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Abstract

Learning the structure of Directed Acyclic Graphs (DAGs) presents a significant1

challenge due to the vast combinatorial search space of possible graphs, which2

scales exponentially with the number of nodes. Recent advancements have rede-3

fined this problem as a continuous optimization task by incorporating differentiable4

acyclicity constraints. These methods commonly rely on algebraic characteriza-5

tions of DAGs, such as matrix exponentials, to enable the use of gradient-based6

optimization techniques. Despite these innovations, existing methods often face7

optimization difficulties due to the highly non-convex nature of DAG constraints8

and the per-iteration computational complexity. In this work, we present a novel9

framework for learning DAGs, employing a Stochastic Approximation approach10

integrated with Stochastic Gradient Descent (SGD)-based optimization techniques.11

Our framework introduces new projection methods tailored to efficiently enforce12

DAG constraints, ensuring that the algorithm converges to a feasible local minimum.13

With its low iteration complexity, the proposed method is well-suited for handling14

large-scale problems with improved computational efficiency. We demonstrate the15

effectiveness and scalability of our framework through comprehensive experiments,16

which confirm its superior performance across various settings.17

1 Introduction18

Learning graphical structures from data using Directed Acyclic Graphs (DAGs) is a fundamental19

challenge in machine learning (Koller & Friedman, 2009; Peters et al., 2016; Arjovsky et al., 2019;20

Sauer & Geiger, 2021). This task has a wide range of practical applications across fields such as21

economics, genome research (Zhang et al., 2013; Stephens & Balding, 2009), social sciences (Morgan22

& Winship, 2015), biology (Sachs et al., 2005a), and causal inference (Pearl, 2009; Spirtes et al.,23

2000). Learning the graphical structure is essential because the resulting models can often be given24

causal interpretations or transformed into representations with causal significance, such as Markov25

equivalence classes. When graphical models cannot be interpreted causally (Pearl, 2009; Spirtes26

et al., 2000), they can still offer a flexible representation for decomposing the joint distribution.27

Structure learning methods are typically categorized into two approaches: score-based algorithms28

searching for a DAG minimizing a particular loss function and constraint-based algorithms relying29

on conditional independence tests. Constraint-based methods, such as the PC algorithm (Spirtes &30

Glymour, 1991) and FCI (Spirtes et al., 1995; Colombo et al., 2012), use conditional independence31

tests to recover the Markov equivalence class under the assumption of faithfulness. Other approaches,32

like those described in Margaritis & Thrun (1999) and Tsamardinos et al. (2003), employ local Markov33

boundary search. On the other hand, score-based methods frame the problem as an optimization of a34

specific scoring function, with typical choices including BGe (Kuipers et al., 2014), BIC (Chickering35

& Heckerman, 1997), BDe(u) (Heckerman et al., 1995), and MDL (Bouckaert, 1993). Given the vast36
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Figure 1: Visual comparison of the learned weighted adjacency matrices on a 25-node ER2 graph
under Gaussian noise with equal variances (EV) and non-equal variances (NV, with noise ratio r = 5).
For both methods ψDAG and GOLEM the L1 distance in the EV setting is 2.6. In the NV setting,
ψDAG maintains an L1 distance of 2.6, while GOLEM’s L1 distance increases to 10.7, highlighting
the robustness and generalization ability of ψDAG across varying noise conditions.

search space of potential graphs, many score-based methods employ local heuristics, such as Greedy37

Equivalence Search (GES) (Chickering, 2002), to efficiently navigate this complexity.38

Recently, Zheng et al. (2018) introduced a smooth formulation for enforcing acyclicity, transforming39

the structure learning problem from its inherently discrete nature into a continuous, non-convex40

optimization task. This formulation allows for the use of gradient-based optimization techniques,41

enabling various extensions and adaptations to various domains, including nonlinear models (Yu42

et al., 2019; Ng et al., 2022b; Kalainathan et al., 2022), interventional datasets (Brouillard et al., 2020;43

Faria et al., 2022), unobserved confounders (Bhattacharya et al., 2021; Bellot & Van der Schaar,44

2021), incomplete datasets (Gao et al., 2022a; Wang et al., 2020), time series analysis (Sun et al.,45

2021; Pamfil et al., 2020), multi-task learning (Chen et al., 2021), multi-domain settings (Zeng46

et al., 2021), federated learning (Ng & Zhang, 2022; Gao et al., 2023), and representation learning47

(Yang et al., 2021). With the growing interest in continuous structure learning methods (Vowels48

et al., 2022), a variety of theoretical and empirical studies have emerged. For instance, Ng et al.49

(2020) investigated the optimality conditions and convergence properties of continuously constrained50

approaches such as Zheng et al. (2018). In the bivariate case, Deng et al. (2023b) demonstrated that a51

suitable optimization strategy converges to the global minimum of the least squares objective. Zhang52

et al. (2022) and Bello et al. (2022) then identified potential gradient vanishing issues with existing53

DAG constraints (Zheng et al., 2018) and proposed adjustments to overcome these challenges.54

Contributions. In this work, we focus on the graphical models represented as Directed Acyclic55

Graphs (DAGs). Our main contributions can be summarized as follows:56

1. Problem reformulation: We introduce a new reformulation (9) of the discrete optimization57

problem for finding DAG as a stochastic optimization problem, and we discuss its properties in58

detail in Section 3.1. We demonstrate that the solution of this reformulated problem recovers the59

true DAG (Section 3.1).60

2. Novel algorithm: Leveraging insights from stochastic optimization, we present a new framework61

(Algorithm 1) for DAG learning (Section 4) and present a simple yet effective algorithm ψDAG62

(Algorithm 2) within the framework.63

3. Experimental comparison: In Section 5, we demonstrate that the method ψDAG scales very64

well with graph size, handling up to 10000 nodes. At that scale, the primary limitation is not65

computation complexity but the memory required to store the DAG itself. As a baseline, we66

compare ψDAG with established DAG learning methods, including NOTEARS (Zheng et al.,67

2018), GOLEM (Ng et al., 2020), NOCURL (Yu et al., 2021) and DAGMA (Bello et al., 2022).68

We show a significant improvement in scalability, as baseline methods struggle with larger graphs.69

Specifically, NOTEARS (Zheng et al., 2018), GOLEM (Ng et al., 2020), NOCURL (Yu et al.,70

2021) and DAGMA (Bello et al., 2022) require more than 100 hours for graphs with over 300071

nodes, exceeding the allotted time.72

2 Background73

In this section, we introduce the necessary graph notation and formalize the linear Structural Equation74

Model (SEM) framework used for learning Directed Acyclic Graphs (DAGs). For a detailed discussion75

of related methods and further literature, please refer to Appendix A.76
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2.1 Graph Notation77

Let G def
= (V,E,w) represent a weighted directed graph, where V denotes the set of vertices with78

cardinality d
def
= |V |, E ∈ 2V×V is the set of edges, and w : V × V → R \ {0} assigns weights to79

the edges. The adjacency matrix A(G) : Rd×d is defined such that [A(G)]ij = 1 if (i, j) ∈ E and80

0 otherwise. Similarly, the weighted adjacency matrix W(G) is defined by [W(G)]ij = w(i, j) if81

(i, j) ∈ E and 0 otherwise.82

When the weight function w is binary, we simplify the notation to G def
= (V,E). Similarly, when the83

graph G is clear from context, we shorthand the notation to A
def
= A(G) and W

def
= W(G).84

We denote the space of DAGs as D. Since we will be utilizing topological sorting of DAGs1, we also85

denote the space of vertex permutations Π.86

2.2 Linear DAG and SEM87

A Directed Acyclic Graph (DAG) model, defined on a set of n random vectors X ∈ Rn×d, where88

X
def
= (X1, . . . , Xn) and Xi ∈ Rd, consists of two components:89

1. A DAG G = (V,E), which encodes a set of conditional independence relationships among the90

variables.91

2. The joint distribution P (X) with density p(x), which is Markov with respect to the DAG G and92

factors as p(x) =
∏d

i=1 p(xi | xPAG(i)), where PAG(i) = {j ∈ V : Xj → Xi ∈ E} represents93

the set of parents of Xi in G.94

This work focuses on the linear DAG model, which can be equivalently represented by a set of linear95

Structural Equation Models (SEMs). In matrix notation, the linear DAG model can be expressed as96

X = XW +N, (1)

where W = [W1| · · · |Wd] is a weighted adjacency matrix, and N
def
= (N1, . . . , Nn) is a matrix97

where each Ni ∈ Rd represents a noise vector with independent components. The structure of graph98

G is determined by the non-zero coefficients in W; specifically Xj → Xi ∈ E if and only if the99

corresponding coefficient in Wi for Xj is non-zero. The classical objective function is based on the100

least squares loss applied to the linear DAG model,101

l(W;X)
def
= 1

2n∥X−XW∥2F . (2)

3 Stochastic Approximation for DAGs102

Our framework is built on a reformulation of the objective function as a stochastic optimization103

problem, aiming to minimize the stochastic function F (w),104

minw∈Rd

{
F (w)

def
= Eξ [f(w, ξ)]

