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ABSTRACT

When personalized federated learning (FL) meets large foundation models, new
challenges arise from various limitations in resources. In addition to typical limi-
tations such as data, computation, and communication costs, access to the models
is also often limited. This paper endeavors to solve both the challenges of lim-
ited resources and personalization. i.e., distribution shifts between clients. To do
so, we propose a method named ZOOPFL that uses Zeroth-Order Optimization
for Personalized Federated Learning. ZOOPFL avoids direct interference with
the foundation models and instead learns to adapt its inputs through zeroth-order
optimization. In addition, we employ simple yet effective linear projections to
remap its predictions for personalization. To reduce the computation costs and
enhance personalization, we propose input surgery to incorporate an auto-encoder
with low-dimensional and client-specific embeddings. We provide theoretical sup-
port for ZOOPFL to analyze its convergence. Extensive empirical experiments on
computer vision and natural language processing tasks using popular foundation
models demonstrate its effectiveness for FL on black-box foundation models.

1 INTRODUCTION

In recent years, the growing emphasis on data privacy and security has led to the emergence of
federated learning (FL) (Warnat-Herresthal et al., 2021; Chen & Chao, 2022; Chen et al., 2023b;
Castiglia et al., 2023; Rodrı́guez-Barroso et al., 2023; Kuang et al., 2023). FL enables collaborative
learning while safeguarding data privacy and security across distributed clients (Yang et al., 2019).
However, FL faces two key challenges: limited resources and distribution shifts (Figure 1 (a, b)).

The rise of large foundation models (Bommasani et al., 2021) has amplified these challenges. The
computational demands and communication costs associated with such models hinder the deploy-
ment of existing FL approaches (Figure 1a). 1 Most of them require fine-tuning the models on every
client.2 Moreover, foundation models, often proprietary (Van Dis et al., 2023; Sun et al., 2022),
grant only black-box access, making FL resource-efficient applications a pressing research area.

Recent efforts in FL (Xu et al., 2023b; Zhao et al., 2023; Chen et al., 2023d; Li et al., 2023)
have attempted to reduce the number of optimized parameters to minimize computational and
communication costs. As illustrated in Figure 1 (c), existing methods use prompts (Liu et al.,
2023) or adapters (Cai et al., 2022) to fine-tune foundation models (Xu et al., 2023b). Other ap-
proaches (Yurochkin et al., 2019; Liu et al., 2022) focus on limiting the number of communication
rounds. All of them however depend on white-box access to the foundation models. On the other
hand, distribution shifts are an additional challenge for FL since the data across clients is not neces-
sarily i.i.d. (Li et al., 2020b; Vemulapalli et al., 2023) (Figure 1b). Directly aggregating information
e.g., with FedAVG (McMahan et al., 2017) often results in slow convergence and poor performance
in each client (Gao et al., 2022). Some methods have been designed to address the personalization
of large foundation models (Li et al., 2021; Setayesh et al., 2023; Xu et al., 2023a). However, they

1Communication costs can be estimated as C = p×K×T , where p, T , K respectively denote the number
of parameters, communication rounds, and clients. With GPT-3 for example (Brown et al., 2020), p = 175
billion parameters, making the communication of entire models impractical.

2For example, training GPT-2-small (Radford et al., 2019) requires at least two A100 GPUs for 16 hours, a
resource unavailable to many.
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Figure 1: ZOOPFL addresses federated learning with foundation models while coping with limited
resources in communication, computation, and model accessibility (a) and being robust to distribu-
tion shifts (b). Most existing methods rely on white-box model access (c). In contrast, ZOOPFL is
applicable to black-box models by using input surgery and semantic output re-mapping (d).

cannot deal with black-box models. The method proposed in this paper is designed to cope with
label shift, i.e. variations in the distribution of labels among clients (Figure 1b).

In this paper, we propose ZOOPFL to cope with limited resources and personalization for federated
learning and black-box foundation models. To cope with black-box models, ZOOPFL proposes two
strategies, input surgery and semantic re-mapping, and learning through zeroth-order optimization
(ZOO). To reduce the computational costs of ZOO and share information among clients, we employ
an auto-encoder with low embedding dimensions to represent transformations. For better personal-
ization, the client-specific embeddings and semantic re-mapping are preserved by each client. Fig-
ure 1 (d) illustrates that our proposed method learns transformations on the inputs and mappings of
the outputs through zeroth-order optimization (Liu et al., 2020; Wang et al., 2018; Lian et al., 2016).
This bears similarities with model reprogramming (Chen, 2022) and Reprogrammable-FL (Arif
et al., 2023), but the latter is unsuitable for black-box models and personalization. To the best of
our knowledge, our method is the first to achieve federated learning with large black-box models, a
challenging setting that is becoming increasingly relevant to the real world.

In summary, our contributions are four-fold.

1. Scenario Exploration: We delve into the challenges posed by fully black-box foundation mod-
els in FL. Our contribution lies in understanding and navigating this complex scenario.

2. ZOOPFL Framework: We introduce ZOOPFL, a comprehensive solution tailored for FL in
resource-constrained and personalized settings. This framework encompasses Input Surgery
and Semantic Re-mapping. ZOOPFL employs strategic input manipulations, leveraging dedi-
cated embeddings, and employing zeroth-order optimization while it project outputs for specific
task and personalization.

3. Theoretical Support: We provide formal theoretical support, enhancing ZOOPFL’s credibility
and offering insights into its workings.

4. Empirical Validation: ZOOPFL is rigorously evaluated through computer vision and natural
language processing experiments, demonstrating the effectiveness and versatility of ZOOPFL.

2 RELATED WORK

Federated learning makes it possible to perform distributed multi-party computing without com-
prising privacy (Zhang et al., 2021; Voigt & Von dem Bussche, 2017; McMahan et al., 2017; Yang
et al., 2019; Tariq et al., 2023; Wang et al., 2023a; So et al., 2023). When meeting non-iid data, com-
mon FL methods, e.g. FedAVG (McMahan et al., 2017) can suffer from low converge speed and
terrible personalization performance (Sattler et al., 2019). Specific methods, e.g. FedProx (Li et al.,
2020b) and FedBN (Li et al., 2021), are proposed for personalization while additional methods, e.g.
(Chen & Chao, 2022; Gupta et al., 2022; Qu et al., 2022), also consideration generalization.

The above methods can fail when entering the era of large foundation models (Bommasani et al.,
2021; Xing et al., 2023; Zhuang et al., 2023), due to novel issues, e.g. limited resources that make
operations on the whole network impossible (Chen et al., 2022; 2023a; Ding et al., 2023). Re-
cent work (e.g. FedPrompt (Zhao et al., 2023),PromptFL (Guo et al., 2023), pFedPG (Yang et al.,
2023a), FwdLLM (Xu et al., 2023b)) were proposed to tune part of the whole network for efficiency.
However, they all require access to foundation models, which can be impossible in reality.
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Table 1: Comparisons of different methods.
Type Method Model scale Model accessibility Communication Computation Personalization

Base FedAVG Limited White-box Inefficient High Unsupported
FedBN Supported

Large model for FL FedPrompt, FedCLIP Unlimited White-box Efficient Low SupportedPromptFL, pFedPG High

Zero-order for FL FwdLLM, BAFFLE Unlimited White-box Efficient Low SupportedFedZO Limited

Model reprogramming Reprogrammable-FL Unlimited White-box Efficient High Supported

Black-box foundation FL ZooPFL (Ours) Unlimited Black-box Efficient Low Supported

In addition to data privacy, model privacy also raises attention (Mo et al., 2020), which means
foundation models can be black-box models (Guidotti et al., 2018; Ljung, 2001). Little work paid
attention to finetuning or optimizing in this field, but most related work focused on attacks (Yang
et al., 2023b;c). One related work is FedZO (Fang et al., 2022) which utilized zero-order optimiza-
tion (Ghadimi & Lan, 2013), but it did not consider utilizing large foundation models.

Model reprogramming (MR) (Tsai et al., 2020; Xu et al., 2023c; Chen, 2022) provides a similar
solution to ZOOPFL and it also focuses on coping with inputs and outputs. Reprogrammable-
FL (Arif et al., 2023) adapted MR to the setting of differentially private federated learning. But it
preserved local input transformations and shared output transformation layers, which were totally in
contrast to ours. Table 1 provides a comprehensive comparison between existing methods and ours.
For more detailed related work, please refer to section D.

3 METHODOLOGY

In this section, we articulate our proposed ZOOPFL. We begin with problem formulation in Sec. 3.1.
Then, we show the motivation of designing ZOOPFL in Sec. 3.2. Next, Sec. 3.3 introduces the
details of our approach. Finally, we propose some discussions in section 3.4.

