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ABSTRACT

Physics-Informed Neural Networks (PINNs) have emerged as a promising ap-
proach for solving partial differential equations (PDEs) using deep learning. How-
ever, standard PINNs do not address the problem of constrained PDEs, where the
solution must satisfy additional equality or inequality constraints beyond the gov-
erning equations. In this paper, we introduce Derivative-Constrained PINNs (DC-
PINNs), a novel framework that seamlessly incorporates constraint information
into the PINNs training process. DC-PINNs employ a constraint-aware loss func-
tion that penalizes constraint violations while simultaneously minimizing the PDE
residual. Key components include self-adaptive loss balancing techniques that au-
tomatically tune the relative weighting of each term, enhancing training stability,
and the use of automatic differentiation to efficiently compute derivatives. This
study demonstrates the effectiveness of DC-PINNs on several benchmark prob-
lems, from basic to complex, such as quantitative finance and applied physics,
including heat diffusion, volatility surface calibration, and incompressible flow
dynamics. The results showcase improvements in generating solutions that satisfy
the constraints compared to baseline PINNs methods. The DC-PINNs framework
opens up new possibilities for solving constrained PDEs in multi-objective opti-
mization problems.

1 INTRODUCTION

Partial differential equations (PDEs) play a crucial role in modelling various physical phenomena
across scientific and engineering disciplines. Traditional numerical methods for solving PDEs, such
as finite difference and finite element methods, have been widely used but often face challenges
in terms of computational efficiency and handling complex geometries. Recently, Physics-Informed
Neural Networks (PINNs) by Raissi et al. (2019) have emerged as a promising alternative, leveraging
deep learning to solve PDEs with high accuracy and efficiency.

However, despite their empirical successes, PINNs still face challenges in the presence of additional
equality or inequality constraints beyond the PDE itself, as pioneered in Lagaris et al. (1998). Such
constrained PDEs are ubiquitous in real-world applications: heat diffusion with temperature bounds,
option pricing with no-arbitrage constraints, and fluid flow with velocity limits, to name a few. Naive
techniques for embedding constraints can lead to unstable training, slow convergence, and constraint
violation. Although more sophisticated approaches have been proposed to better handle constraints
in PINNs, Conservative PINNs Jagtap et al. (2020) and DC NN Lo & Huang (2023) enforce equal-
ity constraints, while Augmented Lagrangian approaches Lu et al. (2021) and theory-guided neural
networks Chen et al. (2021) show stronger performance on inequality-constrained PDEs. Never-
theless, there is still a need for methods that can effectively handle constraints while reducing the
dependence on intricate hyperparameter adjustments and problem-specific architectures.

In this study, we propose Derivative-Constrained PINNs (DC-PINNs), a general and robust frame-
work for solving derivative-constrained PDEs using deep learning. Our approach seamlessly inte-
grates the constraints into the learning process, ensuring that the solution satisfies the prescribed
conditions while maintaining the benefits of PINNs. The key contributions of this study include:

• A flexible constraint-aware loss function that admits general nonlinear constraints and
seamlessly incorporates them into the PDE residual objective.
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• Self-adaptive loss balancing techniques that automatically tune the weightings of the ob-
jective terms, including derivatives obtained through automatic differentiation stabilizing
training across diverse problem settings.

• Demonstration of the approximation ability of DC-PINNs on benchmark PDEs from sim-
ple to complex, including the heat equations, structural modelling of finance, and fluid
dynamics problem, showcasing improvements over PINNs approaches.

The study aims to highlight the importance of explicit constraint handling in PINNs, as relying solely
on the PDE residual term may lead to solutions that violate critical physical principles. The extended
approach can explore applicable to several key areas: 1. Basic PDE problems with added physical
insights 2. Problems requiring multiple derivative constraints to avoid system failure 3. Complex
problems with diverse internal dynamics that typically resist convergence. This study provides ex-
periments for these purposes on heat equations, local volatility models in finance, and incompress-
ible flows in fluid dynamics. Comparisons with existing techniques show our approach manages
constraints and maintains physical consistency more effectively.

These experiments compare our framework against existing approaches in handling complex con-
straints and maintaining physical consistency. Recasting derivative-constrained PDE solving as a
multi-objective optimisation problem opens up new possibilities for solving a wider range of physi-
cally constrained systems with improved accuracy and reliability.

2 PROBLEM FORMULATION

2.1 DERIVATIVE-CONSTRAINED PDE PROBLEM

Physics-based machine learning can be formulated as an optimization problem that aims to find the
feasible parameters θ̂ of a parameterized function u := φθ(x) while satisfying constraints repre-
sented by PDEs and related conditions by

θ̂ = argmin
θ

L(x,Dy), (1)

s.t. f(x,Dy) = 0, governing PDEs

B =
{
bk,D(b)

k |D(b)
k y(x) = 0, x ∈ bk

}Nb

k=1

H =
{
hk,D(h)

k |D(h)
k y(x) ≥ 0, x ∈ hk

}Nh

k=1

(2)

where L is the objective loss function, multivariate inputs x ∈ Rn are state variables, D is the set
of individual differential operators including the 0-th order, f represents the governing PDEs, B is
the set of boundary equality constraints, H is the set of inequality constraints, and N(·) denotes the
number of corresponding conditions.

