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Self-Supervised Node Representation Learning via
Node-to-Neighbourhood Alignment

Wei Dong , Dawei Yan , and Peng Wang

Abstract—Self-supervised node representation learning aims to
learn node representations from unlabelled graphs that rival the
supervised counterparts. The key towards learning informative
node representations lies in how to effectively gain contextual
information from the graph structure. In this work, we present
simple-yet-effective self-supervised node representation learning
via aligning the hidden representations of nodes and their neigh-
bourhood. Our first idea achieves such node-to-neighbourhood
alignment by directly maximizing the mutual information be-
tween their representations, which, we prove theoretically, plays
the role of graph smoothing. Our framework is optimized via a
surrogate contrastive loss and a Topology-Aware Positive Sampling
(TAPS) strategy is proposed to sample positives by considering
the structural dependencies between nodes, which enables offline
positive selection. Considering the excessive memory overheads of
contrastive learning, we further propose a negative-free solution,
where the main contribution is a Graph Signal Decorrelation (GSD)
constraint to avoid representation collapse and over-smoothing.
The GSD constraint unifies some of the existing constraints and can
be used to derive new implementations to combat representation
collapse. By applying our methods on top of simple MLP-based
node representation encoders, we learn node representations that
achieve promising node classification performance on a set of
graph-structured datasets from small- to large-scale.

Index Terms—GSSL, mutual information, augmentation-free,
negative-free, representation collapse, over-smoothing.

I. INTRODUCTION

GRAPH-STRUCTURED data is ubiquitous. As an effective
graph modelling tool, Graph Neural Networks (GNNs)

have gained increasing popularity in a wide range of domains
such as computer vision [1], natural language processing [2],
knowledge representation [3], social networks [4], and molecu-
lar property prediction [5], just name a few.
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In this work, we focus on the node classification task in graphs
where the key is to learn informative structure-aware node rep-
resentations by gaining contextual information from the graph
topology. This motivates a massive proliferation of message
passing techniques in GNNs. Among these methods, a domi-
nant idea follows an AGGREGATION-COMBINE-UPDATE-
PREDICTION pipeline. Under the umbrella of this manner,
most of methods unifies node representation learning and classi-
fication through supervised learning. A potential problem is that
they may suffer from the scalability issue due to the expensive
labelling cost for large-scale graph data.

As a remedy to expensive human annotation, Self-Supervised
Learning (SSL) has achieved proven success in various domains
such as computer vision [6], [7] and natural language process-
ing [8], with the aim of learning meaningful representations
from unlabelled data. In SSL, Graph-based Self-Supervised
Learning (GSSL) is a relatively new task that remains nascent,
where the aim is to learn graph or node representations without
human annotation. The key challenge thereof lies in how to
design suitable pretext task from non-euclidean graph-structured
data to learn informative node representations. Inheriting the
idea of learning augmentation-invariant representations in com-
puter vision, many recent attempts approach GSSL by designing
heuristic graph augmentations based on the characteristics of
the graph data to generate multi-view graphs for contrastive
loss, a.k.a. Graph Contrastive Learning (GCL), assuming the
graph or node representations should stay consistent under minor
graph distortions such as dropping nodes, edge perturbation, and
attribute masking [9]. However, given the complex topological
structure of the graph data, it remains unclear what is an ideal
graph augmentation.

In this work, we propose an augmentation-free self-
supervised node representation scheme via aligning the hidden
representations of nodes and their neighbourhood. Intuitively,
neighbouring nodes tend to share similar information and by
aligning the node representation to the neighbourhood repre-
sentation, we can distill useful contextual information from
the surrounding, analogous to knowledge distillation [10], [11].
Our first idea achieves such node-to-neighbourhood alignment
by directly maximizing the mutual information between the
hidden representations of nodes and their neighbourhood. The-
oretically, the proposed Node-to-Neighbourhood (N2N) mutual
information maximization essentially encourages graph smooth-
ing based on a quantifiable graph smoothness metric. Following
InfoNCE [12], the mutual information can be optimized by a
surrogate contrastive loss, where the key boils down to positive
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sample definition and selection. To improve the efficiency and
scalability of our N2N network as well as ensuring the quality
of selected positives, we propose a Topology-Aware Positive
Sampling (TAPS) strategy, which samples positives for a node
from the neighbourhood by considering the structural depen-
dencies between nodes. This enables offline positive selection.

The aforementioned N2N mutual information maximization
strategy is formulated as a contrastive learning framework,
which is notorious for the excessive memory overheads resulted
from large negative size. This prohibits the employment of
GCL to large-scale graph data especially under limited memory
budgets. To this end, we propose a negative-free solution by
directly maximizing the similarity between the representations
of nodes and their neighbourhood, a.k.a Negative-Free N2N
(NF-N2N). However, directly pulling neighbouring nodes to-
gether may lead to a trivial solution and consequently mean-
ingless node representations, i.e., all representations collapsing
to constant. To avoid such representation collapse, we propose
a new Graph Signal Decorrelation (GSD) constraint, which is
inspired from the connection between maximizing the similarity
between neighbouring representations and Graph Total Variation
(GTV) minimization. GSD can be used as a general principle
to explain some of the existing anti-collapse constraints such as
BARLOW TWINS [13] in the context of GSSL and derive new
solutions to combat representation collapse.

Different from most of the existing GSSL variants that adopt
off-the-shelf GNNs [14], [15] as node encoders, we apply our
two versions of N2N loss functions on top of MLP encoders. Ex-
periments on both attributed graph datasets and pure-structured
graph datasets [16] of varying scales show that we can achieve
promising node classification performance. Our contributions
are there-folds:
� We propose a simple-yet-effective self-supervised node

representation framework termed Node-to-Neighbour-
hood (N2N) which aligns nodes and their neighbour-
hood by maximizing the mutual information between their
representations, and present a Topology-Aware Positive
Sampling (TAPS) to enable efficient and quality positive
sampling.

� A Negative-Free Node-to-Neighbourhood (NF-N2N)
alignment is proposed to avoid negative sampling and
explicit aggregation of preprocessing in N2N and thus
significantly alleviates the memory overheads and com-
putational cost, which paves a way for a theoretical explo-
ration of representation learning without negative samples.
The main contribution is a newly proposed Graph Signal
Decorrelation (GSD) constraint which unifies some of the
existing constraints to combat representation collapse in
negative-free similarity maximization learning and can
also be used as a principle to inspire new implementations.

� We conduct comprehensive experiments on different types
of graph datasets with varying sizes. The results demon-
strate the effectiveness of the proposed methods in node
representation learning.

Note that the preliminary version of our N2N model was
published in [17]. In this paper, we have made significant
extensions. First, we propose the GSD-based NF-N2N, which

enables negative-free node-to-neighbourhood alignment and
significantly reduces the memory overheads of the proposed
framework. The GSD constraint can be used as a general
principle to explain or derive other solutions used to combat
representation collapse in negative-free similarity maximization
learning. Second, we conducted new experiments on larger-scale
pure-structured graph datasets to evaluate the effectiveness of
our methods while in [17] experiments were only conducted on
smaller-scale attributed graph datasets.

The rest of the paper is organized as follows. Section II
briefly presents related work. Sections III and IV introduces our
N2N mutual information maximization and NF-N2N framework
respectively. In Section V, the training strategies are given. Ex-
perimental results are presented in Section VI, which is followed
by the conclusion in Section VII. Our codes are available at
https://github.com/dongwei156/n2n.

II. RELATED WORKS

In this section, we provide brief overview of existing works
on (1) Graph Neural Networks (GNNs), (2) Graph Contrastive
Learning (GCL), (3) MLP-based encoder in GCL, and (4) strate-
gies to avoid representation collapse in similarity-maximization
driven learning in SSL or GSSL.

