© ® N O o A~ W N =

24

34

1DAG: Projected Stochastic Approximation Iteration
for Linear DAG Structure Learning

Anonymous Author(s)
Affiliation
Address
email

Abstract

Learning the structure of Directed Acyclic Graphs (DAGs) presents a significant
challenge due to the vast combinatorial search space of possible graphs, which
scales exponentially with the number of nodes. Recent advancements have rede-
fined this problem as a continuous optimization task by incorporating differentiable
acyclicity constraints. These methods commonly rely on algebraic characteriza-
tions of DAGs, such as matrix exponentials, to enable the use of gradient-based
optimization techniques. Despite these innovations, existing methods often face
optimization difficulties due to the highly non-convex nature of DAG constraints
and the per-iteration computational complexity. In this work, we present a novel
framework for learning DAGs, employing a Stochastic Approximation approach
integrated with Stochastic Gradient Descent (SGD)-based optimization techniques.
Our framework introduces new projection methods tailored to efficiently enforce
DAG constraints, ensuring that the algorithm converges to a feasible local minimum.
With its low iteration complexity, the proposed method is well-suited for handling
large-scale problems with improved computational efficiency. We demonstrate the
effectiveness and scalability of our framework through comprehensive experiments,
which confirm its superior performance across various settings.

1 Introduction

Learning graphical structures from data using Directed Acyclic Graphs (DAGs) is a fundamental
challenge in machine learning (Koller & Friedman), 2009 |Peters et al., [2016} |Arjovsky et al., 2019;
Sauer & Geiger, 2021). This task has a wide range of practical applications across fields such as
economics, genome research (Zhang et al., 2013} Stephens & Balding, 2009)), social sciences (Morgan
& Winship, [2015)), biology (Sachs et al.| |2005a), and causal inference (Pearl, 2009; Spirtes et al.,
2000). Learning the graphical structure is essential because the resulting models can often be given
causal interpretations or transformed into representations with causal significance, such as Markov
equivalence classes. When graphical models cannot be interpreted causally (Pearl, |2009; Spirtes
et al.| 2000), they can still offer a flexible representation for decomposing the joint distribution.

Structure learning methods are typically categorized into two approaches: score-based algorithms
searching for a DAG minimizing a particular loss function and constraint-based algorithms relying
on conditional independence tests. Constraint-based methods, such as the PC algorithm (Spirtes &
Glymour, [1991) and FCI (Spirtes et al., 1995} [Colombo et al., 2012), use conditional independence
tests to recover the Markov equivalence class under the assumption of faithfulness. Other approaches,
like those described in Margaritis & Thrun|(1999) and|T'samardinos et al.[(2003), employ local Markov
boundary search. On the other hand, score-based methods frame the problem as an optimization of a
specific scoring function, with typical choices including BGe (Kuipers et al.,2014), BIC (Chickering
& Heckerman, [1997), BDe(u) (Heckerman et al.,[1995)), and MDL (Bouckaert, |1993)). Given the vast

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

55
56

57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73

74
75
76

True DAG 0 wDAG (EV) R GOLEM (EV) o WwDAG (NV) o GOLEM (NV)

10-

20- = 20- = 20- L] 20- " 20- (]

0 10 20 0 10 20 0 10 20 0 10 20 0 10 20

Figure 1: Visual comparison of the learned weighted adjacency matrices on a 25-node ER2 graph
under Gaussian noise with equal variances (EV) and non-equal variances (NV, with noise ratio » = 5).
For both methods ¥’ DAG and GOLEM the L, distance in the EV setting is 2.6. In the NV setting,
1)DAG maintains an L, distance of 2.6, while GOLEM’s L, distance increases to 10.7, highlighting
the robustness and generalization ability of 1y DAG across varying noise conditions.

search space of potential graphs, many score-based methods employ local heuristics, such as Greedy
Equivalence Search (GES) (Chickering| [2002), to efficiently navigate this complexity.

Recently, Zheng et al.|(2018)) introduced a smooth formulation for enforcing acyclicity, transforming
the structure learning problem from its inherently discrete nature into a continuous, non-convex
optimization task. This formulation allows for the use of gradient-based optimization techniques,
enabling various extensions and adaptations to various domains, including nonlinear models (Yu
et al.,[2019; |Ng et al.,|2022b; [Kalainathan et al., [2022), interventional datasets (Brouillard et al.| |2020;
Faria et al.| 2022), unobserved confounders (Bhattacharya et al., 2021 Bellot & Van der Schaar,
2021), incomplete datasets (Gao et al., 2022a; Wang et al., 2020)), time series analysis (Sun et al.,
20215 [Pamfil et al., [2020), multi-task learning (Chen et al., 2021, multi-domain settings (Zeng
et al.,2021), federated learning (Ng & Zhang] [2022;|Gao et al., |2023), and representation learning
(Yang et al., 2021). With the growing interest in continuous structure learning methods (Vowels
et al.| [2022)), a variety of theoretical and empirical studies have emerged. For instance, Ng et al.
(2020) investigated the optimality conditions and convergence properties of continuously constrained
approaches such as|Zheng et al.|(2018)). In the bivariate case, Deng et al.|(2023b) demonstrated that a
suitable optimization strategy converges to the global minimum of the least squares objective. [Zhang
et al.[(2022)) and Bello et al.| (2022) then identified potential gradient vanishing issues with existing
DAG constraints (Zheng et al.||2018)) and proposed adjustments to overcome these challenges.

Contributions. In this work, we focus on the graphical models represented as Directed Acyclic
Graphs (DAGs). Our main contributions can be summarized as follows:

1. Problem reformulation: We introduce a new reformulation (9) of the discrete optimization
problem for finding DAG as a stochastic optimization problem, and we discuss its properties in
detail in Section[3.1] We demonstrate that the solution of this reformulated problem recovers the
true DAG (Section [3.1).

2. Novel algorithm: Leveraging insights from stochastic optimization, we present a new framework
(Algorithm for DAG learning (Section [4)) and present a simple yet effective algorithm ¥y DAG
(Algorithm [2)) within the framework.

3. Experimental comparison: In Section[5] we demonstrate that the method 1/ DAG scales very
well with graph size, handling up to 10000 nodes. At that scale, the primary limitation is not
computation complexity but the memory required to store the DAG itself. As a baseline, we
compare yDAG with established DAG learning methods, including NOTEARS (Zheng et al.,
2018), GOLEM (Ng et al., 2020), NOCURL (Yu et al., 2021) and DAGMA (Bello et al., 2022).
We show a significant improvement in scalability, as baseline methods struggle with larger graphs.
Specifically, NOTEARS (Zheng et al., 2018), GOLEM (Ng et al.,[2020), NOCURL (Yu et al.,
2021) and DAGMA (Bello et al., 2022)) require more than 100 hours for graphs with over 3000
nodes, exceeding the allotted time.

2 Background

In this section, we introduce the necessary graph notation and formalize the linear Structural Equation
Model (SEM) framework used for learning Directed Acyclic Graphs (DAGs). For a detailed discussion
of related methods and further literature, please refer to Appendix [A]

7

78

79
80
81
82

83

84

85
86

87

88

89

90
91
92

93
94

95
96

97
98
99
100
101

102

103
104

105
106
107
108

109
110
111

2.1 Graph Notation

LetG = (V, E,w) represent a weighted directed graph, where V' denotes the set of vertices with

cardinality d = |V|, E € 2V*V is the set of edges, and w : V x V — R\ {0} assigns weights to
the edges. The adjacency matrix A(G) : R%*¢ is defined such that [A(G)];; = 1if (4,7) € E and
0 otherwise. Similarly, the weighted adjacency matrix W (G) is defined by [W(G)];; = w(i, j) if
(i,7) € E and 0 otherwise.

€

When the weight function w is binary, we simplify the notation to G = (V, E). Similarly, when the

graph G is clear from context, we shorthand the notation to A = A(G)and W = W(G).

We denote the space of DAGs as ID. Since we will be utilizing topological sorting of DAG&E], we also
denote the space of vertex permutations II.

2.2 Linear DAG and SEM

A Directed Acyclic Graph (DAG) model, defined on a set of n random vectors X € R™*4 where

de .
x (X1,...,X,)and X; € R? consists of two components:

1. ADAG G = (V, E), which encodes a set of conditional independence relationships among the
variables.

2. The joint distribution P(X) with density p(x), which is Markov with respect to the DAG G and
factors as p(z) = Hle (x5 | Tpag (i), where PAg(i) = {j € V : X; — X; € E} represents
the set of parents of X; in G.