3.1 PROBLEM FORMULATION

We assume there are n different clients {C1, · · · , Cn} in personalized federated learning scenar-
ios. Each client Ci has its own data Di = {xi,j , yi,j}ni

j=1 where ni means the number of data in
the ith client. Data in different clients have different distributions, i.e. P (Di) ̸= P (Dj). In the
personalized FL setting, there exists the same black-box large foundation model in each client, g,
which we know nothing inside and can only obtain logit outputs with fixed-size inputs. Our goal
is to achieve personalized (i.e., satisfying) performance with black-box foundation models on each
client by learning a significant transformation si on inputs and a re-mapping ri on outputs without
accessing g for each client Di. Specifically, denote ℓ a loss function, the learning objective is:

min
si,ri

1

n

n∑
i=1

1

ni

ni∑
j=1

ℓ(ri(g(si(xi,j))), yi,j). (1)

3.2 INTUITION

Input designs affect the performance of foundation models. Different representations with the
same inputs can induce foundation models to make completely different predictions, which illus-
trates that adding interference or reconstructing inputs can be utilized for adaptation. However,
most methods that add interference are performed at the sample level (White et al., 2023; Cao et al.,
2023; Liu & Chilton, 2022; Arif et al., 2023; Zhou et al., 2022; Gal et al., 2022) , i.e. special design
for each sample, that are unsuitable to exchange information among clients and cannot cope with
unseen samples. Therefore, it is necessary to reconstruct samples via an auto-encoder to adapt input
with unchanged dimensions for foundation models. The exchange of auto-encoder parameters can
facilitate the sharing of input transformation information across different clients.

Semantic re-mapping generates more semantically meaningful logits. Although large founda-
tion models have been trained on a huge amount of samples (Radford et al., 2021), there still exists
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Figure 2: The framework of ZOOPFL. Please note that communications occur during step 2.

some classes or situations that foundation models cannot cover (Wang et al., 2023b). However, these
new scenarios or classes can be made of existing fundamental elements or similar to some existing
categories, which means foundation models can be able to extract remarkable features.3 Considering
layers between remarkable features and final logits as random projecting, re-mapping outputs with
a simple linear layer can achieve acceptable performance similar to Huang et al. (2015).

Design logic. Since access to foundation models is restricted, we have to rely on zeroth-order
optimization methods to train auto-encoders, which leads that directly operating on the outputs of
auto-encoders with high dimensions can exhaust unaffordable computational costs. To reduce the
costs, we fix decoders and compute differences on embedding with low dimensions. For better
personalization, we preserve semantic re-mapping in clients. Specifically, we preserve a client-
specific embedding, i.e., a simple one-dimensional vector, for each client, which can be concatenated
with embedding to generate adapted inputs with personalized characteristics.

3.3 ZOOPFL

In this paper, we propose ZOOPFL to learn input surgery and semantic re-mapping for black-
box large foundation models in federated learning. ZOOPFL aims to adapt inputs to models and
project outputs to meaningful semantic space. ZOOPFL mainly consists of three steps, namely,
auto-encoder pre-training, input surgery, and semantic re-mapping.4 Figure 2 shows the pipeline of
our approach, where Figure 2(a) describes the communications between clients and the server and
Figure 2(b) provides details on how to perform training on a local client. The algorithm flow is in
section E.1. Besides, more practical insights can be found in section A.

The training process on a client is described as follows, where steps 2∼3 are iterative.

1. Auto-encoder pre-training: this step directly utilizes inputs to pre-train the auto-encoder which
then serves as the input surgery function.

2. Input surgery: this step only updates the encoder of auto-encoder and client-specific embed-
dings to transform the input consistent with the foundation model.

3. Semantic re-mapping: this step endeavors to re-map logits into meaningful semantic spaces
with a simple linear projection.

3Some popular language models such as BERT (Devlin et al., 2018) and GPT-2 (Radford et al., 2019) in
Huggingface utilize a random projection between extracted features and logits.

4Note that the pre-training here is different from the pre-training of large foundation models such as self-
supervised pre-training. This step is much more efficient than pre-training a large foundation model since we
only train an auto-encoder with few layers.
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Auto-encoder Pre-training. Before input surgery and semantic re-mapping that are assisted by
labels, ZOOPFL firstly utilizes inputs of samples to pre-train auto-encoders for better initial under-
standing of client data and we will fix decoders in the next two steps. For client Ci, we denote ẑi
as the ith client-specific embedding and si = oi ◦ qi where qi and oi represent the encoder and the
decoder respectively. This step is unsupervised and each client utilizes MSE loss to train local si:

ℓMSE = E(x,y)∼P(Di) ∥oi([qi(x), ẑi])− x∥22 , (2)
where [·, ·] denotes the concatenation operation. The updated encoder and decoder of each client are
then transmitted to the server. Similar to FedAVG (McMahan et al., 2017), the server aggregates the
collected auto-encoders and distributes the aggregated one, s, to each client.

w(s) =
1

n

n∑
i=1

w(si), (3)

where w(s) represent parameters of s. We assume that all clients contribute equally and participate
in training. The above pre-training is iterative and we can obtain well-trained auto-encoders finally.

Input Surgery. After pre-training, input surgery optimizes encoders, qi, to transform inputs con-
sistent with foundation models. This step only exchanges encoders of clients to share common
knowledge while each client preserves a client-specific embedding to represent personalized knowl-
edge. As shown in Figure 2, the foundation model, g, is black-box and the decoder is frozen. In the
following, we elaborate on the whole training process in local clients.

In client Ci, an input x is first fed into the encoder qi, generating an embedding vector z = qi(x).
Then we concatenate z with the client-specific embedding, ẑi, and obtain the final embedding fea-
ture, z̃ = [z, ẑi], which is then sent to the decoder. Once processed by the decoder, we can obtain
x̃ = oi(z̃) with the same dimension as x, and then the adapted input, x̃, goes through the foundation
model and the re-mapping layer, which generates the final prediction, ỹ. We utilize the cross-entropy
loss ℓcls to guide the optimization:

ℓ1 = E(x,y)∼P(Di)ℓcls(ri(g(oi([qi(x), ẑi])), y). (4)

However, the above objective cannot be directly optimized using the standard stochastic gradient
descent since the foundation model g is frozen, preventing us from computing its gradient using
back-propagation. We adopt the zeroth-order optimization method, specifically, the coordinate-wise
gradient estimate (CGE), to learn qi and ẑi (Zhang et al., 2022; Tu et al., 2019; Liu et al., 2018; Lian
et al., 2016; Ghadimi & Lan, 2013). To make the process clear and easy to understand, we freeze ri
and view oi, g, and ri as a whole module, G, in this step.

Assume z ∈ Rd1 and ẑi ∈ Rd2 . According to CGE, by adding a perturbation to z̃, we obtain the
new embedding and the corresponding classification loss,

z̃1 = z̃+ ρej , ℓx,1 = ℓcls(ri(g(oi(z̃1, y)))), (5)

where ej = (0, 0, · · · , 1, 0, 0 · · · , 0) ∈ Rd1+d2 denotes the jth elementary basic vector and ρ is a
hyperparameter that describes the extent of the perturbation. Similarly, we can obtain z̃2 and ℓx,2.

z̃2 = z̃− ρej , ℓx,2 = ℓcls(ri(g(oi(z̃2, y)))). (6)

Then, we have the gradient of G w.r.t. z̃ computed as:

∇z̃G(z̃) = (∇z̃G(z̃)1,∇z̃G(z̃)2) ≈
d1+d2∑
i=1

ℓx,2 − ℓx,1
2× ρ

ej . (7)

For ẑi, we directly update it with corresponding parts of ∇z̃G(z̃) via a learning rate γ2, ẑi
new =

ẑi − γ2 × ∇z̃G(z̃)2 where ∇z̃G(z̃)2 denotes the last d2 dimensions of ∇z̃G(z̃). For ∇z̃G(z̃)1, we
can update qi with the chain rule for differentiation.

∇qiℓ1 =
dz̃

dqi

dG
dz̃

≈ dz

dqi
∇z̃G(z̃)1 ≈ d∇z̃G(z̃)1z

dqi
. (8)

Finally, we can update the encoder, w(qnewi ) = w(qi)− γ1 ×∇qiℓ1. Once all clients have updated
encoders, we can aggregate encoders in the server and then distribute the aggregated encoder:

w(q) =
1

n

n∑
i=1

w(qnewi ). (9)
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Semantic Re-mapping. In the last step, we train the encoder that enables the input consistent with
foundation models. Here, we perform semantic re-mapping similar to Huang et al. (2015). This step
only occurs in each client and no communication exists for simplicity and personalization. We view
all parts before ri as a whole module, F , with two functions, including extracting features and
mapping extracted features to a random space and we freeze F . These two functions correspond
to artificial features and the first layer in (Huang et al., 2015) respectively and we only update ri
corresponding to the second layer of ELM:

ℓ2 = E(x,y)∼P(Di)ℓcls(ri(F(x)), y). (10)

Since this part is behind g, w(ri) can be updated directly.

