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Abstract

Learning the structure of Directed Acyclic Graphs (DAGs) presents a significant
challenge due to the vast combinatorial search space of possible graphs, which
scales exponentially with the number of nodes. Recent advancements have rede-
fined this problem as a continuous optimization task by incorporating differentiable
acyclicity constraints. These methods commonly rely on algebraic characteriza-
tions of DAGs, such as matrix exponentials, to enable the use of gradient-based
optimization techniques. Despite these innovations, existing methods often face
optimization difficulties due to the highly non-convex nature of DAG constraints
and the per-iteration computational complexity. In this work, we present a novel
framework for learning DAGs, employing a Stochastic Approximation approach
integrated with Stochastic Gradient Descent (SGD)-based optimization techniques.
Our framework introduces new projection methods tailored to efficiently enforce
DAG constraints, ensuring that the algorithm converges to a feasible local minimum.
With its low iteration complexity, the proposed method is well-suited for handling
large-scale problems with improved computational efficiency. We demonstrate the
effectiveness and scalability of our framework through comprehensive experiments,
which confirm its superior performance across various settings.

1 Introduction

Learning graphical structures from data using Directed Acyclic Graphs (DAGs) is a fundamental
challenge in machine learning (Koller & Friedman), 2009 |Peters et al., [2016} |Arjovsky et al., 2019;
Sauer & Geiger, 2021). This task has a wide range of practical applications across fields such as
economics, genome research (Zhang et al., 2013} Stephens & Balding, 2009)), social sciences (Morgan
& Winship, [2015)), biology (Sachs et al.| |2005a), and causal inference (Pearl, 2009; Spirtes et al.,
2000). Learning the graphical structure is essential because the resulting models can often be given
causal interpretations or transformed into representations with causal significance, such as Markov
equivalence classes. When graphical models cannot be interpreted causally (Pearl, |2009; Spirtes
et al.| 2000), they can still offer a flexible representation for decomposing the joint distribution.

Structure learning methods are typically categorized into two approaches: score-based algorithms
searching for a DAG minimizing a particular loss function and constraint-based algorithms relying
on conditional independence tests. Constraint-based methods, such as the PC algorithm (Spirtes &
Glymour, [1991) and FCI (Spirtes et al., 1995} [Colombo et al., 2012), use conditional independence
tests to recover the Markov equivalence class under the assumption of faithfulness. Other approaches,
like those described in Margaritis & Thrun|(1999) and|T'samardinos et al.[(2003), employ local Markov
boundary search. On the other hand, score-based methods frame the problem as an optimization of a
specific scoring function, with typical choices including BGe (Kuipers et al.,2014), BIC (Chickering
& Heckerman, [1997), BDe(u) (Heckerman et al.,[1995)), and MDL (Bouckaert, |1993)). Given the vast
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Figure 1: Visual comparison of the learned weighted adjacency matrices on a 25-node ER2 graph
under Gaussian noise with equal variances (EV) and non-equal variances (NV, with noise ratio » = 5).
For both methods ¥’ DAG and GOLEM the L, distance in the EV setting is 2.6. In the NV setting,
1)DAG maintains an L, distance of 2.6, while GOLEM’s L, distance increases to 10.7, highlighting
the robustness and generalization ability of 1y DAG across varying noise conditions.

search space of potential graphs, many score-based methods employ local heuristics, such as Greedy
Equivalence Search (GES) (Chickering| [2002), to efficiently navigate this complexity.

Recently, Zheng et al.|(2018)) introduced a smooth formulation for enforcing acyclicity, transforming
the structure learning problem from its inherently discrete nature into a continuous, non-convex
optimization task. This formulation allows for the use of gradient-based optimization techniques,
enabling various extensions and adaptations to various domains, including nonlinear models (Yu
et al.,[2019; |Ng et al.,|2022b; [Kalainathan et al., [2022), interventional datasets (Brouillard et al.| |2020;
Faria et al.| 2022), unobserved confounders (Bhattacharya et al., 2021 Bellot & Van der Schaar,
2021), incomplete datasets (Gao et al., 2022a; Wang et al., 2020)), time series analysis (Sun et al.,
20215 [Pamfil et al., [2020), multi-task learning (Chen et al., 2021, multi-domain settings (Zeng
et al.,2021), federated learning (Ng & Zhang] [2022;|Gao et al., |2023), and representation learning
(Yang et al., 2021). With the growing interest in continuous structure learning methods (Vowels
et al.| [2022)), a variety of theoretical and empirical studies have emerged. For instance, Ng et al.
(2020) investigated the optimality conditions and convergence properties of continuously constrained
approaches such as|Zheng et al.|(2018)). In the bivariate case, Deng et al.|(2023b) demonstrated that a
suitable optimization strategy converges to the global minimum of the least squares objective. [Zhang
et al.[(2022)) and Bello et al.| (2022) then identified potential gradient vanishing issues with existing
DAG constraints (Zheng et al.||2018)) and proposed adjustments to overcome these challenges.

Contributions. In this work, we focus on the graphical models represented as Directed Acyclic
Graphs (DAGs). Our main contributions can be summarized as follows:

1. Problem reformulation: We introduce a new reformulation (9) of the discrete optimization
problem for finding DAG as a stochastic optimization problem, and we discuss its properties in
detail in Section[3.1] We demonstrate that the solution of this reformulated problem recovers the
true DAG (Section [3.1).

2. Novel algorithm: Leveraging insights from stochastic optimization, we present a new framework
(Algorithm for DAG learning (Section [4)) and present a simple yet effective algorithm ¥y DAG
(Algorithm [2)) within the framework.

3. Experimental comparison: In Section[5] we demonstrate that the method 1/ DAG scales very
well with graph size, handling up to 10000 nodes. At that scale, the primary limitation is not
computation complexity but the memory required to store the DAG itself. As a baseline, we
compare yDAG with established DAG learning methods, including NOTEARS (Zheng et al.,
2018), GOLEM (Ng et al., 2020), NOCURL (Yu et al., 2021) and DAGMA (Bello et al., 2022).
We show a significant improvement in scalability, as baseline methods struggle with larger graphs.
Specifically, NOTEARS (Zheng et al., 2018), GOLEM (Ng et al.,[2020), NOCURL (Yu et al.,
2021) and DAGMA (Bello et al., 2022)) require more than 100 hours for graphs with over 3000
nodes, exceeding the allotted time.