This work focuses on the linear DAG model, which can be equivalently represented by a set of linear
Structural Equation Models (SEMs). In matrix notation, the linear DAG model can be expressed as

X =XW + N, (1

where W = [W,|---|[W,] is a weighted adjacency matrix, and N def (N1, ..., N,) is a matrix
where each N; € R< represents a noise vector with independent components. The structure of graph
G is determined by the non-zero coefficients in W specifically X; — X; € E if and only if the
corresponding coefficient in W for X is non-zero. The classical objective function is based on the
least squares loss applied to the linear DAG model,

de
(W X) 2 X - XWJ3. b))

3 Stochastic Approximation for DAGs

Our framework is built on a reformulation of the objective function as a stochastic optimization
problem, aiming to minimize the stochastic function F'(w),

miny, ez { F(w) < Ee [f(w,)]} 3

where ¢ € = is a random variable that follows the distribution =. This formulation is common in
stochastic optimization where computing the exact expectation is infeasible, but the values of f(w, &)
and its stochastic gradients g(w, £) can be computed. Linear and logistic regressions are classical
examples of such problems.

To address this problem, two main approaches exist: Stochastic Approximation (SA) and Sample
Average Approximation (SAA). The SAA approach involves sampling a fixed number n of random

variables or data points &; and then minimizing their average F'(w):

min {F(w) def iznzf(uh&)} . 4)
i=1

weRd

'Topologial sorting of a graph G et (V, E, w) refers to vertex ordering V1, Va, . . ., Vg such that E contains
no edges of the form V; — V}, where ¢ < j. Importantly, every DAG has at least one topological sorting.

112
113
114
115
116
117
118

119

120

121

122
123
124

125

126

127
128
129

130
131
132
133

Algorithm 1 ¢)DAG framework

1: Requires: Initial model W € R%*?, such that diag(W) = 0.

2: fork=0,1,2...,K —1do

3 WY = 4 (W) (WP ¢ rixdy
4 (W) = p(W) (WY e Dy
50 Wiy = AW) {Wii1 € D C Rixd)
6: end for

7. Output: Wg.

Now, the problem (4)) becomes deterministic and can be solved using various optimization methods,
such as gradient descent. However, the main drawback of this approach is that the solution of (@) @*
is not necessarily equal to the solution of the original problem (3. Even with a perfect solution of
@), there will still be a gap ||w* — w*|| = d, and F(w*) — F* = §F between approximate and true
solution. These gaps are dependent on the sample size n.

Stochastic Approximation (SA) minimizes the true function F'(w) by utilizing the stochastic gradient
g(w, £). Below, we provide the formal definition of a stochastic gradient.

Assumption 1. For all w € R?, we assume that stochastic gradients g(w, £) € R? satisfy

E[g(w,§) | w] = VF(w), Q)
E [|lg(w,&) = VF(w)|]* | w] < of. (6)

We use these stochastic gradients in SGD-type methods:

w1 = wy — heg(we, &), @)

where h; is a step-size schedule. SA originated with the pioneering paper by Robbins & Monro|(1951)).
For convex and L-smooth function F'(w), [Polyak (1990); [Polyak & Juditsky| (1992); Nemirovski
et al.|(2009); Nemirovski & Yudin| (1983) developed significant improvements to SA method in the
form of longer step-sizes with iterate averaging, and obtained the convergence guarantee

E[F(wr) — F(z*)] < O (i/g + LlTRQ) .

VT T2
matching the worst-case lower bounds. The key advantage of SA is that it provides convergence
guarantees for the original problem (3). Additionally, methods effective for the SA approach tend to
perform well for the SAA approach as well.

Lan| (2012) developed an optimal method with a guaranteed convergence rate O (M + L R*),

3.1 Stochastic Reformulation

Using the perspective of Stochastic Approximation, we can rewrite the linear DAG (1)) as
r=X,=[1-W]]7'N, ®)

where W* is a true DAG that corresponds to the full distribution, and our goal is to find DAG W
that is close to W*. If we assume that x = X is a random vector sampled from a distribution D, we
can express the objective function as an expectation,

. . def 1 . T 112
min E,p [Z(W,x) < Le - Wz } 9)

For z from (8) we can calculate [z — W'z|| = [|[(I—- W)z|| = [T - W) [I- W*T]fl Nl
which implies that the minimizer of @) recovers the true DAG. Conversely, this is not the case for
methods such as|Zheng et al.|(2018)), Ng et al.|(2020), and Bello et al.|(2022)), which are based on

SAA approaches with losses (2)), (L1, (12), (13).

134

135
136
137
138
139

140
141

142
143
144
145
146

147
148

149

150
151
152
153
154

155
156

157
158

159
160
161

162
163
164

165
166

167
168

Algorithm 2 ¢)DAG

1: Requires: initial model W € R4¥4 numbers or iterations 7y, To.

2: fork=0,1,2...,K —1do

3 W/ = sGD(Wy) {71 iterations over R?*4}
4 (W m0) = Algorithm 3] (W)

5 W1 =SGD,, (Wy) {7 iterations preserving ordering 7y, }
6: end for

7: Output: W g

4 Scalable Optimization Framework for DAG Learning

In this section, we present our proposed scalable optimization framework for DAG learning. We
begin by showing that using a fixed vertex ordering can lead to suboptimal solutions, as demonstrated
in Section d.1] Motivated by this, we develop a three-stage framework that alternates between
unconstrained optimization, projection onto the DAG space, and constrained optimization guided by
topological ordering.

Instead of strictly enforcing DAG constraints throughout the entire iteration process, we propose a
novel, scalable optimization framework that consists of three main steps:

1. Running an optimization algorithm .A; without any DAG constraints, only forcing the diagonal
to be zero (diag(Wy) = 0), A; : R9*4 — RIxd,

2. Finding a DAG that is close to the current iterate using a projection ¢ : R¥*? — (I, IT), which
also returns its topological sorting 7.

3. Running the optimization algorithm .45 while preserving the vertex order, As : (D;II) — D.

This design enables efficient and accurate structure learning while avoiding the computational burden
of enforcing DAG constraints at every iteration.

4.1 Optimization for the fixed vertex ordering

Let us clarify how to optimize while preserving the order of the vertices in step 3 of the framework.
Given a DAG G, we can construct its topological ordering, denoted as ord(G). In this ordering,
for every edge, the start vertex appears earlier in the sequence than the end vertex. In general, this
ordering is not unique. In the space of DAGs with d vertices D, there are d! possible topological
orderings.

Once we have a topological ordering of the DAG, we can construct a larger DAG, G, by performing the
transitive closure of G. This new DAG G contains all the edges of the original DAG, and additionally,

it includes an edge between vertices V; and V; if there exists the path from V; to Vj in G. Thus, Q is
an expanded version of §.

Now, the question arises: is it possible to construct an even larger DAG that contains both G and
G ? The answer is yes! We call this graph the Full DAG, denoted by Q~, which is constructed via full
transitive closur In G, there is an edge from vertex V; to vertex V; if 4 < j is in topological order
ord(G). This makes C; the maximal DAG that includes G. Note that for every topological sort, there

is a corresponding full DAG. So, there are a total of d! different full DAGs in the space of DAGs with
d vertices D.

We are now ready to discuss the optimization part. Let us formulate the following optimization
problem
: RN | T2
Wit Eoup [(W- Asz) = 5z — (W-A) T2|*], (10)
where (-) denotes elementwise matrix multiplication. In this formulation, A acts as a mask, specifying
coordinates that do not require gradient computation. The problem (I0) is a quadratic convex

’Informally, for set of edges F, the transitive closure £V is the smallest set that includes edges (a,b)
whenever there is a path from a to b within E. Note that £ is the smallest superset of E that satisfies
(a,c) € ET whenever (a,b) € ET,(b,c) € ET.

169
170

171

172
173

174
175
176
177

178

179
180
181
182
183
184

185
186
187
188
189
190
191
192
193

194

195

196
197
198
199

201
202
203
204

Algorithm 3 Projection ¢(W) computing the “closest” vertex ordering (recursive form)

Requires: Model W € R%*4, (optional) weights L € R%*? with default value L = 11 7.
fork=1,...,ddo

Set 7, = || (W o L) [k][-]||?

Set ¢y = || (W o L) [][K]|*
end for

Setic = argmingey; gy Ck

Set i, = argmingcgy gy Tk

if T, <= Cj, then

o Output: [(W(ic, i.), L(ic,ic)),]

10: else

t: Output: [ic, (W (ic,ic), L(ic,ic))]

12: end if

{By A(,) we denote the submatrix A[1,...,4— 1,4+ 1,...,d][1,...,j—1,7+1,...,d]}

PRINRLRN

stochastic optimization problem, which can be efficiently solved using stochastic gradient descent
(SGD)-type methods. These methods guarantee convergence to the global minimum, with a rate of

o1R | LiR?
O (7 + 7).
Assume that G* is the true DAG with a weighted adjacency matrix W*, which is the solution we aim
to find. Next, we can have the true ordering ord(G*) and the true full DAG G* with its adjacency

matrix A(G*). The optimization problem (9)), with the solution W*, can be addressed by solving
the optimization problem (I0) with A = A(G*). This result indicates that if we know the true
topological ordering ord(G*), then we can recover the true DAG W* with high accuracy. From a
discrete optimization perspective, this approach significantly reduces the space of constraints from

9d%=d 1o g,
102

To illustrate the specificity of the minimizer of the ~ Random order
3 . orrect oraer

proposed problem, Figure 2] demonstrates that min-

imizing () over a fixed random vertex ordering does 10t — —

not approach the true solution of (9). The "Correct
order" curve demonstrates the convergence of (10)
when the true ordering ord(G*) is known.