Graph Neural Networks: GNNs target to learn structure-
aware node/graph representations based on the topology struc-
ture of the graph data [18]. A main focus thereof is to design
effective message passing strategies to encourage information
propagation in the graph. Early attempts [19] learn node rep-
resentations by following a recurrent fashion, where the node
states are updated by applying a propagation function itera-
tively until equilibrium is reached. Inspired by convolutional
neural networks that were proposed originally for grid-like
topology, such as images, convolution-like propagation was
introduced into graph data [20]. As a prevailing variant of this
line of GNN works, Graph Convolutional Network (GCN) [14]
stacks a set of 1-hop spectral filters [20] and nonlinear ac-
tivation function to learn node representations. GCN ignites
a wave of following-up work with the aim of improving the
efficiency or effectiveness of information exchange in graphs.
Simplifying Graph Convolutional Network (SGC) [21] reduces
the excessive complexity of GCN by removing the nonlinear
activation function to obtain collapsed aggregation matrix, in
which the expensive operation of aggregation is applied upfront
before training phase. GraphSAGE-Mean [22] applies mean
aggregator to fixed number of randomly sampled neighbours
to reduce the computational cost and adopts concatenation to
merge the node and neighbourhood information. Another line
of work aims to design sophisticated neighbourhood aggregation
strategies. Graph Attention Network (GAT) [23] stacks masked
self-attention layers in order that the nodes can adaptively attend
their neighbours. In the work [24], CS-GNN is designed to
understand and improve the use of graph information in GNNs
by leveraging feature and label based smoothness metrics. The
aforementioned GNNs were initially proposed and evaluated
under the supervised setting and have observed promising per-
formance in various applications with sufficient labeled data.
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Graph Contrastive Learning: As a prevailing paradigm in
GSSL, GCL methods are usually developed based on the concept
of Mutual Information (MI) maximization which works by
encouraging the similarity of the positive views derived from
nodes [25], sub-graphs [25], or graphs [26]. In this line of work,
the key boils down to defining the positive pairs. Inspired by
Deep InfoMax [27] in which the image representation is learned
by maximizing the mutual information between the learned
embeddings and the input image, several variants are derived
from applying this mutual information maximization idea in
graphs. Deep Graph InfoMax (DGI) [26] maximizes the agree-
ment between the global graph representation and its hidden
node representations by pushing away the node representations
derived from a corrupted graph. Graphical Mutual Information
(GMI) [25] aligns the input sub-graph to the output node repre-
sentation to avoid the corrupted operation in [26]. Multi-View
Graph Representation Learning (MVGRL) [28] maximizes mu-
tual information between node representations of one view
and graph representations of another graph diffusion view to
learn node and graph representation. InfoGraph [29] views
graph and patch representations as pairs and determine whether
they are from the same graph. Graph Contrastive learning
with Adaptive (GCA) augmentation [30] considers important
topology and attribute information by using adaptive augmen-
tation. GRACE [31] learns node representations by maximiz-
ing the agreement of node representations from two corrupted
graph views generated on both structure and attribute levels.
Augmentation-Free Graph Contrastive Learning (AF-GCL) [32]
avoids graph augmentation which is proven to perturb the middle
and high-frequency components of the graph and hinder GCL
application on heterophilic graphs. These GCL methods need
careful treatment of negative pairs by either relying on large
batch sizes, memory banks, or customized mining strategies to
retrieve the negative pairs, since such cumbersome-yet-effective
negative pairs can prevent the representation collapse.

MLP-Based Encoder in GCL: Prevailing GCL methods usu-
ally employ GNN-based encoders to capture the topology-aware
information, but the encoding overheads in the training process
are exponentially increasing with the number of hidden layers
due to message passing. Graph-MLP [33] pioneers the use of
the MLP-based encoder in GCL, which postpones the expensive
neighbourhood aggregation to the contrastive objective function.
Simple Contrastive Graph Clustering (SCGC) [34] treats the
information aggregation as an independent pre-processing step,
which is followed by MLP-based encoder. However, these meth-
ods still preserve the information aggregation operation either
before [33] or after [34] the node encoding.

Strategies to Avoid Representation Collapse: Learning
augmentation-invariant representations by maximizing the simi-
larities between two views derived from different augmentations
is a predominant paradigm in SSL. Considering directly max-
imizing similarity between representations can lead to trivial
solutions, i.e., representations collapsing to constant vectors,
contrastive learning is normally employed by contrasting the
similarity of positive pairs against those from negative pairs.
Recently, there is a trend in computer vision to develop SSL
methods that are free of negative samples. Two major lines

of methods toward this goal include asymmetric learning and
explicit constraint. Asymmetric learning strategies work by in-
troducing asymmetry into the structure design or optimization of
the two networks responsible for anchor sample and its positive
view. Popular solutions include prediction head [35], momentum
encoder [36] or stop-gradient [37]. Another line of methods
avoid trivial solution in similarity maximization through design-
ing explicit regularizations such as the redundancy reduction
mechanism in [13] and variance-invariance-convariance regu-
larization in [38]. Existing work in GSSL mainly follows the
line of asymmetric learning to prevent node or graph represen-
tations from being collapsed to constant vectors. Bootstrapped
GRaph Latent (BGRL) [39] designs an asymmetric architec-
ture by maintaining two distinct graph encoders and learning
node representations from an online encoder to predict those
from a target encoder. Self-supervised Graph Neural Networks
(SelfGNN) [40] leverages Batch Normalization as implicit con-
trastive terms. AF-GRL [41] avoids negative samples by directly
adopting BYOL [35] as the backbone.

III. NODE-TO-NEIGHBOURHOOD ALIGNMENT VIA MUTUAL

INFORMATION MAXIMIZATION

In this section, we first introduce notations, symbols, and
necessary background about GNN models and GCL schemes.
We then present our idea of N2N mutual information maximiza-
tion and its link to graph smoothing. Finally, we elaborate the
proposed TAPS strategy.

A. Preliminary Knowledge on GNN and GCL

We denote a graph G = (V, E ,A,X), which is composed of a
set of nodes V with the number of nodes N = |V|, a set of edges
E , an adjacency matrix A ∈ RN×N , and node feature matrix
X ∈ RN×D. Each node vi ∈ V has a feature vector �xi ∈ RD

and all these node feature vectors form the aforementioned node
feature matrix X = [�x1, . . . , �xN ]T. From the perspective of
graph signals [42], the node feature matrix can also be perceived
as X = [�s1, . . . ,�sD], with each N -dimensional column vector
as a graph signal �sd ∈ RN . In the supervised learning task for
the graph G, GNNs utilize a neighbourhood aggregation scheme

to learn latent node embedding �h
(l) ∈ RD(l)

in (l)th layer for
each node v, and a prediction function is applied to the node
representations of final hidden layer to predict the class label yv
of each node v.

Based on such notations, a commonly adopted
AGGREGATION-COMBINE-UPDATE-PREDICTION
pipeline for supervised GNNs can be defined as:

�a
(l−1)
i = AGGREGATION

({
�h
(l−1)

j : vj ∈ Ni

})
,

�c
(l)
i = COMBINE

({
�a
(l−1)
i , �h

(l−1)

i

})
,

�h
(l)

i = UPDATE
(
�c
(l)
i

)
,

LCE = PREDICTION
({

�h
(L)

i , yvi

})
,

(1)

Authorized licensed use limited to: NORTHWESTERN POLYTECHNICAL UNIVERSITY. Downloaded on August 13,2024 at 00:28:18 UTC from IEEE Xplore.  Restrictions apply. 