2 Background

In this section, we introduce the necessary graph notation and formalize the linear Structural Equation
Model (SEM) framework used for learning Directed Acyclic Graphs (DAGs). For a detailed discussion
of related methods and further literature, please refer to Appendix [A]
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2.1 Graph Notation

LetG = (V, E,w) represent a weighted directed graph, where V' denotes the set of vertices with

cardinality d = |V|, E € 2V*V is the set of edges, and w : V x V — R\ {0} assigns weights to
the edges. The adjacency matrix A(G) : R%*¢ is defined such that [A(G)];; = 1if (4,7) € E and
0 otherwise. Similarly, the weighted adjacency matrix W (G) is defined by [W(G)];; = w(i, j) if
(i,7) € E and 0 otherwise.

€

When the weight function w is binary, we simplify the notation to G = (V, E). Similarly, when the

graph G is clear from context, we shorthand the notation to A = A(G)and W = W(G).

We denote the space of DAGs as ID. Since we will be utilizing topological sorting of DAG&E], we also
denote the space of vertex permutations II.

2.2 Linear DAG and SEM

A Directed Acyclic Graph (DAG) model, defined on a set of n random vectors X € R™*4 where

de .
x (X1,...,X,)and X; € R? consists of two components:

1. ADAG G = (V, E), which encodes a set of conditional independence relationships among the
variables.

2. The joint distribution P(X) with density p(x), which is Markov with respect to the DAG G and
factors as p(z) = Hle (x5 | Tpag (i), where PAg(i) = {j € V : X; — X; € E} represents
the set of parents of X; in G.

This work focuses on the linear DAG model, which can be equivalently represented by a set of linear
Structural Equation Models (SEMs). In matrix notation, the linear DAG model can be expressed as

X =XW + N, (1

where W = [W,|---|[W,] is a weighted adjacency matrix, and N def (N1, ..., N,) is a matrix
where each N; € R< represents a noise vector with independent components. The structure of graph
G is determined by the non-zero coefficients in W specifically X; — X; € E if and only if the
corresponding coefficient in W for X is non-zero. The classical objective function is based on the
least squares loss applied to the linear DAG model,

de
(W X) 2 X - XWJ3. b))

3 Stochastic Approximation for DAGs

Our framework is built on a reformulation of the objective function as a stochastic optimization
problem, aiming to minimize the stochastic function F'(w),

miny, ez { F(w) < Ee [f(w, )]} 3

where ¢ € = is a random variable that follows the distribution =. This formulation is common in
stochastic optimization where computing the exact expectation is infeasible, but the values of f(w, &)
and its stochastic gradients g(w, £) can be computed. Linear and logistic regressions are classical
examples of such problems.

To address this problem, two main approaches exist: Stochastic Approximation (SA) and Sample
Average Approximation (SAA). The SAA approach involves sampling a fixed number n of random

variables or data points &; and then minimizing their average F'(w):

min {F(w) def iznzf(uh&)} . 4)
i=1

weRd

'Topologial sorting of a graph G et (V, E, w) refers to vertex ordering V1, Va, . . ., Vg such that E contains
no edges of the form V; — V}, where ¢ < j. Importantly, every DAG has at least one topological sorting.
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Algorithm 1 ¢)DAG framework

1: Requires: Initial model W € R%*?, such that diag(W) = 0.

2: fork=0,1,2...,K —1do

3 WY = 4 (W) (WP ¢ rixdy
4 (W ) = p(W) (WY e Dy
50 Wiy = AW ) {Wii1 € D C Rixd)
6: end for

7. Output: Wg.

Now, the problem (4)) becomes deterministic and can be solved using various optimization methods,
such as gradient descent. However, the main drawback of this approach is that the solution of (@) @*
is not necessarily equal to the solution of the original problem (3. Even with a perfect solution of
@), there will still be a gap ||w* — w*|| = d, and F(w*) — F* = §F between approximate and true
solution. These gaps are dependent on the sample size n.

Stochastic Approximation (SA) minimizes the true function F'(w) by utilizing the stochastic gradient
g(w, £). Below, we provide the formal definition of a stochastic gradient.

Assumption 1. For all w € R?, we assume that stochastic gradients g(w, £) € R? satisfy

E[g(w,§) | w] = VF(w), Q)
E [|lg(w,&) = VF(w)|]* | w] < of. (6)

We use these stochastic gradients in SGD-type methods:

w1 = wy — heg(we, &), @)

where h; is a step-size schedule. SA originated with the pioneering paper by Robbins & Monro|(1951)).
For convex and L-smooth function F'(w), [Polyak (1990); [Polyak & Juditsky| (1992); Nemirovski
et al.|(2009); Nemirovski & Yudin| (1983) developed significant improvements to SA method in the
form of longer step-sizes with iterate averaging, and obtained the convergence guarantee

E[F(wr) — F(z*)] < O (i/g + LlTRQ) .

VT T2
matching the worst-case lower bounds. The key advantage of SA is that it provides convergence
guarantees for the original problem (3). Additionally, methods effective for the SA approach tend to
perform well for the SAA approach as well.

Lan| (2012) developed an optimal method with a guaranteed convergence rate O (M + L R* ),

3.1 Stochastic Reformulation

Using the perspective of Stochastic Approximation, we can rewrite the linear DAG (1)) as
r=X,=[1-W]]7'N, ®)

where W* is a true DAG that corresponds to the full distribution, and our goal is to find DAG W
that is close to W*. If we assume that x = X is a random vector sampled from a distribution D, we
can express the objective function as an expectation,

. . def 1 . T 112
min E,p [Z(W,x) < Le - Wz } 9)

For z from (8) we can calculate [z — W'z|| = [|[(I—- W )z|| = [T - W) [I- W*T]fl Nl
which implies that the minimizer of @) recovers the true DAG. Conversely, this is not the case for
methods such as|Zheng et al.|(2018)), Ng et al.|(2020), and Bello et al.|(2022)), which are based on

SAA approaches with losses (2)), (L1, (12), (13).
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Algorithm 2 ¢)DAG

1: Requires: initial model W € R4¥4 numbers or iterations 7y, To.

2: fork=0,1,2...,K —1do

3 W/ = sGD(Wy) {71 iterations over R?*4}
4 (W m0) = Algorithm 3] (W)

5 W1 =SGD,, (Wy) {7 iterations preserving ordering 7y, }
6: end for

7: Output: W g

4 Scalable Optimization Framework for DAG Learning

In this section, we present our proposed scalable optimization framework for DAG learning. We
begin by showing that using a fixed vertex ordering can lead to suboptimal solutions, as demonstrated
in Section d.1] Motivated by this, we develop a three-stage framework that alternates between
unconstrained optimization, projection onto the DAG space, and constrained optimization guided by
topological ordering.