Note that for a fixed vertex ordering and fixed ad-
jacency matrix A, the objective (I0) becomes sepa-
rable, enabling parallel computation for large-scale
problems. In this work, we solved the minimization 10724 ‘ ‘ ‘ ‘ :
problem (T0) for the number of nodes up to d = 10*, ° 20 40Epoch60 o 100
at which point the limiting factor was the memory

to store W € R%*<, Through parallelization and Figure 2: Minimizing (©) using SGD over a

efficient memory management, it is possible to solve fixed topological ordering on ER4 with d =
even larger problems. 100 and Gaussian noise.

100,

fixk) — f(x)

10*1 4

4.2 Methodology

We now introduce the method 1)DAG, which implements the framework outlined in Algorithm[1]

For simplicity, we select algorithm A; as 7y steps of Stochastic Gradient Descent (SGD). Similarly,
As consists of 75 steps SGD, where gradients are projected onto the space spanned by DAG’s
topological sorting, thus preserving the vertex order. It is important to reiterate that SGD is guaranteed
to converge to the neighborhood of the solution. In the implementation, we employed an advanced
version of SGD, Universal Stochastic Gradient Method from Rodomanov et al.| (2024).

The implementation of the projection method is simple as well. We compute a “closest” topological
sorting and remove all edges not permitted by this ordering. The topological sorting is computed by a
heuristic that calculates norms of all rows and columns to find the lowest value v;. The corresponding
vertex ¢ is then assigned to the ordering based on the following rule:

205
206

207
208

210

211
212
213
214
215
216
217

218

219
220
221
222
223
224

225
226
227
228
229

231
232
233
234

r = 5(NV) r = 10(NV) r=15(NV) r = 5(NV) r=10(NV) r=15(NV)
1.0

Precision

€43

m
100 3

0.4{"

Structural Hamming Distance(SHD)

25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100 25 50 75 100

Number of Nodes (d) Number of Nodes (d)
PC FGES — —=-— GOLEM ~ —+-— NOCURL ~ —+- DAGMA —=- YDAG PC FGES ~ —=- GOLEM —+— NOCURL =~ DAGMA - YDAG
(a) SHD (b) Precision

Figure 3: Structure recovery performance under Gaussian noise with non-equal variances (NV)
across varying noise ratios (r € {5, 10, 15}). Rows correspond to different random graph types, and
columns represent increasing noise ratios. Metrics include Structural Hamming Distance (SHD)
and Precision (1). We report the mean values, and standard error is indicated by shaded regions.

* If v; was the column norm, ¢ is assigned to the beginning of the ordering.
o If v; was the row norm, 7 is assigned to the end of the ordering.

This step reduces the number of vertices, and the remaining vertices are topologically sorted using a
recursive call. We formalize this procedure in Algorithm 3] Note that this procedure can be efficiently
implemented without recursion and with the computation cost O(d?).

5 Experiments

We experimentally compare our method, zZJDAC-ﬂ with several baselines including PC (Ramsey et al.,
2012), FGES (Meek, [1997; (Chickering, [2002), NOTEARS (Zheng et al., 2018), GOLEM (Ng et al.,
2020), NOCURL (Yu et al., 2021) and DAGMA (Bello et al.| [2022). As it is established that DAGMA
Bello et al.[(2022) is an improvement over NOTEARS [Zheng et al.| (2018)), we use mostly the former
in our experiments. To ensure a fair comparison, we avoid extensive hyperparameter tuning across
all baseline methods. Specifically, we apply the same thresholding procedure as used in|Zheng et al.
(2018),Ng et al.|(2020), Yu et al.| (2021}, and Bello et al.[(2022)) across all scenarios.

5.1 Synthetic Data Generation

We generate ground truth DAGs with d nodes and an average of k x d edges, where k € {2,3,4,6}
is a sparsity parameter. The graph structure is based on either the Erd6s-Rényi (ER) or the Scale-Free
(SF) models. Together with the sparsity level, we denote the graphs as ERk or SFk, respectively.
Each edge is assigned a random weight uniformly sampled from the interval [—2, —0.5] U [0.5, 2]
following the standard practice used in previous work (Zheng et al., 2018; Ng et al., 20205 |Yu et al.,
2021} Bello et al.,[2022) to ensure consistency across methods.

Following the linear Structural Equation Model (SEM), we generate the observed data X € R™*¢
using X = N(I - W)~!, where N consists of n independent and identically distributed (i.i.d.) noise
samples drawn from Gaussian, exponential, or Gumbel distributions. We evaluate both equal variance
(EV) and non-equal variance (NV) Gaussian noise settings. In the EV case, the noise for all variables
is scaled by a constant factor of 1.0. In the NV setting, we set the variances of two randomly selected
noise variables to be 1 and r € {5, 10, 15}, respectively, and the variances of remaining variables are
sampled uniformly from [1,r]. This setup enables evaluation of robustness under noise heterogeneity.
For further details, we refer the reader toNg et al.|(2024). A visual comparison under both EV and
NV (with r = 5) is shown in Figure[l] highlighting the robustness of 1/ DAG to non-uniform noise
levels. A more detailed description can be found in the Appendix [C]

3Implementation of the proposed algorithm is available at https://anonymous.4open.science/r/
psiDAG-8F42. We use the Universal Stochastic Gradient Method (Rodomanov et al) [2024) as the inner
optimizer.

https://anonymous.4open.science/r/psiDAG-8F42
https://anonymous.4open.science/r/psiDAG-8F42

235

237
238
239
240
241
242
243
244
245
246
247
248

249
250
251
252
253
254
255
256
257

259

260

261
262
263
264

266

267

269
270

5.2 Structure Recovery

We evaluate the structure learning capabilities of our
method, as shown in Figure [3] using synthetic data gen-
erated from the ER2 and ER3 graphs with varying node
counts d € {10, 25,50, 100}. For brevity, we report only
the results for Structural Hamming Distance (SHD) and
precision across different noise ratios r € {5,10,15} in
the non-equal variance (N'V) Gaussian setting. The com-
plete results for additional metrics, including the F1 score
and the recall, are given in the Appendix [D.T] Lower SHD
and higher precision, F1 score, and recall values indicate
better structure recovery. We compare against several rep-
resentative baselines, including PC, FGES, NOCURL,
GOLEM, and DAGMA.

Consistent with prior work, all methods perform well in
terms of SHD when the number of nodes d and the noise
ratio r are small. However, the performance of FGES and
PC deteriorates rapidly, even for a moderate number of
nodes such as d = 50, with SHD increasing significantly.
In contrast, our method maintains low SHD across all
settings and consistently outperforms baselines as noise

a
I
[
S 200 }
3 P (5 SN S Jo]
0O 1509 | 1
[) R S
s | | QT
g 100 AT
© Al T
T 501 /. ‘},
2 %
2
s .
=} s
=] 0
) 5 1015 64 256 1024
Noise Ratio (r)
pc - GOLEM --a-- DAGMA
***** FGES -+~ NOCURL --o-- yDAG

Figure 4: Effect of noise ratio on SHD
for ER3 graphs with d = 100 in the
non-equal variance (NV) Gaussian set-
ting. Error bars denote standard devi-
ation over 3 random seeds. 1DAG re-
mains stable as r increases, while other
methods degrade and DAGMA fails to
converge for r > 15.

heterogeneity increases. Figure [shows that the SHD of

1DAG remains stable even as r increases from 5 to 1024, further emphasizing its stability and
robustness. Meanwhile, DAGMA fails to converge for > 15, limiting its applicability in high-noise
regimes.

5.3 Scalability Comparison

We assess the scalability of the proposed algorithm ,i)DAG, by comparing its runtime against
GOLEM, NOCURL, and DAGMA. All methods are run until the objective function converges close
to the solution, f(z)) — f(Z) < 0.1 - f(z). Figure[§|reports runtime comparisons for ER2 and ER4
graphs under Gaussian, Exponential, and Gumbel noise for graph sizes d € {10, 50, 100, 500, 1000}.
Due to space constraints, additional results on larger graphs (up to d = 10, 000) are presented in
Appendix D.2] where Figure 9] further highlights the efficiency of 1/DAG in high-dimensional settings.

