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ABSTRACT

Recent research shows the promising potential of node continuous embedding
methods in Top-K network node similarity search, which often involves finding
nearest neighbors measured by similarity in a continuous embedding space. How-
ever, these methods poorly scale to searching on large networks, since their em-
beddings demand significant storage and entail tremendous computation costs. In
this paper, we introduce a graph contrastive learning framework for compress-
ing continuous node embeddings into binary codes that enable customized bits
per dimension, striking a balance between retrieval accuracy, speed, and storage.
Specifically, a recurrent binarization with GNNs is presented, which consists of
two components, a GNN encoder for learning node continuous representations,
and a residual multilayer perception module for encoding representations to bi-
nary codes. The whole architecture is trained end-to-end by jointly optimizing
three losses, i.e., contrastive loss from giving closely aligned representations to
positives, information bottleneck loss from superfluous information minimization,
and representation distillation loss from aligning binary codes and their continu-
ous counterparts. Extensive experiments demonstrates that our method achieves
approximately 6x-19x faster retrieval and 16x-32x space reduction compared to
traditional continuous-based embedding methods. Moreover, it reaches compa-
rable or superior performance than state-of-the-art continuous- and hash-based
network embedding methods on several real-world networks.

1 INTRODUCTION

Learning high-quality node embedding is the theme of efficient network node similarity search (re-
trieval), which aims to find a small set of ranked nodes that are most similar to specific queries.
This has practical applications: recommending social media friends with shared interests, locating
related papers or authors in citation networks, e-commerce item suggestions, etc. Many successful
graph embedding methods are mainly designed for node classification or link prediction, with lim-
ited attention to node similarity search. Directly employing them for similarity search might yield
sub-optimal results for a few problems. The first challenge is that many node embedding models
learn continuous (float-valued) node embeddings, which are inefficient for similarity search on large
networks with hundreds of thousands or millions of nodes. Filtering candidates in a continuous
embedding space is highly costly due to inefficient embedding similarity calculations (e.g., cosine
similarity) using massive floating-point operations (#FLOP). The worst-case linear search time com-
plexity for continuous embeddings is even up toO(Nd), whereN is corpus size and d is embedding
dimension. The other challenge is high memory usage, e.g., 256-dimensional continuous embed-
dings using standard double precision numbers for 10 million nodes require 19GB memory, which
are impractical for general devices; Though traditional embedding hashing that transforms contin-
uous embeddings into hash codes can give improved retrieval speed and memory consumption, it
may suffer from poor retrieval accuracy in large-scale retrieval (e.g., million-scale one as shown in
Table x) due to less discriminative representations of hash codes (only 1 bit per dimension).

In this paper, we propose to learn novel binary codes as alternatives to conventional continuous/hash
embeddings for network nodes, so as to achieve a balanced goal of retrieval performance, speed,
and memory requirement. Recently, (Shan et al., 2018) propose to compress an arbitrary continu-
ous embedding into a recurrent binary embedding (RBE) for efficient sponsored search (Edelman
et al., 2007). RBE progressively refines a base binary vector (compressed from a continuous vec-
tor) with binary residual vectors to narrow the retrieval performance gap between hash codes and
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continuous counterparts, while offering much faster searching speed and reduced memory usage
than continuous embeddings. This motivates us to borrow the idea of RBE for network node binary
representation learning. However, there are some problems for RBE deployment: i) Network noise:
As RBE is compressed from its continuous counterpart, it may introduce superfluous network noise
from the continuous embedding, potentially degrading representation robustness. For instance, a
node’s continuous embedding, learned from its own features or those of its neighbors, may con-
tain irrelevant data that negatively impacts predictions for the current node (Wu et al., 2020). ii)
Degraded representation expressivity: Compressing continuous embeddings into equally expressive
binary codes is NP-hard due to discrete constraints (Håstad, 2001). Prior binarization methods of-
ten overlook the transfer of representation knowledge from continuous to binary embeddings (Tan
et al., 2020; He et al., 2020), resulting in reduced expressivity for accurately retrieving and ranking
relevant items to queries.

To address aforementioned problems, we propose an algorithmic framework for learning binary
representations (RBE) for network nodes with graph contrastive learning (Bi-GCL), which aims to
effectively binarize network nodes into recurrent binary embeddings with the Information Bottle-
neck principle and self-supervised representational distillation. Specifically, by introducing a new
GCL’s objective and a probabilistic recurrent binary block, we resolve objective mismatching and
enable end-to-end unsupervised training of binary embeddings with the Straight-Through Estima-
tor. We employ the Information Bottleneck principle to learn the shared information between two
augmentation views while minimizing their specific details. This helps to capture truly useful infor-
mation that is predictable for identifying nodes while eliminating noises. We leverage a pre-trained
continuous embedding model (as Teacher) to transfer its representational knowledge into a binary
embedding model (as Student) in a self-supervised fashion, which improves our binary embedding
expressivity.