Instead of strictly enforcing DAG constraints throughout the entire iteration process, we propose a
novel, scalable optimization framework that consists of three main steps:

1. Running an optimization algorithm .A; without any DAG constraints, only forcing the diagonal
to be zero (diag(Wy) = 0), A; : R9*4 — RIxd,

2. Finding a DAG that is close to the current iterate using a projection ¢ : R¥*? — (I, IT), which
also returns its topological sorting 7.

3. Running the optimization algorithm .45 while preserving the vertex order, As : (D;II) — D.

This design enables efficient and accurate structure learning while avoiding the computational burden
of enforcing DAG constraints at every iteration.

4.1 Optimization for the fixed vertex ordering

Let us clarify how to optimize while preserving the order of the vertices in step 3 of the framework.
Given a DAG G, we can construct its topological ordering, denoted as ord(G). In this ordering,
for every edge, the start vertex appears earlier in the sequence than the end vertex. In general, this
ordering is not unique. In the space of DAGs with d vertices D, there are d! possible topological
orderings.

Once we have a topological ordering of the DAG, we can construct a larger DAG, G, by performing the
transitive closure of G. This new DAG G contains all the edges of the original DAG, and additionally,

it includes an edge between vertices V; and V; if there exists the path from V; to Vj in G. Thus, Q is
an expanded version of §.

Now, the question arises: is it possible to construct an even larger DAG that contains both G and
G ? The answer is yes! We call this graph the Full DAG, denoted by Q~, which is constructed via full
transitive closur In G, there is an edge from vertex V; to vertex V; if 4 < j is in topological order
ord(G). This makes C; the maximal DAG that includes G. Note that for every topological sort, there

is a corresponding full DAG. So, there are a total of d! different full DAGs in the space of DAGs with
d vertices D.

We are now ready to discuss the optimization part. Let us formulate the following optimization
problem
: RN | T2
Wit Eoup [(W- Asz) = 5z — (W-A) T2|*], (10)
where (-) denotes elementwise matrix multiplication. In this formulation, A acts as a mask, specifying
coordinates that do not require gradient computation. The problem (I0) is a quadratic convex

’Informally, for set of edges F, the transitive closure £V is the smallest set that includes edges (a,b)
whenever there is a path from a to b within E. Note that £ is the smallest superset of E that satisfies
(a,c) € ET whenever (a,b) € ET,(b,c) € ET.
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Algorithm 3 Projection ¢(W) computing the “closest” vertex ordering (recursive form)

Requires: Model W € R%*4, (optional) weights L € R%*? with default value L = 11 7.
fork=1,...,ddo

Set 7, = || (W o L) [k][-]||?

Set ¢y = || (W o L) [][K]|*
end for

Setic = argmingey; gy Ck

Set i, = argmingcgy gy Tk

if T, <= Cj, then

o Output: [(W(ic, i.), L(ic,ic)), ]

10: else

t: Output: [ic, (W (ic,ic), L(ic,ic))]

12: end if

{By A(, ) we denote the submatrix A[1,...,4— 1,4+ 1,...,d][1,...,j—1,7+1,...,d]}

PRINRLRN

stochastic optimization problem, which can be efficiently solved using stochastic gradient descent
(SGD)-type methods. These methods guarantee convergence to the global minimum, with a rate of

o1R | LiR?
O (7 + 7).
Assume that G* is the true DAG with a weighted adjacency matrix W*, which is the solution we aim
to find. Next, we can have the true ordering ord(G*) and the true full DAG G* with its adjacency

matrix A(G*). The optimization problem (9)), with the solution W*, can be addressed by solving
the optimization problem (I0) with A = A(G*). This result indicates that if we know the true
topological ordering ord(G*), then we can recover the true DAG W* with high accuracy. From a
discrete optimization perspective, this approach significantly reduces the space of constraints from

9d%=d 1o g,
102

To illustrate the specificity of the minimizer of the ~ Random order
3 . orrect oraer

proposed problem, Figure 2] demonstrates that min-

imizing () over a fixed random vertex ordering does 10t — —

not approach the true solution of (9). The "Correct
order" curve demonstrates the convergence of (10)
when the true ordering ord(G*) is known.

Note that for a fixed vertex ordering and fixed ad-
jacency matrix A, the objective (I0) becomes sepa-
rable, enabling parallel computation for large-scale
problems. In this work, we solved the minimization 10724 ‘ ‘ ‘ ‘ :
problem (T0) for the number of nodes up to d = 10*, ° 20 40Epoch60 o 100
at which point the limiting factor was the memory

to store W € R%*<, Through parallelization and Figure 2: Minimizing (©) using SGD over a

efficient memory management, it is possible to solve fixed topological ordering on ER4 with d =
even larger problems. 100 and Gaussian noise.

100,

fixk) — f(x)

10*1 4

4.2 Methodology

We now introduce the method 1)DAG, which implements the framework outlined in Algorithm[1]

For simplicity, we select algorithm A; as 7y steps of Stochastic Gradient Descent (SGD). Similarly,
As consists of 75 steps SGD, where gradients are projected onto the space spanned by DAG’s
topological sorting, thus preserving the vertex order. It is important to reiterate that SGD is guaranteed
to converge to the neighborhood of the solution. In the implementation, we employed an advanced
version of SGD, Universal Stochastic Gradient Method from Rodomanov et al.| (2024).

The implementation of the projection method is simple as well. We compute a “closest” topological
sorting and remove all edges not permitted by this ordering. The topological sorting is computed by a
heuristic that calculates norms of all rows and columns to find the lowest value v;. The corresponding
vertex ¢ is then assigned to the ordering based on the following rule:
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1.0

Precision

€43

m
100 3

0.4{"

Structural Hamming Distance(SHD)

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

Number of Nodes (d) Number of Nodes (d)
PC FGES — —=-— GOLEM ~ —+-— NOCURL ~ —+- DAGMA  —=- YDAG PC FGES ~ —=- GOLEM  —+— NOCURL =~ DAGMA - YDAG
(a) SHD (b) Precision

Figure 3: Structure recovery performance under Gaussian noise with non-equal variances (NV)
across varying noise ratios (r € {5, 10, 15}). Rows correspond to different random graph types, and
columns represent increasing noise ratios. Metrics include Structural Hamming Distance (SHD )
and Precision (1). We report the mean values, and standard error is indicated by shaded regions.

* If v; was the column norm, ¢ is assigned to the beginning of the ordering.
o If v; was the row norm, 7 is assigned to the end of the ordering.

This step reduces the number of vertices, and the remaining vertices are topologically sorted using a
recursive call. We formalize this procedure in Algorithm 3] Note that this procedure can be efficiently
implemented without recursion and with the computation cost O(d?).