Across all scenarios, Y DAG demonstrates consistently lower runtime compared to baselines, particu-
larly as graph size and density increase. While DAGMA is marginally faster than ¢)DAG on very
small and sparse graphs (d < 100), the gap closes quickly with larger graphs. For d > 100, 1»"DAG
consistently exhibits superior runtime performance across both sparse and dense graph types. On

g, Gaussian-EV Exponential Gumbel Gaussian-EV Exponential Gumbel
. 300 »
0.6
m 200 m
~ 04 0 o
D 02 N g 10 N
ol o v
2 00 2 o ==
‘g 20 ‘E 300
o s m Y 20 = m
€10 o £ o
= 0.5 B F w00 =
0.0 v =1 — & 0
25 50 75 100 25 50 75 100 25 50 75 100
Number of Nodes (d) Number of Nodes (d)
—=— GOLEM -+ NOCURL —+- DAGMA -~ yDAG —== GOLEM - NOCURL - DAGMA -+ YDAG
(a) Small Graph (b) Large Graph

Figure 5: Runtime (minutes) of GOLEM, NOCURL, DAGMA, and ¥DAG on ER2 and ER4 graphs
with increasing number of nodes d € {10, 50, 100, 500, 1000}. The columns correspond to different
noise distributions: Gaussian (left), exponential (middle), and Gumbel (right). Figure[5a]shows results
for small graphs (d < 100) and [5b] for large graphs (d > 100). 1’ DAG demonstrates significantly
better scalability as the number of nodes increases.

271
272

273
274
275
276
277
278
279

280

281
282

284
285
286
287
288
289

291
292

294
295
296
297
298

300

301

302
303

305
306
307
308

309
310
311
312

314
315
316

317

318

319

321

sparse graphs, it converges reliably within a few hours, even at d = 10, 000, whereas GOLEM and
NOCURL exceed a 36-hour runtime for d > 3000, and DAGMA does so for d > 5000.

Furthermore, we observe that several baselines fail to meet the convergence criterion even for smaller
graphs. For instance, NOCURL does not converge for ER4 graphs with Gaussian-EV noise when
d > 500, and it fails completely for Exponential and Gumbel noise when d > 100. In the ER6
graph, the three baselines GOLEM, NOCURL, and DAGMA do not converge in at least one of the
three random seeds. Non-converging runs are excluded from reported statistics. In contrast, 1’ DAG
converges in all runs and maintains competitive runtime performance even at large scale, underscoring
both its robustness and practical efficiency.

5.4 Real-world Experiment

We further evaluate 1)DAG on a widely used real-world dataset, the causal protein signaling network,
from Sachs et al.| (2005b) and compare it with NOTEARS (Zheng et al.,2018), GOLEM (Ng et al.,
2020), NOCURL (Yu et al., 2021), and DAGMA (Bello et al., [2022)). This dataset captures the
expression levels of proteins and phospholipids in human cells under various experimental conditions.
It has been extensively used in the literature on causal discovery due to its well-established ground
truth and biological relevance. The dataset consists of n = 853 observational samples and d = 11
variables, with a ground truth DAG containing 17 edges. Despite its small size, it remains a
challenging benchmark for causal structure learning algorithms (Zheng et al.,|2018};|Ng et al.| 2020;
Gao et al., [2021). We follow the common evaluation setup and apply a threshold of 0.3 across all
methods for a fair comparison.

As shown in Table [1} ¥'DAG achieves
superior performance across all met-
rics: lower Structural Hamming Distance
(SHD), higher True quitive Rate (TPR), SHD] TPR{ FPR|
and lower False Positive Rate (FPR). A
more detailed description can be found NOTEARS (Zheng etal.2018) 15 0.29 0.26

Table 1: Performance of top methods on the protein
signaling dataset (Sachs et al., 2005b).

in Appendix [C] We omit the results for GOLEM (Ng et al.l [2020) 26 029 047
DAGMA as it fails to converge on this NOCURL (Yu et al.[[2021) 22035 045
dataset: its solution W diverges from the ~ ¥DAG (Alg[) 14 041 0.18

feasible domain in the very first iteration.

6 Conclusion

We introduce a novel framework for learning Directed Acyclic Graphs (DAGs) that addresses the
scalability and computational challenges of existing methods. Our approach leverages Stochastic
Approximation techniques in combination with Stochastic Gradient Descent (SGD)-based meth-
ods, allowing for efficient optimization even in high-dimensional settings. A key contribution of
our framework is the introduction of new projection techniques that effectively enforce DAG con-
straints, ensuring that the learned structure adheres to the acyclicity requirement without the need for
computationally expensive penalties or constraints seen in prior works.

The proposed framework is theoretically grounded, with convergence guarantees to a feasible local
minimum. One of its main advantages is its low iteration complexity, making it highly suitable
for large-scale structure learning problems, where traditional methods often struggle with runtime
and memory limitations. Through extensive experiments, we show that our approach consistently
outperforms strong baselines including NOTEARS (Zheng et al., |2018), GOLEM (Ng et al., [2020),
NOCURL (Yu et al.|2021), and DAGMA (Bello et al.,[2022) in both runtime and structure recov-
ery accuracy. Notably, our method demonstrates robust performance in settings with high noise
heterogeneity and varying graph densities.

Limitations and Future Work. In this paper, we have focused on presenting a novel framework
for differentiable DAG learning, which integrates a stochastic approach to achieve computational
efficiency. While the current results are focused on linear SEMs for simplicity, extending the
proposed algorithm to handle nonlinear SEMs (Zheng et al., 2020) is a natural direction for future
work. Exploring variance reduction optimization methods is another promising path.

322

323
324

325

327
328
329

330
331

332

333
334
335

336

338
339
340

341
342
343

344
345
346

347
348
349

350
351

352
353

354
355

356
357

358
359

360
361

365

References

Arjovsky, M., Bottou, L., Gulrajani, 1., and Lopez-Paz, D. Invariant risk minimization. arXiv preprint
arXiv:1907.02893, 2019.

Barabasi, A.-L. and Albert, R. Emergence of scaling in random networks. Science, 286(5439):
509-512, 1999.

Bello, K., Aragam, B., and Ravikumar, P. DAGMA: Learning DAGs via M-matrices and a log-
determinant acyclicity characterization. Advances in Neural Information Processing Systems, 35:
8226-8239, 2022.

Bellot, A. and Van der Schaar, M. Deconfounded score method: Scoring DAGs with dense unobserved
confounding. arXiv preprint arXiv:2103.15106, 2021.

Bertsekas, D., Hager, W., and Mangasarian, O. Nonlinear programming. Athena Scientific, 1999.

Bhattacharya, R., Nagarajan, T., Malinsky, D., and Shpitser, I. Differentiable causal discovery under
unmeasured confounding. In International Conference on Artificial Intelligence and Statistics, pp.
2314-2322. PMLR, 2021.

Birgin, E., Castillo, R., and Martinez, J. Numerical comparison of augmented Lagrangian algorithms
for nonconvex problems. Computational Optimization and Applications, 31(1):31-55, 2005.

Bouckaert, R. Probabilistic network construction using the minimum description length principle. In
European Conference on Symbolic and Quantitative Approaches to Reasoning and Uncertainty,
pp. 41-48. Springer, 1993.

Brouillard, P.,, Lachapelle, S., Lacoste, A., Lacoste-Julien, S., and Drouin, A. Differentiable causal
discovery from interventional data. Advances in Neural Information Processing Systems, 33:
21865-21877, 2020.

Broyden, C. G. Quasi-Newton methods and their application to function minimisation. Mathematics
of Computation, 21:368-381, 1967. doi: 10.2307/2003239. URL http://www. jstor.org/
stable/2003239.

Chen, W., Drton, M., and Wang, Y. S. On causal discovery with an equal-variance assumption.
Biometrika, 106(4):973-980, September 2019. ISSN 1464-3510. doi: 10.1093/biomet/asz049.
URL http://dx.doi.org/10.1093/biomet/asz049.

Chen, X., Sun, H., Ellington, C., Xing, E., and Song, L. Multi-task learning of order-consistent causal
graphs. Advances in Neural Information Processing Systems, 34:11083-11095, 2021.

Chickering, D. Optimal structure identification with greedy search. Journal of Machine Learning
Research, 3(Nov):507-554, 2002.

Chickering, D. and Heckerman, D. Efficient approximations for the marginal likelihood of Bayesian
networks with hidden variables. Machine Learning, 29:181-212, 1997.

Colombo, D., Maathuis, M., Kalisch, M., and Richardson, T. Learning high-dimensional directed
acyclic graphs with latent and selection variables. The Annals of Statistics, pp. 294-321, 2012.