Our contributions are summarized as follows:

• We propose unsupervised binary network embeddings with novel contrastive learning for efficient
node similarity search.

• We enhance binary embedding learning with the Information Bottleneck principle to improve
robustness against network noises.

• We introduce self-supervised representational distillation to bridge the retrieval performance gap
between continuous embeddings and binary embeddings.

• Extensive experiments show our method outperforms cutting-edge approaches, achieving compa-
rable or superior retrieval with significantly reduced speed and memory usage.

2 RELATED WORK

Network Node Similarity Search & Graph Embedding Early works (Jeh & Widom, 2002; Zhao
et al., 2009; Zhang et al., 2015) measure node similarity by structural similarity, but they are slow
and miss similarities defined by node features. In recent years, graph embedding methods that are
based on matrix factorization (Qiu et al., 2018), random walks (Grover & Leskovec, 2016) or deep
learning Veličković et al. (2018) have achieved state-of-the-art performance and efficiency in in-
formation retrieval. Among them, graph neural networks (GNNs) have shown great effectiveness
and scalability in generating embeddings Ying et al. (2018); Wu et al. (2019b). Very recently, self-
supervised graph contrastive learning (GCL) (Zhu et al., 2020; Thakoor et al., 2021; Wu et al., 2021;
Yu et al., 2022) has further boost GNNs’ performance on various tasks. However, all these meth-
ods’ learned continuous embeddings significantly degenerate similarity computation efficiency and
increase storage cost. Hereby, Discrete network embedding comes as a solution to these problems.
Early discrete methods borrow the idea of deep hashing in computer vision (Lai et al., 2015; Lin
et al., 2015) by first learning continuous representations, and then binarizing the representations
with a separated post-step, which might give sub-optimal binarization. Recently, (Yang et al., 2018;
Shen et al., 2018b; Tan et al., 2020) introduce end-to-end graph hashing learning. However, their
learned binary codes with only 1 bit per dimension are less discriminative than continuous embed-
dings, which will degrade performance in large-scale retrieval.
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Learning by Information Bottleneck The Information Bottleneck (IB) principle formulates the
goal of representation learning as an information trade-off between predictive power and represen-
tation compression, which is formally presented as the following objective:

RIB = I(Z;Y )− βI(Z;X), (1)

where X denotes the original data, Y , Z denote the label and the corresponding representation of
X , and β is the parameter that controls the trade-off. A high value of RIB suggests that represen-
tation Z retains sufficient information to predict Y , without preserving excessive information from
X . Recently, some works integrate the IB principle into the graph learning process for supervised
representation enhancement(Wu et al., 2020), vital subgraph extraction (Yu et al., 2020), and meta-
path aggregation (Yang et al., 2021). However, one drawback is that they use a fixed value of β,
which might be too small or too large for entries with different robustness.

Knowledge Distillation Knowledge distillation (KD) (Hinton et al., 2015) aims to transfer the
knowledge from a high-capacity teacher model to a smaller one without losing too much general-
ization power, which is also well investigated in embedding (representation) distillation (Tian et al.,
2019; Aguilar et al., 2020; Sun et al., 2020). The idea is to directly align embeddings from the
student with those from the teacher, e.g., minimizing the MSE between both embeddings. However,
existing work mainly tackles homogeneous embedding distillation, overlooking transfers between
types like continuous to discrete.

3 THE PROPOSED MODEL

In this section, we first formally introduce the problem of binary code learning for network nodes
and notations. Then we outline the framework of our method Bi-GCL, and detail each component
of our method.

3.1 PROBLEM STATEMENT AND NOTATIONS

We are given a graphG = {V, E} as input, where V = {v1, v2, ..., vN} and E ⊆ V×V represent the
sets of nodes and edges, respectively. We define the feature matrix X ∈ RN×F and the adjacency
matrix A ∈ {0, 1}N×N , where xi ∈ RF corresponds to the feature of node vi, and Aij = 1 if
and only if there is an edge between nodes vi and vj . Our goal is to learn a nonlinear recurrent
binary function that maps an arbitrary node v to a recurrent binary code Shan et al. (2018) with
customized bits per dimension. Specifically, given X and A as the inputs, the proposed Bi-GCL
applies the augmentation function aug(X,A) to generate two augmented views G̃1 = (X̃1, Ã1)

and G̃2 = (X̃2, Ã2). We consider v(1)i and v(2)i as two nodes in augmented views G̃1 and G̃2,
generated from vi, with h

(1)
i and h

(2)
i as two intermediate float vectors, b(1)i and b

(2)
i as two binary

codes learned on v(1)i and v(2)i using a graph convolutional encoder ϕ and a recurrent binarization
block ψ. The codes are learned by optimizing the multi-view graph contrastive loss, the information
bottleneck loss, and the representation distillation loss.