5 Experiments

We experimentally compare our method, zZJDAC-ﬂ with several baselines including PC (Ramsey et al.,
2012), FGES (Meek, [1997; (Chickering, [2002), NOTEARS (Zheng et al., 2018), GOLEM (Ng et al.,
2020), NOCURL (Yu et al., 2021) and DAGMA (Bello et al.| [2022). As it is established that DAGMA
Bello et al.[(2022) is an improvement over NOTEARS [Zheng et al.| (2018)), we use mostly the former
in our experiments. To ensure a fair comparison, we avoid extensive hyperparameter tuning across
all baseline methods. Specifically, we apply the same thresholding procedure as used in|Zheng et al.
(2018),Ng et al.|(2020), Yu et al.| (2021}, and Bello et al.[(2022)) across all scenarios.

5.1 Synthetic Data Generation

We generate ground truth DAGs with d nodes and an average of k x d edges, where k € {2,3,4,6}
is a sparsity parameter. The graph structure is based on either the Erd6s-Rényi (ER) or the Scale-Free
(SF) models. Together with the sparsity level, we denote the graphs as ERk or SFk, respectively.
Each edge is assigned a random weight uniformly sampled from the interval [—2, —0.5] U [0.5, 2]
following the standard practice used in previous work (Zheng et al., 2018; Ng et al., 20205 |Yu et al.,
2021} Bello et al.,[2022) to ensure consistency across methods.

Following the linear Structural Equation Model (SEM), we generate the observed data X € R™*¢
using X = N(I - W)~!, where N consists of n independent and identically distributed (i.i.d.) noise
samples drawn from Gaussian, exponential, or Gumbel distributions. We evaluate both equal variance
(EV) and non-equal variance (NV) Gaussian noise settings. In the EV case, the noise for all variables
is scaled by a constant factor of 1.0. In the NV setting, we set the variances of two randomly selected
noise variables to be 1 and r € {5, 10, 15}, respectively, and the variances of remaining variables are
sampled uniformly from [1,r]. This setup enables evaluation of robustness under noise heterogeneity.
For further details, we refer the reader toNg et al.|(2024). A visual comparison under both EV and
NV (with r = 5) is shown in Figure[l] highlighting the robustness of 1/ DAG to non-uniform noise
levels. A more detailed description can be found in the Appendix [C]

3Implementation of the proposed algorithm is available at https://anonymous.4open.science/r/
psiDAG-8F42. We use the Universal Stochastic Gradient Method (Rodomanov et al) [2024) as the inner
optimizer.
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5.2 Structure Recovery

We evaluate the structure learning capabilities of our
method, as shown in Figure [3] using synthetic data gen-
erated from the ER2 and ER3 graphs with varying node
counts d € {10, 25,50, 100}. For brevity, we report only
the results for Structural Hamming Distance (SHD) and
precision across different noise ratios r € {5,10,15} in
the non-equal variance (N'V) Gaussian setting. The com-
plete results for additional metrics, including the F1 score
and the recall, are given in the Appendix [D.T] Lower SHD
and higher precision, F1 score, and recall values indicate
better structure recovery. We compare against several rep-
resentative baselines, including PC, FGES, NOCURL,
GOLEM, and DAGMA.

Consistent with prior work, all methods perform well in
terms of SHD when the number of nodes d and the noise
ratio r are small. However, the performance of FGES and
PC deteriorates rapidly, even for a moderate number of
nodes such as d = 50, with SHD increasing significantly.
In contrast, our method maintains low SHD across all
settings and consistently outperforms baselines as noise
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) 5 1015 64 256 1024
Noise Ratio (r)
pc - GOLEM  --a-- DAGMA
***** FGES -+~ NOCURL --o-- yDAG

Figure 4: Effect of noise ratio on SHD
for ER3 graphs with d = 100 in the
non-equal variance (NV) Gaussian set-
ting. Error bars denote standard devi-
ation over 3 random seeds. 1DAG re-
mains stable as r increases, while other
methods degrade and DAGMA fails to
converge for r > 15.

heterogeneity increases. Figure [ shows that the SHD of

1DAG remains stable even as r increases from 5 to 1024, further emphasizing its stability and
robustness. Meanwhile, DAGMA fails to converge for > 15, limiting its applicability in high-noise
regimes.

5.3 Scalability Comparison

We assess the scalability of the proposed algorithm ,i)DAG, by comparing its runtime against
GOLEM, NOCURL, and DAGMA. All methods are run until the objective function converges close
to the solution, f(z)) — f(Z) < 0.1 - f(z). Figure[§|reports runtime comparisons for ER2 and ER4
graphs under Gaussian, Exponential, and Gumbel noise for graph sizes d € {10, 50, 100, 500, 1000}.
Due to space constraints, additional results on larger graphs (up to d = 10, 000) are presented in
Appendix D.2] where Figure 9] further highlights the efficiency of 1/DAG in high-dimensional settings.

Across all scenarios, Y DAG demonstrates consistently lower runtime compared to baselines, particu-
larly as graph size and density increase. While DAGMA is marginally faster than ¢)DAG on very
small and sparse graphs (d < 100), the gap closes quickly with larger graphs. For d > 100, 1»"DAG
consistently exhibits superior runtime performance across both sparse and dense graph types. On

g, Gaussian-EV Exponential Gumbel Gaussian-EV Exponential Gumbel
. 300 »
0.6
m 200 m
~ 04 0 o
D 02 N g 10 N
ol o v
2 00 2 o ==
‘g 20 ‘E 300
o s m Y 20 = m
€10 o £ o
= 0.5 B F w00 =
0.0 v =1 — & 0
25 50 75 100 25 50 75 100 25 50 75 100
Number of Nodes (d) Number of Nodes (d)
—=— GOLEM -+ NOCURL  —+- DAGMA -~ yDAG —== GOLEM - NOCURL - DAGMA -+ YDAG
(a) Small Graph (b) Large Graph

Figure 5: Runtime (minutes) of GOLEM, NOCURL, DAGMA, and ¥DAG on ER2 and ER4 graphs
with increasing number of nodes d € {10, 50, 100, 500, 1000}. The columns correspond to different
noise distributions: Gaussian (left), exponential (middle), and Gumbel (right). Figure[5a]shows results
for small graphs (d < 100) and [5b] for large graphs (d > 100). 1’ DAG demonstrates significantly
better scalability as the number of nodes increases.
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sparse graphs, it converges reliably within a few hours, even at d = 10, 000, whereas GOLEM and
NOCURL exceed a 36-hour runtime for d > 3000, and DAGMA does so for d > 5000.