}
, (3)

where ξ ∈ Ξ is a random variable that follows the distribution Ξ. This formulation is common in105

stochastic optimization where computing the exact expectation is infeasible, but the values of f(w, ξ)106

and its stochastic gradients g(w, ξ) can be computed. Linear and logistic regressions are classical107

examples of such problems.108

To address this problem, two main approaches exist: Stochastic Approximation (SA) and Sample109

Average Approximation (SAA). The SAA approach involves sampling a fixed number n of random110

variables or data points ξi and then minimizing their average F̃ (w):111

min
w∈Rd

{
F̃ (w)

def
= 1

n

n∑
i=1

f(w, ξi)

}
. (4)

1Topologial sorting of a graph G def
= (V,E,w) refers to vertex ordering V1, V2, . . . , Vd such that E contains

no edges of the form Vi → Vj , where i ≤ j. Importantly, every DAG has at least one topological sorting.
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Algorithm 1 ψDAG framework

1: Requires: Initial model W0 ∈ Rd×d, such that diag(W0) = 0.
2: for k = 0, 1, 2 . . . ,K − 1 do
3: W

(1/3)
k = A1(Wk) {W(1/3)

k ∈ Rd×d}
4: (W

(2/3)
k , πk) = ψ(W

(1/3)
k ) {W(2/3)

k ∈ D}
5: Wk+1 = A2(W

(2/3)
k ;πk) {Wk+1 ∈ D ⊂ Rd×d}

6: end for
7: Output: WK .

Now, the problem (4) becomes deterministic and can be solved using various optimization methods,112

such as gradient descent. However, the main drawback of this approach is that the solution of (4) w̃∗113

is not necessarily equal to the solution of the original problem (3). Even with a perfect solution of114

(4), there will still be a gap ∥w̃∗ − w∗∥ = δx and F (w̃∗)− F ∗ = δF between approximate and true115

solution. These gaps are dependent on the sample size n.116

Stochastic Approximation (SA) minimizes the true function F (w) by utilizing the stochastic gradient117

g(w, ξ). Below, we provide the formal definition of a stochastic gradient.118

Assumption 1. For all w ∈ Rd, we assume that stochastic gradients g(w, ξ) ∈ Rd satisfy119

E[g(w, ξ) | w] = ∇F (w), (5)

E
[
∥g(w, ξ)−∇F (w)∥2 | w

]
≤ σ2

1 . (6)

We use these stochastic gradients in SGD-type methods:120

wt+1 = wt − htg(wt, ξi), (7)

where ht is a step-size schedule. SA originated with the pioneering paper by Robbins & Monro (1951).
For convex and L-smooth function F (w), Polyak (1990); Polyak & Juditsky (1992); Nemirovski
et al. (2009); Nemirovski & Yudin (1983) developed significant improvements to SA method in the
form of longer step-sizes with iterate averaging, and obtained the convergence guarantee

E [F (wT )− F (x∗)] ≤ O
(

σ1R√
T

+ L1R
2

T

)
.

Lan (2012) developed an optimal method with a guaranteed convergence rate O
(

σ1R√
T

+ L1R
2

T 2

)
,121

matching the worst-case lower bounds. The key advantage of SA is that it provides convergence122

guarantees for the original problem (3). Additionally, methods effective for the SA approach tend to123

perform well for the SAA approach as well.124

3.1 Stochastic Reformulation125

Using the perspective of Stochastic Approximation, we can rewrite the linear DAG (1) as126

x = Xi =
[
I−W⊤

∗
]−1

Ni, (8)

where W∗ is a true DAG that corresponds to the full distribution, and our goal is to find DAG W127

that is close to W∗. If we assume that x = Xi is a random vector sampled from a distribution D, we128

can express the objective function as an expectation,129

min
W∈D

Ex∼D

[
l(W;x)

def
= 1

2∥x−W⊤x∥2
]
. (9)

For x from (8) we can calculate ∥x − W⊤x∥ = ∥(I − W⊤)x∥ = ∥(I − W)
[
I−W⊤

∗
]−1

Ni∥,130

which implies that the minimizer of (9) recovers the true DAG. Conversely, this is not the case for131

methods such as Zheng et al. (2018), Ng et al. (2020), and Bello et al. (2022), which are based on132

SAA approaches with losses (2), (11), (12), (13).133
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Algorithm 2 ψDAG

1: Requires: initial model W0 ∈ Rd×d, numbers or iterations τ1, τ2.
2: for k = 0, 1, 2 . . . ,K − 1 do
3: W

(1/3)
k = SGD(Wk) {τ1 iterations over Rd×d}

4: (W
(2/3)
k , πk) = Algorithm 3 (W

(1/3)
k )

5: Wk+1 = SGDπk
(Wk) {τ2 iterations preserving ordering πk}

6: end for
7: Output: WK

4 Scalable Optimization Framework for DAG Learning134

In this section, we present our proposed scalable optimization framework for DAG learning. We135

begin by showing that using a fixed vertex ordering can lead to suboptimal solutions, as demonstrated136

in Section 4.1. Motivated by this, we develop a three-stage framework that alternates between137

unconstrained optimization, projection onto the DAG space, and constrained optimization guided by138

topological ordering.139

Instead of strictly enforcing DAG constraints throughout the entire iteration process, we propose a140

novel, scalable optimization framework that consists of three main steps:141

1. Running an optimization algorithm A1 without any DAG constraints, only forcing the diagonal142

to be zero (diag(Wk) = 0), A1 : Rd×d → Rd×d.143

2. Finding a DAG that is close to the current iterate using a projection ψ : Rd×d → (D,Π), which144

also returns its topological sorting π.145

3. Running the optimization algorithm A2 while preserving the vertex order, A2 : (D; Π) → D.146

This design enables efficient and accurate structure learning while avoiding the computational burden147

of enforcing DAG constraints at every iteration.148

4.1 Optimization for the fixed vertex ordering149

Let us clarify how to optimize while preserving the order of the vertices in step 3 of the framework.150

Given a DAG G, we can construct its topological ordering, denoted as ord(G). In this ordering,151

for every edge, the start vertex appears earlier in the sequence than the end vertex. In general, this152

ordering is not unique. In the space of DAGs with d vertices D, there are d! possible topological153

orderings.154

Once we have a topological ordering of the DAG, we can construct a larger DAG, Ĝ, by performing the155

transitive closure of G. This new DAG Ĝ contains all the edges of the original DAG, and additionally,156

it includes an edge between vertices Vi and Vj if there exists the path from Vi to Vj in G. Thus, Ĝ is157

an expanded version of G.158

Now, the question arises: is it possible to construct an even larger DAG that contains both G and159

Ĝ? The answer is yes! We call this graph the Full DAG, denoted by G̃, which is constructed via full160

transitive closure2. In G̃, there is an edge from vertex Vi to vertex Vj if i < j is in topological order161

ord(G). This makes G̃ the maximal DAG that includes G. Note that for every topological sort, there162

is a corresponding full DAG. So, there are a total of d! different full DAGs in the space of DAGs with163

d vertices D.164

We are now ready to discuss the optimization part. Let us formulate the following optimization165

problem166

min
W∈Rd×d

Ex∼D
[
l(W ·A;x) = 1

2∥x− (W ·A)⊤x∥2
]
, (10)

where (·) denotes elementwise matrix multiplication. In this formulation, A acts as a mask, specifying167

coordinates that do not require gradient computation. The problem (10) is a quadratic convex168

2Informally, for set of edges E, the transitive closure E+ is the smallest set that includes edges (a, b)
whenever there is a path from a to b within E. Note that E+ is the smallest superset of E that satisfies
(a, c) ∈ E+ whenever (a, b) ∈ E+, (b, c) ∈ E+.
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Algorithm 3 Projection ψ(W) computing the “closest” vertex ordering (recursive form)

1: Requires: Model W ∈ Rd×d, (optional) weights L ∈ Rd×d with default value L = 11⊤.
2: for k = 1, . . . , d do
3: Set rk = ∥ (W ◦ L) [k][:]∥2
4: Set ck = ∥ (W ◦ L) [:][k]∥2
5: end for
6: Set ic = argmink∈{1,...,d} ck
7: Set ir = argmink∈{1,...,d} rk
8: if rir <= cic then
9: Output: [ψ(W(ic, ic),L(ic, ic)), ir]

10: else
11: Output: [ic, ψ(W(ic, ic),L(ic, ic))]
12: end if

{By A(i, j) we denote the submatrix A[1, . . . , i− 1, i+ 1, . . . , d][1, . . . , j − 1, j + 1, . . . , d]}

stochastic optimization problem, which can be efficiently solved using stochastic gradient descent169

(SGD)-type methods. These methods guarantee convergence to the global minimum, with a rate of170

O
(

σ1R√
T

+ L1R
2

T

)
.171

Assume that G∗ is the true DAG with a weighted adjacency matrix W∗, which is the solution we aim172

to find. Next, we can have the true ordering ord(G∗) and the true full DAG G̃∗ with its adjacency173

matrix A(G̃∗). The optimization problem (9), with the solution W∗, can be addressed by solving174

the optimization problem (10) with A = A(G∗). This result indicates that if we know the true175

topological ordering ord(G∗), then we can recover the true DAG W∗ with high accuracy. From a176

discrete optimization perspective, this approach significantly reduces the space of constraints from177

2d
2−d to d!.178

0 20 40 60 80 100
Epoch

10 2

10 1

100

101

102

 f(
x k

)
f(x

)

Random order
Correct order

Figure 2: Minimizing (9) using SGD over a
fixed topological ordering on ER4 with d =
100 and Gaussian noise.