3.4 DISCUSSION

We perform step 2 and step 3 iteratively. There also exist other zeroth-order optimization methods,
e.g., the randomized gradient estimate (RGE) (Liu et al., 2020). However, the concrete implementa-
tion of zeroth-order optimization is not our focus and we thereby choose CGE for deterministic and
stability (Liu et al., 2018). In this paper, we assume large foundation models exist on clients in the
form of encrypted assets and we do not need to upload transformed inputs. Moreover, we do care
about communication costs and GPU demands instead of training time in each client. To reduce
training time in each client, some techniques, such as RGE, random selections on ej , reduction on
d1 + d2, etc., can be adopted and we leave this as our future work. Our algorithm converges and
the asymptotic convergence rate is O( 1√

T
). For detailed theoretical analysis and the corresponding

proofs, please refer to section B and section C.

4 EXPERIMENTS

4.1 SETUP

Table 2: Information of benchmarks.
Modality Dataset Samples Classes Clients Selected Samples

CV

COVID-19 9,198 4 20 9,198
APTOS 3,662 5 20 1,658
Terra100 5,883 10 20 5,883
Terra46 4,741 10 20 4,741

NLP

SST-2 67k 2 20 9,763
COLA 8.5k 2 20 5,700

Finanical 4,840 3 10 3,379
Flipkart 205,053 3 20 3,048

Datasets and baselines. We evaluate ZOOPFL
on 8 popular classification benchmarks with
two modalities including computer vision (CV)
and natural language processing (NLP). The
benchmarks are COVID-19 (Sait et al., 2020),
APTOS (Karthik, 2019), Terra100 (Beery et al.,
2018), Terra46 (Beery et al., 2018), SST-
2 (Wang et al., 2019; Socher et al., 2013),
COLA (Wang et al., 2019; Warstadt et al.,
2019), Financial-phrasebank (Financial) (Malo et al., 2014), and Flipkart (Vaghani & Thummar,
2023). Brief information can be found in Table 2.5 We filter meaningless samples and select samples
for global class balance. The concrete select strategies and more details can be found in section F.1
while data distributions can be found in section F.2. To our best knowledge, no other methods are
proposed and thereby we only compare our methods with zero-shot pre-trained models (ZS).

Implementation details. For vision tasks, we set g as CLIP (Radford et al., 2021) with ResNet50
as the image backbone (Radford et al., 2021). r is a linear layer with dimension M where M is the
number of classes. q contains several blocks composed of a convolution layer, a RELU activation
layer, a Batch Normalization layer, and a Pooling layer while o contains several blocks composed
of a convTranspose layer, a RELU activation layer, and a Batch Normalization layer. We set d1 =
6× 7× 7 = 294 and d2 = 2× 7× 7 = 98. We set the learning rate for pretraining as 10−4 and set
other learning rates as hyperparameters. For simplicity, other learning rates are all the same. We set
the local epoch number as 1 and set the global round number T = 120. Moreover, we do not tune ρ
but set ρ = 5× 10−3. We select the best results according to accuracy on validation parts.

For language tasks, we select four foundation models, including ALBERT-base (Lan et al., 2020),
BERT-base (Devlin et al., 2018), DeBERTa-base (He et al., 2021), and GPT2 (Radford et al., 2019).
Note that there are recent large language foundation models such as Llama (Touvron et al., 2023)

5We have chosen so many clients because it reflects the typical real-world scenario where there are numerous
clients, each with relatively small amounts of data (Xu et al., 2023b).
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and Falcon (Penedo et al., 2023), but we can only experiment with the above ones due to constrained
computational devices.6 Our method works for all kinds of foundation models in various sizes. q
simply contains several linear layers followed by batch normalization layers. Please note that we
transform input embeddings processed by foundation models for NLP instead of original texts. We
set d1 = 128 − 32 = 96 and d2 = 32. We set the local epoch number as 1 and set the global
round number T = 130. Other settings are similar to computer vision. For concrete structures of
auto-encoders, please refer to section F.3.

4.2 EXPERIMENTAL RESULTS

Figure 3 shows the results on all eight benchmarks and detailed results are in section F.4. From these
results, we have the following observations. 1) Our method achieves the best results on average for
all benchmarks whatever the backbone is. It significantly outperforms the zero-shot method with
remarkable improvements. In computer vision benchmarks, the improvements are about 42%, 25%,
21%, and 59% for COVID-19, Terra100, APTOS, and Terra46 respectively. In natural language pro-
cessing benchmarks, for SST-2, COLA, and Flipkart, Financial-phrasebank, the improvements are
about 43%, 39%, 15%, and 33% respectively. Please note that there only exist a few training data in
each client (for COVID-19, each client only has about 50 samples.), which means utilizing founda-
tion models is important. 2) Our method achieves the best accuracy in most clients, demonstrating
the necessity of input surgery and semantic re-mapping. As shown in Figure 3(a)-(d), ZOOPFL only
performs slightly worse than ZS in few clients, e.g. client 13 on COVID-19, which can be due to
the instability of zeroth-order optimization. 3) For natural language processing, different backbones
bring different performance. From Figure 3(g), we can see that our method based on GPT2 can
achieve better results compared to other backbones, although ZS performs the worst with GPT2.
However, from Figure 3(f), we can see that ZOOPFL based on GPT2 does not achieve the best
performance. 4) Why large foundation models cannot achieve acceptable performances on these
benchmarks? For computer vision, we choose COVID-19, APTOS, and Terra Incognita and these
datasets can be missing during pretraining of CLIP, which leads the failure of CLIP with zero-shot.
For natural language processing, although large foundation models can extract remarkable features,
they need to be fine-tuned for downstream tasks, which means they may randomly guess without
the post-processing. Due to these factors, post-processing to large foundation models is necessary,
which is just what we explore in this paper.

4.3 ANALYSIS AND DISCUSSION

Ablation Study. Figure 4(a) and 4(b) give experiments on ablation study and we have following
observations. 1) In most situations, each part of our method brings improvements on both CV and
NLP. 2) Step 3 is more significant than Step 2. Since Step 3 re-maps outputs, it can offer semantic
meanings to foundation models for specific tasks, which is more direct and effective intuitively. Step
2 transforms inputs that still go through foundation models or even random projections, and thereby
it is indirect and less effective. However, by combining Step 2 with Step 3, we can achieve further

6Our hardware is a server with 4 V100 (16G) GPUs, which cannot afford to train larger foundation models.
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Figure 3: Results on CV (a-d) and NLP (e-h) tasks.
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Table 3: Resource Consumption.
Phase Metric Foundation Models ALB. BERT DeB. GPT2

Inference

FLOPS
Base 5.4475E+09 5.4413E+09 7.2483E+09 5.0627E+06
Ours(Linear) 5.4497E+09 5.4540E+09 7.2611E+09 1.7772E+07
Ours(LSTM) 5.4656E+09 5.4856E+09 7.2927E+09 4.9377E+07

Time (S)
Base 0.4278 0.3308 0.6475 0.6107
Ours(Linear) 0.5856 0.4767 0.5887 0.5321
Ours(LSTM) 0.7582 0.6028 0.7143 0.6753

Metric Foundation Models ALB. BERT DeB. GPT2

Train GPU Memory (MB)
Base 5742 5380 8356 7874
Ours(Linear) 1718 3086 3346 3838
Ours(LSTM) 1738 2076 2336 2718

Metric Foundation Models ALB. BERT DeB. GPT2

/ Storage (M)
Base 45 418 532 475
Ours(Linear) 54 467 580 524
Ours(LSTM) 46 421 534 478

improvements. 3) In some situations, client-specific embeddings do not bring remarkable improve-
ments, which can be induced by two reasons. First, CGE is not stable enough and we cannot ensure
ZOOPFL finds the best global optimals. Second, to ensure fairness, we offer comparison meth-
ods without client-specific embeddings containing larger dimensions and thereby these methods can
learn better representations for auto-encoders. 4) Step 1 brings significant improvement for CV
while it is less effective for NLP. This can be due to two reasons. We provide better auto-encoders
for CV but simple linear layers for NLP. Moreover, the closed pretraining of an auto-encoder with-
out subsequent adjustments to the decoder may not be suitable for NLP. Fortunately, ZOOPFL can
achieve convincing improvements compared to ZS no matter whether adopting step 1.

Convergence and Communication Cost. We provide convergence analysis and communication
cost comparisons in Figure 4(c) and 4(d), respectively. Figure 4(c) shows that both the average
training accuracy and testing accuracy are convergent. There exist slight disturbances due to in-
stability of CGE and the process of federated learning. Moreover, we can find that there exists a
divergence between training and testing, which means there could be further improvements if more
generalization techniques could be adopted which we leave as our future work. From Figure 4(d),
we can see exchanging in encoders can reduce a significant amount of transmission cost, especially
for LSTM, which means our method can be employed in reality.