This study focuses on inequality constraints involving derivatives and employs a discretize-then-
optimize approach combined with gradient-based optimisation using artificial neural networks
(ANNs). The optimization problem is first discretized numerically, transforming it into a finite-
dimensional problem. To ensure that the smooth ANN solution complies with the governing equa-
tions and constraints for PDEs involving derivatives of input variables, this study uses the multilayer
perceptron (MLP) with Automatic Differentiation for gradient calculation, requiring at least second-
order differentiable activation functions. For PDEs involving ṅ-th order partial derivatives, the entire
MLP must be (ṅ+1)-th order differentiable to facilitate gradient-based optimization effectively.

2.2 PHYSICS-INFORMED NEURAL NETWORKS (PINNS)

Physics-Informed Neural Networks (PINNs), introduced in Raissi et al. (2019), are neural networks
that incorporate underlying physical laws into the architecture through PDEs, forming a new class
of data-efficient universal function approximations. We consider a parametrized PDE system given
by

f [φ (x)], x ∈ Ω,

b[φ (x)], x ∈ ∂Ω,
(3)

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where f and b are a set of PDE and boundary operators, Ω and ∂Ω are the spatial domain and the
boundary.

PINNs solve this PDE system as an optimization problem using an artificial neural network by
minimizing the total loss in a deep learning context:

L := L0 + Lb + Lf , (4)

L0 :=
1

N0

N0∑
i=1

∣∣∣φ(x(i)
0 )− ŷ

(i)
0

∣∣∣2 ,Lb :=
1

Nb

Nb∑
i=1

∣∣∣b[φ(x(i)
b )]

∣∣∣2 ,Lf :=
1

Nf

Nf∑
i=1

∣∣∣f [φ(x(i)
f )]

∣∣∣2 , (5)

where L0 represents the error between observed (ŷ) and predicted values, Lb enforces boundary
conditions, and Lf penalizes the PDE residual at a set of collocation points.

2.3 DERIVATIVE-CONSTRAINED PINNS (DC-PINNS)

We now consider the extension of PINNs to handle derivative inequality constraints, which we term
Derivative-Constrained PINNs (DC-PINNs). Assume the presence of inequality constraints of the
form

h[φ(x)], x ∈ Ω (6)

where h[·] represents a set of differential operators acting on an inequality equation, which includes
derivatives. There are several methods available to enforce inequality conditions in general. The
direct approach is to formulate loss functions of inequalities and impose them as soft constraints
with fixed loss weights. To fit with inequality constraints, a loss Lh to be minimized is defined as

Lh :=
1

Nh

Nh∑
i=1

γ ◦
∣∣∣h(φ(x(i)

h )
)∣∣∣2 . (7)

γ(x) =

{
x, if inequality is not satisfied
0, otherwise

(8)

where Lh penalizes the violation of inequality constraints at a set of collocation points, and the
function γ determines the penalty based on whether the inequality is satisfied or not.

Our proposed framework extends PINNs to handle derivative-constrained PDEs effectively by seam-
lessly integrating the constraints into the learning process. We introduce a constraint-aware loss
function that penalizes violations of the constraints while simultaneously minimizing the residual
loss. However, setting large loss weights can cause an ill-conditioned problem. On the other hand,
when small loss weights are chosen, the estimated solution may violate the inequalities. In this
sense, we formulate the total cost in DC-PINNs to be minimized as,

L := λ0L̂0 + λbL̂b + λf L̂f + λhL̂h, (9)

where λ are weighting coefficients for each categorized loss term. By minimizing this total loss,
the neural network approximation satisfies the governing PDE, boundary/initial conditions, and the
prescribed inequality constraints. The categorized loss terms are defined as

L̂0 =
1

N0

N0∑
i=1

m
(i)
0

∣∣∣φθ

(
x
(i)
0

)
− y

(i)
0

∣∣∣2 , L̂b =
1

Nb

Nb∑
i=1

m
(i)
b

∣∣∣φθ

(
x
(i)
b

)
− y

(i)
b

∣∣∣2 , (10)

L̂f =
1

Nf

Nf∑
i=1

m
(i)
f

∣∣∣f (
φθ(x

(i)
f )

)∣∣∣2 , L̂h :=
1

Nh

Nh∑
i=1

m
(i)
h

∣∣∣γ ◦ h
(
φθ(x

(i)
h )

)∣∣∣2 , (11)

where y0 is the observed values, i = 1, . . . , N0 from the observed dataset, and L̂h represents a
penalty term corresponding to inequality constraints stated the third term in equation 2. The mod-
ifications from loss configurations of standard PINNs are the introducing multipliers λ for each
categorized loss as loss terms and the weights m for each individual loss for the outputs on each
state variable in the categorized loss.
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3 MULTI-OBJECTIVE OPTIMIZATION

The choice of weight coefficients for the different loss components requires careful tuning to balance
the contributions of the residual loss, boundary/initial condition loss, and constraint-aware loss. As
mentioned in Lu et al. (2021), if the multiplier for the categorized loss is larger, the constraint vio-
lations are penalized more severely, forcing the solutions to better satisfy the constraints. However,
when the penalty coefficients are too large, the optimization problem becomes ill-conditioned and
difficult to converge to a minimum. On the other hand, if the penalty coefficients are too small, then
the obtained solution will not satisfy the constraints and thus is not a valid solution. Although the
soft-constraint approach has worked well for inverse problems to match observed measurements,
it cannot be used in general because we cannot determine appropriate multipliers in the learning
process.