DONG et al.: SELF-SUPERVISED NODE REPRESENTATION LEARNING VIA NODE-TO-NEIGHBOURHOOD ALIGNMENT 4221

Fig. 1. Node-to-Neighbourhood (N2N) graph contrastive learning framework. We perform AGGREGATION (mean) operation among the features of the

target node and its neighbourhood selected by TAPS, and obtain the neighborhood representation �a
(0)
1 before training, and input identical MLP together with the

target node representation �h
(0)

1 for contrastive learning.

where the AGGREGATION function can be any form of ag-
gregators such as mean [22], max [22], sum [15], attention [23],
and ensemble [43] that learn the neighbourhood representation

�a
(l−1)
i from the set {�h(l−1)

j : vj ∈ Ni} based on the neighbour-

hood Ni and the neighbouring node embedding �h
(l−1)

j with

(l − 1)th layer, and the COMBINE function updates �h
(l−1)

i to
a new representation �c

(l)
i in (l)th layer by combining �a

(l−1)
i

with �h
(l−1)

i . The Following UPDATE function learns a new

node representation �h
(l)

i by leveraging the learnable parameters
θ onto�c(l)i . AL-layer GNN iterates the above three operationsL
times and the PREDICTION function is applied in the output
layer for node classification. A de-facto loss function for the
PREDICTION layer is Cross-Entropy (CE) loss.

Mutual Information (MI) maximization is employed as a
de-facto objective function to develop graph contrastive learn-
ing [26], where the MI between representations of nodes [25],
subgraphs [25], or graphs [26] under different graph augmenta-
tions is maximized. A typical node-based contrastive learning
framework is formulated as:

θ∗ = argmax
θ

I (fθ (T (�xi,G)) ; fθ (T ′ (�xi,G))) , (2)

where the fθ(·) denotes node encoder with learnable parameters
θ; T (·, ·) and T ′(·, ·) represent different augmentation strategies
applied to the same node feature vector �xi relying on the
topological context of graph G.

B. N2N Mutual Information Maximization

We learn topology-aware node representation by maximizing
the mutual information between the hidden representations of
nodes and their neighbourhood, which is partially motivated by
knowledge distillation [10]. The contrastive learning framework
of N2N is illustrated as: Fig. 1. In this section, we first present
the definition of the N2N mutual information, which is followed

by the optimization of the mutual information and its link to
graph smoothing.

We denote the Probability Density Function (PDF) of the node

representation �h
(l)

i over the feature space XD(l)
in [0, 1]D

(l)
as

p(H(x)(l)), wherex ∈ XD(l)
andH(·)(l) is a mapping function

from x to �h
(l)

i ; the PDF of the neighbourhood representation
�a
(l)
i as p(S(x)(l)) with the mapping function S(·)(l) from x

to �a
(l)
i ; and the joint PDF between node and neighbourhood is

p(S(x)(l), H(x)(l)). We define the mutual information between
the node representations and their corresponding neighbourhood
representation as:

I(S(x)(l);H(x)(l))

=

∫
XD(l)

p(S(x)(l), H(x)(l)) · log p(S(x)(l), H(x)(l))

p(S(x)(l)) · p(H(x)(l))
dx.

(3)

This operation encourages each node representation to distill
the contextual information presented in its neighbourhood repre-
sentation. However, mutual information is notoriously difficult
to compute, particularly in continuous and high-dimensional
space. Fortunately, scalable estimation enabling efficient com-
putation of mutual information is made possible through Mutual
Information Neural Estimation (MINE) [44], which converts
mutual information maximization into minimizing the InfoNCE
loss [12]. The surrogate InfoNCE loss function of the N2N
mutual information in (3) is defined as:

LInfoNCE =

− Evi∈V

⎡
⎣log exp(sim(�a

(l)
i , �h

(l)

i )/τ)∑
vk∈V exp(sim(�h

(l)

k , �h
(l)

i )/τ)

⎤
⎦ ,

(4)

which estimates the mutual information via node sampling,
where the sim(·, ·) function denotes the cosine similarity, the
exp(·) function implies the exponential function, and τ is the
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temperature parameter. The positive pair is (�a(l)
i , �h

(l)

i ) and the

negative pair is (�h
(l)

k , �h
(l)

i )i�=k.
In essence, maximizing I(S(x)(l);H(x)(l)) can play the role

of graph smoothing, which has proven to be able to benefit
node/graph prediction. To elaborately prove this point, we resort
to a feature smoothness metric in [24]:

δ
(l)
f =

‖
∑

vi∈V(
∑

vj∈Ni
(�h

(l)

i − �h
(l)

j ))2‖1
|E| ·D(l)

, (5)

where ‖ · ‖1 is the Manhattan norm. The work [24] further
proposes that the information gain from the neighbourhood rep-
resentation �a

(l)
i is defined as the Kullback-Leibler divergence:

DKL(S(x)
(l)‖H(x)(l)) =∫

XD(l)
p(S(x)(l)) · log p(S(x)(l))

p(H(x)(l))
dx,

(6)

which is positively correlated to the feature smoothness metric
δ
(l)
f , i.e., DKL(S(x)

(l)‖H(x)(l)) ∼ δ
(l)
f . This standpoint im-

plies that a large feature smoothness value δ(l)f means significant

disagreement between node representations {�h(l)

i } and their cor-
responding neighbourhood representations {�a(l)

i }. This inspires
the following theorem (Ref. Appendix A, available online for
proof):

Theorem 1: For a graph G with the set of fea-
tures XD(l)

in space [0, 1]D
(l)

, the information gain rep-
resented by DKL(S(x)

(l)‖H(x)(l)) is negatively corre-
lated to the mutual information I(S(x)(l);H(x)(l)) and
thus maximizing I(S(x)(l);H(x)(l)) essentially minimizes
DKL(S(x)

(l)‖H(x)(l)) and δ(l)f , which attains the goal of graph
smoothing:

I(S(x)(l);H(x)(l)) ∼ −DKL(S(x)
(l)‖H(x)(l))

∼ −δ
(l)
f . (7)

C. Topology-Aware Positive Sampling (TAPS)

Up to now, we obtain the neighbourhood representation �a
(l)
i

of a node by applying the AGGREGATION function to all
neighbours of the node. This solution may suffer from two
issues. First, the whole neighbourhood can include redundant
or even noisy information. Second, the aggregation operation is
computationally expensive. To address these two problems, we
propose a TAPS strategy for self-supervised node representation
learning. The basic idea is that we measure the topological
dependencies between a node and its neighbours and sample
positives of the node based on the ranked dependency values.

For a node vi, we use a variableXi to represent its topological
information.Xi can take the value of eitherNi orNi = V −Ni,
where the former corresponds to the neighbourhood information
and the latter is the contextual information complementary to the
neighbourhood. Based on the definition ofXi, we define p(Xi =

Ni) =
|Ni|
|V| and probability p(Xi = Ni) =

|V−Ni|
|V| , where | · | is

the cardinality function. Basically p(Xi = Ni) indicates when
we sample a node randomly on the graph, the probability that
the node will fall into the neighbourhood of vi. Furthermore, for
two neighbouring nodes vi and vj , we can define the following
joint probabilities:

p(Xi = Ni, Xj = Nj) =
|Ni ∩Nj |

|V| ,

p(Xi = Ni, Xj = Nj) =
|Ni ∩ (V −Nj)|

|V| ,

p(Xi = Ni, Xj = Nj) =
|(V −Ni) ∩Nj |

|V| ,

p(Xi = Ni, Xj = Nj) =
|(V −Ni) ∩ (V −Nj)|

|V| , (8)

where p(Xi = Ni, Xj = Nj) is the probability that the ran-
domly selected node will fall into the intersected neighbours
of vi and vj . Motivated by mutual information, we define the
graph-structural dependency between vi and vj as:

Definition 1: Graph-structural dependency between neigh-
bouring node vi and vj is defined as:

I(Xi;Xj) =
∑
Xi

∑
Xj

p(Xi, Xj) · log
p(Xi, Xj)

p(Xi) · p(Xj)
,

s.t. vj ∈ Ni. (9)

The graph-structural dependency value above basically mea-
sures the topological similarity of two nodes. A large value
suggests the strong dependency between two nodes.