3.2 RECURRENT BINARIZATION WITH GRAPH CONVOLUTIONAL ENCODER

Graph Augmentation. Given a graph G, we corrupt it at both structure and attribute levels by
random masking of edges and node features following the approach in (Zhu et al., 2020). By graph
corruption, we generate two augmented graph views G̃1 and G̃2, which provide diverse node con-
texts for Bi-GCL to contrast with, as is discussed in section x.

Graph Convolutional Encoder. We use a 2-layerK-head GAT (Veličković et al., 2018) to encode
each node on the augmented views G̃1 and G̃2. The embedding of a node vi at layer l is computed
by: hli = σ(Aggr({αl,kij Θl,khl−1

j |j ∈ Ni ∪ {i}, k = 0, ...,K})), h0i = xi ∈ X̃∗, where αl,kij is
the edge coefficient of k-th head at layer l, Θl,k ∈ RF ′×F is the learnable weight matrix, Aggr
refers to the feature aggregator, i.e., average aggregator or concat aggregator, and σ(·) is a nonlinear
transformation such as PRelu. The last layer’s output is taken as the node representation h, the
intermediate input for the subsequent recurrent binarization block that generates the binary code.
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Recurrent Binarization Block. Inspired by (Shan et al., 2018), given an arbitrary float vector h
learned by the GAT encoder, this block compresses the vector into a recurrent binary one. To this
end, we first compress the float vector h into a binary code b0 composed of either -1 or +1:

b0 = ρ (W0(h)) , (2)

where W0 represents a fully-connected layer, ρ(·) is a probabilistic binary layer (Shen et al., 2018a)
formulated as:

ρ (·) ≡ sign(σ(·)− t), (3)
where σ(·) denotes a sigmoid function, and t denotes a sample from the uniform distribution [0, 1].

The binary embedding b0 is subsequently converted back into the continuous embedding h̃0 =
||R0(b0)|| using multi-layer perception (MLP) R0 following the approach in (Gan et al., 2023).
The difference between the original h and the reconstructed h̃0 indicates the representation loss
due to the binarization process. This loss can be further minimized by repeatedly executing the
previous steps to binarize the residual components. The residual binary vector can be formulated
as r0 = ρ(W1(h − h̃0)), which is further added to the base binary b1 = b0 +

1
2r0. We choose the

weight 1
2 to ease the similarity calculation with only xor and popcount (Shan et al., 2018).

Up until this point, we have presented the process of recurrent binarization when the loop count is
set to 1. The loop can be tailored to strike a balance between accuracy and efficiency, the entire
process of recurrent binarization, can be formally defined as:

b0 = ρ(W0(h)),

ĥu−1 = ||Ru−1(bu−1)||,
ru−1 = ρ(Wu(h− ĥu−1)),
bu = bu−1 + 2−uru−1.

(4)

The binary code with u + 1 bit(s) per dimension (recurrent binary embedding) is the output of the
binarization process in Eq. 4.

3.3 TRAINING SCHEMAS

Contrastive Learning Inspired by the recent success of GCL (Zhu et al., 2020; Yu et al., 2022),
we propose to use a contrastive objective to get semantically similar nodes close in the represen-
tation space, while pushing dissimilar ones apart. Treating b

(1)
i as the anchor, the positives are:

i) the inter-view embedding of v(2)i , i.e., b(2)i ; ii) embeddings of intra-view neighbors most fre-
quently visited by random walks starting from v

(1)
i , i.e., {b(1)j |v(1)j ∈ RandomWalkSampler(v(1)i )},

where RandomWalkSampler selects nodes with the highest Top-T visit counts with respect to
v
(1)
i within G̃1. The embeddings of nodes in the two views /∈ {b(1)i ∪ b

(2)
i ∪ {b(1)j |v(1)j ∈

RandomWalkSampler(v(1)i )}} are regarded as negatives. We define the contrastive loss between
the two views associated with the anchor b(1)i as:

ℓ
(
b
(1)
i

)
= − log

 1

|P (b(1)i )|

∑
p∈P (b

(1)
i )

e
θ
(
b
(1)
i ,p

)
/τ

∑
p∈P (b

(1)
i )

e
θ
(
b
(1)
i ,p

)
/τ

+
∑
n∈N(b

(1)
i )

e
θ
(
b
(1)
i ,n

)
/τ

 , (5)

where P (b(1)i ) and N(b
(1)
i ) refer to positives and negatives of b(1)i respectively, τ is a temperature

parameter, and θ(·, ·) is defined as the cosine similarity. Since two views are symmetric, given b
(2)
i

as the anchor, the contrastive loss ℓ
(
b
(1)
i

)
can be similarly defined according to Eq. 5. The final

contrastive loss between the two augmented views, averaged over all nodes is defined as:

LCL =
1

2N

N∑
i=1

[ℓ(b
(1)
i ) + ℓ(b

(2)
i )], (6)

The advantages of this contrastive objective are two-fold. First, it allows us to flexibly preserve
more semantic similarity relations between nodes than using only traditional self-supervised graph
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contrastive objectives, i.e., InfoNCE (Oord et al., 2018) or NT-Xent (Zhu et al., 2020), which will
push away similar samples of an anchor, especially those that are most similar to the anchor as hard
negatives across all the training process, e.g., InfoNCE and NT-Xent treat the first-order neighbors of
an anchor as hard negatives and might violate the homophily assumption suggesting that connected
nodes tend to share similar semantic classes in many networks and should be close to each other.
On the other hand, in Bi-GCL, the number of positives per node can be properly limited to learn a
even embedding distribution that helps preserve intrinsic characteristics of nodes (Yu et al., 2022).
It is worth noting that the NT-Xent is a special case of the proposed contrastive loss, by making
the inter-view same node as the sole positive. Second, it preserves the hard positive/negative mining
property from NT-Xent (Zhu et al., 2020), and generalizes this property to all positives, thus avoiding
the explicit hard mining that is delicate but critical part of many losses, e.g., triplet loss (Khosla
et al., 2020). Notably, given an anchor, we consider all the inter-view samples except the inter-view
same node as negatives, part of which naturally form hard negatives (e.g., inter-view counterparts
with respect to intra-view positives). This improves model’s ability to identify positives from hard
negatives, e.g., after convolution propagation on two views with different augmentations, an intra-
view neighbor u of an anchor is more similar to that anchor compared to the inter-view counterpart
of u, and the model is forced to distinguish u as a positive from such hard negative. As is shown in
our experiments, it is a useful trick to boost performance.

Improving under the knowledge distillation To fill the expressivity gap between continuous
embeddings and binary ones, we maximize a lower-bound to the mutual information between the
continuous embeddings and binary codes, aiming to transfer structured representational knowledge,
i.e., dependencies between representation output dimensions (Tian et al., 2019). Formally, given
a mini-batch of binary codes [b1; b2; ...; bN ] learned on the original graph G, and their continuous
counterparts (intermediate representations) [h1;h2; ...;hN ], we employ InfoNCE to maximize the
mutual information between bi and hi:

LKD = − 1

N

N∑
i=1

log
eθ(bi,hi)/τ∑N
j=1 e

θ(bi,hj)/τ
, (7)

where τ is a temperature parameter, and θ(·, ·) is defined as the cosine similarity. Intuitively, Eq. 7
enforces bi to be close to hi and meanwhile pushes bi away from continuous embeddings other
than hi. It is worth noticing that the reason we choose to use InfoNCE instead of MSE, another
commonly used function in KD, is that the architectures of generating continuous embeddings and
binary codes as well as their representation forms are very different, in which case forcing binary
codes (as students) to approach the exact values as continuous embeddings (as teachers) seems
overly stringent and unnecessary for a good student, which is line with the conclusion in (He et al.,
2021). Instead, Eq. 7 only attempts to ensure the information in the continuous embeddings is also
captured in the binary code, which is more effective than MSE shown in our experiments.

We further reveal that maximizing the objective in Eq. 7 is also equivalent to minimize the quan-
tization error, which is often overlooked in previous works, as they mainly focus on KD between
homogeneous representations, i.e., continuous to continuous. Formally, the quantization error can
be interpreted as: min ||h−b||2, where h is the continuous embedding and b is the binary code. We
expand this equation to get: ∥h− b∥2 = ∥h∥2+∥b∥2−2 ∥h∥ ∥b∥ cos θhb. In retrieval, we evaluate
the similarities of binary codes by measuring their cosine similarities. Consequently, the magnitude
of vector h can be ignored by normalizing it to match the norm of vector b, i.e., ||h|| =

√
K

(i.e., K = ||b||2) and interpret the quantization error as to only the angle θhb between h and b:
||h − b||2 = 2K − 2K cos θhb = 2K(1 − cos θhb). Given that 2K is a constant, maximizing
the cosine similarity between h and b will minimize the quantization error. This results in a more
accurate binary code approximation.