To illustrate the specificity of the minimizer of the179

proposed problem, Figure 2 demonstrates that min-180

imizing (9) over a fixed random vertex ordering does181

not approach the true solution of (9). The "Correct182

order" curve demonstrates the convergence of (10)183

when the true ordering ord(G∗) is known.184

Note that for a fixed vertex ordering and fixed ad-185

jacency matrix A, the objective (10) becomes sepa-186

rable, enabling parallel computation for large-scale187

problems. In this work, we solved the minimization188

problem (10) for the number of nodes up to d = 104,189

at which point the limiting factor was the memory190

to store W ∈ Rd×d. Through parallelization and191

efficient memory management, it is possible to solve192

even larger problems.193

4.2 Methodology194

We now introduce the method ψDAG, which implements the framework outlined in Algorithm 1.195

For simplicity, we select algorithm A1 as τ1 steps of Stochastic Gradient Descent (SGD). Similarly,196

A2 consists of τ2 steps SGD, where gradients are projected onto the space spanned by DAG’s197

topological sorting, thus preserving the vertex order. It is important to reiterate that SGD is guaranteed198

to converge to the neighborhood of the solution. In the implementation, we employed an advanced199

version of SGD, Universal Stochastic Gradient Method from Rodomanov et al. (2024).200

The implementation of the projection method is simple as well. We compute a “closest” topological201

sorting and remove all edges not permitted by this ordering. The topological sorting is computed by a202

heuristic that calculates norms of all rows and columns to find the lowest value vi. The corresponding203

vertex i is then assigned to the ordering based on the following rule:204
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Figure 3: Structure recovery performance under Gaussian noise with non-equal variances (NV)
across varying noise ratios (r ∈ {5, 10, 15}). Rows correspond to different random graph types, and
columns represent increasing noise ratios. Metrics include Structural Hamming Distance (SHD ↓)
and Precision (↑). We report the mean values, and standard error is indicated by shaded regions.

• If vi was the column norm, i is assigned to the beginning of the ordering.205

• If vi was the row norm, i is assigned to the end of the ordering.206

This step reduces the number of vertices, and the remaining vertices are topologically sorted using a207

recursive call. We formalize this procedure in Algorithm 3. Note that this procedure can be efficiently208

implemented without recursion and with the computation cost O(d2).209

5 Experiments210

We experimentally compare our method, ψDAG3, with several baselines including PC (Ramsey et al.,211

2012), FGES (Meek, 1997; Chickering, 2002), NOTEARS (Zheng et al., 2018), GOLEM (Ng et al.,212

2020), NOCURL (Yu et al., 2021) and DAGMA (Bello et al., 2022). As it is established that DAGMA213

Bello et al. (2022) is an improvement over NOTEARS Zheng et al. (2018), we use mostly the former214

in our experiments. To ensure a fair comparison, we avoid extensive hyperparameter tuning across215

all baseline methods. Specifically, we apply the same thresholding procedure as used in Zheng et al.216

(2018), Ng et al. (2020), Yu et al. (2021), and Bello et al. (2022) across all scenarios.217

5.1 Synthetic Data Generation218

We generate ground truth DAGs with d nodes and an average of k × d edges, where k ∈ {2, 3, 4, 6}219

is a sparsity parameter. The graph structure is based on either the Erdős-Rényi (ER) or the Scale-Free220

(SF) models. Together with the sparsity level, we denote the graphs as ERk or SFk, respectively.221

Each edge is assigned a random weight uniformly sampled from the interval [−2,−0.5] ∪ [0.5, 2]222

following the standard practice used in previous work (Zheng et al., 2018; Ng et al., 2020; Yu et al.,223

2021; Bello et al., 2022) to ensure consistency across methods.224

Following the linear Structural Equation Model (SEM), we generate the observed data X ∈ Rn×d225

using X = N(I−W)−1, where N consists of n independent and identically distributed (i.i.d.) noise226

samples drawn from Gaussian, exponential, or Gumbel distributions. We evaluate both equal variance227

(EV) and non-equal variance (NV) Gaussian noise settings. In the EV case, the noise for all variables228

is scaled by a constant factor of 1.0. In the NV setting, we set the variances of two randomly selected229

noise variables to be 1 and r ∈ {5, 10, 15}, respectively, and the variances of remaining variables are230

sampled uniformly from [1, r]. This setup enables evaluation of robustness under noise heterogeneity.231

For further details, we refer the reader to Ng et al. (2024). A visual comparison under both EV and232

NV (with r = 5) is shown in Figure 1, highlighting the robustness of ψDAG to non-uniform noise233

levels. A more detailed description can be found in the Appendix C.234

3Implementation of the proposed algorithm is available at https://anonymous.4open.science/r/
psiDAG-8F42. We use the Universal Stochastic Gradient Method (Rodomanov et al., 2024) as the inner
optimizer.
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5.2 Structure Recovery235
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Figure 4: Effect of noise ratio on SHD
for ER3 graphs with d = 100 in the
non-equal variance (NV) Gaussian set-
ting. Error bars denote standard devi-
ation over 3 random seeds. ψDAG re-
mains stable as r increases, while other
methods degrade and DAGMA fails to
converge for r > 15.

We evaluate the structure learning capabilities of our236

method, as shown in Figure 3, using synthetic data gen-237

erated from the ER2 and ER3 graphs with varying node238

counts d ∈ {10, 25, 50, 100}. For brevity, we report only239

the results for Structural Hamming Distance (SHD) and240

precision across different noise ratios r ∈ {5, 10, 15} in241

the non-equal variance (NV) Gaussian setting. The com-242

plete results for additional metrics, including the F1 score243

and the recall, are given in the Appendix D.1. Lower SHD244

and higher precision, F1 score, and recall values indicate245

better structure recovery. We compare against several rep-246

resentative baselines, including PC, FGES, NOCURL,247

GOLEM, and DAGMA.248

Consistent with prior work, all methods perform well in249

terms of SHD when the number of nodes d and the noise250

ratio r are small. However, the performance of FGES and251

PC deteriorates rapidly, even for a moderate number of252

nodes such as d = 50, with SHD increasing significantly.253

In contrast, our method maintains low SHD across all254

settings and consistently outperforms baselines as noise255

heterogeneity increases. Figure 4 shows that the SHD of256

ψDAG remains stable even as r increases from 5 to 1024, further emphasizing its stability and257

robustness. Meanwhile, DAGMA fails to converge for r > 15, limiting its applicability in high-noise258

regimes.259

5.3 Scalability Comparison260

We assess the scalability of the proposed algorithm ,ψDAG, by comparing its runtime against261

GOLEM, NOCURL, and DAGMA. All methods are run until the objective function converges close262

to the solution, f(xk)− f(x) ≤ 0.1 · f(x). Figure 5 reports runtime comparisons for ER2 and ER4263

graphs under Gaussian, Exponential, and Gumbel noise for graph sizes d ∈ {10, 50, 100, 500, 1000}.264

Due to space constraints, additional results on larger graphs (up to d = 10, 000) are presented in265

Appendix D.2, where Figure 9 further highlights the efficiency of ψDAG in high-dimensional settings.266

Across all scenarios, ψDAG demonstrates consistently lower runtime compared to baselines, particu-267

larly as graph size and density increase. While DAGMA is marginally faster than ψDAG on very268

small and sparse graphs (d < 100), the gap closes quickly with larger graphs. For d > 100, ψDAG269

consistently exhibits superior runtime performance across both sparse and dense graph types. On270
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Figure 5: Runtime (minutes) of GOLEM, NOCURL, DAGMA, and ψDAG on ER2 and ER4 graphs
with increasing number of nodes d ∈ {10, 50, 100, 500, 1000}. The columns correspond to different
noise distributions: Gaussian (left), exponential (middle), and Gumbel (right). Figure 5a shows results
for small graphs (d ≤ 100) and 5b for large graphs (d > 100). ψDAG demonstrates significantly
better scalability as the number of nodes increases.
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sparse graphs, it converges reliably within a few hours, even at d = 10, 000, whereas GOLEM and271