To enhance the usability and robustness of the framework, automated techniques for optimal weight
selection are employed. This study, involves a combination of two balanced processes in the learning
process, inspired by McClenny & Braga-Neto (2020); Wang et al. (2023). The first balancing inten-
sifies the gradient of individual losses in categorized losses to enhance local constraints, especially
the objective for inequality derivative constraints. The second balancing addresses the multi-scale
imbalance between categorized losses in (10∼11), particularly to mitigate the changing of gradient
values from epoch to epoch due to the inequality feature in equation 11.

3.1 INDIVIDUAL LOSS BALANCING

In alignment with the neural network philosophy of self-adaptation, this study applies a straightfor-
ward procedure with fully trainable weights to generate multiplicative soft-weighting and attention
mechanisms. The first balancing proposes self-adaptive weighting that updates the loss function
weights via gradient ascent concurrently with the network weights. We minimize the total cost with
respect to θ but also maximize it with respect to the self-adaptation weight vectors m at the k-th
epoch,

m
(j)
β (k + 1) = m

(j)
β (k) + ηm∇

m
(j)
β

L̂β(k). (12)

where β specifies each loss β ∈ {0, b, f, h} and ηm is learning parameter. In the learning step, the
derivatives with respect to self-adaptation weights are increased when the constraints are violated
and become larger when the errors are larger.

3.2 CATEGORIZED LOSS BALANCING

Parallely, for the second balancing, loss-balancing employs the following weighting function with
balancing parameters λ in the loss function based on Eq equation 9. Considering updated at the k-th
epoch,

λβ(k + 1) =


1, if

∣∣∣∇θL̂β(k)
∣∣∣ = 0

λβ(k) +
∑

β |∇θL̂β(k)|
|∇θL̂β(k)|

, otherwise
(13)

where ∇i is the partial derivative vector (gradient) with respect to the i-th input vector (or value),
and |·| indicates the average of the absolute values of the elements in the vector. Note that the main
reason for the choice of absolute values, instead of squared values as in Wang et al. (2023), is to
avoid overlooking outlier violations of the inequality constraints because most elements of ∇Lh are
assumed to be zero values in almost all cases.

The applied methods automatically adjust the weights of loss terms based on their relative mag-
nitudes during training at user-specified intervals. These adaptive approaches have the potential to
ensure a balanced contribution of each term of unstable inequality losses to the optimization process,
potentially improving convergence and accuracy.

4 ALGORITHMS

This section introduces the algorithm of the DC-PINNs for multi-objective problems, which control
the inequity loss of the partial derivatives of a neural network function with respect to its input

4
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features and apply the combination of loss balancing techniques for both categorized and individual
losses.

Algorithm 1 DC-PINNs with Balancing Processes
Input: Dataset (x0,b, y0,b), xf , xh, η, ηm, pm, pλ, kmax

Consider a deep NN φθ(x) with θ, and a loss function

L :=ΣβλβL̂β (mβ , xβ (, yβ)) ,

where L̂β denotes the categorized loss with β ∈ {0, b, f, h}, mβ = 1 are soft-
weighting vectors for individual losses and λβ = 1 are dynamic multipliers.
for k = 1, . . . , kmax do

Compute ∇θL̂β(k) by automatic differentiation
if k ≡ 0 mod pm then

Update mβ by

m
(j)
β (k + 1) = m

(j)
β (k) + ηm∇

m
(j)
β

L̂β(k),

where mβ(k), L̂β(k) shows values at k-th iteration.
end if
if k ≡ 0 mod pλ then

Update λβ by

λβ(k + 1) =

{
1, if α = 0

λβ(k) +
∑

β α

α
, otherwise

, where αβ =
∣∣∣∇θL̂β(k)

∣∣∣
end if
Update the parameters θ via gradient descent, e.g.,θ(k+1) = θ(k)−η∇θL (k).

end for
Return: θ

Algorithm 1 exhibits DC-PINNs characteristics that set it apart from conventional learning methods.
First, the computation points x{f,h} for the derivatives of the MLP do not correspond with the points
of the training dataset x0. The algorithm adjusts the derivatives to fit wide mesh grids in the defined
space, thereby capturing derivative data across a wide array of input features. Secondly, the objective
function L does not depend only on the MLP’s direct output but also on its derivatives as specified in
Eq.equation 9, all of which depend on identical network parameters. DC-PINNs facilitate balancing
among categorized losses in addition to enhanced individual losses, which consist of PDE residuals
and various scaled losses resulting from the violation of inequality constraints.

5 EXPERIMENTAL DESIGN

5.1 NEURAL NETWORK SETTING AND TRAINING CONFIGURATION

In the experiments, the network architecture φ is a deep setting with four hidden layers (L = 5),
each containing 32 neurons and a hyperbolic tangent activation function for smooth activations,
following Wang et al. (2023) for specific measures to improve learning efficiency and accuracy in
selecting appropriate architectures. We also employ Glorot initialization for network parameters
and the Adam optimization (Kingma & Ba, 2014) with a weight decay setting, which starts with
a learning rate η = 10−3 and an exponential decay with a decay rate of 0.9 for every 1000 decay
steps. The hyperparameters used are pm, pλ = 100, and kmax = 10000. The compared models
in the result section are MLP L := L0 + Lb, PINNs L := L0 + Lb + Lf , and DC-PINNs L :=

λ0L̂0 + λbL̂b + λf L̂f + λhL̂h. Training data is prepared using equally distributed points for initial
and boundary conditions (N0 = Nb = 101) and containing square mesh grids for PDE residuals
and inequality constraints, i.e., Nf = Nh = 101 × 101. To evaluate approximation ability, the
evaluation errors between predictions and answers are calculated using mesh grids as the same grids
of constraints.
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In computing, differentiable operators have been developed in JAX/Flax Bradbury et al. (2018);
Heek et al. (2023), which can efficiently calculate exact derivatives using automatic differentiation.
The experiments are conducted using Google Colab1, which offers GPU computing on the NVIDIA
Tesla T4 with a video random access memory of 15 GB. The complete codebase for this study is
available at [GitHub].