Improving under the Information Bottleneck Principle We adopt the Information Bottleneck
principle to retain the minimum sufficient information in learned binary codes. By dosing so, we can
improve representation robustness against network noises that may negatively affect the binarization.
Specifically, we encourage the divergence between the binary codes of the augmented views while
maximizing the information relevant to the node retrieval task. Accordingly, in Eq. 1, we rewrite the
input variables X as the intermediate float embeddings H ≜ {h(1)i , h

(2)
i }Ni=1, representations Z as
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binary codes B ≜ {b(1)i , b
(2)
i }Ni=1, and reformat Eq. 1 as our final joint optimization objective:

min
ϕ;ψ

LCL + LKD + βI(B;H), (8)

For the third term in Eq. 9, by definition, we have I(B,H) = KL (P(b|h)||P(h)) ,
where P(h) denotes the distribution of h, KL(·||·) is the KL-divergence, P(b|h) ∼
Bernoulli(σ(ConcatUu=0(Wu(γu)))), γ0 = h, γu(u>0) = h − ĥu−1 (see section 3.2). From the
non-negativeness of KL-divergence: I(B,H) ≤ KL (P(b|h)||P(h)) , where q(b) could be any dis-
tribution of b. we reduce Eq. 9 to:

min
ϕ;ψ

LCL + LKD + βKL (P(b|h)||q(b)) , (9)

In our experiments, we compute: q(b(1)i ) = p(b|v(2)i ); and q(b(2)i ) for the view v
(1)
i can be defined

similarly. Intuitively, by encouraging the encoding distributions from different views of the same
node close to each other, the model can learn the shared information between the two views and
eliminate superfluous information from each view. Any representation containing all shared infor-
mation from both views would have necessary label information, and the view-specific information
is redundant and label-irrelevant.

To select an appropriate value of β to control the trade-off between sufficiency and robustness of the
binary code, we propose to assign personalized β to nodes with different robustness. Specifically,
we perform “virtual” adversarial attacks that generate adversarial perturbation in the representation
space to measure the robustness of nodes, as nodes prone to attacks are regarded nonrobust and
should receive higher values of β. We first employ one-step PGD (Madry et al., 2017) that injects
zero-initialized perturbation δ into the embedding representation, and then calculate the gradient of
the loss with respect to δ. The ℓ2 norm of the gradient g(δ)i of the perturbation δ on the embedding
of an arbitrary node vi is negatively correlated to the node robustness. Consequently, we can do the
followings to give a personalized βi to a node vi:

βi = min
(

max
(

||g(δ)i||F
||g(δ)MEAN ||F

βbase, βmin

)
, βmax

)
, (10)

where ||g(δ)MEAN ||F is the mean of ||g(δ)||F with respect to all nodes, βbase is a base value to
fine-tune personalized βi, and βmin/max guarantees the value scale locate in appropriate scope.

3.4 RETRIEVAL WITH BINARY CODES

(Shan et al., 2018) decomposed the cosine similarity of RBE into the dot product of hash codes
(Eq. 11), with q and r denoting query and reference. This enables efficient hash code calculation
through bit-wise operations like population count, XOR, and logical right shift (Eq. 12), where x, y
are binary vectors in {1,−1}m (m is the dimensionality of RBE).

D(bqu, b
r
u) ∝

1

||br||
(bq0 · br0 +

u−1∑
j=0

u−1∑
i=0

(
1

2
)j+i+2rqj · r

r
i

+

u−1∑
j=0

(
1

2
)j+1bq0 · rrj +

u−1∑
i=0

(
1

2
)i+1br0 · r

q
i )

(11)

x · y = (popc(x ∧ y) >> 1) +m (12)

Computations are efficient on GPU (Shan et al., 2018) or CPU (Gan et al., 2023), and can be de-
ployed with various ANN algorithms (e.g., HNSW (Malkov & Yashunin, 2018)). In this work, we
only focus on RBE learning for graph nodes, and simply use brute-force search in experiments.

4 EXPERIMENTS

Datasets We use five real-world networks including citation networks (Bojchevski & Günnemann,
2018; Hu et al., 2020), social networks (Zeng et al., 2019) and a product co-purchasing network (Hu
et al., 2020). Brief statistics of the datasets are shown in Table 1.
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Table 1: The Statistics of Datasets.
Dataset Nodes Edges Features Classes Validation/Testing

Cora 19,793 126,842 8,710 70 1400:1400
Flickr 89,250 899,756 500 7 700:700

Reddit2 232,965 23,213,838 602 41 840:840
OGBN-Arxiv 169,343 1,166,243 128 40 800:800

OGBN-Products 2,449,029 61,859,140 100 47 940:940

Evaluation Metric In Top-K node similarity search evaluation, we select two widely-used evalu-
ation metrics Precision@K and MAP@K.

Baselines In this work, we include the following embedding models: (1) unsupervised contin-
uous embedding methods including BGRL (Thakoor et al., 2021) GRACE (Zhu et al., 2020),
DGI (Veličković et al., 2018), GAE (Kipf & Welling, 2016b), VGAE (Kipf & Welling, 2016b),
(2) hashing methods including unsupervised ones: BANE (Yang et al., 2018), DNE (Shen et al.,
2018b), HashGNN (Tan et al., 2020), and (3) supervised continuous embedding methods including
GCN (Kipf & Welling, 2016a), SGC (Wu et al., 2019a).