In TAPS strategy, we select positives of vi by ranking the
dependency values between the neighbouring nodes and vi and
then obtain the neighbourhood representation �a

(l)
i by applying

aggregator, e.g., mean, to the selected positives. In particular,
when only one positive is selected, we directly select the node vj
with maximum dependency value to vi and thus avoid the expen-
sive aggregation operation. Meanwhile, because the topology
structure of a graph relies on the adjacency matrix only, TAPS
allows us to perform positive sampling upfront, which can avoid
the positive sampling overhead during training phase.

As illustrated in Fig. 1, the neighborhood representation �a
(0)
1

is obtained by TAPS before training. We use identical MLP to
conduct contrastive learning among �a

(0)
1 and the target node

features �h
(0)

1 . Notice that the TAPS strategy is only used in the
preprocessing phase before training.

IV. NEGATIVE-FREE NODE-TO-NEIGHBOURHOOD ALIGNMENT

VIA GRAPH SIGNAL DECORRELATION

In the previous section, we learn topology-aware node repre-
sentations by aligning nodes and their neighbourhood through
a contrastive learning framework, i.e., pulling a node and its
neighbourhood close in the embedding space while pushing the
node apart from other negative nodes. However, the treatment
of negative pairs in contrastive learning needs to be careful
because it requires either large memory consumption to hold
sufficient negative samples or customized mining strategies to
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Fig. 2. Negative-Free Node-to-Neighbourhood (NF-N2N) graph contrastive learning via graph signal decorrelation. We directly regard two nodes linked at one
edge as a positive pair in which one node is an anchor and another is a view, i.e., each anchor node has multi-view nodes. We then feed these multi-view positive pairs
into the MLP encoder for GCL, with three decorrelation strategies (whitening normalization, auto-correlation, and cross-correlation) to prevent over-smoothing
and representation collapse.

retrieve effective negatives [13], [35], [38]. This tends to be
problematic when dealing with large-scale data or under limited
computational budget. For (4), the InfoNCE loss function of the
N2N mutual information, the negative pairs among V can be
extremely large. This makes the application of N2N methods on
large-scale graph data intractable. The preprocessing operation
of explicit AGGREGATION on neighborhood before training
will similarly increase the computational consumption.

In this section, we aim to design a negative-free node-to-
neighbourhood alignment strategy to learn node representations.
However, directly aligning the nodes and their neighbourhood
without resorting to the contrastive term can lead to a trivial
solution, i.e., all nodes collapse to the same constant repre-
sentations. To address the representation collapse problem and
consequently learn meaningful node representations, we inspect
the collapse from the lens of graph signal processing and pro-
pose a general constraint based on Graph Signal Decorrelation
(GSD). Benefit from the strategy, we further streamline the
architecture by omitting the sampling of negative examples in
contrastive learning and its huge consumption of computational
resources, as well as the need for preprocessing operation of
AGGREGATION on neighborhood before training.

A. Self-Supervised Node Representation Learning Via Graph
Signal Decorrelation

Following previous section, in graph G, neighbouring nodes
have higher chances to share similar properties such as node
labels.1 Motivated by this assumption, we treat a node vi as
an anchor and its neighbouring node vj ∈ Ni as an alternative
view of vi. If node vi has J neighbours, we can directly derive
the multiple views of vi and form a set of positive pairs as
{(�xanchor

i , �xview
1∈Ni

), . . . , (�xanchor
i , �xview

J∈Ni
)} as shown in Fig. 2.

The samples within each positive pair are fed into identical

1In this work, we focus on homogeneous graph. We will investigate if our
strategy applies to heterogeneous graph as future work.

MLP-based encoder fθ(·) to derive corresponding embeddings
(Hanchor

i ,Hview
i ) with Hanchor

i = fθ(X
anchor
i ) and Hview

i =
fθ(X

view
i ), where:

Xanchor
i = [�xi, . . . , �xi, . . . , �xi]

T,

Xview
i = [�x1∈Ni

, . . . , �xj∈Ni
, . . . , �xJ∈Ni

]T,

Hanchor
i = [�h

(l)

i , . . . , �h
(l)

i , . . . , �h
(l)

i ]T,

Hview
i = [�h

(l)

1∈Ni
, . . . , �h

(l)

j∈Ni
, . . . , �h

(l)

J∈Ni
]T. (10)

All these feature and embedding matrices are mapped into the
space RJ×D(l)

. Then our goal is to learn view-invariant node
representations by maximizing the similarities between such
positive pairs of embeddings. Note that the number of positive
pairs from graph G equals to the number of edges |E|.

Following the work [35], we maximize the similarity between
a positive pair vi and vj∈Ni

by minimizing the Mean Squared

Error (MSE) between their embeddings �h
(l)

i and �h
(l)

j with (l)th
layer. Applying the MSE loss function to all the positive pairs,
we get:

L(l)
MSE =

N∑
i=1

∑
j∈Ni

‖�h(l)

i − �h
(l)

j ‖22

=

N∑
i=1

∑
j∈Ni

⎛
⎝2− 2 ·

〈�h(l)

i , �h
(l)

j 〉

‖�h(l)

i ‖2 · ‖�h
(l)

j ‖2

⎞
⎠ ,

(11)

where �h
(l)

i is the intermediateL2-norm node embedding in layer
l of the node encoder fθ(�xi). If we view graph as a set of
graph signals, (11) essentially represents Graph Total Variation
(GTV) [42] that can be used as an indicator of the smoothness
level of the graph. The smaller the GTV value is, the smoother
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the graph is. GTV is defined as:

N∑
i=1

∑
j∈Ni

‖�h(l)

i − �h
(l)

j ‖22

=
∑

ei,j∈E
‖�h(l)

i − �h
(l)

j ‖22

=
∑

ei,j∈E

D(l)∑
d(l)=1

(
�h
(l)

i [d(l)]− �h
(l)

j [d(l)]
)2

=

D(l)∑
d(l)=1

∑
ei,j∈E

(
�h
(l)

i [d(l)]− �h
(l)

j [d(l)]
)2

=

D(l)∑
d(l)=1

�sTd(l) · L · �sd(l) ,

(12)

where�sd(l) is a graph signal,L = D−A is the Graph Laplacian
matrix [14] with the adjacency matrix A and the degree matrix

D[i,i] =
∑

j∈Ni
A[i,j];

∑D(l)

d(l)=1 �s
T
d(l) · L · �sd(l) denotes GTV.

Following Theorem 1, minimizing the MSE loss function
L(l)
MSE essentially maximizes the mutual information between

the neighbourhood representation�a(l)
i and the embedding �h

(l)

i of
the node vi. Theorem 2 theorizes the relationship between such
mutual information and MSE (GTV), proved in Appendix B,
available online:

Theorem 2: Minimizing the MSE loss function L(l)
MSE essen-

tially maximizes I(S(x)(l);H(x)(l)), which attains the goal of
graph smoothing:

L(l)
MSE(GTV) ∼ −I(S(x)(l);H(x)(l)), (13)

when �sd(l) → σ̂ · �1 with a scalar σ̂.
However, under the positive semi-definite property of Graph

LaplacianL [42], directly minimizing the MSE loss in the above
equations can push GTV approaching its minimum value 0
and consequently results in over-smoothing. In other words, all

the node embeddings {�h(l)

i } will collapse to constant. From
the graph signal angle, minimizing the GTV will force each
graph signal �sd(l) to be a constant vector, i.e., �sd(l) = σ̂ · �1
in accordance with Theorem 2. When all {�sd(l)} are a vector
whose elements are all 1 with the scalar σ̂, the embedding matrix
H(l) = [�s1, . . . ,�sd(l) , . . . ,�sD(l) ] has only one non-zero eigen-
value, whose embedding space collapses to only one dimension.
All equal elements of graph signals {�sd(l)} also cause graph
over-smoothing [45], [46].