NOCURL exceed a 36-hour runtime for d ≥ 3000, and DAGMA does so for d ≥ 5000.272

Furthermore, we observe that several baselines fail to meet the convergence criterion even for smaller273

graphs. For instance, NOCURL does not converge for ER4 graphs with Gaussian-EV noise when274

d > 500, and it fails completely for Exponential and Gumbel noise when d > 100. In the ER6275

graph, the three baselines GOLEM, NOCURL, and DAGMA do not converge in at least one of the276

three random seeds. Non-converging runs are excluded from reported statistics. In contrast, ψDAG277

converges in all runs and maintains competitive runtime performance even at large scale, underscoring278

both its robustness and practical efficiency.279

5.4 Real-world Experiment280

We further evaluate ψDAG on a widely used real-world dataset, the causal protein signaling network,281

from Sachs et al. (2005b) and compare it with NOTEARS (Zheng et al., 2018), GOLEM (Ng et al.,282

2020), NOCURL (Yu et al., 2021), and DAGMA (Bello et al., 2022). This dataset captures the283

expression levels of proteins and phospholipids in human cells under various experimental conditions.284

It has been extensively used in the literature on causal discovery due to its well-established ground285

truth and biological relevance. The dataset consists of n = 853 observational samples and d = 11286

variables, with a ground truth DAG containing 17 edges. Despite its small size, it remains a287

challenging benchmark for causal structure learning algorithms (Zheng et al., 2018; Ng et al., 2020;288

Gao et al., 2021). We follow the common evaluation setup and apply a threshold of 0.3 across all289

methods for a fair comparison.290

Table 1: Performance of top methods on the protein
signaling dataset (Sachs et al., 2005b).

SHD↓ TPR↑ FPR↓
NOTEARS (Zheng et al., 2018) 15 0.29 0.26
GOLEM (Ng et al., 2020) 26 0.29 0.47
NOCURL (Yu et al., 2021) 22 0.35 0.45
ψDAG (Alg.2) 14 0.41 0.18

As shown in Table 1, ψDAG achieves291

superior performance across all met-292

rics: lower Structural Hamming Distance293

(SHD), higher True Positive Rate (TPR),294

and lower False Positive Rate (FPR). A295

more detailed description can be found296

in Appendix C. We omit the results for297

DAGMA as it fails to converge on this298

dataset: its solution W diverges from the299

feasible domain in the very first iteration.300

6 Conclusion301

We introduce a novel framework for learning Directed Acyclic Graphs (DAGs) that addresses the302

scalability and computational challenges of existing methods. Our approach leverages Stochastic303

Approximation techniques in combination with Stochastic Gradient Descent (SGD)-based meth-304

ods, allowing for efficient optimization even in high-dimensional settings. A key contribution of305

our framework is the introduction of new projection techniques that effectively enforce DAG con-306

straints, ensuring that the learned structure adheres to the acyclicity requirement without the need for307

computationally expensive penalties or constraints seen in prior works.308

The proposed framework is theoretically grounded, with convergence guarantees to a feasible local309

minimum. One of its main advantages is its low iteration complexity, making it highly suitable310

for large-scale structure learning problems, where traditional methods often struggle with runtime311

and memory limitations. Through extensive experiments, we show that our approach consistently312

outperforms strong baselines including NOTEARS (Zheng et al., 2018), GOLEM (Ng et al., 2020),313

NOCURL (Yu et al., 2021), and DAGMA (Bello et al., 2022) in both runtime and structure recov-314

ery accuracy. Notably, our method demonstrates robust performance in settings with high noise315

heterogeneity and varying graph densities.316

Limitations and Future Work. In this paper, we have focused on presenting a novel framework317

for differentiable DAG learning, which integrates a stochastic approach to achieve computational318

efficiency. While the current results are focused on linear SEMs for simplicity, extending the319

proposed algorithm to handle nonlinear SEMs (Zheng et al., 2020) is a natural direction for future320

work. Exploring variance reduction optimization methods is another promising path.321
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A Related Work514

A significant body of research on DAG learning revolves around non-convex continuous optimization515

frameworks, such as NOTEARS (Zheng et al., 2018), GOLEM (Ng et al., 2020), NOCURL (Yu et al.,516

2021), and DAGMA (Bello et al., 2022). These approaches address the DAG constraint using either517

smooth approximations or novel penalty functions, but they are often computationally expensive and518

lack scalability.519
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Zheng et al. (2018) addressed the constrained optimization problem520

min
W∈Rd×d

ℓ(W;X)NOTEARS
def
=

1

2n
∥X−XW∥2F + λ∥W∥1 subject to h(W) = 0, (11)

where ℓ(W;X) represents the least squares objective and h(W) := tr(eW⊙W) − d enforces the521

DAG constraint. Additionally, an ℓ1 regularization term λ∥W∥1, where ∥ · ∥1 is the element-wise ℓ1-522

norm and λ is a hyperparameter incorporated into the objective function. This formulation addresses523

the linear case with equal noise variances, as discussed in Loh & Bühlmann (2014) and Peters &524

Bühlmann (2014). This constrained optimization problem is solved using the augmented Lagrangian525

method (Bertsekas et al., 1999), followed by thresholding the obtained edge weights. However, since526

this approach computes the acyclicity function via the matrix exponential, each iteration incurs a527

computational complexity of O(d3), which significantly limits the scalability of the method.528

Ng et al. (2020) introduced the GOLEM method, which enhances the scoring function by incorporat-529

ing an additional log-determinant term, log |det(I−W)| to align with the Gaussian log-likelihood,530

min
W∈Rd×d

ℓ(W;X)GOLEM
def
=

d

2
log ∥X−XW∥2F − log |det(I−W)|+λ1∥W∥1+λ2h(W), (12)

where λ1 and λ2 serve as regularization hyperparameters within the objective function. Although the531

newly added log-determinant term is zero when the current model W is a DAG, this score function532

does not provide an exact characterization of acyclicity. Specifically, the condition log |det(I −533

W)| = 0 does not imply that W represents a DAG.534

Bello et al. (2022) introduces a novel acyclicity characterization for DAGs using a log-determinant535

function,536

min
W∈Rd×d

ℓ(W;X)DAGMA
def
=

1

2n
∥X−XW∥2F + λ1∥W∥1 subject to hsldet(W) = 0, (13)

where hsldet(W)
def
= − log det(sI−W ◦W) + d log s, and it is both exact and differentiable.537

In practice, the augmented Lagrangian method enforces the hard DAG constraint by increasing the538

penalty coefficient toward infinity, which requires careful parameter fine-tuning and can lead to539

numerical difficulties and ill-conditioning (Birgin et al., 2005; Ng et al., 2022a). As a result, existing540

methods face challenges in several aspects of optimization, including careful selection of constraints,541

high computational complexity, and scalability issues.542

Yu et al. (2021) introduce a novel formulation for DAG structure learning by expressing the weighted543

adjacency matrix as the Hadamard product of a skew-symmetric matrix and the gradient of a potential544

function on graph nodes. This representation avoids explicit acyclicity constraints and enables a545

continuous, constraint-free optimization framework. However, although NOCURL avoids direct546

constraints through this parameterization and Hodge decomposition, it still relies on repeated L-BFGS547

(Broyden, 1967) optimization steps , which can become computationally expensive for large graphs.548

In contrast, ψDAG avoids both acyclicity constraints and expensive optimization procedures, allowing549

for more efficient scaling in high-dimensional settings.550

Other works, such as Chen et al. (2019), proposed variance ordering procedures for estimating551

topological orderings under equal error variances. Although these methods naturally extend to552

high-dimensional settings, their reliance on controlling the maximum in-degree of the graph becomes553

computationally intensive as graph density increases. In contrast, ψDAG avoids these assumptions554

and demonstrates scalability on graphs with up to 10, 000 nodes. Gao et al. (2022b) focused on555

theoretical guarantees for Gaussian DAG models, obtaining minimax optimal bounds for structural556

recovery. Although their work offers valuable insights into sample efficiency, it does not address the557

computational challenges of large-scale DAG learning.558

Wei et al. (2020) examined optimization challenges in NOTEARS by analyzing the KKT conditions559

and proposed the KKTS algorithm as a post-processing enhancement. While this method improves560

the structural Hamming distance (SHD), its reliance on specific constraints and post-hoc refinements561

limits its applicability. In contrast, ψDAG reformulates DAG learning as a stochastic optimization562

problem, seamlessly integrating gradient-based methods for large-scale graphs.563

Additionally, Deng et al. (2023a) introduced a bilevel algorithm that iteratively refines topological564

orders through node swaps, achieving local minima or KKT points. However, this approach is565
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constrained by a specific function h(B) =
∑d

i=1 ciTr(B
i), which is computationally expensive and566

limits its scalability to applications that involve larger graphs. Consequently, their experiments are567

restricted to synthetic datasets with graphs containing up to d = 100 nodes. Moreover, the algorithm568

initializes the W matrix using linear regression coefficients in the least squares case, resulting in569

a different starting point for optimization, which makes direct comparisons with other methods570

challenging. Our method addresses these limitations by generalizing the DAG learning framework571

and demonstrating superior scalability and performance on both synthetic and real datasets.572

Compared to permutation-based methods such as SP (Raskutti & Uhler, 2019), Efficient Permutation573