Resource Consumption Analysis Table 3 shows resource consumption on other metrics. Since
our model contains the foundation model on each client, it will slightly consume more FLOPS,
inference time (running ten times to calculate the time.), and storage. We can observe that, compared
to the foundational model, the incremental changes can be negligible, and sometimes even slightly
less resource-intensive (possibly due to the instability of the computing environment). In terms
of GPU consumption, although our model is larger, it consumes less resources. It is reasonable
that our approach consumes less GPU since we do not need to compute and store the gradients of
foundational models.

More insightful analysis. 1) Can stronger backbones bring better performance? From Fig-
ure 5(a) and 4(d), we can see that auto-encoders comprised of LSTM can bring better performance
with fewer communications (especially for GPT2), which means more suitable backbones can lead
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Figure 5: More discussions by varying backbones, data splits, data sizes, and optimization order.
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Figure 6: Parameter sensitivity of computer vision and natural language tasks (on finance data).

to better performance. 2) How can data splits influence the performance? Figure 5(b) shows that
ZOOPFL still achieves better performance when using a different parameter for Dirichlet distribu-
tion (0.1 vs. 0.2) for NLP data split. In this more personalized situation, ZS maintains a similar
performance while ours performs better. 3) More training data, better results? As shown in Fig-
ure 5(c), we choose the APTOS dataset where our method has the worst performance, to evaluate the
influence of training data. We find that more training data can bring further improvements, which
is completely consistent with our intuition. 4) Can optimization order influence performance?
We provide three orders for optimization. Order 1 is what we adopted. Order 2 is to perform step
2 for all rounds and then perform step 3, which means these two steps are split. In order 3, we
first optimize the encoder, then client-specific embeddings, and finally semantic re-mapping layers,
and these parts are iterative. As shown in Figure 5(d), Order 1 and Order 3 can perform slightly
better than Order 2, which demonstrates the necessity of joint optimization. More experiments on
visualizations can be found in section F.5.

Parameter sensitivity. Figure 6 provides parameter sensitivity and we obtain following observa-
tions. 1) Our method is stable for a wide range of parameters although CGE may lead instability. 2)
For most situations, larger learning rates with Adam can bring better performance. 3) ZOOPFL can
achieve further improvement if we finetune hyperparameters more carefully. For example, we can
choose larger learning rates, e.g.0.5 or choose more suitable ρ for specific tasks, e.g. 0.05 for CV.

5 CONCLUSION AND DISCUSSION

We proposed ZOOPFL which can deal with large black-box models in federated learning. ZOOPFL
mainly consists of two parts, including input surgery and semantic re-mapping. Moreover, with a
client-specific embedding, ZOOPFL can be more personalized. We demonstrated its effectiveness
on both CV and NLP tasks. ZOOPFL achieved remarkable performance without large communica-
tion costs and high demands of GPUs.

As the first exploration in black-box federated learning for large foundation models, ZOOPFL can
be more perfect by pursuing the following avenues. 1) Since the stability and speed of CGE in-
fluence the performance of step 2, it can be better to seek more stable and efficient optimization
algorithms. 2) Foundation models in ZOOPFL can be enhanced by other ways, e.g., auxiliary mod-
els, to serve as a complement to foundation models. 3) Experiments with larger foundation models
can be performed for evaluation if computational resources are enough in the future.
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A PRACTICAL INSIGHTS

What is our setting? We view the large foundation models as black-box that can only provide
the outputs according to inputs. We have no access to any internal information on the foundation
models, which means, no backpropagation is allowed for updating. Each client preserves the same
foundation model locally. Most importantly, we do not consider the storage of large models and the
additional costs associated with inference. We aim to utilize large black-box foundation models for
better personalized federated learning.

Why is it practical? To make the best of large foundation models in federated learning, one must:

• either fine-tune or adapt the models in their own data,
• or perform federated learning on the cloud.

Therefore, it is easy to see the value of our work, since:

• fine-tuning or adapting locally is extremely expensive even if we have many open-
source foundation models. Why? Because fine-tuning on client side requires high com-
putation and communication costs. By ”client side”, we do not mean just mobile phone
devices, but any organization (e.g., a hospital) could be a client to be a part of the FL cycle.

• federated learning on the cloud is not the ideal solution if you care about privacy.
Why? One cannot trust the cloud providers by uploading all the training data to the cloud.
So, the best practice is to perform computation locally.

Combining the above situations. i.e., updating models locally with low cost, one can conclude that
our proposed black-box FL is the only solution. Specifically, note that ”black-box” does not only
mean we do not have model access; it is a more broad technique for model update when local BP
cannot be performed due to large model sizes.

B THEORETICAL ANALYSIS

We present the convergence analysis of ZOOPFL. There exist three parts to optimize during step
2 and step 3, including the parameters of the encoder (û), clients specific embeddings (v1,i), and
semantic re-mapping layers (v2,i). Following Pillutla et al. (2022), we group parameters into two
parts, i.e. ui := û ∪ v1,i, vi := v2,i.7 Now we give the main conclusion with proofs in section C.
Theorem 1. Suppose assumptions 1, 2, 3, and 4 hold, and the learning rates in ZOOPFL are chosen
as γu = η/(Luτu) and γv = η/(Lvτv), with

η ≤ min
{

1

24(1 + µ2)
,

m

128χ2(n−m)
,

√
m

χ2n

}
. (11)

Then, right after the training of T epochs, ignoring absolute constants, we have

1

T

T−1∑
t=0

(
1

Lu
E
[
∆(t)

u

]
+

m

nLv
E
[
∆(t)

v

])
≤ ∆F0

ηT
+ ησ2

alt,1 + η2σ2
alt,2. (12)

Corollary 1. An optimal learning rate is:

η =

(
∆F0

Tσ2
alt,1

)1/2∧(
∆F 2

0

T 2σ2
alt,2

)1/3∧ 1

1 + µ2

∧ m

χ2(n−m)

∧√
m

χ2n
. (13)

We have, ignoring absolute constants,

1

T

T−1∑
t=0

(
1

Lu
E
[
∆(t)

u

]
+

m

nLv
E
[
∆(t)

v

])
≤

(∆F0σ
2
alt,1)

1/2

√
T

+
(∆F 2

0 σ
2
alt,2)

1/3

T 2/3
+

∆F0

T

(
1 + µ2 + χ2(

n

m
− 1) +

√
χ2

n

m

)
.

(14)

7Different from (Pillutla et al., 2022), optimized parameters in ZOOPFL contain three parts and we utilize
ZOO instead of gradients.
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The measure of convergence of Algorithm 1 is in terms of the weighted average of square norms of
the gradients of loss function E

[
∆

(t)
u

]
and E

[
∆

(t)
v

]
through iterations from 1 to T − 1, i.e. the left

hand of equation 14. As the square norms of the gradients of loss function at the optimal solution
is zero, whether or not these norms approach zero is a good criterion of the convergence. With this
choice of optimal learning rate, it is clear from the right hand of equation 14 that our algorithm
converges and the asymptotic convergence rate is O( 1√

T
).

C PROOFS

The proof is based on the theoretic work of personalized federate learning pioneered in Pillutla et al.
(2022). Firstly, we will make some assumptions on our models (parameters) akin to those in Pillutla
et al. (2022) with some differences specific to our scenario. One can refer Pillutla et al. (2022) for
more details.

Recall that our loss function is defined as follows:8

F (û,v) =
1

n

n∑
i=1

Fi(û,vi), (15)

where Fi(û,vi) = Ex∼Di
fi(û,vi,x). û denotes the sharing parameters, i.e. parameters of si,

while vi denotes parameters preserved in each client. According to the structure of ZOOPFL, vi

is also decomposed into two parts: vi = v1,i ∪ v2,i corresponding to parameters of ẑi and ri
respectively, and as pointed out in main sections of our paper, we regroup our parameters as follows:
for each device i, ui := û ∪ v1,i, vi := v2,i.
Assumption 1. (Smoothness). For each device i = 1, 2, . . . n, the object Fi is smooth, i.e., it is
continuously differentiable and,

1. ui → ∇uFi(ui,vi) is Lu-Lipschitz for all vi ,

2. vi → ∇vFi(ui,vi) is Lv-Lipschitz for all ui ,

3. vi → ∇uFi(ui,vi) is Luv-Lipschitz for all ui, and,

4. ui → ∇vFi(ui,vi) is Lvu-Lipschitz for all vi.