Furthermore, we assume Graph Laplacian matrixL has eigen-
values λ1 < λ2 < · · · < λN and their corresponding eigenvec-
tors [�v1, . . . , �vN ]. By virtue of the property of Graph Lapla-
cian [42], the smallest eigenvalue λ1 = 0 and its eigenvector
�v1 =

�1
‖�1‖2

. From Theorem 2, since MSE minimization leads to

�sd(l) = σ̂ · �1 = σ̂ · ‖�1‖2 · �1
‖�1‖2

= σ · �v1 with σ = σ̂ · ‖�1‖2, we

obtain:

�sTd(l) · L · �sd(l) = σ · �vT
1 · L · σ · �v1

= σ2 · �vT
1 · L · �v1

= σ2 · λ1 · �vT
1 · �v1

= σ2 · λ1

= 0, (14)

where L · �vi = λi · �vi and �vT
1 · �v1 = 1.

To avoid such trivial solution and consequently learn mean-
ingful node representations, we explicitly require any two graph
signals being orthogonal to each other, i.e., �si ⊥ �sj s.t. i �= j
with 1 ≤ i ≤ D(l), 1 ≤ j ≤ D(l). Under this explicit orthogo-
nality constraint, due to the semi-definite nature ofL, GTV mini-
mization will ideally push one term �sTd(l) · L · �sd(l) approaching
0, i.e. �sd(l) = σ̂ · �1, but the remaining terms �sTi · L · �si with
i �= d(l) will be positive. Specifically, Theorem 3 describes
such orthogonality constraint mentioned and we prove it in
Appendix C, available online:

Theorem 3: Given D(l) < N , eigenvalues 0 = λ1 < λ2 <
· · · < λN of Graph Laplacian matrix L and their correspond-
ing eigenvectors [�v1, . . . , �vN ], and �si ⊥ �sj s.t. i �= j with
1 ≤ i ≤ D(l), 1 ≤ j ≤ D(l). When MSE minimization makes
any graph signal, for example �s1, equal to σ1 · �v1 resulting in
�sT1 · L · �s1 = 0 in terms of (14), the GTV is:

D(l)∑
i=1

�sTi · L · �si = σ2
1 · λ1 + σ2

2 · λ2 + · · ·+ σ2
D(l) · λD(l) > 0.

(15)
In (15) prevents GTV from converging to 0 and can thus avoid

the representation collapse and over-smoothing.

B. Three Constraints Derived From Graph Signal
Decorrelation

In this section, we design three constraints to avoid represen-
tation collapse based on the graph signal decorrelation principle,
where the basic idea is to push the graph signals to be orthogonal
to each other. Before delving into the details of the constraints,
we start with the definition of auto-covariance matrix:

C
(l)
auto =

1

N

(
H(l) − �1 ·

(
1

N
�1
T ·H(l)

))T

·
(
H(l) − �1 ·

(
1

N
�1
T ·H(l)

))
+ ε · I,

(16)

in which off-diagonal element describes the correlation between
two graph signals �si and �sj with i �= j, where a positive value
indicates positive correlation and value 0 means two signals are
not correlated. ε · I with an identity matrix I and a small number
ε prevents invalid operation in the algorithm program of C(l)

auto

(Not a Number, NaN). Two strategies, whitening normalization
and auto-correlation regularization, can make the off-diagonal
elements in matrix C

(l)
auto as close to 0 as possible.
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Whitening Normalization: Whitening normalization used
in self-supervised computer vision tasks can scatter the batch
samples to avoid degenerating embedding solutions collapsed
onto a few dimensions or into a single point [47], with more
feature or embedding decorrelation effect than Batch Normal-
ization (BN) [48], even though BN also boosts the whiten-
ing effectiveness additionally [49]. In this work, we design a
whitening normalization by employing Zero-phase Component
Analysis (ZCA) sphering [49], [50] to decorrelate any two graph
signals �si and �sj in the node embeddings H(l). Generally, ZCA
whitening operation involves computation-intensive Singular
Value Decomposition (SVD) that is not GPU friendly:

H
(l)
ZCA =

(
H(l) − �1 ·

(
1

N
�1
T ·H(l)

))
U(l)Λ(l)− 1

2U(l)T,

(17)
where H

(l)
ZCA is the whitened embeddings, Λ(l) =

diag(λ1, . . . , λD(l))(l) and U(l) = [�u1, . . . , �uD(l) ](l) are the
eigenvalues and associated eigenvectors of the auto-covariance

matrix C
(l)
auto under C

(l)− 1
2

auto = U(l)Λ(l)− 1
2U(l)T. Fortunately,

an iterative ZCA normalization enables more efficient whitening
by using Newton’s iterations [50]:

Pp =
1

2

⎛
⎝3 ·Pp−1 −P3

p−1

⎛
⎝ C

(l)
auto

tr
(
C

(l)
auto

)
⎞
⎠
⎞
⎠ ,

H
(l)
ZCA =

(
H(l) − �1 ·

(
1

N
�1
T ·H(l)

))⎛
⎝ PP√

tr(C
(l)
auto)

⎞
⎠ ,

s.t. P0 = I, 1 ≤ p ≤ P, (18)

where tr(·) computes the trace of matrix C
(l)
auto, I is an identity

matrix, and Pp√
tr(C

(l)
auto)

→ C
(l)− 1

2
auto when p → +∞. However,

this iterative strategy using the Newton method may cause the
gradient vanishing or exploding problem in the training pipeline
due to the larger exponent 3 to matrix Pp. We hence use a
Schur–Newton scheme [51] instead of the traditional Newton
method to compute ZCA sphering:

Pp = Pp−1

(
3 · I−Np−1

2

)
,

Np =

(
3 · I−Np−1

2

)2

Np−1,

s.t. P0 = I, N0 =
C

(l)
auto

tr
(
C

(l)
auto

) , 1 ≤ p ≤ P,

(19)

where Np → I and Pp√
tr(C

(l)
auto)

→ C
(l)− 1

2
auto when p → +∞.

Therefore, (19) employs Schur-Newton iterations with the
smaller exponent of matrix Pp to compute ZCA whitening nor-
malization to decorrelate graph signals. The whitening normal-
ization pseudocode is shown in Appendix D, available online.

Auto-Correlation Regularization: Auto-correlation regular-
ization employs the auto-covariance matrix C

(l)
auto as an objec-

tive regularization introduced into the loss function:

C
(l)
auto[i,j] =

�̂s
T

i · �̂sj
‖�̂si‖2 · ‖�̂sj‖2

,

L(l)
auto−reg =

∑
i

(
1−C

(l)
auto[i,i]

)2

+ β ·
∑
i

∑
j �=i

C
(l)2
auto[i,j],

s.t. 1 ≤ i ≤ D(l), 1 ≤ j ≤ D(l), (20)

where �si ∈ H(l), �sj ∈ H(l), the centralized graph signal �̂si =

�si − �1 · ( 1
N
�1
T · �si), and β is a positive constant trading off the

importance of the invariance term
∑

i(1−C
(l)
auto[i,i])

2 and the

redundancy reduction term
∑

i

∑
j �=i C

(l)2
auto[i,j] [13]. Intuitively,

the invariance term tries to force the diagonal elements of the
auto-correlation matrix C

(l)
auto to 1 and makes the graph signal

invariant to the distortions applied. The redundancy reduction
term tries to push the off-diagonal elements thereof to 0 and
decorrelates the different graph signal vectors to each other.
Appendix D, available online shows the pseudocode of auto-
correlation regularization.

Cross-Correlation Regularization: The definition of cross-
correlation regularization is similar to (20) of auto-correlation
regularization and the only difference is the cross covariance
matrix Ccross defined as:

Ccross =
1

N

(
Hanchor − �1 ·

(
1

N
�1
T ·Hanchor

))T

·
(
Hview − �1 ·

(
1

N
�1
T ·Hview

))
+ ε · I,

(21)

whose pseudocode is shown in Appendix D, available online.
In general, the above three regularization methods are de-

signed based on the feature decorrelation to the goal of rep-
resentation collapse avoidance. The differences therein are as
follows: whitening normalization can directly decorrelate each
signal�si of the node embeddingsH(l) without any sophisticated
design of the loss function. Both auto- and cross-correlation
regularizations need to carefully design their corresponding loss
functions during training phases, but the interpretability of their
decorrelation is intuitionistic.

