties: includes physicochemical characteristics
of the molecule such as hole mobility, molecular weight, solubility, boiling point, melting
point, pKa value (acid dissociation constant), and logP (lipophilicity); 2) Safety Information:
Provides information regarding the safety of the molecule, such as its toxicity, carcinogenic,
teratogenic, or mutagenic properties. 3) Application Areas: Provides an overview of the ap-
plications of the molecule. 4) Spectroscopic Properties: include spectroscopic data of the
molecule, such as UV-visible absorption spectrum, infrared spectrum, nuclear magnetic res-
onance spectrum, and mass spectrometry data

fspecific(StructureImage, SMILES): Given a molecular structure image and SMILES,
generate a detailed molecular description (within 100 words) focusing number of rings, their
types, and associated properties.
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fsummarize(fgeneral, fpapers fspecific): Given a molecular structure image, SMILES, TU-
PAC and three initial descriptions, summarize them and generate a molecular description fo-
cusing on basic structure, how substructures connect, their properties, and Stereochemistry.
following the example provided below. Examples

F QA TEMPLATES

We list the QA templates used to transform the annotations into QA pairs for each task. For each
question, we provide both multiple-choice and open-ended formats. Some representative QA exam-
ples are included in https://anonymous.4open.science/r/MolGround-2025/,

CNER task

CNER Template:

Question: "What chemical named entity names are mentioned in the following caption and
what are their roles (donor or acceptor)?

Caption: {Caption}

Answer: {all chemical named entity names in the caption}.

BNSM task

Name-to-SMILES Template:
Question: "What is the SMILES representation of the molecular entity {name}?”,
Answer: {SMILES}

SMILES-to-Name Template:

Question: ”"What is the common or [IUPAC name of a compound with the SMILES string
{SMILES}?”,

Answer: {names}

Name-to-InChlI Template:
Question: "What is the InChlI representation of the molecular entity {name}?”,
Answer: {InChI}

InChlI-to-Name Template:

Question: “What is the common or I[UPAC name of a compound represented by the InChI
name {InChI}?”,

Answer: {names}

Name-to-IUPAC Template:
Question: "What is the [IUPAC name of the molecular entity {name}?”,
Answer: {IUPAC}

IUPAC-to-Name Template:

Question:”What is the common name of a compound represented by the IUPAC name
{IUPAC} 7",

Answer: {names}
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Name-to-Formula Template:
Question: "What is the molecular formula for the molecular entity {name}?”,
Answer: {Formula}

SFA QA

SFA-substructure Template:

Question:How many instances of the substructure {name} are present in the given molecule,
considering the provided context?

Given molecule: {molecule}

Given context: {caption}

Answer: {number}

SFA-heteroatom type Template:

Question:"How many types of heteroatoms are present in the given molecule?
Given molecule: {molecule}

Answer: {number}

SFA-ring Template:

Question: "How many {name} rings are present in the given molecule?
Given molecule: {molecule}

Answer: {number}

SFA-monocyclic ring type Template:

Question: "How many types of monocyclic rings are present in the given molecule?
Given molecule: {molecule}

Answer: {number}

SFA-atom Template:

Question: "How many {name} atoms are present in the given molecule?
Given molecule: {molecule}

Answer: {number}

SFA-non exist ring Template:

Question: "How many {name} rings are present in the given molecule?
Given molecule: {molecule}

Answer: 0

SRL QA

SRL Template:

Question: ”"Based on the caption and molecule provided below, what are the instance-level
pairwise relationships for the chemical named entities mentioned in the caption?”

Given molecule: {molecule}

Given caption: {caption}”

Answer: {

{”instance1”}: XXXX,

{”instance2”}: YYYY,

{"relation”}: {relation}

S-RSL QA

19



Under review as a conference paper at ICLR 2026

[ 38.44% A
= Heteroatoms

Fused Unit

10.75%
Unit 7 e .

’ Yoo N
HO, oy e..0\
\/@ | 3L 99
- BP0

Vo
Functional Group 7 82% Group " K 2 o® ’ / // o Monocyclic Ring
e Ring
6.19% Chain
\\\\\ Q.77% CL Né)
Straight Chain 14 32% 4 56% Bicyclic Ring
[ X,

Branched Chain Tricyclic Ring
Figure 7: An overview of the MolGround substructure distribution. Five types of structures covers
the inner circle, and in the outer circle we list the finer-grained substructure.

Template:

Question: “Restricted to the information in the following caption, where are the {name}
located in the molecule?” provide their locations as 0-based atom indices.

Given molecule: {molecule}

Given caption: {caption}

Answer: {locations}

M-RSL QA

Template:

Question: ”’According to the following caption, where are the chemical named entities lo-
cated in the given molecule?” provide their locations as 0-based atom indices.

Given molecule: {molecule}

Given caption: {caption}

Answer: {

{"namel”}: [locationsl1],

{”name2”}: [locations2],

Table 4: Performance on Molecular Captioning.