Deng, C., Bello, K., Aragam, B., and Ravikumar, P. Optimizing notears objectives via topological
swaps, 2023a. URL https://arxiv.org/abs/2305.17277.

Deng, C., Bello, K., Ravikumar, P., and Aragam, B. Global optimality in bivariate gradient-based
DAG learning. Advances in Neural Information Processing Systems, 36:17929—-17968, 2023b.

Faria, G., Martins, A., and Figueiredo, M. Differentiable causal discovery under latent interventions.
In Conference on Causal Learning and Reasoning, pp. 253-274. PMLR, 2022.

Gao, E., Ng, 1., Gong, M., Shen, L., Huang, W., Liu, T., Zhang, K., and Bondell, H. MissDAG:
Causal discovery in the presence of missing data with continuous additive noise models. Advances
in Neural Information Processing Systems, 35:5024-5038, 2022a.

10

http://www.jstor.org/stable/2003239
http://www.jstor.org/stable/2003239
http://www.jstor.org/stable/2003239
http://dx.doi.org/10.1093/biomet/asz049
https://arxiv.org/abs/2305.17277

367
368
369

371

372
373
374

375
376

377
378
379

380

382
383

384
385

386

388

389
390

391
392

393
394

395
396

397
398
399

401

402
403
404

405
406

407
408
409

410
411
412

Gao, E., Chen, J., Shen, L., Liu, T., Gong, M., and Bondell, H. FedDAG: Federated DAG structure
learning. Transactions on Machine Learning Research, 2023. ISSN 2835-8856. URL https:
//openreview.net/forum?id=MzWgBjZ6Lel

Gao, M., Tai, W. M., and Aragam, B. Optimal estimation of gaussian dag models, 2022b. URL
https://arxiv.org/abs/2201.10548.

Gao, Y., Shen, L., and Xia, S.-T. DAG-GAN: Causal structure learning with generative adversarial
nets. In ICASSP 2021-2021 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), pp. 3320-3324. 1IEEE, 2021.

Heckerman, D., Geiger, D., and Chickering, D. Learning Bayesian networks: The combination of
knowledge and statistical data. Machine Learning, 20(3):197-243, 1995.

Kalainathan, D., Goudet, O., Guyon, L., Lopez-Paz, D., and Sebag, M. Structural agnostic modeling:
Adbversarial learning of causal graphs. Journal of Machine Learning Research, 23(219):1-62,
2022.

Koller, D. and Friedman, N. Probabilistic graphical models: principles and techniques. MIT Press,
2009.

Kuipers, J., Moffa, G., and Heckerman, D. Addendum on the scoring of Gaussian directed acyclic
graphical models. The Annals of Statistics, 42(4):1689-1691, 2014.

Lam, W.-Y., Andrews, B., and Ramsey, J. Greedy relaxations of the sparsest permutation algorithm,
2022. URL https://arxiv.org/abs/2206.05421,

Lan, G. An optimal method for stochastic composite optimization. Mathematical Programming, 133:
365-397, 2012. ISSN 1436-4646. doi: 10.1007/s10107-010-0434-y. URL https://doi.org/
10.1007/s10107-010-0434-y.

Loh, P.-L. and Bithimann, P. High-dimensional learning of linear causal networks via inverse
covariance estimation. The Journal of Machine Learning Research, 15(1):3065-3105, 2014.

Margaritis, D. and Thrun, S. Bayesian network induction via local neighborhoods. Advances in
Neural Information Processing Systems, 12, 1999.

Meek, C. Graphical Models: Selecting causal and statistical models. PhD thesis, Carnegie Mellon
University, 1997.

Morgan, S. and Winship, C. Counterfactuals and causal inference. Cambridge University Press,
2015.

Nemirovski, A., Juditsky, A., Lan, G., and Shapiro, A. Robust stochastic approximation approach
to stochastic programming. STAM Journal on Optimization, 19:1574-1609, 2009. doi: 10.1137/
070704277. URL https://doi.org/10.1137/070704277.

Nemirovski, A. S. and Yudin, D. B. Problem Complexity and Method Efficiency in Optimization. A
Wiley-Interscience publication. Wiley, 1983.

Ng, I. and Zhang, K. Towards federated Bayesian network structure learning with continuous
optimization. In International Conference on Artificial Intelligence and Statistics, pp. 8095-8111.
PMLR, 2022.

Ng, I., Ghassami, A., and Zhang, K. On the role of sparsity and DAG constraints for learning linear
DAGs. Advances in Neural Information Processing Systems, 33:17943-17954, 2020.

Ng, L., Lachapelle, S., Ke, N., Lacoste-Julien, S., and Zhang, K. On the convergence of contin-
uous constrained optimization for structure learning. In International Conference on Artificial
Intelligence and Statistics, pp. 8176-8198. Pmlr, 2022a.

Ng, L., Zhu, S., Fang, Z., Li, H., Chen, Z., and Wang, J. Masked gradient-based causal structure
learning. In Proceedings of the 2022 SIAM International Conference on Data Mining (SDM), pp.
424-432. STAM, 2022b.

11

https://openreview.net/forum?id=MzWgBjZ6Le
https://openreview.net/forum?id=MzWgBjZ6Le
https://openreview.net/forum?id=MzWgBjZ6Le
https://arxiv.org/abs/2201.10548
https://arxiv.org/abs/2206.05421
https://doi.org/10.1007/s10107-010-0434-y
https://doi.org/10.1007/s10107-010-0434-y
https://doi.org/10.1007/s10107-010-0434-y
https://doi.org/10.1137/070704277

413
414

415
416
417

418

419
420

421
422
423

424
425

426
427
428

444
445

446
447

448
449

450
451
452

458

Ng, I., Huang, B., and Zhang, K. Structure learning with continuous optimization: A sober look and
beyond. In Causal Learning and Reasoning, pp. 71-105. PMLR, 2024.

Pamfil, R., Sriwattanaworachai, N., Desai, S., Pilgerstorfer, P., Georgatzis, K., Beaumont, P., and
Aragam, B. Dynotears: Structure learning from time-series data. In International Conference on
Artificial Intelligence and Statistics, pp. 1595-1605. Pmlr, 2020.

Pearl, J. Causality. Cambridge University Press, 2009.

Peters, J. and Bithlmann, P. Identifiability of Gaussian structural equation models with equal error
variances. Biometrika, 101(1):219-228, 2014.

Peters, J., Bithlmann, P., and Meinshausen, N. Causal inference by using invariant prediction:
identification and confidence intervals. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 78(5):947-1012, 2016.

Polyak, B. T. A new method of stochastic approximation type. Avtomatika i Telemekhanika, 51:
98-107, 1990.

Polyak, B. T. and Juditsky, A. B. Acceleration of stochastic approximation by averaging. SIAM
Journal on Control and Optimization, 30:838-855, 1992. doi: 10.1137/0330046. URL https:
//doi.org/10.1137/0330046.

Ramsey, J., Zhang, J., and Spirtes, P. L. Adjacency-faithfulness and conservative causal inference,
2012. URL https://arxiv.org/abs/1206.6843.

Raskutti, G. and Uhler, C. Learning directed acyclic graphs based on sparsest permutations, 2019.
URL https://arxiv.org/abs/1307.0366,

Robbins, H. and Monro, S. A stochastic approximation method. The Annals of Mathematical Statistics,
22:400-407, 1951. ISSN 0003-4851. URL http://www. jstor.org/stable/2236626.

Rodomanov, A., Kavis, A., Wu, Y., Antonakopoulos, K., and Cevher, V. Universal gradient methods
for stochastic convex optimization. In Forty-first International Conference on Machine Learning,
2024. URL https://openreview.net/forum?id=Wnhp34K5jR.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D., and Nolan, G. Causal protein-signaling networks
derived from multiparameter single-cell data. Science (New York, N.Y.), 308(5721):523—529,
April 2005a. ISSN 0036-8075. doi: 10.1126/science.1105809. URL https://doi.org/10!
1126/science.1105809.

Sachs, K., Perez, O., Pe’er, D., Lauffenburger, D., and Nolan, G. Causal protein-signaling networks
derived from multiparameter single-cell data. Science, 308(5721):523-529, 2005b.

Sauer, A. and Geiger, A. Counterfactual generative networks. arXiv preprint arXiv:2101.06046,
2021.

Scheines, R., Spirtes, P., Glymour, C., Meek, C., and Richardson, T. The tetrad project: Constraint
based aids to causal model specification. Multivariate Behavioral Research, 33(1):65-117, 1998.

Spirtes, P. and Glymour, C. An algorithm for fast recovery of sparse causal graphs. Social Science
Computer Review, 9(1):62-72, 1991.