We exclude potential baselines, e.g., PTE (Tang et al., 2015), BiNE (Gao et al., 2018), MF (Luo et al.,
2014), Node2Vec (Grover & Leskovec, 2016), GraphSage (Hamilton et al., 2017)MVGRL (Hassani
& Khasahmadi, 2020), since the above competing methods (Tan et al., 2020; Zhu et al., 2020;
Thakoor et al., 2021) have validated the superiority.

Experiment Settings. We built our model using Python 3.9 and PyTorch 1.13.1. The experiments
are conducted on a Linux-based system, equipped with an NVIDIA RTX4090 GPU, Intel Xeon(R)-
8383C CPU @ 2.7GHz, and 256 GB of RAM. For all the baselines, we follow the official reported
hyperparameter settings. For our method, we tuned the learning rate, the weight decay, the tem-
perature parameter within {10−4, 5× 10−4, 10−3, 10−2}, {10−6, 10−5, 10−4}, and {0.5, 0.7, 0.9},
respectively. We execute 1 ∼ 30 random walks per node with length ∈ {1, 5, 10, 15, 20, 25, 30} to
pick up semantically similar neighbors for objective in Eq. 5. All models are initialized using the
default normal initializer and optimized with the Adam optimizer (Kingma & Ba, 2014). We use en-
tire network nodes as training nodes to learn representations for unsupervised methods, and employ
the default dataset training splits for supervised methods. For datasets including OGBN-Products,
OGBN-Arxiv, Reddit2 and Cora, we randomly select 40 nodes per class as queries, and 200 nodes
per class specially for Flickr, with half of nodes per class are for validation and the rest ones for test-
ing. The total query count with respect to all datasets are summarized in Table 1. The embedding
dimension of all methods is set to 128. We use cosine similarity to measure embedding similarity,
and apply brute-force search for Top-K similarity search. Particularly, in our experiments, due to
large scale of big graphs like Reddit2 and OGBN-Arxiv that cannot fit into GPU memory entirely,
we apply the random walk based subsampling method proposed in (Zeng et al., 2019) to sample a
mini-batch of subgraphs from the original graph in the training process.

4.1 PERFORMANCE DEMONSTRATION

We evaluate Top-K similarity search by varying K in {20, 40, 60, 80, 100}. A detailed comparison
of the Top@40 and Top@60 results is provided in Table 2, and the rest results are in Supplementary
Materials. From Table 2, we draw the following observations:

• Our model offers a competitive similarity searching capability to state-of-the-art continuous
embedding models.
(1). We leverage our model to generate two types of recurrent binary embeddings, RBE(1) ∈
{−1.5,−0.5, 0.5, 1.5}128 (recurrent binarization loop=1), and RBE(2) ∈ {−1, 1}128 (recurrent
binarization loop=0). RBE(1) consistently give comparable or superior performance than all un-
supervised and supervised continuous embedding baselines on all datasets. Specifically, RBE(1)

significantly outperform most baselines on the precision metric, e.g. 3%∼5% improvement than
the most competitive methods GRACE and DGI; see for example on the datasets Reddit2 and
OGBN-Arxiv. In terms of the ranking ability measured by the MAP metric, RBE(1) show com-
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parable performance (slightly better or worse) compared to the most cutting-edge methods such
as DGI and SGC, but RBE(1) is able to retrieve more semantically similar nodes. We notice that
GRACE, a special case of our method Bi-GCL, is the method that gives consistently superior
performance than other baselines. We attribute this to its negative mining strategy that pushes
all samples except the node in the same view away from the anchor, which helps to mitigate the
popular bias and preserve the intrinsic characteristics of nodes. However, as mentioned before,
GRACE might deliver sub-optimal performance since it separates semantically similar samples.
Bi-GCL, on the other hand, can use importance-aware random walks to effectively and efficiently
preserve similarity relations between nodes. On small-scale graphs, RBE(2) gives comparable or
even superior performance to RBE(1); see for example on the datasets OGBN-Arxiv and Flickr.
However, RBE(2) become much less dicriminative for tackling large-network retrieval. We argue
that one can flexibly choose the type of binary codes learned by Bi-GCL according to the network
scale, in order to make a balance between retrieval performance, speed and memory usage.

• Compared to all hashing models, our model presents remarkable performance improve-
ment.
(1) RBE(1) outperforms all hashing models, particularly by large margins on large graph such as
Reddit2, OGBN-Arxiv and OGBN-Products, since the indiscriminative representations of tradi-
tional hashing models severely degrade the retrieval performance. For example, as DNE learns
binary code from only network structure and do not leverage the essential information on node
attributes, it cannot learn discriminative binary codes to perform well for similarity search. (2)
With the help of two-stage retrieval, the ranking ability of (unsupervised) HashGNN is superior
than another two hashing methods DNE and BANE, but is still worse than RBE(1). Among hash-
ing methods, HashGNN gives the closest performance to our RBE(1), but it uses Triplet loss to
capture semantically similar samples, which is sensitive and delicate to the hard negative mining.
Therefore, its retrieval performance is still far behind RBE(1), e.g., HashGNN falls short by 5%
in Precision@40 on billion-scale dataset OGBN-Products.