V. TRAINING FRAMEWORK

The graph-based self-supervised training schemes are mainly
of three kinds [9], in addition to training the encoder on the pre-
text tasks and fine-tuning it on the downstream tasks (PT&FT),
there are also Joint Learning (JL) schemes, where the encoder,
pretext and downstream tasks are trained jointly, and Unsu-
pervised Representation Learning (URL), which differs from
PT&FT in that URL freezes the encoder during the fine-tuning
downstream task phase. In our work, we adopt both JL and URL
pipelines to train and evaluate our N2N network, and only URL
to our NF-N2N strategy with GSD constraint. JL employs an
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Fig. 3. Illustration of two training pipelines adopted for the proposed model.

end-to-end semi-supervised learning approach, integrating In-
foNCE loss LInfoNCE and Cross-Entropy loss LCE. Conversely,
URL decouples these loss functions during a two-stage learning
approach.

N2N Training: Fig. 3(a) illustrates our JL training pipeline to
N2N strategy. Unlike most existing GSSL work using GNN as
node/graph encoder, we simply use a shallow MLP as encoder,
which is more efficient. As illustrated in Fig. 1, we utilize
TAPS and AGGREGATION (mean) to get neighborhood rep-
resentation �a

(0)
i before training, and then conduct contrastive

learning with the target node representation �h
(0)

i . In JL scheme
of N2N, we apply InfoNCE loss and Cross-Entropy loss jointly
on top of the node representations obtained as output of the MLP
encoder:

L = (1− α)LCE + αLInfoNCE, (22)

where α is a trade-off parameter used to balance the two loss
functions.

The URL framework of N2N network, as shown in Fig. 3(b),
involves two training stages: the pre-training pretext task trains
the MLP encoder using InfoNCE loss LInfoNCE, and the down-
stream task learns linear node classifiers using Cross-Entropy
loss LCE.

NF-N2N Training: In URL training framework underpinning
NF-N2N, Fig. 2 shows the URL-based training pipeline of our
augmentation-free graph method. We first input a positive pair
into the MLP-based encoder of the pipeline, producing node rep-
resentations. This pair includes an anchor node and a view node
linked by one edge, and each anchor node has multi-view nodes.
We then design the whitening normalization to decorrelate the
graph signals of node representations in each MLP-based encod-
ing layer. Finally, the whitened node representations are fed into
MSE loss function and our designed auto- or cross-correlation
regularization.

The primary difference and most critical improvement be-
tween the NF-N2N and the N2N is: NF-N2N uses adjacent
node pairs instead of customized negative sample pairs to avoid
the additional computational resource overhead and the explicit
preprocessing operation of AGGREGATION before training
in N2N, achieving better results on the node classification dataset
more efficiently.

TABLE I
STATISTICS OF THE ATTRIBUTED AND PURE-STRUCTURED GRAPH DATASETS

USED IN THIS WORK

VI. EXPERIMENTS

In this section, we start by introducing the experimental setups
including datasets, existing methods, baselines, our models, and
implementation details. We then show the performance compar-
ison for existing methods. Finally, we present ablation studies to
demonstrate other appealing properties of the proposed methods.

A. Experimental Setups

In this section we introduce our experimental setups and begin
by briefly describing two types of graph datasets: attributed and
pure-structured graph datasets [16].

Attributed Graph Datasets: We run experiments on seven pre-
vailing node classification datasets, all of which are connected,
undirected, and attributed graphs: Cora [24], [52], Pubmed [24],
Citeseer [24], Cora Full [53], Amazon Photo [53], Coauthor
CS [53], and Coauthor Physics [53]. The first four datasets
are constructed as citation networks. Amazon Photo is for the
Amazon co-purchase graph, and Coauthor CS & Physics are for
co-authorship graphs. For Cora, Pubmed, and Citeseer datasets,
we use the train/val/test splits in [24], [52]. For Cora Full,
Amazon Photo, Coauthor CS, and Coauthor Physics datasets,
we use the splits from their original paper. Table I shows the
statistics of aforementioned attributed graph datasets.2

Pure-Structured Graph Datasets. We further run node clas-
sification tasks on other seven pure-structured graph datasets,
all of which only involve graph topology without node features:

2In this work, we did not use the prevalent Open Graph Benchmark (OGB)
datasets to evaluate our models, because the node features therein are mapped

to the the space of [−1, 1]D
(l)

, while according to Theorem 1, the features are

required to be in [0, 1]D
(l)

as in [24].
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TABLE II
PERFORMANCE COMPARISON BETWEEN EXISTING METHODS AND OUR METHODS ON SEVEN ATTRIBUTED GRAPH DATASETS

Feather-Lastfm [54], Musae-Github [55], Feather-Deezer [54],
Twitch-Gamers [56], Com-Amazon [57], Com-DBLP [57],
and Com-Youtube [57]. The first four datasets are constructed
as social networks in which Feather-Lastfm, Musae-Github,
and Feather-Deezer datasets only have incomplete node fea-
tures. Hence, we use their adjacency matrix as a substitute
for the node feature matrix. In this feature alternative, the
number of feature dimension D for a node vi feature vector
equals the number of nodes N and each element can be ei-
ther 1 or 0 denoting vi connected or disconnected to another
node vj . Com-Amazon community dataset is the Amazon co-
purchase network; Com-DBLP community dataset is a co-
authorship network; Com-Youtube community dataset is a
video-sharing network. All of the last three community datasets
only include the graph structure without node features and
their adjacency matrices are used as the node feature ma-
trix in our experiments. The possible reason why they lack
node features is the restriction of privacy policy on social
or community networks or the expensive overheads of node
feature collection. Table I shows the statistics of aforemen-
tioned pure-structured graph datasets. Since no existing ref-
erence works available, we establish the train/val/test splits
for seven pure-structured graph datasets by ourselves. For
the self-supervised learning aspect of the URL, we utilize
the complete datasets, while for the supervised learning, we
only use a subset of the full datasets as the train/val/test
data.

Existing Methods: We compare our proposed models to
four types of existing methods, including (1) traditional GNNs
such as GCN [14], SGC [21], GraphSAGE [22], GAT [23],
SplineCNN [52], and CS-GCN [24]; (2) traditional GSSL,
including DeepWalk [58] and Node2Vec [59]; (3) Graph
Contrastive Learning (GCL) with negative pairs, including
DGI [26], GMI [25], MVGRL [28], InfoGraph [29], GCA [30],
GRACE [31], AF-GCL [32], and Graph-MLP [33]; (4) GSSL
without negative pairs, including BGRL [39], SelfGNN [40],
and AFGRL [41]. Note that only Graph-MLP and our models
use MLP as node encoder and other methods employ GNN
as node encoder. SCGC [34] has not been introduced into our
experiments because it is designed for node clustering tasks.

Our N2N Models: We denote N2N-TAPS-x as our model
sampling top-x positive neighbours based on TAPS, e.g., N2N-
TAPS-1 samples the neighbour with maximum dependency
value as positive. We evaluate our methods with 1 to 5 positives
to inspect how the positive size influences the node classification
performance. We use N2N-random-1 as our baseline where one
positive is sampled randomly from the neighbourhood of a node.
By default, we aggregate all the neighbours of a node using mean
aggregator as positive, which is denoted as N2N.