Spirtes, P., Meek, C., and Richardson, T. Causal inference in the presence of latent variables
and selection bias. In Conference on Uncertainty in Artificial Intelligence, 1995. URL https:
//api.semanticscholar.org/CorpusID:11987717,

Spirtes, P., Glymour, C., Scheines, R., and Heckerman, D. Causation, prediction, and search. MIT
Press, 2000.

Squires, C., Amaniampong, J., and Uhler, C. Efficient permutation discovery in causal dags, 2020.
URL https://arxiv.org/abs/2011.03610,

Stephens, M. and Balding, D. Bayesian statistical methods for genetic association studies. Nature
Reviews Genetics, 10(10):681-690, 2009.

12

https://doi.org/10.1137/0330046
https://doi.org/10.1137/0330046
https://doi.org/10.1137/0330046
https://arxiv.org/abs/1206.6843
https://arxiv.org/abs/1307.0366
http://www.jstor.org/stable/2236626
https://openreview.net/forum?id=Wnhp34K5jR
https://doi.org/10.1126/science.1105809
https://doi.org/10.1126/science.1105809
https://doi.org/10.1126/science.1105809
https://api.semanticscholar.org/CorpusID:11987717
https://api.semanticscholar.org/CorpusID:11987717
https://api.semanticscholar.org/CorpusID:11987717
https://arxiv.org/abs/2011.03610

459
460

461
462

463
464

465
466

467
468

470
471

472
473

474
475

476
477

478
479

481
482
483

484
485

487

Sun, X., Schulte, O., Liu, G., and Poupart, P. NTS-NOTEARS: Learning nonparametric DBNS with
prior knowledge. arXiv preprint arXiv:2109.04286, 2021.

Tsamardinos, I., Aliferis, C., Statnikov, A., and Statnikov, E. Algorithms for large scale Markov
blanket discovery. In FLAIRS, volume 2, pp. 376-81, 2003.

Vowels, M., Camgoz, N., and Bowden, R. D’ya like DAGs? A survey on structure learning and
causal discovery. ACM Computing Surveys, 55(4):1-36, 2022.

Wang, Y., Menkovski, V., Wang, H., Du, X., and Pechenizkiy, M. Causal discovery from incomplete
data: A deep learning approach. arXiv preprint arXiv:2001.05343, 2020.

Wei, D., Gao, T., and Yu, Y. Dags with no fears: A closer look at continuous optimization for learning
bayesian networks, 2020. URL https://arxiv.org/abs/2010.09133.

Yang, M., Liu, F,, Chen, Z., Shen, X., Hao, J., and Wang, J. CausalVAE: Disentangled representation
learning via neural structural causal models. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9593-9602, 2021.

Yu, Y., Chen, J., Gao, T., and Yu, M. DAG-GNN: DAG structure learning with graph neural networks.
In International Conference on Machine Learning, pp. 7154-7163. PMLR, 2019.

Yu, Y., Gao, T., Yin, N., and Ji, Q. Dags with no curl: An efficient dag structure learning approach,
2021. URL https://arxiv.org/abs/2106.07197.

Zeng, Y., Shimizu, S., Cai, R., Xie, F., Yamamoto, M., and Hao, Z. Causal discovery with multi-
domain LiINGAM for latent factors. In Causal Analysis Workshop Series, pp. 1-4. PMLR, 2021.

Zhang, B., Gaiteri, C., Bodea, L.-G., Wang, Z., McElwee, J., Podtelezhnikov, A., Zhang, C., Xie, T.,
Tran, L., Dobrin, R., et al. Integrated systems approach identifies genetic nodes and networks in
late-onset Alzheimer’s disease. Cell, 153(3):707-720, 2013.

Zhang, Z., Ng, 1., Gong, D., Liu, Y., Abbasnejad, E., Gong, M., Zhang, K., and Shi, J. Q. Truncated
matrix power iteration for differentiable DAG learning. Advances in Neural Information Processing
Systems, 35:18390-18402, 2022.

Zheng, X., Aragam, B., Ravikumar, P., and Xing, E. DAGs with no tears: Continuous optimization
for structure learning. Advances in Neural Information Processing Systems, 31, 2018.

Zheng, X., Dan, C., Aragam, B., Ravikumar, P., and Xing, E. Learning sparse nonparametric dags.
In International Conference on Artificial Intelligence and Statistics, pp. 3414-3425. Pmlr, 2020.

13

https://arxiv.org/abs/2010.09133
https://arxiv.org/abs/2106.07197

s Contents

49 [I_Introduction| 1
490 B o d 2
491 2.1 Graph Notation| e

492 22 Tinear DAGand SEMI| 3

493 (3 Stochastic Approximation for DAGs|
494 [B.1_Stochastic Reformulationl

495 [4 Scalable Optimization Framework for DAG Learning 5
496 4.1 Optimization for the fixed vertex ordering|

497 4.2 Methodology| e 6
7
499 5.1 Synthetic Data Generation| 7
500 B2 Structure Recovery| 8
501 5.3 Scalability Comparison| L 8
502 5.4 Real-world Experiment| 9
503 16 Conclusion 9
so4 [A_Related Workl 14
sos [B_Theorefical Results 16
so6 |C Detailed Experiment Description| 17
507 [D_ Supplemenfary Experiments Results| 19
508 ID.1 Structure Recovery Performance] 19
509 ID.2 Scalability Comparison| 21
510 ID.3 Small to Moderate Number of Nodes|. 22
511 ID.4 Large Numberof Nodes| 22
512 ID.5 Denser Graphs| e 22
513 [E Weighted Projection| 34

s A Related Work

515 A significant body of research on DAG learning revolves around non-convex continuous optimization
s16 frameworks, such as NOTEARS (Zheng et al., 2018), GOLEM (Ng et al.} 2020), NOCURL
517 2021), and DAGMA 2022). These approaches address the DAG constraint using either
s1¢ smooth approximations or novel penalty functions, but they are often computationally expensive and
519 lack scalability.

14

520

521
522

524
525
526
527
528

529
530

531
532
533
534

535
536

538
539
540
541
542

543
544
545
546
547
548
549
550

552
553
554
555
556
557
558

559
560
561
562
563

564
565

Zheng et al.|(2018)) addressed the constrained optimization problem

. de 1 .
Win (W: X)norears &= 51X = XWIE + A[Wl; - subjectto A(W) =0, (1)
where /(W; X) represents the least squares objective and h(W) := tr(eW®W) — d enforces the
DAG constraint. Additionally, an ¢; regularization term A\||[W||1, where || - ||; is the element-wise ¢1-
norm and)\ is a hyperparameter incorporated into the objective function. This formulation addresses
the linear case with equal noise variances, as discussed in|Loh & Bithimann| (2014) and |Peters &
Biithlmann! (2014)). This constrained optimization problem is solved using the augmented Lagrangian
method (Bertsekas et al.,[1999), followed by thresholding the obtained edge weights. However, since
this approach computes the acyclicity function via the matrix exponential, each iteration incurs a
computational complexity of O(d?), which significantly limits the scalability of the method.

Ng et al.[(2020) introduced the GOLEM method, which enhances the scoring function by incorporat-
ing an additional log-determinant term, log | det(I — W)| to align with the Gaussian log-likelihood,
. def d

Lin (W X)corew e 5 108 [X = XWI[3. ~ log | det (I~ W) |+ 1| [W]1 +Ah(W), (12)
where \; and Ao serve as regularization hyperparameters within the objective function. Although the
newly added log-determinant term is zero when the current model W is a DAG, this score function
does not provide an exact characterization of acyclicity. Specifically, the condition log | det(I —
‘W)| = 0 does not imply that W represents a DAG.

Bello et al.| (2022) introduces a novel acyclicity characterization for DAGs using a log-determinant
function,
def 1

W?IégxdE(W;X)DAGMA = %HXfXWH%Jr)\lHWHl subject o hiy, (W) =0, (13)

where hfdet(W)déf — log det(sI — W o W) 4 dlog s, and it is both exact and differentiable.

In practice, the augmented Lagrangian method enforces the hard DAG constraint by increasing the
penalty coefficient toward infinity, which requires careful parameter fine-tuning and can lead to
numerical difficulties and ill-conditioning (Birgin et al.,|2005; Ng et al.l2022al). As a result, existing
methods face challenges in several aspects of optimization, including careful selection of constraints,
high computational complexity, and scalability issues.

Yu et al.[(2021) introduce a novel formulation for DAG structure learning by expressing the weighted
adjacency matrix as the Hadamard product of a skew-symmetric matrix and the gradient of a potential
function on graph nodes. This representation avoids explicit acyclicity constraints and enables a
continuous, constraint-free optimization framework. However, although NOCURL avoids direct
constraints through this parameterization and Hodge decomposition, it still relies on repeated L-BFGS
(Broyden|, [1967) optimization steps , which can become computationally expensive for large graphs.
In contrast, 1Y DAG avoids both acyclicity constraints and expensive optimization procedures, allowing
for more efficient scaling in high-dimensional settings.