6 NUMERICAL EXPERIMENTS

To demonstrate the effectiveness of the proposed framework, we conduct a series of numerical exper-
iments on several benchmark problems related to quantitative finance: heat diffusion, local volatility
surface calibration, and incompressible flow dynamics with complex geometries and nonlinear con-
straints. We compare our approach to existing PINN-based approaches, including derivative profile
comparisons on a function of trained networks.

6.1 ONE-DIMENSIONAL HEAT EQUATION IN THERMODYNAMICS

The heat equation is a classic example of a parabolic partial PDE problem Cannon (1984). It is a
suitable and well-established problem for illustrating the robustness of PINNs. Consider an infinites-
imally thin steel beam heated at its centre by a heat source. The heat at the centre will spread over
the steel beam while the edges are kept at zero temperature, ensuring that the temperature reaches
zero at an infinite final time. The problem setup is as follows:

f (x, t) =
∂u

∂t
− λ

∂2u

∂x2
, (14)

s.t. u (x, 0) = sin(πx), u (0, t) = u (1, t) = 0,

∂2u

∂x2
≤ 0,

∂u

∂t
≤ 0,

(15)

where x, t ∈ [0, 1]. The solution to this heat equation is given by u(t, x) = e−λπ2t sinπx. We can
add derivative constraints, as shown in the second line of equation 15, based on the fact that the
specified derivatives of the analytical solution should be negative in the defined space. This is also
intuitively convincing because the high heat at the centre gradually spreads to the edges, maintaining
solutions as parabolic curves over the domain throughout the entire timespan with heat reduction.
We set coefficient λ = 0.1 in this experiment.

Figure 1: Numerical
solutions for the one-
dimensional heat equa-
tions. (a) Exact solu-
tion. (b) PINNs. (c) DC-
PINNs.

Figure 1 compares the temperature fields learned by the proposed DC-PINNs framework with those
of the standard PINNs approach. Both methods appear to achieve sufficient fitting and do not exhibit
significant differences in accuracy when fitting the overall temperature profile.

To further investigate the impact of incorporating inequality constraints in DC-PINNs, Figure 2 il-
lustrates the derivative profiles of the learned temperature fields with respect to the spatial coordinate
x at different time snapshots. These sensitivity profiles highlight the key differences between the
PINNs and DC-PINNs solutions. The standard PINNs generate temperature profiles with distinct
regions of non-physical positive in differentials ∂2u/∂x2 and ∂u/∂t. In contrast, DC-PINNs consis-
tently produce sensitivity profiles that adhere to non-positivity constraints in differentials ∂2u/∂x2

1Google Colab. http://colab.research.google.com
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Figure 2: Derivative profiles
of the learned temperature
fields at different time snap-
shots for PINNs (upper row)
and DC-PINNs (bottom row),
aligned with exact solutions
(dashed lines). (a) First-order
derivatives with respect to x.
(b) Second-order derivatives
with respect to x. (c) First-
order derivatives with respect
to t.

and ∂u/∂t across all time snapshots while closely matching the ground truth profiles. This demon-
strates the effectiveness of the DC-PINNs framework in enforcing inequality constraints during the
learning process, resulting in physically consistent solutions. These results emphasize the impor-
tance of explicit constraint handling in physics-informed neural networks, as naively relying on the
partial differential equation (PDE) residual term alone may lead to solutions that violate critical
physical principles.

6.2 IMPLIED VOLATILITY SURFACE CALIBRATION IN FINANCE

Next, we consider the calibration problem in finance, an inverse problem to identify governing
parameters in a PDE, where the option prices satisfy the PDE (i.e., the Local Volatility (LV) model
introduced in Dupire et al. (1994). The implied volatility u is given with respect to strike x and time
to maturity t by,

f(x, t) =
∂u

∂t
− 1

2
σ2
LVx

2 ∂
2u

∂x2
+ rx

∂u

∂x
,

u = g(x, t, y), σLV = ϕ(x, t, y,Dy),

(16)

s.t. ut=0 = (stm − x)
+
, ux=0 = st,

∂u

∂x
≤ 0,

∂2u

∂x2
≥ 0,

∂u

∂t
≥ 0,

(17)

where u represents the option price calculated by the function g(·), which is plugged into the formula
in equation 21. The conversion function ϕ(·) is with respect to y using equation 24. Assuming
European (call) options with various strikes and time to maturity x, t ∈ [0, 1], s0 = 0.1, tm = 1,
r = 0.1, and st = s0e

rt. Synthetic data is prepared as option premiums (u) using the SABR model
(Hagan et al., 2002). It is noted that this problem is different from previous examples since the
feasible solution by optimizations affects the designed parameters of PDEs. Figure 3 illustrates

Figure 3: Numerical so-
lutions (σLV) for the im-
plied surface calibration
in finance. (a) Analytical
solution. (b) PINNs. (d)
DC-PINNs.

the numerical solutions obtained by each method. Similar to the previous examples, both methods

7
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Figure 4: Heatmaps of the
inequality derivatives condi-
tions of the learned local
volatilities for PINNs (up-
per row) and DC-PINNs (bot-
tom row), the area that vio-
lates constraints is coloured
red. (a) First-order derivatives
with respect to x. (b) Second-
order derivatives with respect
to x. (c) First-order deriva-
tives with respect to t.

in the calibration problem also appear to achieve appropriate fitting and do not exhibit significant
differences in accuracy when predicting the overall parameter profiles.