Further, we assume for some χ > 0 that

max{Luv, Lvu} ≤ χ
√
LuLv. (16)

Assumption 2. (Bounded Gradient). For each device i = 1, 2, . . . n, the object Fi has bounded
gradient, that is, there exists Mu,Mv > 0 such that

|∇ufi(ui,vi,x)| < Mu, and |∇vfi(ui,vi,x)| < Mv ∀x ∈ Di. (17)

Assumption 3. (Bounded Variance). Let Di denote a probability distribution over the data space Z
on device i. There exist functions Gi,u and Gi,v which are unbiased estimates of ∇uFi and ∇vFi

respectively. That is, for all ui,vi:

Ex∼Di [Gi,u(ui,vi,x)] = ∇uFi(ui,vi), and Ex∼Di [Gi,v(ui,vi,x)] = ∇vFi(ui,vi). (18)

Furthermore, the variance of these estimators is at most σ2
u and σ2

v respectively. That is,

Ex∼Di
||Gi,u(ui,vi,x)−∇uFi(ui,vi)||2 ≤ σ2

u, (19)

Ex∼Di
||Gi,v(ui,vi,x)−∇vFi(ui,vi)||2 ≤ σ2

v. (20)

In this work, we usually take the particular form Gi,u(ui,vi,x) = ∇ufi((ui,vi),x), which is the
gradient of the loss on datatpoint x ∼ Di under the model (ui,vi), and similarly for Gi,v.

As our model has a black box LLM, we can’t get the gradient of parameters in this part. So we
resort to zero-order optimization partially. In particular, we take differences of function values

8As we will regroup parameters later, we use û instead of u to make symbols consistent.
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to estimate unknown gradients in that part. The resulting method is dubbed stochastic difference
descent method. More precisely, Let G be a continuous function on x, ρ be a fixed vector with the
same dimension of x and its norm ||ρ|| = ρ, we denote ∆ρ,xG(x) := (G(x + ρ) − G(x))/ρ or
(G(x + ρ) + G(x − ρ) − 2G(x))/(2ρ) to be the difference of G at point x with step ρ. Then the
way we update x is similar to that in stochastic gradient descent method:

xk+1 = xk − γ∆ρ,xG(x)|x=xk
. (21)

Let us denote G̃i,u(ui,vi,x) := ∆ρ,ufi((ui,vi),x), G̃i,v(ui,vi,x) := ∆ρ,vfi((ui,vi),x).
Unlike Assumption. 3, G̃i,u(ui,vi,x)(resp.G̃i,v(ui,vi,x)) is not an unbiased estimation of
∇uFi(ui,vi) (resp.∇vFi(ui,vi)). However, under Assumption. 1,Assumption. 2 and Assump-
tion. 3, we have the following estimates:
Lemma 1. (Bounded 1st and 2nd moments).

||Ex∼Di
G̃i,u(ui,vi,x)−∇uFi(ui,vi)|| ≤ Luρ, (22)

||Ex∼DiG̃i,v(ui,vi,x)−∇vFi(ui,vi)|| ≤ Luρ. (23)

Furthermore,

Ex∼Di ||G̃i,u(ui,vi,x)−∇uFi(ui,vi))||2 ≤ 2L2
uρ

2 + 2σ2
u, (24)

Ex∼Di
||G̃i,v(ui,vi,x)−∇vFi(ui,vi))||2 ≤ 2L2

vρ
2 + 2σ2

v. (25)

Proof. For each x ∈ Di there exists a u′
i between ui and ui + ρ in each component such that

(∇ufi(ui+ρ,vi,x)−∇ufi(ui,vi,x))/ρ = ∇ufi(u
′
i,vi,x). Then by the smoothness assumption:

||∇ufi(u
′
i,vi,x)−∇ufi(ui,vi,x)|| ≤ Lu||u′

i − ui|| ≤ Lu||ρ|| = Luρ. (26)

Thus

G̃i,u(ui,vi,x)−∇uFi(ui,vi) = (27)

G̃i,u(ui,vi,x)−∇ufi((ui,vi),x) +∇ufi((ui,vi),x)−∇uFi(ui,vi). (28)

Taking expectation on both sides and applying equation 26 and Ex∼Di
∇ufi((ui,vi),x) =

∇uFi(ui,vi), we get

Ex∼Di
G̃i,u(ui,vi,x)−∇uFi(ui,vi) = Ex∼Di

G̃i,u(ui,vi,x)−∇ufi((ui,vi),x) (29)

≤ Ex∼Di |G̃i,u(ui,vi,x)−∇ufi((ui,vi),x)| ≤ Luρ. (30)

Taking absolute values on both sides completes the proof of equation 22. The same is true for
equation 23.

For equation 24 and equation 25, we note that by Cauchy-Schwartz inequality

||G̃i,u(ui,vi,x)−∇uFi(ui,vi)||2 ≤ 2||G̃i,u(ui,vi,x)−∇ufi(ui,vi,x)||2 (31)

+ 2||∇ufi(ui,vi,x)−∇uFi(ui,vi)||2. (32)

Taking expectation on both sides and using equation 26 and Assumption. 3 complete the proof. The
same is true for equation 25.

As our model has the form F = r ◦ J ◦ s with s corresponding to the encoder, J corresponding to
decoder and black-box LLM, and r corresponding to linear remapping, the following corollary is
useful.
Corollary 2. Let si, Ji, ri be three continuously differentiable functions such that fi(ui,vi,x) =
ri ◦ Ji ◦ si, then we have

||Ex∼Di
∇ri,u ◦∆ρJi,u ◦ ∇usi,u(ui,vi,x)−∇uFi(ui,vi)|| ≤ M2

uLuρ, (33)

||Ex∼Di
∇ri,u ◦∆ρJi,u ◦ ∇vi

si,u(ui,vi,x)−∇vFi(ui,vi)|| ≤ M2
vLvρ. (34)

Furthermore,

Ex∼Di
||∇ri,u ◦∆ρJi,u ◦ ∇usi,u(ui,vi,x)−∇uFi(ui,vi)||2 ≤ 2M4

uL
2
uρ

2 + 2σ2
u, (35)

Ex∼Di ||∇ri,u ◦∆ρJi,u ◦ ∇visi,u(ui,vi,x)−∇vFi(ui,vi)||2 ≤ 2M4
vL

2
vρ

2 + 2σ2
v. (36)
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Proof. Using the bounded gradient assumption and following the steps in the proof of Lemma. 1
completes the proof.

Finally, we make a gradient diversity assumption.
Assumption 4. (Partial Gradient Diversity). There exists δ ≥ 0 and µ ≥ 0 such that for all u and
v,

1

n

n∑
i=1

||∇uFi(ui,vi)−∇uF (u,v)||2 ≤ δ2 + µ2||∇uF (u,v)||2. (37)

Please refer Pillutla et al. (2022) for more background on some of these assumptions.

C.1 CONVERGENCE ANALYSIS OF ZOOPFL

We give the error bounds results of Algorithm 1, thus theoretically establishing the convergence
property.

In our case, we rename the parameters so that u := û ∪ v1,v := v2. As per Appendix A.3 in
Pillutla et al. (2022), we use the constants

σ2
alt,1 =

δ2

Lu

(
1− m

n

)
+

2M4
uL

2
uρ

2 + 2σ2
u

Lu
+

(2M4
vL

2
vρ

2 + 2σ2
v)(m+ χ2(n−m))

Lvn
, (38)

σ2
alt,2 =

2M4
uL

2
uρ

2 + 2σ2
u + δ2

Lu
(1− τ−1

u ) (39)

+
(2M4

vL
2
vρ

2 + 2σ2
v)m

Lvn
(1− τ−1

u ) +
χ2(2M4

vL
2
vρ

2 + 2σ2
v)

Lv
. (40)

and the definitions

∆(t)
u =

1

n

n∑
i=1

||∇uFi

(
u
(t)
i ,v

(t)
i

)
||2, and, ∆(t)

v =
1

n

n∑
i=1

||∇vFi

(
u
(t)
i ,v

(t)
i

)
||2. (41)

Theorem 1. Suppose Assumption. 1,Assumption. 2,Assumption. 3 and Assumption. 4 hold and the
learning rates in ZOOPFL are chosen as γu = η/(Luτu) and γv = η/(Lvτv), with

η ≤ min
{

1

24(1 + µ2)
,

m

128χ2(n−m)
,

√
m

χ2n

}
. (42)

Then, right after the training of T epochs, ignoring absolute constants, we have

1

T

T−1∑
t=0

(
1

Lu
E
[
∆(t)

u

]
+

m

nLv
E
[
∆(t)

v

])
≤ ∆F0

ηT
+ ησ2

alt,1 + η2σ2
alt,2. (43)

Corollary 3. An optimal learning rate is chosen as follows

η =

(
∆F0

Tσ2
alt,1

)1/2∧(
∆F 2

0

T 2σ2
alt,2

)1/3∧ 1

1 + µ2

∧ m

χ2(n−m)

∧√
m

χ2n
. (44)

We have, ignoring absolute constants,

1

T

T−1∑
t=0

(
1

Lu
E
[
∆(t)

u

]
+

m

nLv
E
[
∆(t)

v

])
≤ (45)

(∆F0σ
2
alt,1)

1/2

√
T

+
(∆F 2

0 σ
2
alt,2)

1/3

T 2/3
+

∆F0

T

(
1 + µ2 + χ2(

n

m
− 1) +

√
χ2

n

m

)
. (46)

Proof. The proof is invoking Lemma 25 in Pillutla et al. (2022) upon establishing Thm. 1