Table 2: Performance Comparison on Retrieval Experiment.

Model OGBN-Products Reddit2 OGBN-Arxiv
MAP@40 Precision@40 MAP@60 Precision@60 MAP@40 Precision@40 MAP@60 Precision@60 MAP@40 Precision@40 MAP@60 Precision@60

DGI 0.8222 0.4318 0.8104 0.4263 0.6951 0.4331 0.6456 0.4170 0.6673 0.2674 0.6034 0.2488
GRACE 0.8502 0.4604 0.8204 0.4436 0.8775 0.7366 0.8548 0.7209 0.6790 0.3471 0.6254 0.3285
BGRL 0.8518 0.4927 0.8292 0.4740 0.7090 0.2472 0.6451 0.2203 0.7054 0.3052 0.6550 0.2807
GAE 0.8133 0.4288 0.8086 0.4105 0.6356 0.3073 0.5756 0.2858 0.6662 0.2893 0.6126 0.2669

VGAE 0.8085 0.4224 0.8011 0.3996 0.6308 0.2839 0.5655 0.2656 0.6590 0.2885 0.5978 0.2694
DNE 0.7561 0.3747 0.7432 0.3556 0.5942 0.2391 0.5258 0.2134 0.6420 0.2417 0.5868 0.2229

BANE 0.7641 0.4099 0.7529 0.3809 0.6115 0.2744 0.5463 0.2751 0.6555 0.2545 0.5991 0.2382
HashGNN 0.7852 0.4525 0.7781 0.4067 0.7133 0.7072 0.6844 0.6850 0.6789 0.3217 0.6325 0.3021

SGC-supervised 0.8593 0.4964 0.8317 0.4775 0.8845 0.7765 0.8680 0.7604 0.6964 0.3567 0.6468 0.3320
GCN-supervised 0.8499 0.4887 0.8154 0.4646 0.8764 0.7670 0.8583 0.75659 0.6865 0.3655 0.6328 0.3476
GAT-supervised 0.8520 0.4905 0.8254 0.4716 0.8699 0.7679 0.8487 0.7565 0.6827 0.3613 0.6291 0.3433

Raw Feature 0.7756 0.4047 0.7642 0.3970 0.6408 0.1822 0.5658 0.1626 0.6391 0.2283 0.5782 0.2092

RBE1 0.8541 0.5052 0.8275 0.4864 0.8807 0.7804 0.8645 0.7710 0.6871 0.3938 0.6441 0.3777
RBE2 0.7742 0.4807 0.7549 0.4645 0.7412 0.6923 0.7158 0.6778 0.6863 0.3839 0.6373 0.3688

Model Cora Flickr
MAP@40 Precision@40 MAP@60 Precision@60 MAP@40 Precision@40 MAP@60 Precision@60

DGI 0.7106 0.3617 0.6552 0.3208 0.5310 0.2252 0.4621 0.2156
GRACE 0.6987 0.3231 0.6419 0.2859 0.5367 0.2227 0.4633 0.2132
BGRL 0.6831 0.2690 0.6243 0.2348 0.5278 0.2036 0.4508 0.1938
GAE 0.6352 0.2703 0.5696 0.2367 0.5199 0.1900 0.4313 0.1828

VGAE 0.6549 0.2719 0.5905 0.2377 0.5159 0.1823 0.4234 0.1743
DNE 0.5878 0.2470 0.5359 0.2111 0.4916 0.1677 0.4084 0.1596

BANE 0.6095 0.2581 0.5404 0.2228 0.5017 0.1704 0.4110 0.1625
HashGNN 0.6404 0.3522 0.5892 0.3130 0.5261 0.2212 0.4512 0.2096

SGC-supervised 0.7154 0.4248 0.6653 0.3886 0.5264 0.2220 0.4442 0.2155
GCN-supervised 0.6912 0.3610 0.6336 0.3377 0.5332 0.2234 0.4540 0.2173
GAT-supervised 0.6837 0.3525 0.6322 0.3290 0.5225 0.2190 0.4405 0.2043

Raw Feature 0.6163 0.2120 0.5443 0.1831 0.4128 0.1955 0.3632 0.1878

RBE1 0.7009 0.3933 0.6510 0.3591 0.5245 0.2235 0.4503 0.2167
RBE2 0.6658 0.3784 0.6177 0.3462 0.5310 0.2255 0.4568 0.2145

4.2 ABLATION STUDY

We test the effect of the Information Bottleneck principle and the representational distillation for
retrieval performance improvement, and report the results in Table 4. We have conclusions that
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the RBE model learned with the Information Bottleneck principle and the representation distillation
achieves better performance across all datasets.