Discovery (Squires et al., 2020), and GRaSP (Lam et al., 2022), ψDAG avoids exhaustive or greedy574

searches over permutations. Instead, it leverages a novel projection technique that efficiently infers575

causal orders without the computational overhead associated with permutation-based algorithms. This576

design choice allows ψDAG to maintain accuracy while offering superior scalability and efficiency in577

learning DAG structures.578

While many of these works focus on specific assumptions, penalty terms, or theoretical guarantees,579

our framework prioritizes scalability, flexibility, and applicability. To overcome these challenges, we580

propose a novel framework for enforcing the acyclicity constraint, utilizing a low-cost projection581

method. This approach significantly reduces iteration complexity and eliminates the need for582

expensive hyperparameter tuning.583

584

B Theoretical Results585

In this section, we present some theoretical properties of the DAG set and analyze the convergence of586

the proposed method.587

Lemma 2. The DAG set D is a conic set. Specifically, for any W ∈ D and α ≥ 0, we have αW ∈ D.588

Additionally, the DAG set D includes the entire line, meaning that for any W ∈ D and α ∈ R,589

αW ∈ D.590

Proof. We begin by observing that 0 ∈ D, as a graph with no edges is trivially a DAG. Next, consider591

any W ∈ D and α ∈ R \ {0}. Scaling W by α does not alter the structure of the graph; it only592

changes the edge weights. Since the graph remains acyclic, αW ∈ D. Thus, the DAG set D satisfies593

the stated properties.594

Now, let us move to the subsets of DAG, which are based on a topological ordering π.595

Definition 3. A topological ordering π of a directed graph is a linear ordering of its vertices such596

that, for every directed edge (u, v) from vertex u to vertex v, u comes before v in the ordering. We597

call Ord(W) a set of all possible topological orderings for DAG W and ord(W) is one of the598

orderings.599

For the graphs with d vertices, there are exactly d! distinct topological orderings.600

Every topological ordering π corresponds to subspace of all DAGs which can have this topological601

ordering, we call it π-subspace DAG.602

Definition 4. A π-subspace Dπ is a set of all DAGs W such that π ∈ Ord(W).603

Let us prove that π-subspace Dπ is a linear subspace.604

Lemma 5. Dπ is a linear subspace, meaning for any W1 ∈ Dπ,W2 ∈ Dπ, α ∈ R, β ∈ R,605

W = αW1 + βW2 ∈ Dπ .606

Proof. We should simply note that any non-zero value in W1 corresponds to an edge between vertices607

u and v such that v is after u in the ordering π. The same holds for W2. Hence, any non-zero value608

in W holds the ordering π.609

Next, we highlight that the DAG set D is a union of π-subspaces for all possible orderings π.610

Lemma 6. The DAG set D is a union of all π-subspaces.

D = ∪πDπ.
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Proof. For any DAG W ∈ D there exists a topological ordering π, hence W ∈ Dπ ∈ ∪πDπ . On the611

other side, all elements of ∪πDπ are DAGs by definition and belongs to D.612

613

Now, we move to the proposed method.614

Theorem 7. For an L1-smooth function F (W) = Ex∼D [l(W;x)] restricted in a domain of radius
R, ∥x− y∥ ≤ R, ∀x, y ∈ dom F , consider A2 in the Algorithm 1 be chosen as Universal Stochastic
Gradient Method (Rodomanov et al., 2024). Running A2 for T SGD-type steps accessing σ1-
stochastic gradients (Theorem 1) in the π-subspace Dπ converges to a minimum of problem (9) with
additional subspace constraints at the rate

E

F (WT )− argmin
W∈Dπ,

ord(W)=π

F (W)

 ≤ O
(

σ1R√
T

+ L1R
2

T

)
.

Proof. A direct consequence of the convergence guarantees of the Universal Stochastic Gradient615

Method, Theorem 4.2 of Rodomanov et al. (2024).616

617

Theorem 8. For anL1-smooth function F (W) = Ex∼D [l(W;x)] restricted in a domain of radiusR,618

∥x− y∥ ≤ R, ∀x, y ∈ dom F , Algorithm 2 with Universal Stochastic Gradient Method (Rodomanov619

et al., 2024) as A1 and A2 with converges to a local minimum of problem (9).620

Proof. We denote a subspace minimum of problem (9) as W∗
πk

= argmin W∈Dπ,

ord(W)=π
F (W). There621

are two cases. The first case, Wπ∗
k

is a local minimum of a general problem (9). Then, by Theorem622

7, the method converges to the local minimum. The second case, the subspace minimum W∗
πk

623

is not a local minimum as there exists an orthogonal subspace Dπ̃⊥Dπ such that W∗
πk

∈ Dπ̃624

and F (W∗
πk
) > F (W∗

π̃). By steps from Ak+1
1 , the method decreases towards F (W∗

π̃). To fully625

guarantee the convergences, one can memorize the visited subspaces and forbid projecting on them.626

Then, Dπk+1
is not visited subspace.627

C Detailed Experiment Description628

Computing. Our experiments were carried out on a machine equipped with 80 CPUs and one629

NVIDIA Quadro RTX A6000 48GB GPU. Each experiment was allotted a maximum wall time of 36630

hours as in DAGMA Bello et al. (2022).631

Graph Models. In our experimental simulations, we generate graphs using two established random632

graph models:633

• Erdős-Rényi (ER) graphs: These graphs are constructed by independently adding edges634

between nodes with a uniform probability. We denote these graphs as ERk, where kd635

represents the expected number of edges.636

• Scale-Free (SF) graphs: These graphs follow the preferential attachment process as de-637

scribed in Barabási & Albert (1999). We use the notation SFk to indicate a scale-free638

graph with expected kd edges and an attachment exponent of β = 1, consistent with the639

preferential attachment process. Since we focus on directed graphs, this model corresponds640

to Price’s model, a traditional framework used to model the growth of citation networks.641

It is important to note that ER graphs are inherently undirected. To transform them into Directed642

Acyclic Graphs (DAGs), we generate a random permutation of the vertex labels from 1 to d, then643

orient the edges according to this ordering. For SF graphs, edges are directed as new nodes are added,644

ensuring that the resulting graph is a DAG. After generating the ground-truth DAG, we simulate the645

structural equation model (SEM) for linear cases, conducting experiments accordingly.646
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Metrics. The performance of each algorithm is assessed using the following four key metrics:647

• Structural Hamming Distance (SHD): A widely used metric in structure learning that648

quantifies the number of edge modifications (additions, deletions, and reversals) required to649

transform the estimated graph into the true graph.650

• True Positive Rate (TPR): This metric calculates the proportion of correctly identified651

edges relative to the total number of edges in the ground-truth DAG. It is also known as652

recall.653

• Precision: is the proportion of all the model’s positive classifications that are actually654

positive.655

• F1 Score: is the harmonic mean of precision and recall.656

• False Positive Rate (FPR): This measures the proportion of incorrectly identified edges657

relative to the total number of absent edges in the ground-truth DAG.658

• Runtime: The time taken by each algorithm to complete its execution provides a direct659

measure of the algorithm’s computational efficiency.660

• Stochastic gradient computations: Number of gradient computed.661

Linear SEM. In the linear case, the functions are directly parameterized by the weighted adjacency662

matrix W . Specifically, the system of equations is given by Xi = XWi + Ni, where W =663

[W1| · · · |Wd] ∈ Rd×d, and Ni ∈ R represents the noise. The matrix W encodes the graphical664

structure, meaning there is an edge Xj → Xi if and only if Wj,i ̸= 0. Starting with a ground-truth665

DAG B ∈ {0, 1}d×d obtained from one of the two graph models, either ER or SF, edge weights666

were sampled independently from Unif[−2,−0.5] ∪ [0.5, 2] to produce a weight matrix W ∈ Rd×d.667

Using this matrix W, the data X = XW +N was sampled under the following three noise models:668

• Gaussian noise: Ni ∼ N(0, 1) for all i ∈ [d],669

• Exponential noise: Ni ∼ Exp(1) for all i ∈ [d],670

• Gumbel noise: Ni ∼ Gumbel(0, 1) for all i ∈ [d].671

Using these noise models, random datasets X ∈ Rn×d were generated by independently sampling672

the rows according to one of the models described above. Unless otherwise specified, we generate673

the same number of samples n ∈ {5000, 10000} for training and validation datasets, respectively.674

The implementation details of the baseline methods are as follows:675

• FGES (Meek, 1997; Chickering, 2002) using the FGES algorithm found in the py-tetrad676

package Scheines et al. (1998) in https://github.com/cmu-phil/py-tetrad.677

• PC (Spirtes & Glymour, 1991; Ramsey et al., 2012) using the PC algorithm from the py-678

tetrad package Scheines et al. (1998) in https://github.com/cmu-phil/py-tetrad.679