Furthermore, we observe that several baselines fail to meet the convergence criterion even for smaller
graphs. For instance, NOCURL does not converge for ER4 graphs with Gaussian-EV noise when
d > 500, and it fails completely for Exponential and Gumbel noise when d > 100. In the ER6
graph, the three baselines GOLEM, NOCURL, and DAGMA do not converge in at least one of the
three random seeds. Non-converging runs are excluded from reported statistics. In contrast, 1’ DAG
converges in all runs and maintains competitive runtime performance even at large scale, underscoring
both its robustness and practical efficiency.

5.4 Real-world Experiment

We further evaluate 1)DAG on a widely used real-world dataset, the causal protein signaling network,
from Sachs et al.| (2005b) and compare it with NOTEARS (Zheng et al.,2018), GOLEM (Ng et al.,
2020), NOCURL (Yu et al., 2021), and DAGMA (Bello et al., [2022)). This dataset captures the
expression levels of proteins and phospholipids in human cells under various experimental conditions.
It has been extensively used in the literature on causal discovery due to its well-established ground
truth and biological relevance. The dataset consists of n = 853 observational samples and d = 11
variables, with a ground truth DAG containing 17 edges. Despite its small size, it remains a
challenging benchmark for causal structure learning algorithms (Zheng et al.,|2018};|Ng et al.| 2020;
Gao et al., [2021). We follow the common evaluation setup and apply a threshold of 0.3 across all
methods for a fair comparison.

As shown in Table [1} ¥'DAG achieves
superior performance across all met-
rics: lower Structural Hamming Distance
(SHD), higher True quitive Rate (TPR), SHD] TPR{ FPR|
and lower False Positive Rate (FPR). A
more detailed description can be found NOTEARS (Zheng etal.2018) 15 0.29 0.26

Table 1: Performance of top methods on the protein
signaling dataset (Sachs et al., 2005b).

in Appendix [C] We omit the results for GOLEM (Ng et al.l [2020) 26 029 047
DAGMA as it fails to converge on this NOCURL (Yu et al.[[2021) 22035 045
dataset: its solution W diverges from the ~ ¥DAG (Alg[) 14 041 0.18

feasible domain in the very first iteration.

6 Conclusion

We introduce a novel framework for learning Directed Acyclic Graphs (DAGs) that addresses the
scalability and computational challenges of existing methods. Our approach leverages Stochastic
Approximation techniques in combination with Stochastic Gradient Descent (SGD)-based meth-
ods, allowing for efficient optimization even in high-dimensional settings. A key contribution of
our framework is the introduction of new projection techniques that effectively enforce DAG con-
straints, ensuring that the learned structure adheres to the acyclicity requirement without the need for
computationally expensive penalties or constraints seen in prior works.

The proposed framework is theoretically grounded, with convergence guarantees to a feasible local
minimum. One of its main advantages is its low iteration complexity, making it highly suitable
for large-scale structure learning problems, where traditional methods often struggle with runtime
and memory limitations. Through extensive experiments, we show that our approach consistently
outperforms strong baselines including NOTEARS (Zheng et al., |2018), GOLEM (Ng et al., [2020),
NOCURL (Yu et al.|2021), and DAGMA (Bello et al.,[2022) in both runtime and structure recov-
ery accuracy. Notably, our method demonstrates robust performance in settings with high noise
heterogeneity and varying graph densities.

Limitations and Future Work. In this paper, we have focused on presenting a novel framework
for differentiable DAG learning, which integrates a stochastic approach to achieve computational
efficiency. While the current results are focused on linear SEMs for simplicity, extending the
proposed algorithm to handle nonlinear SEMs (Zheng et al., 2020) is a natural direction for future
work. Exploring variance reduction optimization methods is another promising path.
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Zheng et al.|(2018)) addressed the constrained optimization problem

. de 1 .
Win (W: X)norears &= 51X = XWIE + A[Wl; - subjectto A(W) =0, (1)
where /(W; X) represents the least squares objective and h(W) := tr(eW®W) — d enforces the
DAG constraint. Additionally, an ¢; regularization term A\||[W||1, where || - ||; is the element-wise ¢1-
norm and )\ is a hyperparameter incorporated into the objective function. This formulation addresses
the linear case with equal noise variances, as discussed in|Loh & Bithimann| (2014) and |Peters &
Biithlmann! (2014)). This constrained optimization problem is solved using the augmented Lagrangian
method (Bertsekas et al.,[1999), followed by thresholding the obtained edge weights. However, since
this approach computes the acyclicity function via the matrix exponential, each iteration incurs a
computational complexity of O(d?), which significantly limits the scalability of the method.

Ng et al.[(2020) introduced the GOLEM method, which enhances the scoring function by incorporat-
ing an additional log-determinant term, log | det(I — W)| to align with the Gaussian log-likelihood,
. def d

Lin (W X)corew e 5 108 [ X = XWI[3. ~ log | det (I~ W) |+ 1| [W]1 +Ah(W), (12)
where \; and Ao serve as regularization hyperparameters within the objective function. Although the
newly added log-determinant term is zero when the current model W is a DAG, this score function
does not provide an exact characterization of acyclicity. Specifically, the condition log | det(I —
‘W)| = 0 does not imply that W represents a DAG.

Bello et al.| (2022) introduces a novel acyclicity characterization for DAGs using a log-determinant
function,
def 1

W?IégxdE(W;X)DAGMA = %HXfXWH%Jr)\lHWHl subject o hiy, (W) =0, (13)

where hfdet(W)déf — log det(sI — W o W) 4 dlog s, and it is both exact and differentiable.

In practice, the augmented Lagrangian method enforces the hard DAG constraint by increasing the
penalty coefficient toward infinity, which requires careful parameter fine-tuning and can lead to
numerical difficulties and ill-conditioning (Birgin et al.,|2005; Ng et al.l2022al). As a result, existing
methods face challenges in several aspects of optimization, including careful selection of constraints,
high computational complexity, and scalability issues.

Yu et al.[(2021) introduce a novel formulation for DAG structure learning by expressing the weighted
adjacency matrix as the Hadamard product of a skew-symmetric matrix and the gradient of a potential
function on graph nodes. This representation avoids explicit acyclicity constraints and enables a
continuous, constraint-free optimization framework. However, although NOCURL avoids direct
constraints through this parameterization and Hodge decomposition, it still relies on repeated L-BFGS
(Broyden|, [1967) optimization steps , which can become computationally expensive for large graphs.
In contrast, 1Y DAG avoids both acyclicity constraints and expensive optimization procedures, allowing
for more efficient scaling in high-dimensional settings.