Baselines and Our NF-N2N Models: We first design two
baseline models: one is the combination of MLP and MSE
(MLP-MSE in Table II) without using the proposed decor-
relation strategy; another is a standard node-node contrastive
learning model (Contrastive in Table II) employing the InfoNCE
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loss function performed on our augmentation-free framework.
We then propose NF-N2N models with three GSD: first model
incorporates Whitening normalization into MLP-MSE baseline
to form NF-N2N (W); second model integrates MLP-MSE with
Whitening normalization and Auto-correlation regularization as
NF-N2N (WA); the last model combines MLP with Whitening
normalization and Cross-correlation regularization to form NF-
N2N (WC).

Implementation Details: For fair comparison, we follow the
common practice to fix the number of hidden layers in our
method and the compared GNNs and GCL encoders to be 2.
For all datasets, we set the dimensionality of the hidden layer
to be 512. Some other important hyper-parameters include:
dropout ratio is 0.6 for Cora, Citeseer, and Coauthor CS, 0.2
for Pubmed, 0.4 for Amazon Photo, 0.5 for Coauthor Physics,
and 0.5 for all pure-structured graphs; L2-regularization is 0.01
for Cora, Citeseer, and Coauthor CS, 0.001 for Pubmed and
Amazon Photo, 0.05 for Coauthor Physics, and 0.001 for all
pure-structured graphs; training epochs are 2000 for all datasets;
learning rate is 0.01 for Pubmed and 0.001 for the other datasets;
nonlinear activation is ReLU function. For N2N-TAPS-x (JL),
α is set to 0.9 for Cora, Pubmed, and Citeseer, 0.99 for Ama-
zon Photo and Coauthor CS, and 0.999 for Coauthor Physics;
temperature τ is 5 for Cora, Pubmed, Citeseer, and Amazon
Photo, 100 for Coauthor CS, and 30 for Coauthor Physics. The
temperature τ of N2N-TAPS-x (URL) is 5 for all datasets. For all
baselines and proposed NF-N2N methods, batch size is 2048; the
iteration P of whitening normalization and the positive constant
β for auto- and cross-correlation regularizations are tuned via
cross-validation. These hyper-parameters are determined via
cross-validation. We implement our models by Tensorflow 2.6.
All of the experiments are performed on a machine with Intel
CPU 12th Gen Intel Core i7-12700F, 32 GB CPU memory, and
GeForce RTX 3090 (24 GB memory). We run all models five
times on each dataset, and the mean and standard deviation of
the micro-f1 score are used as the evaluation metric.

B. Overall Results

In this section, we demonstrate our overall experimental
results. Table II shows the micro-f1 performance compari-
son between the proposed methods and existing methods on
seven attributed graph datasets. From the results we obtain the
following observations: (1) The proposed N2N and NF-N2N
models consistently outperform the comparing methods on all
these seven datasets. The improvement can go up to 2% on
Cora, Citeseer, Coauthor CS, and Coauthor Physics, and 3%
on Pubmed. This shows the competitiveness of our N2N mutual
information maximization strategy over GNNs and other GCL
based solutions for node representation learning and indicates
that high-quality node representations can be learned through
our NF-N2N with GSD based constraints even using none of the
feature aggregation, graph augmentation or negative pairs. At the
same time, since our method is free from the aforementioned
expensive operations, our methods enjoy better efficiency in
terms of training and inference. (2) Within the N2N family,
the results demonstrate the potential of N2N-TAPS-1 as it

TABLE III
COMPARISON OF THE GPU MEMORY (MBS) USAGE (GPU MEMORY USAGE

DURING TRAINING) AMONG EXISTING METHODS, CONTRASTIVE BASELINE,
AND THE PROPOSED NF-N2N METHODS

avoids neighbourhood aggregation operation, which is known
to be expensive. However, the performance drops significantly
when the single positive is sampled randomly from the neigh-
bourhood. This result shows that the proposed TAPS strategy
indeed can sample topologically meaningful positives. Besides,
we generally observe improvement when sampling more posi-
tives based on TAPS but the improvements are marginal. Full
results about N2N-TAPS-x (JL and URL) can be found in
Appendix G, available online. (3) Comparing to MLP-MSE
baseline, we observe significant improvement from NF-N2N.
This is easy to understand as directly minimizing MSE can
lead to trivial solution and consequently representation collapse.
(4) Comparing to Contrastive baseline, our NF-N2N methods
achieve superior performance and the margins can go up to
3% on Cora and Coauthor CS, 10% on Cora Full, and 2%
on Citeseer and Coauthor Physics. The potential solution to
improve the performance of Contrastive baseline is to increase
the negative size, which, however, can lead to higher GPU
memory consumption. (5) Within the existing methods, the GCL
solutions have comparable performance or even slightly better
performance comparing to the fully supervised GNN variants.
This observation shows SSL can be a promising alternative in
graph-based representation learning.

Our NF-N2N methods are expected to be more memory
efficient comparing to existing work and baseline models as our
work adopts simple MLP as node encoder and thus fully gets rid
of the expensive node aggregation operation. Table III shows
the GPU memory comparison among representative methods
and baselines, such as traditional GCN [14], GCA [30] and
Graph-MLP [33] in GCL, BGRL [39] in GCL without negative
pairs, and Contrastive baseline. From the results we can see our
NF-N2N methods consume the least GPU memory usage.

Table IV demonstrates the micro-f1 performance comparison
between the proposed NF-N2N models and existing methods
on seven pure-structured graph datasets. In this table, only
supervised-based SGC model and our NF-N2N models can run
on such large graph datasets. Most of other existing models and
the N2N method suffer from out-of-GPU-memory, since such
models use the GNN encoder in their training phase, employ the
contrastive negative pairs, or adopt sophisticated augmentation
strategies in their framework. Even the TAPS strategy encounters
GPU memory issue on most of such datasets. Hence, we remove
these out-of-memory (OOM) models from Table IV. From this
table we observe the following conclusions: (1) The proposed
NF-N2N models achieve promising results on all these seven
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TABLE IV
PERFORMANCE COMPARISON BETWEEN EXISTING METHODS AND OUR NF-N2N METHODS ON SEVEN PURE-STRUCTURED GRAPH DATASETS. IN SGC [21],

x-HOP DENOTES THE AGGREGATION OPERATIONS WITH x TIMES

TABLE V
PERFORMANCE OF N2N (JL) MODEL WITH RANDOM POSITIVE SAMPLING ON

AMAZON PHOTO AND COAUTHOR PHYSICS

datasets. The advantage can go up to 2% on Musae-Github,
4% on Twitch-Gamers, and 8% on Com-Youtube. This shows
our proposed NF-N2N models can effectively enrich the node
representations based on the adjacency information. (2) The
SGC method with 2-hop aggregations is prone to have OOM
issue based on its hardware budget in spite of the aggregation
performed in advance via using cheap and sufficient CPU mem-
ory. This issue indicates that the standard aggregation of GNNs
is invalid when the number of nodes and feature dimensions
(represented by the size of adjacency matrix) explode. (3) Com-
paring to MLP-MSE baseline, our NF-N2N observes significant
improvement again, which validates the effectiveness of the
GSD constraint in terms of preventing representation collapse.

C. Ablation Studies for N2N

In this section, we conduct additional ablation studies to reveal
other appealing properties of the proposed N2N methods.

N2N (JL) Based on Random Positive Sampling: To further
justify the necessity and advantage of our TAPS strategy, we
run experiments on random positive sampling by varying the
sampling size from 1 to 5. We choose two datasets, i.e., Amazon
Photo and Coauthor Physics, for this experiment because their
average node degree > 5. For each sampling size, we run the
experiments three times with different random seeds. The results
are shown in Table V. From the table we can clearly observe that
random positive sampling results in large performance variance
which means random sampling fails to identify consistent and
informative neighbours.

Time Consumption: Our methods are expected to be more
efficient comparing to existing work. On one hand, our work
adopts MLP as node encoder and thus avoids the expensive node
aggregation in the encoding phase. On the other hand, TAPS
enables us to sample limited high-quality positives upfront.