• NOTEARS (Zheng et al., 2018) using the authors’ publicly available Python code, which680

can be found at https://github.com/xunzheng/notears. This method employs a681

least squares score function, and we used their default set of hyperparameters without682

modification. We used the default choice of λ = 0.1 as in authors’ code.683

• GOLEM (Ng et al., 2020) using the authors’ Python code, available at684

https://github.com/ignavierng/golem, along with their PyTorch version at685

https://github.com/huawei-noah/trustworthyAI/blob/master/gcastle/686

castle/algorithms/gradient/notears/torch/golem_utils/golem_model.py.687

We adopted the default hyperparameter settings, specifically λ1 = 0.02 and λ2 = 5.688

Additional details of GOLEM are listed in Ng et al. (2020)(Appendix F).689

• NOCURL (Yu et al., 2021) using the authors’ publicly available code at https://github.690

com/fishmoon1234/DAG-NoCurl. We used the default choice of hyperparameters.691

• DAGMA (Bello et al., 2022) using the authors’ Python code, which is available at https:692

//github.com/kevinsbello/dagma. We used the default choice of hyperparameters.693
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Figure 6: Structure recovery performance under Gaussian noise with non-equal variances (NV)
across varying noise ratios (r ∈ {5, 10, 15}). Rows correspond to different random graph types, and
columns represent increasing noise ratios. Metrics reported include (from left to right): Structural
Hamming Distance (SHD, lower is better), Precision, F1 score, and Recall (or TPR) (all higher is
better). Each method’s mean performance is shown, with standard error indicated by shaded regions
around the curves.

Thresholding. Following the approach taken in previous studies, including the baseline methods694

(Zheng et al., 2018; Ng et al., 2020; Yu et al., 2021; Bello et al., 2022), for all the methods, we apply695

a final thresholding step of 0.3 to effectively reduce the number of false discoveries.696

D Supplementary Experiments Results697

D.1 Structure Recovery Performance698

In addition to the results presented in the main paper (Section 5.2), we include extended evaluations699

on ER6 graphs under Gaussian noise with non-equal variances (NV). As illustrated in Figure 6,700

ψDAG consistently achieves the best performance in most metrics, including the Structural Hamming701

distance (SHD), precision, and F1 score, for all noise levels and graph sizes. In particular, while702

ψDAG slightly trails FGES in recall (or TPR) for graphs with d > 50, FGES exhibits a significantly703

worse SHD, precision, and F1 score in those regimes, suggesting that it produces denser graphs with704

more false positives. This reinforces that ψDAG not only maintains structural accuracy, but also705

avoids overfitting, particularly in complex, high-noise environments. These results highlight the706

robustness of our approach across graph densities and noise heterogeneity.707

We present a comparative analysis of structure recovery and runtime performance under Gaussian708

noise with equal variances across two random graph types: ER2 and ER3. Figure 7 illustrates709

Structural Hamming Distance (SHD) and runtime (in seconds) across varying node sizes d ∈710

{25, 50, 100, 500}. Compared methods include constraint-based (PC), score-based (FGES), and711

gradient-based approaches (NOTEARS, GOLEM, NOCURL, DAGMA, and ψDAG). As the number712
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Figure 7: Comparison of Structural Hamming Distance (SHD) and Runtime (in seconds) across
constraint-based (PC), score-based (FGES) and gradient-based approaches (NOTEARS, GOLEM,
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indicates better structural accuracy; lower runtime indicates greater efficiency.
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Figure 8: Structure recovery performance under Gaussian noise with non-equal variances (NV)
across varying noise ratios (r ∈ {5, 10, 15}). Rows correspond to ER2 and ER3 graphs with
d ∈ {400, 500, 800, 1000}, and columns represent increasing noise ratios. Metrics reported include
(from left to right): Structural Hamming Distance (SHD, lower is better), Precision, F1 score, and
Recall (or TPR) (all higher is better). Each method’s mean performance is shown, with standard error
indicated by shaded regions around the curves.

20



of nodes increases, PC and FGES exhibit a marked rise in SHD, indicating limited scalability in713

structural accuracy. NOTEARS and GOLEM, while competitive on small scales, incur significantly714

higher runtime as d grows, making them less practical for large graphs. In contrast, ψDAG maintains715

a low SHD and a consistently competitive runtime, demonstrating both scalability and robustness in716

high-dimensional settings.717

To evaluate structure recovery under more challenging conditions, we include additional results718

on large-scale ER2 and ER3 graphs (d ∈ {400, 500, 800, 1000}) with Gaussian noise exhibiting719

non-equal variances (NV) across varying noise ratios. As shown in Figure 8, ψDAG consistently720

achieves the best or near-best performance across most metrics, demonstrating robustness even at a721

large scale.722
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Figure 9: Runtime comparison of ψDAG, GOLEM, NOCURL, and DAGMA on ER2, SF2 and
ER6 graphs with d ∈ {500, 1000, 3000, 5000, 10000}. The noise distribution is Gaussian with equal
variances. ψDAG scales efficiently to 10,000 nodes, while the baselines exhibit sharp runtime
increases or fail to complete within the 36-hour time budget. Notably, GOLEM, NOCURL, and
DAGMA fail to converge or exceed the time limit in multiple settings, especially for ER6. All
non-converging runs were excluded from the figures.

D.2 Scalability Comparison723

We provide complementary scalability results to those reported in the main paper (Section 5.3).724

ψDAG scales efficiently to graphs with up to d = 10,000 nodes, as shown in Figure 9. In sparse725

settings such as ER2 and SF2, it converges within a few hours even for the largest graphs. In contrast,726

the runtime of GOLEM, NOCURL, and DAGMA increases sharply with graph size. On ER2 graphs,727

both GOLEM and NOCURL exceed the 36-hour runtime limit for d ≥ 3000, while DAGMA fails to728

complete within the time budget for d ≥ 5000.729

We also observe frequent convergence failures among baselines. For instance, NOCURL fails to730

converge on SF2 graphs with Gaussian-EV noise when d = 500, and entirely fails on ER6. Both731

GOLEM and DAGMA exhibit non-convergence in at least one of the three random seeds on ER6.732

All such failed runs are excluded from reported statistics. In contrast, ψDAG converges in all runs733

and maintains competitive runtime performance even at large scales, highlighting both its robustness734

and practical efficiency.735

We present results across combinations of the number of vertices d ∈736

{10, 50, 100, 500, 1000, 3000, 5000, 10000}, graph types ∈ {ER,SF}, graph densities k ∈ {2, 4, 6},737

and noise types (Gaussian, Exponential, and Gumbel). Figures are grouped by noise type and graph738

size, with subplots showing results for ψDAG, GOLEM, and DAGMA.739

ER graph types: Figures 10 and 11 report results on ER2 graphs; Figures 12 and 13 on ER4 graphs;740

and Figure 14 on ER6 graphs.741

SF graph types: Figures 15 and 16 report results on SF2 graphs; Figures 17 and 18 on SF4 graphs;742

and Figure 19 on SF6 graphs.743
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We report the decrease in functional value over both (i) elapsed time and (ii) number of gradient744

evaluations, the latter serving as a proxy for computational effort.745

Figure 11b highlights that DAGMA requires substantially more gradient computations compared to746

both ψDAG and GOLEM, further emphasizing the efficiency of our approach.747

D.3 Small to Moderate Number of Nodes748

Our experiments demonstrate that while number of nodes is small, d < 100, GOLEM is more stable749

than DAGMA, and ψDAG method is the most stable. While DAGMA shows impressive speed for750

smaller node sets, the number of iterations required is still higher than both GOLEM and our method.751

Across all scenarios, ψDAG consistently demonstrates faster convergence compared to the other752

approaches, requiring fewer iterations to reach the desired solution.753

D.4 Large Number of Nodes754

For graphs with a large number of nodes d ∈ {5000, 10000}, we were unable to run neither of the755

baselines, and consequently, Figure 20 includes only one algorithm. GOLEM was not feasible due to756

its computation time exceeding 350 hours. DAGMA was impossible as its runs led to kernel crashes.757

In all cases, we utilized a training set of 5,000 samples and a validation set of 10,000 samples.758

D.5 Denser Graphs759

For a thorough comparison, in Figures 14 and 19, we compare graph structures ER6 and SF6 under760

the Gaussian noise type. Plots indicate that while DAGMA exhibits a fast runtime when the number761

of nodes is small, d < 100, it requires more iterations to achieve convergence. Algorithm ψDAG762

consistently outperforms GOLEM and DAGMA in both training time and a number of stochastic763

gradient computations, and the difference is more pronounced for a larger number of nodes and764

denser graphs.765
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Figure 10: Linear SEM methods on ER2 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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Figure 11: Linear SEM methods on ER2 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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Figure 12: Linear SEM methods on ER4 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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Figure 13: Linear SEM methods on ER4 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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Figure 14: Linear SEM methods on graphs of type ER6 with the Gaussian noise distribution.