Other works, such as |Chen et al.|(2019), proposed variance ordering procedures for estimating
topological orderings under equal error variances. Although these methods naturally extend to
high-dimensional settings, their reliance on controlling the maximum in-degree of the graph becomes
computationally intensive as graph density increases. In contrast, 1y DAG avoids these assumptions
and demonstrates scalability on graphs with up to 10,000 nodes. |Gao et al|(2022b)) focused on
theoretical guarantees for Gaussian DAG models, obtaining minimax optimal bounds for structural
recovery. Although their work offers valuable insights into sample efficiency, it does not address the
computational challenges of large-scale DAG learning.

Wei et al.[(2020) examined optimization challenges in NOTEARS by analyzing the KKT conditions
and proposed the KKTS algorithm as a post-processing enhancement. While this method improves
the structural Hamming distance (SHD), its reliance on specific constraints and post-hoc refinements
limits its applicability. In contrast, 1’ DAG reformulates DAG learning as a stochastic optimization
problem, seamlessly integrating gradient-based methods for large-scale graphs.

Additionally, Deng et al.|(2023a)) introduced a bilevel algorithm that iteratively refines topological
orders through node swaps, achieving local minima or KKT points. However, this approach is
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constrained by a specific function h(B) = Z?Il ¢; Tr(B?), which is computationally expensive and

limits its scalability to applications that involve larger graphs. Consequently, their experiments are
restricted to synthetic datasets with graphs containing up to d = 100 nodes. Moreover, the algorithm
initializes the W matrix using linear regression coefficients in the least squares case, resulting in
a different starting point for optimization, which makes direct comparisons with other methods
challenging. Our method addresses these limitations by generalizing the DAG learning framework
and demonstrating superior scalability and performance on both synthetic and real datasets.

Compared to permutation-based methods such as SP (Raskutti & Uhler, [2019), Efficient Permutation
Discovery (Squires et al.,[2020), and GRaSP (Lam et al.,[2022), '"DAG avoids exhaustive or greedy
searches over permutations. Instead, it leverages a novel projection technique that efficiently infers
causal orders without the computational overhead associated with permutation-based algorithms. This
design choice allows ¥DAG to maintain accuracy while offering superior scalability and efficiency in
learning DAG structures.

While many of these works focus on specific assumptions, penalty terms, or theoretical guarantees,
our framework prioritizes scalability, flexibility, and applicability. To overcome these challenges, we
propose a novel framework for enforcing the acyclicity constraint, utilizing a low-cost projection
method. This approach significantly reduces iteration complexity and eliminates the need for
expensive hyperparameter tuning.

B Theoretical Results

In this section, we present some theoretical properties of the DAG set and analyze the convergence of
the proposed method.

Lemma 2. The DAG set D is a conic set. Specifically, forany W € D and a > 0, we have o« W € D.
Additionally, the DAG set D includes the entire line, meaning that for any W € D and o € R,
aW € D.

Proof. We begin by observing that 0 € I, as a graph with no edges is trivially a DAG. Next, consider
any W € D and « € R\ {0}. Scaling W by « does not alter the structure of the graph; it only
changes the edge weights. Since the graph remains acyclic, W & . Thus, the DAG set D satisfies
the stated properties. O

Now, let us move to the subsets of DAG, which are based on a topological ordering 7.

Definition 3. A topological ordering 7 of a directed graph is a linear ordering of its vertices such
that, for every directed edge (u, v) from vertex u to vertex v, u comes before v in the ordering. We
call Ord(W) a set of all possible topological orderings for DAG W and ord(W) is one of the
orderings.

For the graphs with d vertices, there are exactly d! distinct topological orderings.
Every topological ordering 7 corresponds to subspace of all DAGs which can have this topological
ordering, we call it w-subspace DAG.

Definition 4. A 7-subspace D, is a set of all DAGs W such that m € Ord(W).

Let us prove that m-subspace D is a linear subspace.

Lemma 5. D is a linear subspace, meaning for any W1 € D, Wy € D, « € R, € R,
W =aW; + ﬁWg e D,.

Proof. We should simply note that any non-zero value in W corresponds to an edge between vertices
u and v such that v is after v in the ordering 7. The same holds for W. Hence, any non-zero value
in W holds the ordering 7. O

Next, we highlight that the DAG set D is a union of 7-subspaces for all possible orderings .
Lemma 6. The DAG set D is a union of all w-subspaces.

D =U;D;.
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Proof. For any DAG W € D there exists a topological ordering 7, hence W € D. € U;D,. On the
other side, all elements of U, D, are DAGs by definition and belongs to D.

O

Now, we move to the proposed method.

Theorem 7. For an Li-smooth function F(W) = E,.p [[(W; )] restricted in a domain of radius
R, ||z —y|| < R, Vx,y € dom F, consider Ay in the Algorithm|l|be chosen as Universal Stochastic
Gradient Method (Rodomanov et al [2024). Running As for T SGD-type steps accessing o1-
stochastic gradients (Theorem|l)) in the T-subspace D converges to a minimum of problem (9) with
additional subspace constraints at the rate

: , )
E |F(Wp)— ag\;geggn F(W) S(’)(\};+L¥{ )

ord(W)=m

Proof. A direct consequence of the convergence guarantees of the Universal Stochastic Gradient
Method, Theorem 4.2 of[Rodomanov et al.|(2024). O

Theorem 8. For an Ly-smooth function F(W) = E,.p [[(W; 2)] restricted in a domain of radius R,
|z —yll <R, Vx,y € dom F, Algorithm[2|with Universal Stochastic Gradient Method (Rodomanov,
et all}[2024) as A; and As with converges to a local minimum of problem ().

Proof. We denote a subspace minimum of problem (9) as W = argmin wep,, F(W). There
ord(W)=m

are two cases. The first case, W+ is a local minimum of a general problem [©). Then, by Theorem

7, the method converges to the local minimum. The second case, the subspace minimum W7

is not a local minimum as there exists an orthogonal subspace D5 LD, such that W;‘rk € Dx

and F(W3 ) > F(WZ). By steps from AFFL the method decreases towards F(W%). To fully
guarantee the convergences, one can memorize the visited subspaces and forbid projecting on them.

Then, D, | is not visited subspace. O

C Detailed Experiment Description

Computing. Our experiments were carried out on a machine equipped with 80 CPUs and one
NVIDIA Quadro RTX A6000 48GB GPU. Each experiment was allotted a maximum wall time of 36
hours as in DAGMA [Bello et al.| (2022).

Graph Models. In our experimental simulations, we generate graphs using two established random
graph models:

» Erdés-Rényi (ER) graphs: These graphs are constructed by independently adding edges
between nodes with a uniform probability. We denote these graphs as ERy, where kd
represents the expected number of edges.