Other works, such as |Chen et al.|(2019), proposed variance ordering procedures for estimating
topological orderings under equal error variances. Although these methods naturally extend to
high-dimensional settings, their reliance on controlling the maximum in-degree of the graph becomes
computationally intensive as graph density increases. In contrast, 1y DAG avoids these assumptions
and demonstrates scalability on graphs with up to 10,000 nodes. |Gao et al|(2022b)) focused on
theoretical guarantees for Gaussian DAG models, obtaining minimax optimal bounds for structural
recovery. Although their work offers valuable insights into sample efficiency, it does not address the
computational challenges of large-scale DAG learning.

Wei et al.[(2020) examined optimization challenges in NOTEARS by analyzing the KKT conditions
and proposed the KKTS algorithm as a post-processing enhancement. While this method improves
the structural Hamming distance (SHD), its reliance on specific constraints and post-hoc refinements
limits its applicability. In contrast, 1’ DAG reformulates DAG learning as a stochastic optimization
problem, seamlessly integrating gradient-based methods for large-scale graphs.

Additionally, Deng et al.|(2023a)) introduced a bilevel algorithm that iteratively refines topological
orders through node swaps, achieving local minima or KKT points. However, this approach is

15

566
567
568
569
570
571
572

573
574
575
576
577
578

579
580
581
582
583

584

585

586
587

588
589
590

591

593
594

595

596
597
598
599

600
601
602

603

604

605
606

607
608
609

610

constrained by a specific function h(B) = Z?Il ¢; Tr(B?), which is computationally expensive and

limits its scalability to applications that involve larger graphs. Consequently, their experiments are
restricted to synthetic datasets with graphs containing up to d = 100 nodes. Moreover, the algorithm
initializes the W matrix using linear regression coefficients in the least squares case, resulting in
a different starting point for optimization, which makes direct comparisons with other methods
challenging. Our method addresses these limitations by generalizing the DAG learning framework
and demonstrating superior scalability and performance on both synthetic and real datasets.

Compared to permutation-based methods such as SP (Raskutti & Uhler, [2019), Efficient Permutation
Discovery (Squires et al.,[2020), and GRaSP (Lam et al.,[2022), '"DAG avoids exhaustive or greedy
searches over permutations. Instead, it leverages a novel projection technique that efficiently infers
causal orders without the computational overhead associated with permutation-based algorithms. This
design choice allows ¥DAG to maintain accuracy while offering superior scalability and efficiency in
learning DAG structures.

While many of these works focus on specific assumptions, penalty terms, or theoretical guarantees,
our framework prioritizes scalability, flexibility, and applicability. To overcome these challenges, we
propose a novel framework for enforcing the acyclicity constraint, utilizing a low-cost projection
method. This approach significantly reduces iteration complexity and eliminates the need for
expensive hyperparameter tuning.

B Theoretical Results

In this section, we present some theoretical properties of the DAG set and analyze the convergence of
the proposed method.

Lemma 2. The DAG set D is a conic set. Specifically, forany W € D and a > 0, we have o« W € D.
Additionally, the DAG set D includes the entire line, meaning that for any W € D and o € R,
aW € D.

Proof. We begin by observing that 0 € I, as a graph with no edges is trivially a DAG. Next, consider
any W € D and « € R\ {0}. Scaling W by « does not alter the structure of the graph; it only
changes the edge weights. Since the graph remains acyclic, W & . Thus, the DAG set D satisfies
the stated properties. O

Now, let us move to the subsets of DAG, which are based on a topological ordering 7.

Definition 3. A topological ordering 7 of a directed graph is a linear ordering of its vertices such
that, for every directed edge (u, v) from vertex u to vertex v, u comes before v in the ordering. We
call Ord(W) a set of all possible topological orderings for DAG W and ord(W) is one of the
orderings.

For the graphs with d vertices, there are exactly d! distinct topological orderings.
Every topological ordering 7 corresponds to subspace of all DAGs which can have this topological
ordering, we call it w-subspace DAG.

Definition 4. A 7-subspace D, is a set of all DAGs W such that m € Ord(W).

Let us prove that m-subspace D is a linear subspace.

Lemma 5. D is a linear subspace, meaning for any W1 € D, Wy € D, « € R, € R,
W =aW; + ﬁWg e D,.

Proof. We should simply note that any non-zero value in W corresponds to an edge between vertices
u and v such that v is after v in the ordering 7. The same holds for W. Hence, any non-zero value
in W holds the ordering 7. O

Next, we highlight that the DAG set D is a union of 7-subspaces for all possible orderings .
Lemma 6. The DAG set D is a union of all w-subspaces.

D =U;D;.

16

611
612

613

614

616

617

618
619
620

621

622
623
624

625
626
627

628

629
630
631

632
633

634
635
636

637
638
639

641

642
643
644
645
646

Proof. For any DAG W € D there exists a topological ordering 7, hence W € D. € U;D,. On the
other side, all elements of U, D, are DAGs by definition and belongs to D.

O

Now, we move to the proposed method.

Theorem 7. For an Li-smooth function F(W) = E,.p [[(W;)] restricted in a domain of radius
R, ||z —y|| < R, Vx,y € dom F, consider Ay in the Algorithm|l|be chosen as Universal Stochastic
Gradient Method (Rodomanov et al [2024). Running As for T SGD-type steps accessing o1-
stochastic gradients (Theorem|l)) in the T-subspace D converges to a minimum of problem (9) with
additional subspace constraints at the rate

: ,)
E |F(Wp)— ag\;geggn F(W) S(’)(\};+L¥{)

ord(W)=m

Proof. A direct consequence of the convergence guarantees of the Universal Stochastic Gradient
Method, Theorem 4.2 of[Rodomanov et al.|(2024). O

Theorem 8. For an Ly-smooth function F(W) = E,.p [[(W; 2)] restricted in a domain of radius R,
|z —yll <R, Vx,y € dom F, Algorithm[2|with Universal Stochastic Gradient Method (Rodomanov,
et all}[2024) as A; and As with converges to a local minimum of problem ().

Proof. We denote a subspace minimum of problem (9) as W = argmin wep,, F(W). There
ord(W)=m

are two cases. The first case, W+ is a local minimum of a general problem [©). Then, by Theorem

7, the method converges to the local minimum. The second case, the subspace minimum W7

is not a local minimum as there exists an orthogonal subspace D5 LD, such that W;‘rk € Dx

and F(W3) > F(WZ). By steps from AFFL the method decreases towards F(W%). To fully
guarantee the convergences, one can memorize the visited subspaces and forbid projecting on them.

Then, D, | is not visited subspace. O

C Detailed Experiment Description

Computing. Our experiments were carried out on a machine equipped with 80 CPUs and one
NVIDIA Quadro RTX A6000 48GB GPU. Each experiment was allotted a maximum wall time of 36
hours as in DAGMA [Bello et al.| (2022).

Graph Models. In our experimental simulations, we generate graphs using two established random
graph models:

» Erdés-Rényi (ER) graphs: These graphs are constructed by independently adding edges
between nodes with a uniform probability. We denote these graphs as ERy, where kd
represents the expected number of edges.

* Scale-Free (SF) graphs: These graphs follow the preferential attachment process as de-
scribed in |Barabasi & Albert (1999). We use the notation SF;, to indicate a scale-free
graph with expected kd edges and an attachment exponent of 5 = 1, consistent with the
preferential attachment process. Since we focus on directed graphs, this model corresponds
to Price’s model, a traditional framework used to model the growth of citation networks.

It is important to note that ER graphs are inherently undirected. To transform them into Directed
Acyclic Graphs (DAGs), we generate a random permutation of the vertex labels from 1 to d, then
orient the edges according to this ordering. For SF graphs, edges are directed as new nodes are added,
ensuring that the resulting graph is a DAG. After generating the ground-truth DAG, we simulate the
structural equation model (SEM) for linear cases, conducting experiments accordingly.

17

647

648
649
650

651
652
653

654
655

656

657
658

659
660

661

662
663
664
665
666
667
668

669

670

671

672
673
674

676
677

678
679

680

682
683

685
686
687
688
689

690
691

692
693

Metrics. The performance of each algorithm is assessed using the following four key metrics:

* Structural Hamming Distance (SHD): A widely used metric in structure learning that
quantifies the number of edge modifications (additions, deletions, and reversals) required to
transform the estimated graph into the true graph.

* True Positive Rate (TPR): This metric calculates the proportion of correctly identified
edges relative to the total number of edges in the ground-truth DAG. It is also known as
recall.

* Precision: is the proportion of all the model’s positive classifications that are actually
positive.

* F1 Score: is the harmonic mean of precision and recall.