We will refer the readers to Pillutla et al. (2022) for the proof of convergence of FedAlt algorithm
therein. One of our novel differences to Pillutla et al. (2022) is that our black-box model is secure
so its gradient is invisible to us, leading us to consider zero-order (gradient free) optimization. Thus
we first establish a result analogous to lemma 22 in Pillutla et al. (2022) for zero-order optimization.
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Lemma 2. Consider f : Rd → R which is L-smooth, its norm of gradient is bounded by M and fix
a w(0) ∈ Rd. Define the sequence (w(t)) of iterates produced by stochastic difference descent with
step ρ and a fixed learning rate γ starting from w(0):

w(t+1) = w(t) − γg̃(t), (47)

where g̃ is an unbiased estimation to ∆ρ,wf(w(t)) (not an unbiased estimation to ∇f(w(t))) with
bounded variance 2M4L2ρ2 +2σ2. Fix a number τ of steps. If γ ≤ (

√
2τL)−1, we have the bound

τ−1∑
t=0

||w(t) −w(0)||2 ≤ 8γ2τ2(τ − 1)||∇f(w(0))||2 + 4γ2τ2(τ − 1)(2M4L2ρ2 + 2σ2). (48)

Proof. If τ = 1, we have nothing to prove. Assume now that τ ≥ 2. Let F (t) be the sigma-algebra
generated by w(t) and denote Et[·] = E[·|F (t)]. We will use the inequality

Et||g̃(t)||2 = Et||g̃(t) −∇f(w(t))||2 + ||∇f(w(t))||2 ≤ 2M4L2ρ2 + 2σ2 + ||∇f(w(t))||2. (49)

We then successively deduce,

Et||w(t+1) −w(0)||2 = ||w(t) −w(0) − γg̃(t)||2 (50)

≤
(
1 +

1

τ − 1

)
||w(t) −w(0)||2 + γ2τEt||g̃(t)||2 (51)

≤
(
1 +

1

τ − 1

)
||w(t) −w(0)||2 + 2γ2τ ||∇f(w(t) −∇f(w(0))||2 (52)

+ 2γ2τ ||∇f(w(0))||2 + γ2τ(2M4L2ρ2 + 2σ2) (53)

≤
(
1 +

1

τ − 1
+ 2γ2τL2

)
||w(t) −w(0)||2 + 2γ2τ ||∇f(w(0))||2 (54)

+ γ2τ(2M4L2ρ2 + 2σ2) (55)

≤
(
1 +

2

τ − 1

)
||w(t) −w(0)||2 + 2γ2τ ||∇f(w(0))||2 (56)

+ γ2τ(2M4L2ρ2 + 2σ2). (57)

Above, we used (a) the inequality 2αβ ≤ α2/δ2 + δ2β2 for reals α, β, δ,(b) equation 49,(c) L-
smoothness of f , and,(d) the condition on the learning rate.

Let C = 2γ2τ ||∇f(w(0))||2 + γ2τ(2M4L2ρ2 + 2σ2). Unrolling the inequality and summing up
the series for all t ≤ τ − 1

||w(t) −w(0)||2 ≤ C

t−1∑
j=0

(
1− 2

τ − 1

)j

≤ C

2
(τ − 1)

(
1 +

2

τ − 1

)t

(58)

≤ C

2
(τ − 1)

(
1 +

2

τ − 1

)τ−1

≤ C

2
(τ − 1)e2, (59)

where we used the bound (1 + 1/α)α ≤ e for all α > 0. Summing over t and using the numerical
bound e2 < 8 completes the proof.

Lemma 3. Consider the setting of Lemma. 2. If γ ≤ (2τL)−1, we have the bound

||w(τ) −w(0)||2 ≤ 16γ2τ2||∇f(w(0))||2 + 8γ2τ2(2M4L2ρ2 + 2σ2). (60)

Proof. Proceeding similar to the last proof (expect using δ = τ ) gives us

Et||w(t+1)−w(0)||2 ≤
(
1 +

2

τ

)
||w(t)−w(0)||2+4γ2τ ||∇f(w(0))||2+2γ2τ(2M4L2ρ2+2σ2).

(61)
Unrolling and summing up the sequence completes the proof, similar to that of Lemma. 2
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With all the preparations, we now take the proof of Thm. 1.

Proof. Recall that our parameters are renamed as u := û ∪ v1,v := v2.

The first step is to start with

F (u(t+1),v(t+1))− F (u(t),v(t)) = F (u(t),v(t+1))− F (u(t),v(t)) (62)

+ F (u(t+1),v(t+1))− F (u(t),v(t+1)). (63)

The first line is referred to v-step and the second u-step. The smoothness assumption bounds the
u-step:

F (u(t+1),v(t+1))− F (u(t),v(t+1)) =
1

n

n∑
i=1

Fi(u
(t+1)
i ,v

(t+1)
i )− Fi(u

(t)
i ,v

(t)
i ) (64)

≤ 1

n

n∑
i=1

(〈
∇uFi(u

(t)
i ,v

(t+1)
i ),u

(t+1)
i − u

(t)
i

〉
+

Lu

2
||u(t+1)

i − u
(t)
i ||2

)
. (65)

As discussed in Pillutla et al. (2022), the most challenging thing is that the two terms in angle bracket
⟨⟩ are not independent random variables. Indeed, they both depend on the sampling S(t) of devices.
The way to circumvent it is to introduce virtual full participation for v-step update to eliminate
this dependence structure and obtain a good estimate of the error it introduces. Briefly speaking,
virtual full participation for parameters v is to assume all devices to update the v parameters (it is
just technically assumed but not done in practice) that is independent of sampling of S(t) devices,
breaking the dependence between u(t+1) and v(t+1). We ask the readers to read Pillutla et al. (2022)
for full details.

We use the notation ṽ(t+1) to denote the virtual update of v. Then the proceeding inequality goes
on as: 〈

∇uFi(u
(t)
i ,v

(t+1)
i ),u

(t+1)
i − u

(t)
i

〉
+

Lu

2
||u(t+1)

i − u
(t)
i ||2 (66)

=
〈
∇uFi(u

(t)
i , ṽi

(t+1)),u
(t+1)
i − u

(t)
i

〉
+

Lu

2
||u(t+1)

i − u
(t)
i ||2 (67)

+
〈
∇uFi(u

(t)
i ,v

(t+1)
i )−∇uFi(u

(t)
i , ṽi

(t+1)),u
(t+1)
i − u

(t)
i

〉
(68)

≤
〈
∇uFi(u

(t)
i , ṽi

(t+1)),u
(t+1)
i − u

(t)
i

〉
+ Lu||u(t+1)

i − u
(t)
i ||2 (69)

+
1

2Lu
||∇uFi(u

(t)
i ,v

(t+1)
i )−∇uFi(u

(t)
i , ṽi

(t+1))||2 (70)

≤
〈
∇uFi(u

(t)
i , ṽi

(t+1)),u
(t+1)
i − u

(t)
i

〉
+ Lu||u(t+1)

i − u
(t)
i ||2 (71)

+
χ2Lv

2
||ṽ(t+1) − v

(t+1)
i ||2. (72)

The last two inequalities follow from Young’s inequality and Lipschitzness of vi ↪→ ∇uFi(ui,vi)
respectively.

The usage of virtual update is to ensure that ṽ(t+1) is independent of S(t). This allows us to take an
expectation w.r.t the sampling S(t) of the devices.

Recall that under the new parameters u and v, the only difference to the setting of FedAlt in Pillutla
et al. (2022) is that we need zero-order optimization to update u parameter instead of first-order
gradient method. Thus, we can use the calculations in Pillutla et al. (2022) with F replaced by Fi
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and then add them together from 1 to n to similarly arrive at the following expression:

Et

[
F (u(t+1),v(t+1))− F (u(t),v(t+1))

]
(73)

≤ −γuτu
4

Et[∆̃
(t)
u ] +

2γuL
2
u

n

n∑
i=1

τu−1∑
k=0

Et||ũ(t)
i,k − u(t)||2 (74)

+ 4γ2
vτ

2
vLv(2M

4
vL

2
vρ

2 + 2σ2
v)χ

2(1−m/n) (75)

+
Luγ

2
uτ

2
u

m
(2M4

uL
2
uρ

2 + 2σ2
u + 3δ2(1− m

n
)) + 8γ2

vτ
2
vLvχ

2(1−m/n)∆(t)
v , (76)

note here ũ(t)
i,k is u-parameter updates via stochastic difference descent method rather than stochastic

gradient descent method. We bound this term with Lemma. 2, invoking the assumption on gradient
diversity. And then plugging the resulting estimate back in, we get
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The bound on v-step has exactly the same form as presented in Pillutla et al. (2022) since when
conditioned on u(t),v(t) all functions used in updating v is continuously differentiable. Plugging
this bound on v-step into equation 62, we get
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Taking an unconditional expectation, summing it over t = 0 to T − 1 and rearranging this gives
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This is a bound in terms of the virtual updates ṽ(t+1). Similarly to the manipulations in Pillutla et al.
(2022) we can relate ∆̃

(t)
u with ∆

(t)
u . 9, and finally we get:
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Plugging in γu = η/(Luτu) and γv = η/(Lvτv) completes the proof.