27



0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Runtime, s

10 1

100

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
Runtime, s

10 2

10 1

100

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0 1 2 3 4 5 6
Runtime, s

10 1

100

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoh. gradient computations 1e7

10 1

100

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoh. gradient computations 1e7

10 3

10 2

10 1

100

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Stoh. gradient computations 1e7

10 1

100

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

(a) d = 10 vertices

0 20 40 60 80 100
Runtime, s

100

101

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0 1 2 3 4 5
Runtime, s

10 2

10 1

100

101

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0 5 10 15 20 25 30 35 40
Runtime, s

10 1

100

101

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoh. gradient computations 1e7

100

101

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0 1 2 3 4 5
Stoh. gradient computations 1e6

101

2 × 100

3 × 100

4 × 100

6 × 100

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoh. gradient computations 1e7

10 1

100

101

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

(b) d = 50 vertices

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Runtime, s

100

101

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0 2 4 6 8 10 12 14
Runtime, s

101

102

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0 2 4 6 8 10 12 14
Runtime, s

101

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoch. gradient computations 1e7

101

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stoch. gradient computations 1e7

101

f(x
k)

f( x
)

DAG
GOLEM
DAGMA

0.0 0.5 1.0 1.5 2.0 2.5
Stoch. gradient computations 1e7

101f(x
k)

f( x
)

DAG
GOLEM
DAGMA

(c) d = 100 vertices

Figure 15: Linear SEM methods on SF2 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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Figure 16: Linear SEM methods on SF2 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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(c) d = 100 vertices

Figure 17: Linear SEM methods on SF4 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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Figure 18: Linear SEM methods on SF4 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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Figure 19: Linear SEM methods on graphs of type SF6 with the Gaussian noise distribution.
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Figure 20: ψDAG method for graph types ER2, ER4, SF2 and SF4 graphs with d = 10000 and
Gaussian noise. Other linear SEM methods do not converge in less than 350 hours.
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Figure 21: Comparison of ψDAG, ψDAG weighted and DAGMA for ER2 graph with d = 3000
nodes and Gaussian noise.

E Weighted Projection766

Inspired by the importance sampling, we considered adjustment of the projection method by weights.767

Specifically, we considered the elements of the W to be weighted element-wisely by the second768

directional derivatives of the objective function, L[i][j]
def
=

(
d

dW[i][j]

)2

EX∼D [l(W;X)]. As we do769

not have access to the whole distribution D, we approximate it by the mean of already seen samples,770

Lk[i][j]
def
=

(
d

dW[i][j]

)2
1

k

k−1∑
k=0

l (W;Xk) =
1

k

k−1∑
t=0

(Xk[j])
2
. (14)

Weights (14) are identical for whole columns; hence, they impose storing only one vector. Updating771

them requires a few element-wise vector operations.772
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Figure 22: ψDAG method with weighted projection for graph types ER4 and Gaussian noise.

Figures 21 and 22 show that this weighting can lead to an improved convergence (slightly faster773

convergence to a slightly lower functional value) without imposing any extra gradient computation.774

However, we noticed that the improvement over runtime is not consistent across different experiments;775

hence, for simplicity, we deferred this to the appendix.776
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NeurIPS Paper Checklist777

1. Claims778

Question: Do the main claims made in the abstract and introduction accurately reflect the779

paper’s contributions and scope?780

Answer: [Yes]781

Justification: See Sections 4, 5, A and D.782

Guidelines:783

• The answer NA means that the abstract and introduction do not include the claims784

made in the paper.785

• The abstract and/or introduction should clearly state the claims made, including the786

contributions made in the paper and important assumptions and limitations. A No or787

NA answer to this question will not be perceived well by the reviewers.788

• The claims made should match theoretical and experimental results, and reflect how789

much the results can be expected to generalize to other settings.790

• It is fine to include aspirational goals as motivation as long as it is clear that these goals791

are not attained by the paper.792

2. Limitations793

Question: Does the paper discuss the limitations of the work performed by the authors?794

Answer: [Yes]795

Justification: See Limiation paragraph in Section 6.796

Guidelines:797

• The answer NA means that the paper has no limitation while the answer No means that798

the paper has limitations, but those are not discussed in the paper.799

• The authors are encouraged to create a separate "Limitations" section in their paper.800

• The paper should point out any strong assumptions and how robust the results are to801

violations of these assumptions (e.g., independence assumptions, noiseless settings,802

model well-specification, asymptotic approximations only holding locally). The authors803

should reflect on how these assumptions might be violated in practice and what the804

implications would be.805

• The authors should reflect on the scope of the claims made, e.g., if the approach was806

only tested on a few datasets or with a few runs. In general, empirical results often807

depend on implicit assumptions, which should be articulated.808

• The authors should reflect on the factors that influence the performance of the approach.809

For example, a facial recognition algorithm may perform poorly when image resolution810

is low or images are taken in low lighting. Or a speech-to-text system might not be811

used reliably to provide closed captions for online lectures because it fails to handle812

technical jargon.813

• The authors should discuss the computational efficiency of the proposed algorithms814

and how they scale with dataset size.815

• If applicable, the authors should discuss possible limitations of their approach to816

address problems of privacy and fairness.817

• While the authors might fear that complete honesty about limitations might be used by818

reviewers as grounds for rejection, a worse outcome might be that reviewers discover819

limitations that aren’t acknowledged in the paper. The authors should use their best820

judgment and recognize that individual actions in favor of transparency play an impor-821

tant role in developing norms that preserve the integrity of the community. Reviewers822

will be specifically instructed to not penalize honesty concerning limitations.823

3. Theory assumptions and proofs824

Question: For each theoretical result, does the paper provide the full set of assumptions and825

a complete (and correct) proof?826

Answer: [Yes]827
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Justification: See Section A.828

Guidelines:829

• The answer NA means that the paper does not include theoretical results.830

• All the theorems, formulas, and proofs in the paper should be numbered and cross-831

referenced.832

• All assumptions should be clearly stated or referenced in the statement of any theorems.833

• The proofs can either appear in the main paper or the supplemental material, but if834

they appear in the supplemental material, the authors are encouraged to provide a short835

proof sketch to provide intuition.836

• Inversely, any informal proof provided in the core of the paper should be complemented837

by formal proofs provided in appendix or supplemental material.838

• Theorems and Lemmas that the proof relies upon should be properly referenced.839

4. Experimental result reproducibility840

Question: Does the paper fully disclose all the information needed to reproduce the main ex-841

perimental results of the paper to the extent that it affects the main claims and/or conclusions842

of the paper (regardless of whether the code and data are provided or not)?843

Answer: [Yes]844

Justification: See Section 5 and D.845

Guidelines:846

• The answer NA means that the paper does not include experiments.847

• If the paper includes experiments, a No answer to this question will not be perceived848

well by the reviewers: Making the paper reproducible is important, regardless of849

whether the code and data are provided or not.850

• If the contribution is a dataset and/or model, the authors should describe the steps taken851

to make their results reproducible or verifiable.852

• Depending on the contribution, reproducibility can be accomplished in various ways.853

For example, if the contribution is a novel architecture, describing the architecture fully854

might suffice, or if the contribution is a specific model and empirical evaluation, it may855

be necessary to either make it possible for others to replicate the model with the same856

dataset, or provide access to the model. In general. releasing code and data is often857

one good way to accomplish this, but reproducibility can also be provided via detailed858

instructions for how to replicate the results, access to a hosted model (e.g., in the case859

of a large language model), releasing of a model checkpoint, or other means that are860

appropriate to the research performed.861

• While NeurIPS does not require releasing code, the conference does require all submis-862

sions to provide some reasonable avenue for reproducibility, which may depend on the863

nature of the contribution. For example864

(a) If the contribution is primarily a new algorithm, the paper should make it clear how865

to reproduce that algorithm.866

(b) If the contribution is primarily a new model architecture, the paper should describe867

the architecture clearly and fully.868

(c) If the contribution is a new model (e.g., a large language model), then there should869

either be a way to access this model for reproducing the results or a way to reproduce870

the model (e.g., with an open-source dataset or instructions for how to construct871

the dataset).872

(d) We recognize that reproducibility may be tricky in some cases, in which case873

authors are welcome to describe the particular way they provide for reproducibility.874

In the case of closed-source models, it may be that access to the model is limited in875

some way (e.g., to registered users), but it should be possible for other researchers876

to have some path to reproducing or verifying the results.877

5. Open access to data and code878

Question: Does the paper provide open access to the data and code, with sufficient instruc-879

tions to faithfully reproduce the main experimental results, as described in supplemental880

material?881

36



Answer: [Yes]882

Justification: See footnote at Section 5. (https://anonymous.4open.science/r/883

psiDAG-8F42)884

Guidelines:885

• The answer NA means that paper does not include experiments requiring code.886

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/887

public/guides/CodeSubmissionPolicy) for more details.888

• While we encourage the release of code and data, we understand that this might not be889

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not890

including code, unless this is central to the contribution (e.g., for a new open-source891

benchmark).892

• The instructions should contain the exact command and environment needed to run to893

reproduce the results. See the NeurIPS code and data submission guidelines (https:894

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.895

• The authors should provide instructions on data access and preparation, including how896

to access the raw data, preprocessed data, intermediate data, and generated data, etc.897