* Scale-Free (SF) graphs: These graphs follow the preferential attachment process as de-
scribed in |Barabasi & Albert (1999). We use the notation SF;, to indicate a scale-free
graph with expected kd edges and an attachment exponent of 5 = 1, consistent with the
preferential attachment process. Since we focus on directed graphs, this model corresponds
to Price’s model, a traditional framework used to model the growth of citation networks.

It is important to note that ER graphs are inherently undirected. To transform them into Directed
Acyclic Graphs (DAGs), we generate a random permutation of the vertex labels from 1 to d, then
orient the edges according to this ordering. For SF graphs, edges are directed as new nodes are added,
ensuring that the resulting graph is a DAG. After generating the ground-truth DAG, we simulate the
structural equation model (SEM) for linear cases, conducting experiments accordingly.
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Metrics. The performance of each algorithm is assessed using the following four key metrics:

* Structural Hamming Distance (SHD): A widely used metric in structure learning that
quantifies the number of edge modifications (additions, deletions, and reversals) required to
transform the estimated graph into the true graph.

* True Positive Rate (TPR): This metric calculates the proportion of correctly identified
edges relative to the total number of edges in the ground-truth DAG. It is also known as
recall.

* Precision: is the proportion of all the model’s positive classifications that are actually
positive.

* F1 Score: is the harmonic mean of precision and recall.

 False Positive Rate (FPR): This measures the proportion of incorrectly identified edges
relative to the total number of absent edges in the ground-truth DAG.

* Runtime: The time taken by each algorithm to complete its execution provides a direct
measure of the algorithm’s computational efficiency.

* Stochastic gradient computations: Number of gradient computed.

Linear SEM. In the linear case, the functions are directly parameterized by the weighted adjacency
matrix W. Specifically, the system of equations is given by X; = XW,; + N,, where W =
[Wi|---|[W,] € R and N; € R represents the noise. The matrix W encodes the graphical
structure, meaning there is an edge X; — X if and only if W, ; # 0. Starting with a ground-truth
DAG B € {0,1}%*? obtained from one of the two graph models, either ER or SF, edge weights
were sampled independently from Unif[—2, —0.5] U [0.5, 2] to produce a weight matrix W € R4*4,
Using this matrix W, the data X = X'W + NN was sampled under the following three noise models:

* Gaussian noise: N; ~ N(0,1) forall i € [d],
* Exponential noise: V; ~ Exp(1) for all i € [d],
* Gumbel noise: N; ~ Gumbel(0, 1) for all ¢ € [d].

Using these noise models, random datasets X € R"*¢ were generated by independently sampling
the rows according to one of the models described above. Unless otherwise specified, we generate
the same number of samples n € {5000, 10000} for training and validation datasets, respectively.

The implementation details of the baseline methods are as follows:

* FGES (Meek, [1997; |Chickering, 2002) using the FGES algorithm found in the py-tetrad
package|Scheines et al.|(1998)) in https://github. com/cmu-phil/py-tetrad.

» PC (Spirtes & Glymour, 1991; Ramsey et al.,[2012) using the PC algorithm from the py-
tetrad package|Scheines et al.[(1998) in https://github.com/cmu-phil/py-tetrad.

* NOTEARS (Zheng et al.,[2018) using the authors’ publicly available Python code, which
can be found at https://github.com/xunzheng/notears, This method employs a
least squares score function, and we used their default set of hyperparameters without
modification. We used the default choice of A = 0.1 as in authors’ code.

* GOLEM (Ng et al) [2020) using the authors’ Python code, available at
https://github.com/ignavierng/golem, along with their PyTorch version at
https://github.com/huawei-noah/trustworthyAI/blob/master/gcastle/
castle/algorithms/gradient/notears/torch/golem_utils/golem_model.py.
We adopted the default hyperparameter settings, specifically Ay = 0.02 and A2 = 5.
Additional details of GOLEM are listed in|[Ng et al.| (2020)(Appendix F).

* NOCURL (Yu et al., 2021) using the authors’ publicly available code at https://github,
com/fishmoon1234/DAG-NoCurl. We used the default choice of hyperparameters.

» DAGMA (Bello et al.,|[2022) using the authors’ Python code, which is available at https:
//github.com/kevinsbello/dagma. We used the default choice of hyperparameters.
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Figure 6: Structure recovery performance under Gaussian noise with non-equal variances (NV)
across varying noise ratios (r € {5, 10, 15}). Rows correspond to different random graph types, and
columns represent increasing noise ratios. Metrics reported include (from left to right): Structural
Hamming Distance (SHD, lower is better), Precision, F1 score, and Recall (or TPR) (all higher is
better). Each method’s mean performance is shown, with standard error indicated by shaded regions
around the curves.

Thresholding. Following the approach taken in previous studies, including the baseline methods
(Zheng et al., 2018;|Ng et al., |2020; |Yu et al., 2021} Bello et al., 2022), for all the methods, we apply
a final thresholding step of 0.3 to effectively reduce the number of false discoveries.

D Supplementary Experiments Results

D.1 Structure Recovery Performance

In addition to the results presented in the main paper (Section[5.2), we include extended evaluations
on ER6 graphs under Gaussian noise with non-equal variances (NV). As illustrated in Figure [6]
1DAG consistently achieves the best performance in most metrics, including the Structural Hamming
distance (SHD), precision, and F1 score, for all noise levels and graph sizes. In particular, while
1DAG slightly trails FGES in recall (or TPR) for graphs with d > 50, FGES exhibits a significantly
worse SHD, precision, and F1 score in those regimes, suggesting that it produces denser graphs with
more false positives. This reinforces that x’ DAG not only maintains structural accuracy, but also
avoids overfitting, particularly in complex, high-noise environments. These results highlight the
robustness of our approach across graph densities and noise heterogeneity.

We present a comparative analysis of structure recovery and runtime performance under Gaussian
noise with equal variances across two random graph types: ER2 and ER3. Figure [7] illustrates
Structural Hamming Distance (SHD) and runtime (in seconds) across varying node sizes d €
{25, 50,100, 500}. Compared methods include constraint-based (PC), score-based (FGES), and
gradient-based approaches (NOTEARS, GOLEM, NOCURL, DAGMA, and ' DAG). As the number
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constraint-based (PC), score-based (FGES) and gradient-based approaches (NOTEARS, GOLEM,
NOCURL, DAGMA and )DAG) on ER2 and ER3 Gaussian-EV random graphs. Lower SHD
indicates better structural accuracy; lower runtime indicates greater efficiency.
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of nodes increases, PC and FGES exhibit a marked rise in SHD, indicating limited scalability in
structural accuracy. NOTEARS and GOLEM, while competitive on small scales, incur significantly
higher runtime as d grows, making them less practical for large graphs. In contrast, 1’ DAG maintains
a low SHD and a consistently competitive runtime, demonstrating both scalability and robustness in
high-dimensional settings.