As with other experiments, we compare the performance of DC-PINNs that incorporate nonlinear
constraints by investigating the derivative profiles of the obtained surface. Figure 4 illustrates the
area of heatmaps of the inequality derivatives conditions of the learned local volatilities as same as
previous examples. The results demonstrate that the proposed DC-PINNs framework captures the
solution while satisfying the nonlinear constraints, outperforming the traditional PINNs approach.
Furthermore, the DC-PINNs framework demonstrates versatility, as it can be applied to calibration
problems of design parameters in PDEs, including data-driven solutions.

6.3 NAVIER-STOKES EQUATIONS IN FLUID DYNAMICS

To demonstrate the applicability of DC-PINNs to more complex physical systems, this study consid-
ers the incompressible Navier-Stokes equations, which are fundamental yet challenging in fluid dy-
namics. The flow past a 2D circular cylinder is modeled, representing the well-known phenomenon
of von Kármán vortex street. The governing equations in convective form are given by:fu = ∂u

∂t + µ1

(
u∂u

∂x + v ∂u
∂y

)
+ ∂p

∂x − µ2

(
∂2u
∂x2 + ∂2u

∂y2

)
= 0

fv = ∂v
∂t + µ1

(
u ∂v
∂x + v ∂v

∂y

)
+ ∂p

∂y − µ2

(
∂2v
∂x2 + ∂2v

∂y2

)
= 0

(18)

s.t. (u, v)|x=−15 = (u, v)|y=−8,8 = (1, 0) ,
∂u

∂x
,
∂v

∂x

∣∣∣∣
x=25

= p|x=−15 = 0,

u = v = 0 on the cylinder surface,

∇ ·V =
∂u

∂x
+

∂v

∂y
= 0,

∣∣∣∣∂u∂x
∣∣∣∣, ∣∣∣∣∂v∂y

∣∣∣∣ ≤ 1,

(19)

where V = (u, v) is the velocity field, p is the pressure, and µ1 = 1 and µ2 = 1/Re are dimension-
less parameters, with Re being the Reynolds number. This problem is treated as a data-discovery
problem for PDEs, where the parameters µ = (µ1, µ2) are identified from observed data. We simu-
late flow samples past a circular cylinder with a diameter D = 1 under incompressibility conditions
at a Reynolds number Re = 100. The computational domain is a rectangle defined by x ∈ [−15, 25]
and y ∈ [−8, 8], with the cylinder center at the origin. The training velocity field V is sampled on
a random grid of 5,000 points within the region x ∈ [1, 8], y ∈ [−2, 2], and t ∈ [0, 20] in periodic
steady flow throughout. The results are compared with those obtained using a spectral/hp element
method implemented in the open-source software Nektar++ (Moxey et al., 2020), as illustrated in
Figure 5.

In the training, velocity and pressure fields are defined (u, v, p) := φθ (x, y, t) in DC-PINNs and
(ϕ, p) := φθ (x, y, t) , (u, v) = (∂ϕ/∂y,−∂ϕ/∂x) in PINNs, following Raissi et al. (2019). In the
experiment, we consider the divergence-free field and vortices shed in the wake having a character-
istic size comparable to the cylinder diameter as derivative constraints, inspired by Singh & Mittal
(2005), in equation 19.
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Figure 5: Simulations of flow
past a circular cylinder at
Re = 100 by timesteps. (a)
the verocity u. (b) the second
derivatives of u with respect
to x, i.e., ∂2u/x2.

Figure 6: Comparison of trained pressure fields for flow past a circular cylinder. (a) Finite element
method. (b) PINNs. (c) DC-PINNs.

Figure 6 compares the pressure fields obtained from models at a representative time step in the vortex
shedding cycle. Both trained models reproduce symmetry and periodicity features. However, the
scale of the numbers differs, and DC-PINNs reproduce the magnitude more accurately, indicating
that DC-PINNs grasp the whole-term relationship of PDEs more precisely from the training.

Figure 7: Comparison
of training evolutions
of identifying µ, and
L0. (a) Finite element
method. (b) PINNs. (c)
DC-PINNs.

To evaluate the performance of DC-PINNs, Figure 7 presents the system identification learning, or
data-driven discovery of PDEs, showing how the parameters µ = (µ1, µ2) describe the observed
data. DC-PINNs effectively converge to the exact answers for the parameters µ during the training
process. The results show that DC-PINNs can accurately capture complex flow features, including
the von Kármán vortex street in the cylinder’s wake. The additional physical constraints enforced
by DC-PINNs help maintain solution stability and prevent non-physical artefacts that may arise in
unconstrained neural network approaches.

This case study highlights the potential of DC-PINNs for solving challenging nonlinear PDEs in
fluid dynamics. The framework’s ability to incorporate domain-specific knowledge through addi-
tional constraints enhances the physical consistency of the solutions, making it a promising tool for
various computational PDE dynamics applications.