• The authors should provide scripts to reproduce all experimental results for the new898

proposed method and baselines. If only a subset of experiments are reproducible, they899

should state which ones are omitted from the script and why.900

• At submission time, to preserve anonymity, the authors should release anonymized901

versions (if applicable).902

• Providing as much information as possible in supplemental material (appended to the903

paper) is recommended, but including URLs to data and code is permitted.904

6. Experimental setting/details905

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-906

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the907

results?908

Answer: [Yes]909

Justification: See Section 5 and D.910

Guidelines:911

• The answer NA means that the paper does not include experiments.912

• The experimental setting should be presented in the core of the paper to a level of detail913

that is necessary to appreciate the results and make sense of them.914

• The full details can be provided either with the code, in appendix, or as supplemental915

material.916

7. Experiment statistical significance917

Question: Does the paper report error bars suitably and correctly defined or other appropriate918

information about the statistical significance of the experiments?919

Answer: [Yes]920

Justification: See Section 5 and D.921

Guidelines:922

• The answer NA means that the paper does not include experiments.923

• The authors should answer "Yes" if the results are accompanied by error bars, confi-924

dence intervals, or statistical significance tests, at least for the experiments that support925

the main claims of the paper.926

• The factors of variability that the error bars are capturing should be clearly stated (for927

example, train/test split, initialization, random drawing of some parameter, or overall928

run with given experimental conditions).929

• The method for calculating the error bars should be explained (closed form formula,930

call to a library function, bootstrap, etc.)931

• The assumptions made should be given (e.g., Normally distributed errors).932
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• It should be clear whether the error bar is the standard deviation or the standard error933

of the mean.934

• It is OK to report 1-sigma error bars, but one should state it. The authors should935

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis936

of Normality of errors is not verified.937

• For asymmetric distributions, the authors should be careful not to show in tables or938

figures symmetric error bars that would yield results that are out of range (e.g. negative939

error rates).940

• If error bars are reported in tables or plots, The authors should explain in the text how941

they were calculated and reference the corresponding figures or tables in the text.942

8. Experiments compute resources943

Question: For each experiment, does the paper provide sufficient information on the com-944

puter resources (type of compute workers, memory, time of execution) needed to reproduce945

the experiments?946

Answer: [Yes]947

Justification: See Appendix C.948

Guidelines:949

• The answer NA means that the paper does not include experiments.950

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,951

or cloud provider, including relevant memory and storage.952

• The paper should provide the amount of compute required for each of the individual953

experimental runs as well as estimate the total compute.954

• The paper should disclose whether the full research project required more compute955

than the experiments reported in the paper (e.g., preliminary or failed experiments that956

didn’t make it into the paper).957

9. Code of ethics958

Question: Does the research conducted in the paper conform, in every respect, with the959

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?960

Answer: [Yes]961

Justification: We have read and respected the NeurIPS Code of Ethics.962

Guidelines:963

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.964

• If the authors answer No, they should explain the special circumstances that require a965

deviation from the Code of Ethics.966

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-967

eration due to laws or regulations in their jurisdiction).968

10. Broader impacts969

Question: Does the paper discuss both potential positive societal impacts and negative970

societal impacts of the work performed?971

Answer: [NA]972

Justification: This paper focuses on the efficient solving of a causal inference problem. We973

do not anticipate any direct societal impacts that require specific consideration.974

Guidelines:975

• The answer NA means that there is no societal impact of the work performed.976

• If the authors answer NA or No, they should explain why their work has no societal977

impact or why the paper does not address societal impact.978

• Examples of negative societal impacts include potential malicious or unintended uses979

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations980

(e.g., deployment of technologies that could make decisions that unfairly impact specific981

groups), privacy considerations, and security considerations.982
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• The conference expects that many papers will be foundational research and not tied983

to particular applications, let alone deployments. However, if there is a direct path to984

any negative applications, the authors should point it out. For example, it is legitimate985

to point out that an improvement in the quality of generative models could be used to986

generate deepfakes for disinformation. On the other hand, it is not needed to point out987

that a generic algorithm for optimizing neural networks could enable people to train988

models that generate Deepfakes faster.989

• The authors should consider possible harms that could arise when the technology is990

being used as intended and functioning correctly, harms that could arise when the991

technology is being used as intended but gives incorrect results, and harms following992

from (intentional or unintentional) misuse of the technology.993

• If there are negative societal impacts, the authors could also discuss possible mitigation994

strategies (e.g., gated release of models, providing defenses in addition to attacks,995

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from996

feedback over time, improving the efficiency and accessibility of ML).997

11. Safeguards998

Question: Does the paper describe safeguards that have been put in place for responsible999

release of data or models that have a high risk for misuse (e.g., pretrained language models,1000

image generators, or scraped datasets)?1001

Answer: [NA]1002

Justification: The paper poses no such risks.1003

Guidelines:1004

• The answer NA means that the paper poses no such risks.1005

• Released models that have a high risk for misuse or dual-use should be released with1006

necessary safeguards to allow for controlled use of the model, for example by requiring1007

that users adhere to usage guidelines or restrictions to access the model or implementing1008

safety filters.1009

• Datasets that have been scraped from the Internet could pose safety risks. The authors1010

should describe how they avoided releasing unsafe images.1011

• We recognize that providing effective safeguards is challenging, and many papers do1012

not require this, but we encourage authors to take this into account and make a best1013

faith effort.1014

12. Licenses for existing assets1015

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1016

the paper, properly credited and are the license and terms of use explicitly mentioned and1017

properly respected?1018

Answer: [Yes]1019

Justification: See Section Appendix C.1020

Guidelines:1021

• The answer NA means that the paper does not use existing assets.1022

• The authors should cite the original paper that produced the code package or dataset.1023

• The authors should state which version of the asset is used and, if possible, include a1024

URL.1025

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1026

• For scraped data from a particular source (e.g., website), the copyright and terms of1027

service of that source should be provided.1028

• If assets are released, the license, copyright information, and terms of use in the1029

package should be provided. For popular datasets, paperswithcode.com/datasets1030

has curated licenses for some datasets. Their licensing guide can help determine the1031

license of a dataset.1032

• For existing datasets that are re-packaged, both the original license and the license of1033

the derived asset (if it has changed) should be provided.1034
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• If this information is not available online, the authors are encouraged to reach out to1035

the asset’s creators.1036

13. New assets1037

Question: Are new assets introduced in the paper well documented and is the documentation1038

provided alongside the assets?1039

Answer: [Yes]1040

Justification: See Section 5 and C.1041

Guidelines:1042

• The answer NA means that the paper does not release new assets.1043

• Researchers should communicate the details of the dataset/code/model as part of their1044

submissions via structured templates. This includes details about training, license,1045

limitations, etc.1046

• The paper should discuss whether and how consent was obtained from people whose1047

asset is used.1048

• At submission time, remember to anonymize your assets (if applicable). You can either1049

create an anonymized URL or include an anonymized zip file.1050

14. Crowdsourcing and research with human subjects1051

Question: For crowdsourcing experiments and research with human subjects, does the paper1052

include the full text of instructions given to participants and screenshots, if applicable, as1053

well as details about compensation (if any)?1054

Answer: [NA]1055

Justification: The paper does not involve crowdsourcing nor research with human subjects.1056

Guidelines:1057

• The answer NA means that the paper does not involve crowdsourcing nor research with1058

human subjects.1059

• Including this information in the supplemental material is fine, but if the main contribu-1060

tion of the paper involves human subjects, then as much detail as possible should be1061

included in the main paper.1062

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1063

or other labor should be paid at least the minimum wage in the country of the data1064

collector.1065

15. Institutional review board (IRB) approvals or equivalent for research with human1066

subjects1067

Question: Does the paper describe potential risks incurred by study participants, whether1068

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)1069

approvals (or an equivalent approval/review based on the requirements of your country or1070

institution) were obtained?1071

Answer: [NA]1072

Justification: the paper does not involve crowdsourcing nor research with human subjects.1073

Guidelines:1074

• The answer NA means that the paper does not involve crowdsourcing nor research with1075

human subjects.1076

• Depending on the country in which research is conducted, IRB approval (or equivalent)1077

may be required for any human subjects research. If you obtained IRB approval, you1078

should clearly state this in the paper.1079

• We recognize that the procedures for this may vary significantly between institutions1080

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the1081

guidelines for their institution.1082

• For initial submissions, do not include any information that would break anonymity (if1083

applicable), such as the institution conducting the review.1084

16. Declaration of LLM usage1085
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Question: Does the paper describe the usage of LLMs if it is an important, original, or1086

non-standard component of the core methods in this research? Note that if the LLM is used1087

only for writing, editing, or formatting purposes and does not impact the core methodology,1088

scientific rigorousness, or originality of the research, declaration is not required.1089

Answer: [NA]1090

Justification: The core method development in this research does not involve LLMs.1091

Guidelines:1092

• The answer NA means that the core method development in this research does not1093

involve LLMs as any important, original, or non-standard components.1094

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)1095

for what should or should not be described.1096
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