To evaluate structure recovery under more challenging conditions, we include additional results
on large-scale ER2 and ER3 graphs (d € {400, 500,800, 1000}) with Gaussian noise exhibiting
non-equal variances (NV) across varying noise ratios. As shown in Figure[8] ¥'DAG consistently
achieves the best or near-best performance across most metrics, demonstrating robustness even at a
large scale.
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Figure 9: Runtime comparison of 1y DAG, GOLEM, NOCURL, and DAGMA on ER2, SF2 and
ERG6 graphs with d € {500, 1000, 3000, 5000, 10000}. The noise distribution is Gaussian with equal
variances. 1DAG scales efficiently to 10,000 nodes, while the baselines exhibit sharp runtime
increases or fail to complete within the 36-hour time budget. Notably, GOLEM, NOCURL, and
DAGMA fail to converge or exceed the time limit in multiple settings, especially for ER6. All
non-converging runs were excluded from the figures.

D.2 Scalability Comparison

We provide complementary scalability results to those reported in the main paper (Section [5.3).
1)DAG scales efficiently to graphs with up to d = 10,000 nodes, as shown in Figure[9} In sparse
settings such as ER2 and SF2, it converges within a few hours even for the largest graphs. In contrast,
the runtime of GOLEM, NOCURL, and DAGMA increases sharply with graph size. On ER2 graphs,
both GOLEM and NOCURL exceed the 36-hour runtime limit for d > 3000, while DAGMA fails to
complete within the time budget for d > 5000.

We also observe frequent convergence failures among baselines. For instance, NOCURL fails to
converge on SF2 graphs with Gaussian-EV noise when d = 500, and entirely fails on ER6. Both
GOLEM and DAGMA exhibit non-convergence in at least one of the three random seeds on ERG6.
All such failed runs are excluded from reported statistics. In contrast, 1) DAG converges in all runs
and maintains competitive runtime performance even at large scales, highlighting both its robustness
and practical efficiency.

We present results across combinations of the number of vertices d €
{10, 50, 100, 500, 1000, 3000, 5000, 10000}, graph types € {ER, SF}, graph densities k € {2,4,6},
and noise types (Gaussian, Exponential, and Gumbel). Figures are grouped by noise type and graph
size, with subplots showing results for ¢y DAG, GOLEM, and DAGMA.

ER graph types: Figures[I0|and[T1]report results on ER2 graphs; Figures [I2] and [I3]on ER4 graphs;
and Figure T4 on ER6 graphs.

SF graph types: Figures[13]and [T6]report results on SF2 graphs; Figures[17]and [I8|on SF4 graphs;
and Figure [19|on SF6 graphs.
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We report the decrease in functional value over both (i) elapsed time and (ii) number of gradient
evaluations, the latter serving as a proxy for computational effort.

Figure[11b]highlights that DAGMA requires substantially more gradient computations compared to
both ¢ DAG and GOLEM, further emphasizing the efficiency of our approach.

D.3 Small to Moderate Number of Nodes

Our experiments demonstrate that while number of nodes is small, d < 100, GOLEM is more stable
than DAGMA, and y)DAG method is the most stable. While DAGMA shows impressive speed for
smaller node sets, the number of iterations required is still higher than both GOLEM and our method.
Across all scenarios, ¥’ DAG consistently demonstrates faster convergence compared to the other
approaches, requiring fewer iterations to reach the desired solution.

D.4 Large Number of Nodes

For graphs with a large number of nodes d € {5000, 10000}, we were unable to run neither of the
baselines, and consequently, Figureincludes only one algorithm. GOLEM was not feasible due to
its computation time exceeding 350 hours. DAGMA was impossible as its runs led to kernel crashes.
In all cases, we utilized a training set of 5,000 samples and a validation set of 10,000 samples.

D.5 Denser Graphs

For a thorough comparison, in Figures[14]and [T9] we compare graph structures ER6 and SF6 under
the Gaussian noise type. Plots indicate that while DAGMA exhibits a fast runtime when the number
of nodes is small, d < 100, it requires more iterations to achieve convergence. Algorithm ¢y DAG
consistently outperforms GOLEM and DAGMA in both training time and a number of stochastic
gradient computations, and the difference is more pronounced for a larger number of nodes and
denser graphs.
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(c) d = 100 vertices

Figure 10: Linear SEM methods on ER2 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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Figure 11: Linear SEM methods on ER2 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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Figure 12: Linear SEM methods on ER4 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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(c) d = 3000 vertices

Figure 13: Linear SEM methods on ER4 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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Figure 14: Linear SEM methods on graphs of type ER6 with the Gaussian noise distribution.
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Figure 15: Linear SEM methods on SF2 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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Figure 16: Linear SEM methods on SF2 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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Figure 17: Linear SEM methods on SF4 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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(b) d = 1000 vertices

Figure 18: Linear SEM methods on SF4 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).
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Figure 19: Linear SEM methods on graphs of type SF6 with the Gaussian noise distribution.
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Gaussian noise. Other linear SEM methods do not converge in less than 350 hours.
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E Weighted Projection

Inspired by the importance sampling, we considered adjustment of the projection method by weights.
Specifically, we considered the elements of the W to be weighted element-wisely by the second

. 2
directional derivatives of the objective function, L[i][7] = (W) Ex~p [[(W;X)]. As we do
not have access to the whole distribution D, we approximate it by the mean of already seen samples,

Ll () Zzka LS (il (14)

Weights (T4) are identical for whole columns; hence, they impose storing only one vector. Updating
them requires a few element-wise vector operations.
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Figure 22: ¢yDAG method with weighted projection for graph types ER4 and Gaussian noise.

Figures [21] and 22| show that this weighting can lead to an improved convergence (slightly faster
convergence to a slightly lower functional value) without imposing any extra gradient computation.
However, we noticed that the improvement over runtime is not consistent across different experiments;
hence, for simplicity, we deferred this to the appendix.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Sections [} [3] [A]and D]
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Limiation paragraph in Section [6]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: See Section[Al
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Section[3 and
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: See footnote at Section [5] (https://anonymous.4open.science/r/
psiDAG-8F42)

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section[3] and
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Section[3] and
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).
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10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read and respected the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on the efficient solving of a causal inference problem. We
do not anticipate any direct societal impacts that require specific consideration.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See Section Appendix [C]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See Section[3 and
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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