6.4 COMPUTATIONAL EFFICIENCY

At last, we demonstrate the effectiveness of DC-PINNS during training and evaluate its computa-
tional efficiency. Table 1 presents the computation times required by DC-PINNs and the baseline
models for calibrating the surface in 6.2 based on changes in dataset size and number of neurons.
The computational efficiency of DC-PINNs is evident from their ability to handle these complex
optimization challenges without significant overhead. The efficient use of automatic differentiation
and the adaptive loss balancing approach contribute to DC-PINNs convergence and reduced com-
putational overhead. DC-PINNs also exhibit reasonable scalability, as evidenced by the sublinear
growth in computation time with respect to the dataset size. This scalability is crucial for handling
the ever-increasing volumes of real-world data in modern scientific domains.
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Table 1: The computation times (in seconds) for the training in 6.2 based on changes in dataset size
(total N ) and number of neurons.

Models Default Dataset size ♯ of neurons
Half Quarter Half Quarter

MLP 48.2 45.0 44.8 45.4 44.8
PINNs 95.5 68.4 56.7 70.6 57.9
DC-PINNs 122.3 92.6 80.9 93.2 82.6

7 CONCLUSION AND FUTURE WORK

In this study, we proposed an extended PINNs framework called Derivative-Constrained PINNs
(DC-PINNs) to effectively solve PDEs with derivative constraints, which seamlessly integrates con-
straint information into the learning process through a constraint-aware loss function. The effec-
tiveness of the DC-PINNs framework was demonstrated through a series of numerical experiments
on benchmark problems related to applied physics to quantitative finance, including heat diffusion,
volatility surface calibration, and the Navier-Stokes equation. The results showed that DC-PINNs
outperformed standard PINNs approaches in terms of the ability to satisfy nonlinear constraints
with sufficient accuracy. DC-PINNs also illustrated computational efficiency in handling optimiza-
tion without significant overhead by the use of automatic differentiation and adaptive loss balancing
techniques.

The study emphasizes the importance of explicit constraint handling in PINNs, as relying solely on
the PDE residual term may lead to solutions that violate critical physical principles. The DC-PINNs
framework opens up new possibilities for solving constrained PDEs in multi-objective optimiza-
tion problems. However, further investigation is needed to assess the scalability of the framework
to high-dimensional and more complex constraint types. Future work could explore efficient sam-
pling strategies and adaptive collocation point selection to mitigate the curse of dimensionality and
improve accuracy and computational efficiency.
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APPENDIX

A IMPLIED VOLATILITY SURFACE CALIBRATION IN FINANCE

A.1 PROBLEM SETTING

The implied volatility surface is a model of values resulting from European option prices in quanti-
tative finance. We are given a complete filtered probability space

(
Ω,F , (Ft)t∈[0,T ] ,P

)
and that P is

an associated risk-neutral measure. The price of a European call option C at time t is defined as

C = e−rτE
[
(ST −K)+ | Ft

]
, (20)

where St is the underlying price at t, K is the strike price, τ = T − t is the time to maturity T , and
r is the risk-free rate. In Black & Scholes (1973), the implied volatility σimp leads to the modelled
price with K, τ ∈ [0,∞) as the Black-Scholes (BS) formula,

CBS (σimp) = StN (d+)− e−rτKN (d−) ,

d± =
ln(e−rτSt/K)±

(
σ2
imp/2

)
τ

σimp
√
τ

,
(21)

where N(·) is the cumulative normal distribution function.
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To expand the generalization for K and τ , Dupire et al. (1994) proposed the Local Volatility (LV)
model, in which the European option prices satisfy the PDE,

rK
∂C

∂K
− 1

2
σ2
LV(K, τ)K2 ∂

2C

∂K2
+

∂C

∂τ
= 0, (22)

with initial and boundary conditions given by

Cτ=0 = (ST −K)
+
, lim

K→∞
C = 0, lim

K→0
C = St. (23)

Plugging it into the formula in equation 21, one obtains a conversion function σimp and σLV with
respect to K and τ ,

σ2
LV(K, τ) =

σ2
imp + 2σimpτ

(
∂σimp

∂τ + rK
∂σimp

∂K

)
1 + 2d+K

√
τ
∂σimp

∂K +K2τ

(
d+d−

(
∂σimp

∂K

)2

+ σimp
∂2σimp

∂K2

) (24)

to be fit with the PDE equation 22.

We can define the calibration as identifying the multivariate function respecting the prices Φ (x),
associated with implied volatility surface as a function φ (x) ≥ 0 with inputs x := (K, τ),

Φ(x) = CBS (K, τ, φ (x)) . (25)
The inverse problem of the implied volatility surface is that, given limited options prices, we would
like to identify the implied volatility function with respect to x, redefined as σimp (x), to fit with
that premium resulted by CBS also satisfy PDE. Based on (21∼24), once φ is determined, we can
analytically obtain the option price Φ. Furthermore, Φ is second differentiable whenever φ is second
differentiable, allowing the representation of the PDE in equation 22.

A.2 NO-ARBITRAGE CONSTRAINTS FOR EUROPEAN OPTIONS

The option prices should obey the constraints imposed by no-arbitrage conditions, which are es-
sential financial principles posit that market prices prevent guaranteed returns above the risk-free
rate. This study considers the necessary and sufficient conditions for no-arbitrage presented in Carr
& Madan (2005). This allows us to express the call option price as a two-dimensional surface ap-
propriately. The necessary and sufficient conditions for no-arbitrage are represented as non-strict
inequalities for several first and second derivatives,

−e−rτ ≤ ∂C

∂K
≤ 0,

∂2C

∂K2
≥ 0,

∂C

∂τ
≥ 0. (26)

From the above, no-arbitrage conditions require these derivatives to have a specific sign. The stan-
dard architecture does not automatically satisfy these conditions when calibrating with a loss func-
tion simply based on the mean squared error (MSE) for the prices.