Table 3: Ablation Study on the Representational Distillation.

Model OGBN-Product Reddit2 OGBN-Arxiv Cora Flickr
MAP@40 Precision@40 MAP@40 Precision@40 MAP@40 Precision@40 MAP@40 Precision@40 MAP@40 Precision@40

RBE 0.8357 0.4865 0.86242 0.76581 0.6650 0.3728 0.5918 0.3766 0.5025 0.2022
RBE+OUR Distillation 0.8461 0.4968 0.8711 0.7720 0.6765 0.3822 0.6912 0.3836 0.5135 0.2115
RBE+MSE Distillation 0.8541 0.5052 0.8807 0.7804 0.6871 0.3938 0.7009 0.3933 0.5245 0.2235

Table 4: Ablation Study on Information Bottleneck.

Model OGBN-Product Reddit2 OGBN-Arxiv Cora Flickr
MAP@40 Precision@40 MAP@40 Precision@40 MAP@40 Precision@40 MAP@40 Precision@40 MAP@40 Precision@40

RBE 0.8462 0.4959 0.8712 0.7711 0.6765 0.3830 0.6021 0.3822 0.5138 0.2149
RBE+IB 0.8541 0.5052 0.8807 0.7804 0.6871 0.3938 0.7009 0.3933 0.5245 0.2235

4.3 RETRIEVAL TIME AND MEMORY USAGE

We mainly compare the runtime of computing dot product with respect to recurrent binary embed-
dings and continuous embeddings. We empirically found that computing the dot product of two
recurren binary embeddings is about 6x faster (RBE(1)) or 19x faster (RBE(2))than the continuous
counterparts’. RBE(1) with 2 bits per dimension and RBE(2) with 1 bit respectively reduce memory
consumption by 16 times and 32 times theoretically.

4.4 CASE STUDY

In this subsection, we conduct a case study on relevant paper search on the arxiv dataset to intuitively
show the effectiveness of our model.We randomly selected a highly-cited article titled Recurrent
Residual Convolutional Neural Network based on U-Net (R2U-Net) for Medical Image Segmenta-
tion focused on the subject of medical image segmentation to serve as the query paper.We apply
node similarity search to retrieve the top-5 similar papers by our model and baselines.Among the
top-5 related papers, we combined the title and abstract of the paper to check whether they are rel-
evant papers. We can get the results that the five papers retrieved by Bi-GCL mainly focus on the
topic of segmentation in the biomedical field. Among other methods, BRGL performs the best, with
only one paper not matching the target theme. On the other hand, GCN’s results are less satisfactory,
with just one paper fully aligning with the intended topic. It is worth highlighting that the papers re-
trieved by Bi-GCL are typically highly cited, indicating that our model not only returns papers with
high relevance but also those that generally possess substantial academic influence. The detailed
results of the relevant papers returned by all methods can be found in the appendix.

5 CONCLUSION

This research introduces Recurrent Binary Embeddings (RBE) as a solution to the challenges of
computational inefficiency and memory intensity with continuous embeddings, as well as poor re-
trieval performance with hash codes in network node similarity search. Inspired by Graph Con-
trastive Learning (GCL), Bi-GCL provides retrieval performance comparable to or better than con-
tinuous/hash embeddings, allows efficient similarity calculations through binary dot products, and
offers low memory consumption. Finally, it enables a trade-off between accuracy, computation, and
memory overheads.
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Aleksandar Bojchevski and Stephan Günnemann. Deep gaussian embedding of graphs: Unsuper-
vised inductive learning via ranking. In International Conference on Learning Representations,
2018.

Benjamin Edelman, Michael Ostrovsky, and Michael Schwarz. Internet advertising and the gener-
alized second-price auction: Selling billions of dollars worth of keywords. American economic
review, 97(1):242–259, 2007.

Yukang Gan, Yixiao Ge, Chang Zhou, Shupeng Su, Zhouchuan Xu, Xuyuan Xu, Quanchao Hui,
Xiang Chen, Yexin Wang, and Ying Shan. Binary embedding-based retrieval at tencent. arXiv
preprint arXiv:2302.08714, 2023.

Ming Gao, Leihui Chen, Xiangnan He, and Aoying Zhou. Bine: Bipartite network embedding.
In The 41st international ACM SIGIR conference on research & development in information
retrieval, pp. 715–724, 2018.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
Advances in neural information processing systems, 30, 2017.

Kaveh Hassani and Amir Hosein Khasahmadi. Contrastive multi-view representation learning on
graphs. In International conference on machine learning, pp. 4116–4126. PMLR, 2020.
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