D MORE DISCUSSION ON RELATED WORK

Federated learning makes it possible to perform distributed multi-party computing without com-
prising privacy (Zhang et al., 2021; Voigt & Von dem Bussche, 2017; McMahan et al., 2017; Yang
et al., 2019; Wan et al., 2023; Qi et al., 2023). FedAVG is the baseline algorithm for FL by exchang-
ing parameters instead of raw data, which has been used in many applications (Li et al., 2020a;
Banabilah et al., 2022; Rodrı́guez-Barroso et al., 2023). When FedAVG meets non-iid data, it can
suffer from low convergence speed and terrible personalization performance (Sattler et al., 2019).
FedProx (Li et al., 2020b) allowed differences among clients and the server while FedBN (Li et al.,
2021) preserved local batch normalization layers in each client. Setayesh et al. (2023) proposed
PerFedMask, a generalization of FedBABU (Oh et al., 2022), that considers the computational ca-
pability of different devices. Xu et al. (2023b) conducted explicit local-global feature alignment
by leveraging global semantic knowledge, quantified the benefit of classifier combination for each
client, and derived an optimization problem for estimating optimal weights. Some other work con-
sidered utilizing knowledge distillation for personalization (Chen et al., 2023c) while some work
attempted to achieve robust personalization during testing (Jiang & Lin, 2023). Besides person-
alization, there also exists research focusing on generalization (Chen & Chao, 2022; Gupta et al.,
2022; Qu et al., 2022). Our method can deal with situations where distribution shifts exist.

Since deep learning has entered the era of large foundation models (Bommasani et al., 2021; Xing
et al., 2023; Zhuang et al., 2023), some novel issues, e.g. computation costs and communication
costs, are coming into being, leading operations on the whole network impossible (Wang et al.,
2022; Chen et al., 2022; 2023a; Ding et al., 2023; Xiao et al., 2023). FedPrompt (Zhao et al.,
2023) studied prompt tuning in a model split aggregation way using FL while FedCLIP (Lu et al.,
2023) designed an attention-based adapter for CLIP (Radford et al., 2021). PromptFL (Guo et al.,
2023) utilized the federated prompt training instead of the whole model training in a distributed
way while pFedPG (Yang et al., 2023a) deployed a personalized prompt generator at the server
to produce client-specific visual prompts. FwdLLM (Xu et al., 2023b) combined BP-free training
with parameter-efficient training methods and systematically and adaptively allocated computational
loads across devices. These methods all require access to the internals of large models but we view
foundation models as black-box in this paper.

Besides data privacy, model privacy also raised attention recently (Mo et al., 2020). Model suppli-
ers are usually more willing to only provide predictions for given inputs or just provide a product
that can only generate predictions (Van Dis et al., 2023). In this paper, we view these protected foun-
dation models as black-box models (Guidotti et al., 2018; Ljung, 2001). Little work paid attention to

9More precisely, we simply take the same steps for Fi and then add all of them together.
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finetuning or optimizing in this field, but most related work focused on attacks (Yang et al., 2023b;c).
One related work is FedZO (Fang et al., 2022) which utilized zero-order optimization (Ghadimi &
Lan, 2013), but it did not consider utilizing large foundation models. Some other work also made
use of zero-order optimization for federated learning (Li & Chen, 2021; Zelikman et al., 2023; Feng
et al., 2023), but none of them utilized large black-box foundation models.

Model reprogramming (MR) (Tsai et al., 2020; Xu et al., 2023c; Chen, 2022) provides a similar
solution to ZOOPFL. It trains the inserted input transformation and output mapping layers while
keeping the source pretrained model inact to enable resource-efficient cross-domain machine learn-
ing. The main purpose of model reprogramming is to transfer knowledge to targets and it can be
viewed as a sub-field of transfer learning. Recently, Arif et al. (2023) proposed the first frame-
work, Reprogrammable-FL, adapting MR to the setting of differentially private federated learning.
Reprogrammable-FL learned an input transformation for samples and added learned perturbations to
the original samples. It preserved local input transformations and shared output transformation lay-
ers, which are totally in contrast to ours. Moreover, ZOOPFL is proposed for black-box foundation
models and can provide an ideal personalization capability.

E METHODOLOGY

E.1 ALGORITHM FLOW

Algorithm 1 describes the concrete process of our proposed ZOOPFL. si is consist of two compo-
nents, qi (i.e. the encoder) and oi (i.e. the decoder), which are optimized via Adam in pretraining.
Then, qi is optimized via CGE during Input Surgery. Finally, ri is optimized via Adam in Semantic-
remapping.

Algorithm 1 ZOOPFL
Input: n clients’ datasets {Di}ni=1
Output: Input surgery, {si}ni=1, semantic re-mapping, {ri}ni=1, client-specific embeddings, {ẑi}ni=1

1: for t = 1 to T do ▷ Step 1
2: for i = 1 to n do
3: Pretrain Client i according to ℓMSE = E(x,y)∼P(Di) ∥oi([qi(x), ẑi])− x∥22
4: Upload {w(si)}ni=1 to the server
5: Aggregate weights, w(s) = 1

n

∑n
i=1 w(si)

6: Distribute client weight w(s) to each client
7: for t = 1 to T do
8: for i = 1 to n do ▷ Step 2
9: for k = 1 to d1 + d2 do ▷ Compute Gradients via CGE

10: z̃1 = z̃+ ρej , ℓx,1 = ℓcls(ri(g(oi(z̃1, y))))
11: z̃2 = z̃− ρej , ℓx,2 = ℓcls(ri(g(oi(z̃2, y))))

12: Compute differences on embeddings, ∇z̃G(z̃) ≈
∑d1+d2

i=1
ℓx,2−ℓx,1

2×ρ ej

13: Compute gradients, ∇qiℓ1 = dz̃
dqi

dG
dz̃ ≈ dz

dqi
∇z̃G(z̃)1 ≈ d∇z̃G(z̃)1z

dqi

14: Update parameters, w(qnewi ) = w(qi)− γ1 ×∇qiℓ1
15: Upload {w(qnewi )}ni=1 to the server
16: Aggregate weights, w(q) = 1

n

∑n
i=1 w(q

new
i )

17: Distribute q to clients
18: for i = 1 to n do ▷ Step 3
19: Train semantic re-mapping according to ℓ2 = E(x,y)∼P(Di)ℓcls(ri(F(x)), y)

F EXPERIMENTS

F.1 DESCRIPTION OF THE DATASETS

Computer vision datasets.
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COVID-19 (Sait et al., 2020). It is a public posterior-anterior chest radiography images dataset with
four classes, including 1,281 COVID-19 X-Rays, 3,270 Normal X-Rays, 1,656 viral-pneumonia
X-Rays, and 3,001 bacterial-pneumonia X-Rays. We split data into 20 clients via the Dirichlet
distribution following (Yurochkin et al., 2019) and each client has different distributions on the label
space. In each client, only 10% of data are utilized for training and the rest data are split evenly into
two parts for validation and testing respectively.

APTOS (Karthik, 2019). It is an image dataset that judges the severity of diabetic retinopathy on
a scale of 0 to 4. The original dataset contains 3,662 training images and 1,928 testing images but
it suffers from heavily unbalanced. We only utilize the training part in our setting and we randomly
choose 400 samples for classes 0 and 2. Our processed dataset contains 1658 samples. We split data
into 20 clients and 20% of data serve for training similar to COVID-19.

Terra Incognita (Beery et al., 2018). It is a common dataset that contains photographs of wild
animals taken by camera traps at locations L100, L38, L43, and L46. It totally contains 24,788
samples with 10 classes. We randomly choose two locations, i.e. L46 and L100, to construct two
benchmarks, i.e. Terra46 and Terra100. For these two benchmarks, we split data into 20 clients and
20% of data serve for training similar to COVID-19.

Natural language processing datasets.

SST-2 (Wang et al., 2019; Socher et al., 2013). The Stanford Sentiment Treebank contains sen-
tences from movie reviews and the labels come from human annotations of their sentiment. It
contains about 67k training samples with two classes. We choose sentences with the number of
words ranging from 20 to 50 10 and obtain 9763 samples. We split data into 20 clients and 20% of
data serve for training similar to COVID-19.

COLA (Wang et al., 2019; Warstadt et al., 2019). The Corpus of Linguistic Acceptability contains
English acceptability judgments drawn from books and journal articles on linguistic theory and it
judges a sequence of words whether it is a grammatical English sentence. It contains 8.5k training
samples with two classes. We choose sentences with the number of words less than 30 and obtain
5700 samples in total. For the class with more samples, we randomly choose parts to ensure balance.
We split data into 20 clients and 20% of data serve for training similar to COVID-19.