A.3 THE SABR MODEL

The SABR model in Hagan et al. (2002) is a typical parametric model, which can capture the market
volatility smile and skewness and reasonably depict market structure. When Ft is defined as the
forward price of an underlying asset at time t, the SABR model is described as

dFt = αtF
β
t dW

1
t , dαt = ναt dW

2
t ,

⟨dW 1
t , dW

2
t ⟩ = ρdt.

(27)

Here, W 1
t , W 2

t are standard Wiener processes, αt is the model volatility, ρ is the correlation between
the two processes, and ν is analogous to vol of vol. The additional parameter β describes the slope
of the skewness. Essentially, the IV in the SABR model is given by a series expansion technique
associated with volatility form of Black (1976)

σ(K, τ) =
α
(
1 +

(
(1−β)2

24
α2

(FK)1−β + 1
4

ρβvα

(FK)(1−β)/2 + 2−3ρ2

24
v2
)
τ
)

(FK)(1−β)/2
[
1 + (1−β)2

24
ln2 F

K
+ (1−β)4

1920
ln4 F

K

] z

χ(z)
,

z =
v

α
(FK)(1−β)/2 ln

F

K
, χ(z) = ln

(√
1− 2ρz + z2 + z − ρ

1− ρ

)
.

(28)
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A.4 BLACK-SCHOLES MODEL IN QUANTITATIVE FINANCE

One may realise well-known parametric modelling of volatility surface, called the Black-Scholes
model, as an example of solving a PDE in which inequality constraints on derivatives play a major
role; we consider the European (call) option pricing problem, which is a typical quantitative finance
problem governed by the Black-Scholes model Black & Scholes (1973). The Black-Scholes equa-
tion is a parabolic partial differential equation that describes the option price u in terms of the price
of the underlying asset x and time t, given the following initial and boundary conditions:

f(x, t) =
∂u

∂t
+

1

2
σ2x2 ∂

2u

∂x2
+ rx

∂u

∂x
− ru, (29)

s.t. u(x, tm) = (xtm − k)
+
, u(0, t) = 0,

∂u

∂x
≥ 0,

∂2u

∂x2
≥ 0,

∂u

∂t
≤ 0,

(30)

where k is the strike price, τ = tm − t is the time to maturity tm, σ is the volatility, and r is the
risk-free rate. For the purpose of this study, we consider a specific type of European option with
x, t ∈ [0, 1], k = 0.5, tm = 1, r = 0.1, and σ = 0.3. The inequalities in the second line of Equation
equation 30 represent the necessary and sufficient conditions for no-arbitrage, which ensure that the
option price is consistent with other financial strategies. These conditions are fundamental principles
that the price of the financial product must satisfy. The no-arbitrage constraints are expressed as
inequalities for the first and second derivatives with respect to the underlying asset x and time t,
as discussed in Section A.2. The exact solutions for the option price with respect to x and t are
provided by the Black-Scholes formula Black & Scholes (1973),

u(x, t) = xtN (d+)− e−rτkN (d−) , d± =
ln(e−rτxt/k)±

(
σ2/2

)
τ

σ
√
τ

, (31)

where N(·) is the cumulative normal distribution function.

Figure 8: Numerical solutions for the Black-Scholes model in finance with derivative-constrained
conditions. (a) Exact solution. (b) PINNs solution. (c) DC-PINNs solution.

Figure 8 illustrates the numerical solutions obtained by each method in a defined space. Both meth-
ods in the Black-Scholes pricing problem also appear to achieve appropriate fitting and do not exhibit
significant differences in accuracy when fitting the overall price profile.

To further investigate the impact of incorporating inequality constraints in DC-PINNs as in the
previous experiment, as in the previous example, Figure 9 illustrates heatmaps of the inequality
derivatives conditions of the trained models; the area that violates constraints are coloured red. These
sensitivity profiles also highlight the differences in solutions, which is that DC-PINNs consistently
produce sensitivity profiles that adhere to the no-arbitrage constraints across almost time snapshots,
although PINNs violate the inequality condition of derivatives on the wide area.

B INCOMPRESSIBLE FLOW DYNAMICS IN PHYSICS

B.1 NUMERICAL SETUP AND DATA GENERATION

Computational Domain The computational domain for our Navier-Stokes simulation is a rectan-
gular region defined by x ∈ [−15, 25] and y ∈ [−8, 8]. A circular cylinder with a diameter D = 1 is
positioned at the origin (0, 0). This setup allows for the observation of the von Kármán vortex street
phenomenon in the cylinder’s wake as stated in Garcı́a (2020).
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Figure 9: Heatmaps of the inequality derivatives conditions of the Black-Scholes option pricing for
PINNs (upper row) and DC-PINNs (bottom row), where the area that violates constraints is coloured
red. (a) First-order derivatives with respect to x. (b) Second-order derivatives with respect to x. (c)
First-order derivatives with respect to t.

Nektar++ Simulation Details We use the spectral/hp element method implemented in the open-
source software Nektar++ (Moxey et al., 2020) to generate high-fidelity simulation data. The fol-
lowing details describe our numerical setup:

• Mesh Generation: The solution domain is discretized in space by a tessellation consisting of
triangular elements. This mesh is designed to capture the flow features accurately, with refinement
near the cylinder and in the wake region.

• Spatial Discretization: Within each triangular element, the solution is approximated as a linear
combination of a hierarchical, semi-orthogonal Jacobi polynomial expansion. This high-order
approximation allows for an accurate representation of the flow field with relatively few elements.