TABLE VI
TIME COST COMPARISON AMONG TYPICAL GNN/GCL METHODS AND OUR

N2N-TAPS-x MODELS

Especially, when one positive is selected, we fully get rid of
the aggregation operation.

Table VI shows the time consumption comparison. From the
results we can see our methods can be orders of faster than the
typical GNN and GCL based methods. Graph-MLP [33] also
adopts MLP as encoder but it aligns a node to all the nodes that
can be reached from this node. This explains its slowness on
large datasets such as CS and Physics.

Evaluation of TAPS Strategy: TAPS is an important com-
ponent in our framework to ensure the quality and efficiency
of positive sampling. In Table II we have shown the advantage
of TAPS over random sampling on our N2N-TAPS-1 model.
In this section, we apply TAPS sampling to another sampling
based GNN baseline, GraphSAGE-Mean, to verify if TAPS can
be used as a general neighbourhood sampling strategy to identify
informative neighbours. Fig. 4 shows the results. By default,
GraphSAGE-Mean [22] uses random sampling to select neigh-
bours for aggregation, which has the risk of absorbing noisy
information. We replace random sampling in GraphSAGE-Mean
with TAPS and leave all the other implementation intact. Its
performance is obviously boosted and generally using more
neighbours can benefit the performance more. This observation
shows us again that it is important to consider the structural
dependencies to select useful neighbours to enrich node repre-
sentations.
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Fig. 4. Performance comparison among GraphSAGE-Mean, GraphSAGE-
Mean-TAPS, and N2N-TAPS-x (JL and URL) based on varying number of sam-
pled neighbours. Random neighbour sampling is used for GraphSAGE-Mean
and TAPS is used for GraphSAGE-Mean-TAPS.

Fig. 5. Label smoothness values obtained by using TAPS strategy to sample
1 to 5 neighbours (blue bars) and the label smoothness value obtained by
considering all neighbours without any sampling strategy (orange bar).

Label Smoothness Analysis: To verify the quality of the
neighbourhood sampling by using TAPS strategy, we intro-
duce the label smoothness metric proposed in CS-GNN [24]:
δl =

∑
(vi,vj)∈E(1− I(vi � vj))/|E|, where I(·) is an indicator

function that has I(vi � vj) = 1 ifyvi
= yvj

. Otherwise, I(vi �
vj) = 0 when yvi

�= yvj
. By virtue of the label smoothness, a

large δl suggests that the nodes with different labels are regarded
to be connected neighbours, while a small δl indicates a graph
G possessing the higher-quality neighbourhood structure, i.e.,
most neighbours of a node have the same label as the node.
Such high-quality neighbourhood can contribute homogeneous
information gain to their corresponding central nodes [24].

Fig. 5 shows that the label smoothness values gradually in-
creases by expanding the sampling size from 1 to 5 with our
TAPS strategy. Without any sampling strategy, the label smooth-
ness value of the whole graph is the highest. This phenomenon
suggests that our TAPS strategy can promote the neighbourhood
sampling quality as the sampling size decreases, explaining why
the proposed N2N-TAPS-1 model has competitive performance
on some datasets.

TAPS strategy is essentially a subgraph partition scheme. A
good partition is expected to lead to subgraphs faithful to the
node labels. Fig. 6 shows the statistical distribution in terms of
subgraph size (nodes in a subgraph) and the number of such

Fig. 6. Subgraph statistics on Cora by using TAPS strategy to perform the
subgraph partition. The horizontal axis indicates the number of nodes in the
subgraph; the vertical axis implies the number of such subgraphs.

Fig. 7. Visualization of part of the subgraphs derived from TAPS on Cora.
We rank the sizes of the subgraphs and divide them into 10 intervals. For each
row, we visualize the top-10 subgraphs within the corresponding interval from
top (top 10% interval) to bottom (80% ∼ 90% interval). Different node colors
represent different labels.

subgraphs derived from TAPS. The details of the subgraph
partition on Cora are visualized in Fig. 7, where different node
colors represent different labels. In each of the subgraph, most
of the nodes have the same color (same label), even in some
large subgraphs, implying TPAS generates high-quality neigh-
bourhood. This visualization also reveals that our TAPS strategy
is able to model multi-hop contextual information in graph
although we do not explicitly do so. The details of the statistical
distribution and the subgraph partition for other datasets can be
found in Appendix E, available online and F, available online.

D. Ablation Studies for NF-N2N

In this section, we perform ablation studies to explore other
interesting properties of the proposed NF-N2N methods.

Combination of Different Constraints: In this section, we
evaluate different combinations of strategies proven effective
to avoid representation collapse and see if such combinations
can further boost the performance. The concrete combinations
and the corresponding results are reported in Table VII. From
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TABLE VII
EFFECT OF INCORPORATING BATCH NORMALIZATION (BN), WHITENING NORMALIZATION (WN), MSE, AUTO-CORRELATION REGULARIZATION (AR),

CROSS-CORRELATION REGULARIZATION (CR) AND THEIR COMBINATIONS ON NODE CLASSIFICATION PERFORMANCE

Fig. 8. Performance comparison between Contrastive baseline and NF-N2N
(W) based on varying number of batch sizes.

the results we can observe that: (1) The solutions with WN in-
volved can generally achieve promising performance. (2) When
applying BN together with MSE minimization, trivial solution
can also be effectively avoided, where similar conclusions are
also discovered in [35]. (3) When auto- or cross-correlation
regularization is used alone, we can still get very competi-
tive node classification performance. (4) Adding BN on top
of our proposed regularizations does not observe consistent
] improvement.

Batch Size: In GCL, small batch size negatively influences the
quality of the representations and thus deteriorates the classifica-
tion performance on downstream tasks. To justify the advantage
and robustness of our NF-N2N methods on varying batch sizes,
we run experiments to compare Contrastive baseline and NF-
N2N (W). The results are shown in Fig. 8. From this figure, we
can clearly observe that the performance of Contrastive baseline
deteriorates when batch size becomes small, but our NF-N2N
(W) can still maintain competitive performance under small
batch size. This observation reassures us to use small batch size
to alleviate GPU memory bottleneck.

IterationP in Whitening Normalization and Positive Constant
β in Auto- or Cross-Correlation Regularization: Iteration P
in whitening normalization and positive constant β in auto- or
cross-correlation regularization are important hyper-parameters
in the proposed decorrelation constraints because they control
the graph signal decorrelation effect. Empirically, strong decor-
relation leads to under-smoothing and weak decorrelation may
fail to prevent over-smoothing. Figs. 9 and 10 show the trend
of node classification performance under the variations of the
three hyper-parameters. Generally, the trend of the curves are
not consistent across different datasets. Even for the same curve,
the trend is not monotonic. One possible explanation may be

Fig. 9. Node classification performance under the variation of the whitening
iteration P in NF-N2N (W) from 1 to 10.

Fig. 10. Node classification performance under the variation of the positive
constant β in auto- and cross-correlation regularizations from 0.1 to 1.0.

that the sweet spot in terms of graph smoothness can vary with
datasets.

VII. CONCLUSION

This work presented two simple-yet-effective self-supervised
node representation learning strategies (1) by directly optimizing
the alignment between hidden representations of nodes and their
neighbourhood through mutual information maximization; (2)
by directly maximizing the similarities between representations
of adjacency neighbouring nodes and proposed a Graph Signal
Decorrelation (GSD) principle to avoid representation collapse.
Theoretically, our formulation encourages graph smoothing.
We also proposed a TAPS strategy to identify informative
neighbours and improve the efficiency of our framework. It is
worth mentioning when only one positive is selected, our model
can fully avoid neighbourhood aggregation but still maintain
promising node classification performance. One of the major
contributions of this work is GSD principle. Under the umbrella
thereof, different constraint implementations can be derived.
We developed three versions of GSD implementations, termed
whitening normalization, auto-, and cross-correlation regular-
ization. Experiments on fourteen graph-based node classifica-
tion datasets show the advantage of our methods.
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