Model | BLEU-1 BLEU-2 BLEU-3 BLEU-4
GPT-4 30.861 15.683 8.032 4.199
GPT-4 + Grounding | 31.178 16.698 9.002 5.004

Table 5: Performance on Molecular Classification.
Model | Aim.+ Cov.t Acc.t AbsTT AbsF|

ATC-CNN 67.86 66.65 65.04 60.65 3.83
ATC-CNN + Grounding | 70.15 71.71  67.81 61.49 4.18
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Table 6: RSL performance with more metrics. Both local (;) and global () RSL are reported.

Tasks S-RSL M-RSL
Metic F1,; IoU; | IoU, Acc, F1,; IoU; | IoU, Accy | Cous
GPT-40 0.015 0.148 | 0.135 0.755 | 0.011 0.073 | 0.054 0.429 | 0.543
Pre-trained LLaMA 3.1-8B 0.006 0.175 | 0.141 0.672 | 0.000 0.018 | 0.018 0.083 | 0.126
Mol-Instruct-8B 0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000 0.000 | 0.000
GPT-40 0.017 0.059 | 0.143 0.291 | 0.270 0.454 | 0.399 0.779 | 0.905
ICL(Few-shot) LLaMA 3.1-8B 0.003 0.014 | 0.052 0.102 | 0.120 0.207 | 0.181 0.379 | 0.432
Mol-Instruct-8B 0.000 0.000 | 0.000 0.000 | 0.036 0.079 | 0.049 0.117 | 0.143
GPT-40 0.174 0361 | 0.337 0415 | 0.171 0.301 | 0.290 0.369 | 0.718
ICL(RAG) LLaMA 3.1-8B 0.149 0.332 | 0.307 0.387 | 0.113 0.262 | 0.255 0.344 | 0.760
Mol-Instruct-8B 0.091 0.284 | 0.243 0.326 | 0.072 0.203 | 0.183 0.256 | 0.637
SFT LLaMA 3.1-8B 0275 0.483 | 0466 0.548 | 0.315 0.515 | 0.487 0.587 | 0.850
Mol-Instruct-8B 0.295 0.499 | 0.486 0.565 | 0.337 0.518 | 0.493 0.586 | 0.833
GPT-40-Vision 0.004 0.052 | 0.054 0.332 | 0.000 0.001 | 0.001 0.012 | 0.016
MLLM LLaVA-Next-7B 0.020 0.174 | 0.112 0.737 | 0.000 0.001 | 0.001 0.004 | 0.005
LLaMA 3.2-11B-Vision | 0.010 0.113 | 0.085 0.555 | 0.003 0.062 | 0.046 0.280 | 0.402
GPT-4o 0.630 0.685 | 0.647 0.933 | 0.541 0.566 | 0.546 0.776 | 0.818
Grounding Agent LLaMA 3.1-8B 0.334 0.383 | 0.364 0.863 | 0.426 0.527 | 0.448 0.580 | 0.688
Mol-Instruct-8B 0.000 0.000 | 0.000 0.000 | 0.311 0.446 | 0.310 0.356 | 0.382

G EVALUATION METRICS

For CNER and SRG we report the F1-score of the multi-entity/multi-instance prediction and ground
truth. Named entities are treated as case-insensitive. For BNSM and SFA, we report accuracy.
Additionally, in the BNSM task, all valid structure variants of a molecule are considered equiv-
alent during evaluation. For example, for the SMILES, we canonicalize both the predicted and
ground-truth SMILES using RDKit before comparison, ensuring that different yet chemically identi-
cal SMILES strings are correctly recognized as equivalent. For RSL, We perform both fine-grained-
and coarse-levels evaluation and report Fl-score, IoU, accuracy and the substructure coverage. For
the fine-grained-level evaluation, we evaluate the ground performance of each instance of each sub-
structure one by one. As a substructure could have multiple instances in a molecule, we perform
Hungarian matching to find the optical matches and evaluate on the best possible matches. Specifi-
cally, we compute the node IoU between grounding prediction and its ground truth of a substructure
(i.e., local IoU IoU;) and use it as the Hungarian cost function. For the coarse-level evaluation,
we treat all the predictions of a substructure as a whole and compare it with the ground truth anno-
tation. Specifically, the molecule is seen as a graph where atom as node and their bonds as edge,
and the grounding task is a node binary classification task. Specifically, the nodes belonging to the
mentioning substructures should be highlighted (i.e., label=1). Otherwise, they should have the la-
bel of 0. Assuming that the ground truth label for a substructure in the molecule with m atoms is
y = [y1, .-, Ym| and the predicted node classification as § = [¢1, ..., ¥m |, We compute the average
accuracy of the node classification as the global evaluation metric as:

Accy — #correct Prediction _ |9 = il ©)
H#atoms m

We also compute the IoU of the substructure S = {a;|y; = 1} and the predicted highlight nodes
P = {a;|y; = 1} as another global metric:

)

Besides, for the multiple substructure grounding task, we also report the substructure coverage rate
Covg.

H DETAILED PERFORMANCE OF DOWNSTREAM TASKS

We provide the detailed performances of the molecular captioning and ATC classification in Table 4]
and Table[3].
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