Financial-phrasebank (Malo et al., 2014). It consists of sentences from financial news categorized
by sentiment. It contains 4840 samples with three classes, including positive, neutral, and negative.
We choose sentences with the number of words less than 60 and obtain 3379 samples in total. We
split data into 10 clients and 20% of data serve for training similar to COVID-19.

Flipkart (Vaghani & Thummar, 2023). This dataset contains information on product name, prod-
uct price, rate, reviews, summary and sentiment. It has 205,053 samples with multiple labels. We
choose sentiment analysis as our task and there can be three classes, including positive, neutral, and
negative. We choose reviews with lengths more than 30 and we randomly choose parts of classes
with more samples for balance. The processed dataset contains 3048 samples for each class. We
split data into 20 clients and 20% of data serve for training similar to COVID-19.

F.2 DATA DISTRIBUTIONS

Figure 7 shows the complete data distributions on the rest benchmarks.

F.3 MODEL STRUCTURES

Table 4 shows details on auto-encoders. Please note that the encoder accounts for approximately
half of the parameter count.

F.4 ADDITIONAL RESULTS

Table 5, Table 6, and Table 7 show more detailed results on computer vision and natural language
processing.

10We split sentences into words via spaces.
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Table 4: The structures of auto-encoders.
CV NLP(Linear)

Layer(type) Output Shape #—Param— Layer(type) Output Shape #—Param—
Conv2d-1 [-1,32,224,224] 896 Linear-1 [-1,128] 6,291,584
ReLU-2 [-1,32,224,224] 0 BatchNorm1d-2 [-1,128] 256
BatchNorm2d-3 [-1,32,224,224] 64 ReLU-3 [-1,128] 0
MaxPool2d-4 [-1,32,112,112] 0 Linear-4 [-1,256] 33,024
Conv2d-5 [-1,64,112,112] 18,496 BatchNorm1d-5 [-1,256] 512
ReLU-6 [-1,64,112,112] 0 ReLU-6 [-1,256] 0
BatchNorm2d-7 [-1,64,112,112] 128 Linear-7 [-1,96] 24,672
MaxPool2d-8 [-1,64,56,56] 0 BatchNorm1d-8 [-1,96] 192
Conv2d-9 [-1,128,56,56] 73,856 ReLU-9 [-1,96] 0
ReLU-10 [-1,128,56,56] 0 Linear-10 [-1,256] 33,024
BatchNorm2d-11 [-1,128,56,56] 256 BatchNorm1d-11 [-1,256] 512
MaxPool2d-12 [-1,128,28,28] 0 ReLU-12 [-1,256] 0
Conv2d-13 [-1,32,28,28] 36,896 Linear-13 [-1,128] 32,896
ReLU-14 [-1,32,28,28] 0 BatchNorm1d-14 [-1,128] 256
BatchNorm2d-15 [-1,32,28,28] 64 ReLU-15 [-1,128] 0
MaxPool2d-16 [-1,32,14,14] 0 Linear-16 [-1,49152] 6,340,608
Conv2d-17 [-1,8,14,14] 2,312 Tanh-17 [-1,49152] 0
ReLU-18 [-1,8,14,14] 0 NLP(LSTM)
BatchNorm2d-19 [-1,8,14,14] 16 LSTM-1 [-1,64,128] 459,776
MaxPool2d-20 [-1,8,7,7] 0 Linear-2 [-1,96] 12,384
Linear-21 [-1,294] 115,542 LSTM-3 [-1,64,128] 132,096
ReLU-22 [-1,294] 0 Linear-4 [-1,64,768] 99,072
BatchNorm1d-23 [-1,294] 588 Tanh-5 [-1,64,768] 0
ConvTranspose2d-24 [-1,32,14,14] 2,336
ReLU-25 [-1,32,14,14] 0
BatchNorm2d-26 [-1,32,14,14] 64
ConvTranspose2d-27 [-1,128,28,28] 36,992
ReLU-28 [-1,128,28,28] 0
BatchNorm2d-29 [-1,128,28,28] 256
ConvTranspose2d-30 [-1,64,56,56] 73,792
ReLU-31 [-1,64,56,56] 0
BatchNorm2d-32 [-1,64,56,56] 128
ConvTranspose2d-33 [-1,32,112,112] 18,464
ReLU-34 [-1,32,112,112] 0
BatchNorm2d-35 [-1,32,112,112] 64
ConvTranspose2d-36 [-1,16,224,224] 4,624
ReLU-37 [-1,16,224,224] 0
BatchNorm2d-38 [-1,16,224,224] 32
Conv2d-39 [-1,3,224,224] 51

Table 5: Results on four computer vision benchmarks. Bold means the best.
DataSet Method 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 AVG

COVID-19 Zs 18.36 33.66 1.94 48.06 3.38 47.32 53.17 0.00 3.40 51.71 3.90 43.69 40.78 13.17 54.37 0.00 11.65 36.59 0.97 58.05 26.21
Ours 76.81 42.44 82.04 59.22 82.61 70.24 62.44 79.90 82.04 55.12 58.54 80.58 37.86 71.22 64.08 82.52 72.33 49.27 87.38 66.83 68.17

APTOS Zs 0.00 53.12 0.00 41.94 0.00 45.16 25.00 32.26 48.39 0.00 29.03 12.50 65.62 0.00 51.61 0.00 40.62 0.00 0.00 38.71 24.20
Ours 43.33 59.38 54.84 54.84 50.00 41.94 56.25 38.71 51.61 48.39 41.94 53.12 65.62 32.26 48.39 53.12 50.00 36.67 48.39 51.61 49.02

Terra46 Zs 21.93 21.55 25.22 12.39 34.48 6.09 13.04 25.44 33.33 18.42 46.09 6.96 35.96 16.38 41.74 5.31 25.00 7.96 21.74 21.74 22.04
Ours 48.25 62.07 56.52 70.80 43.97 51.30 45.22 28.95 47.37 62.28 41.74 59.13 34.21 60.34 60.00 59.29 35.34 67.26 50.43 76.52 53.05

Terra100 Zs 14.13 9.89 7.69 9.57 5.56 6.38 9.78 6.45 6.52 16.48 4.40 11.70 11.83 7.78 12.90 7.69 11.96 7.61 9.78 12.22 9.52
Ours 63.04 73.63 56.04 75.53 65.56 100.00 59.78 96.77 90.22 57.14 51.65 64.89 48.39 80.00 86.02 49.45 52.17 68.48 78.26 60.00 68.85

Table 6: Average results on NLP. Bold means the best.
Benchmark Method ALBERT BERT DeBERTa GPT2 AVG

SST-2 ZS 47.84 52.16 52.14 52.14 51.07
Ours 94.70 94.72 94.70 94.70 94.71

COLA ZS 50.22 50.22 49.87 48.82 49.78
Ours 89.34 88.73 88.16 88.46 88.67

Financial ZS 60.76 54.82 62.11 41.26 54.74
Ours 68.91 68.54 68.69 71.79 69.48

Flipkart ZS 32.26 29.43 33.27 34.16 32.28
Ours 64.85 64.50 66.32 65.50 65.29
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Figure 7: Data distributions. The size of dots represents the number of samples.

Table 7: Results on Financial-phrasebank. Bold means the best.
Backbones Client 1 2 3 4 5 6 7 8 9 10 AVG

ALBERT ZS 31.85 91.18 64.71 58.21 78.36 42.96 85.82 38.24 67.41 48.89 60.76
Ours 52.59 99.26 62.50 58.96 87.31 52.59 94.78 50.00 77.78 53.33 68.91

BERT ZS 42.22 70.59 58.82 49.25 57.46 47.41 67.16 43.38 58.52 53.33 54.82
Ours 52.59 99.26 62.50 58.96 87.31 50.37 94.78 44.12 77.78 57.78 68.54

DeBERTa ZS 25.93 99.26 62.50 58.96 87.31 36.30 94.78 31.62 77.78 46.67 62.11
Ours 52.59 99.26 66.18 58.96 87.31 42.96 94.78 46.32 77.78 60.74 68.69

GPT2 ZS 41.48 41.18 49.26 37.31 43.28 37.04 48.51 33.82 42.96 37.78 41.26
Ours 52.59 99.26 75.00 61.94 87.31 52.59 91.04 50.74 81.48 65.93 71.79

F.5 VISUALIZATION STUDY

Figure F.5 describes the visualization of both the original images and the corresponding restored
images via the Autoencoder on Terra100. We can observe that the recovered images almost elimi-
nate the corresponding category information. However, they generate distinct patterns for different
categories.
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Figure 8: Visualizations of both the original images and the corresponding restored images via
the Autoencoder on Terra100. The upper row is the original figures while the bottom row is the
corresponding restored images via the Autoencoder. The first two columns are of the fourth class
while the last two columns are of the eighth class.
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