• Boundary Conditions: We apply the following boundary conditions (BCs): 1. No-slip conditions
on the cylinder surface: homogeneous Dirichlet BC V = 0. 2. Far-field conditions at the top
and bottom boundaries: Dirichlet BC (u, v) = (1, 0). 3. Inflow condition at the left boundary:
Dirichlet BC (u, v) = (1, 0). 4. Outflow condition at the right boundary: static pressure p = 0.

• Reynolds Number: The simulation is conducted at a Reynolds number Re = 100, which is known
to produce a stable von Kármán vortex street.

• Time Integration: We use a second-order implicit-explicit time-stepping scheme. The time step is
chosen to ensure stability and accuracy, typically ∆t = 0.025.

• Convergence Criteria: The simulation is run until a statistically steady state is reached, typically
for about 800 time units after the simulation starts.

• Gradients generation: Each partial differential number based on Navier-Stokes PDEs is calculated
using the numerical gradient function in the FieldConvert modules.

Data Extraction and Preprocessing Following the Nektar++ simulation, we extract training data
for the DC-PINNs using a targeted approach. We sample the velocity field V = (u, v) on a random
grid of 5,000 points as observed samples and calculation grids for PDEs residuals and errors of
derivative-constraints within x ∈ [1, 8] and y ∈ [−2, 2], capturing the near-wake flow behaviour.
Data snapshots are collected at 0.1 time unit intervals to represent temporal evolution.

B.2 DC-PINN IMPLEMENTATION

Our DC-PINN architecture utilizes a fully connected neural network with 3 input neurons (x, y, t), 8
hidden layers of 20 neurons each, and 3 output neurons (u, v, p) to compare PINNs implementation
by Raissi et al. (2019). We employ Tanh activation functions and implement the architecture using
JAX for automatic differentiation in PDE residuals and constraints. The total loss function is defined
as:

Ltotal = λ0L̂0 + λfuL̂fu + λfv L̂fv + λhdivL̂hdiv + λhvort
x
L̂hvort

x
+ λhvort

y
L̂hvort

y
(32)
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Here, L̂0 measures prediction-simulation mismatch, L̂fu , L̂fv represents Navier-Stokes equation
residuals, L̂hdiv enforces the divergence-free constraint, and L̂hvort

x
, L̂hvort

y
implements the vorticity

constraint. The λi coefficients are balancing hyperparameters. We utilize the Adam optimizer
(Kingma & Ba, 2014) with a learning rate of 10−3 and cosine annealing, full batch training, and
10, 000 epochs. Each iteration involves sampling domain points, computing forward passes, calcu-
lating losses, and updating parameters via backpropagation.

Physical constraints are implemented using automatic differentiation. The divergence-free constraint
penalizes non-zero ∂u/∂x+∂v/∂y, while the vorticity constraint penalizes ∂u/∂x, ∂y/∂y exceed-
ing flow-characteristic thresholds.

B.3 COMPARATIVE ANALYSIS

We evaluate DC-PINNs against standard PINNs and the finite element method (FEM). Our anal-
ysis encompasses accuracy through RMSE errors in velocity and pressure fields, computational
efficiency via training and inference time comparisons, and constraint satisfaction by assessing ad-
herence to the divergence-free condition and other physical constraints. This comprehensive com-
parison elucidates the relative strengths of each method in solving the Navier-Stokes equations. The
following shows slice of the fields including all the derivatives after quantitative comparison.

Training Validation
RMSE PINNs DC-PINNs PINNs DC-PINNs

u 0.0376 0.0416 0.0376 0.0413
v 0.0445 0.0436 0.0439 0.0448
p 2.3618 0.1299 2.3619 0.1293
ux 0.0805 0.0867 0.0376 0.0877
vx 0.1345 0.1341 0.1362 0.1300
px 0.0550 0.0530 0.0562 0.0525
uy 0.1513 0.1621 0.0376 0.1642
vy 0.0809 0.0854 0.0824 0.0863
py 0.0521 0.0537 0.0529 0.0535
ut 0.6082 0.5877 0.5908 0.5912
vt 0.3926 0.3777 0.3837 0.3834
uxx 0.2689 0.2825 0.2718 0.2908
vxx 0.5158 0.3528 0.5129 0.4798
uyy 0.9340 0.9413 0.8870 0.9288
vyy 0.3271 0.3536 0.3378 0.3543
fu 0.6194 0.5924 0.6002 0.5995
fv 0.4247 0.4054 0.4141 0.4119
Training / Inference Time (s) 735.96 225.13 3.8963 0.9833
Divergence-free Error 0.0000 0.0253 0.0000 0.0250
Vortices shed Error (sum.) 0.0000 0.0000 0.0000 0.0000

Table 2: Quantitative comparison of methods. Bold value shows lower (better) value of RMSE.
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Figure 10: Comparison of FEM Simulations, standard PINNs, and DC-PINNs (1/6).

Figure 11: Comparison of FEM Simulations, standard PINNs, and DC-PINNs (2/6).
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Figure 12: Comparison of FEM Simulations, standard PINNs, and DC-PINNs (3/6).

Figure 13: Comparison of FEM Simulations, standard PINNs, and DC-PINNs (4/6).
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Figure 14: Comparison of FEM Simulations, standard PINNs, and DC-PINNs (5/6).

Figure 15: Comparison of FEM Simulations, standard PINNs, and DC-PINNs (5/6).
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