 False Positive Rate (FPR): This measures the proportion of incorrectly identified edges
relative to the total number of absent edges in the ground-truth DAG.

* Runtime: The time taken by each algorithm to complete its execution provides a direct
measure of the algorithm’s computational efficiency.

* Stochastic gradient computations: Number of gradient computed.

Linear SEM. In the linear case, the functions are directly parameterized by the weighted adjacency
matrix W. Specifically, the system of equations is given by X; = XW,; + N,, where W =
[Wi|---|[W,] € R and N; € R represents the noise. The matrix W encodes the graphical
structure, meaning there is an edge X; — X if and only if W, ; # 0. Starting with a ground-truth
DAG B € {0,1}%*? obtained from one of the two graph models, either ER or SF, edge weights
were sampled independently from Unif[—2, —0.5] U [0.5, 2] to produce a weight matrix W € R4*4,
Using this matrix W, the data X = X'W + NN was sampled under the following three noise models:

* Gaussian noise: N; ~ N(0,1) forall i € [d],
* Exponential noise: V; ~ Exp(1) for all i € [d],
* Gumbel noise: N; ~ Gumbel(0, 1) for all ¢ € [d].

Using these noise models, random datasets X € R"*¢ were generated by independently sampling
the rows according to one of the models described above. Unless otherwise specified, we generate
the same number of samples n € {5000, 10000} for training and validation datasets, respectively.

The implementation details of the baseline methods are as follows:

* FGES (Meek, [1997; |Chickering, 2002) using the FGES algorithm found in the py-tetrad
package|Scheines et al.|(1998)) in https://github. com/cmu-phil/py-tetrad.

» PC (Spirtes & Glymour, 1991; Ramsey et al.,[2012) using the PC algorithm from the py-
tetrad package|Scheines et al.[(1998) in https://github.com/cmu-phil/py-tetrad.

* NOTEARS (Zheng et al.,[2018) using the authors’ publicly available Python code, which
can be found at https://github.com/xunzheng/notears, This method employs a
least squares score function, and we used their default set of hyperparameters without
modification. We used the default choice of A = 0.1 as in authors’ code.

* GOLEM (Ng et al) [2020) using the authors’ Python code, available at
https://github.com/ignavierng/golem, along with their PyTorch version at
https://github.com/huawei-noah/trustworthyAI/blob/master/gcastle/
castle/algorithms/gradient/notears/torch/golem_utils/golem_model.py.
We adopted the default hyperparameter settings, specifically Ay = 0.02 and A2 = 5.
Additional details of GOLEM are listed in|[Ng et al.| (2020)(Appendix F).

* NOCURL (Yu et al., 2021) using the authors’ publicly available code at https://github,
com/fishmoon1234/DAG-NoCurl. We used the default choice of hyperparameters.

» DAGMA (Bello et al.,|[2022) using the authors’ Python code, which is available at https:
//github.com/kevinsbello/dagma. We used the default choice of hyperparameters.

18

https://github.com/cmu-phil/py-tetrad
https://github.com/cmu-phil/py-tetrad
https://github.com/xunzheng/notears
https://github.com/ignavierng/golem
https://github.com/huawei-noah/trustworthyAI/blob/master/gcastle/castle/algorithms/gradient/notears/torch/golem_utils/golem_model.py
https://github.com/huawei-noah/trustworthyAI/blob/master/gcastle/castle/algorithms/gradient/notears/torch/golem_utils/golem_model.py
https://github.com/huawei-noah/trustworthyAI/blob/master/gcastle/castle/algorithms/gradient/notears/torch/golem_utils/golem_model.py
https://github.com/fishmoon1234/DAG-NoCurl
https://github.com/fishmoon1234/DAG-NoCurl
https://github.com/fishmoon1234/DAG-NoCurl
https://github.com/kevinsbello/dagma
https://github.com/kevinsbello/dagma
https://github.com/kevinsbello/dagma

694
695
696

697

698

699
700
701
702
703
704
705
706
707

708
709
710
71
712

125

200

1000
800
600
400
200

Structural Hamming Distance(SHD)

r = 5(NV) r=10(NV)

r = 15(NV)

= " —

943

e
75 100 25 50
Number of Nodes (d)

75 100

,,,,,,,,,,,,,,,,

NOCURL

(a) SHD

r=10(NV)

r=15(NV)

F1 Score

75 100

25 50 75 100 25 50
Number of Nodes (d)

Precision

5(NV) r=10(NV)

r = 15(NV)

25 50 75 100 25 50 75 100

Number of Nodes (d)

GOLEM

,,,,,,,,,,,,,,,,

(b) Precision

r = 10(NV)
1.0

NOCURL =

r=15(NV)

0.91 g

0.8

. 10§
0915
08

0.7

1.00

1.00] gaes.

0.75 0.75

0.50 0.50

0.25

943

0.25
50 100 50 100

Number of Nodes (d)

,,,,,,,,,,

NOCURL

GOLEM - NOCURL =~ DAGMA —=--

(c) F1 Score (d) Recall (TPR)

Figure 6: Structure recovery performance under Gaussian noise with non-equal variances (NV)
across varying noise ratios (r € {5, 10, 15}). Rows correspond to different random graph types, and
columns represent increasing noise ratios. Metrics reported include (from left to right): Structural
Hamming Distance (SHD, lower is better), Precision, F1 score, and Recall (or TPR) (all higher is
better). Each method’s mean performance is shown, with standard error indicated by shaded regions
around the curves.

Thresholding. Following the approach taken in previous studies, including the baseline methods
(Zheng et al., 2018;|Ng et al., |2020; |Yu et al., 2021} Bello et al., 2022), for all the methods, we apply
a final thresholding step of 0.3 to effectively reduce the number of false discoveries.

D Supplementary Experiments Results

D.1 Structure Recovery Performance

In addition to the results presented in the main paper (Section[5.2), we include extended evaluations
on ER6 graphs under Gaussian noise with non-equal variances (NV). As illustrated in Figure [6]
1DAG consistently achieves the best performance in most metrics, including the Structural Hamming
distance (SHD), precision, and F1 score, for all noise levels and graph sizes. In particular, while
1DAG slightly trails FGES in recall (or TPR) for graphs with d > 50, FGES exhibits a significantly
worse SHD, precision, and F1 score in those regimes, suggesting that it produces denser graphs with
more false positives. This reinforces that x’ DAG not only maintains structural accuracy, but also
avoids overfitting, particularly in complex, high-noise environments. These results highlight the
robustness of our approach across graph densities and noise heterogeneity.

We present a comparative analysis of structure recovery and runtime performance under Gaussian
noise with equal variances across two random graph types: ER2 and ER3. Figure [7] illustrates
Structural Hamming Distance (SHD) and runtime (in seconds) across varying node sizes d €
{25, 50,100, 500}. Compared methods include constraint-based (PC), score-based (FGES), and
gradient-based approaches (NOTEARS, GOLEM, NOCURL, DAGMA, and ' DAG). As the number

19

Runtime (s)

SHD
800 10000 1
600 7500 4
o
>4
w 400 5000 1
200 4 2500 1
— B I e
01 —— '] 04 3
40000 A
800 1
30000 4
600 -
@ 20000
w400 1
2001 10000
e)
01 - . . " — 01 - . . . ~
100 200 300 500 100 200 300 400 500
Number of Nodes (d) Number of Nodes (d)
PC —*— FGES —#— NOTEARS —#— GOLEM —— NOCURL —A— DAGMA —e— yDAG

Figure 7: Comparison of Structural Hamming Distance (SHD) and Runtime (in seconds) across
constraint-based (PC), score-based (FGES) and gradient-based approaches (NOTEARS, GOLEM,
NOCURL, DAGMA and)DAG) on ER2 and ER3 Gaussian-EV random graphs. Lower SHD
indicates better structural accuracy; lower runtime indicates greater efficiency.

r=5(NV)

2000

1000

r=10(NV)

r = 15(NV)

W

5(NV)

r = 10(NV)

SHD

2000

1000

Precision

A

€43

400 600

800

1000 400 600 800

Number of Nodes (d)

-=- GOLEM -+ NOCURL

(a) SHD
= 10(NV)

1000 400

—- YDAG

15(NV)

800 1000 400

600 800

1000 400

—=- GOLEM

600 800
Number of Nodes (d)

-+~ NOCURL

(b) Precision
o1 [=100W)

1000 400 600

-+~ DAGMA

r = 15(NV)

800 1000

—+- yDAG

F1 Score

0.8

S

400 600

800

1000 400 600 800

Number of Nodes (d)

-=- GOLEM --e- NOCURL

(c) F1 Score

1000 400

800 1000 500 750

e YDAG

0.6
1000 500 750

1000
Number of Nodes (d)

--=- GOLEM —+- NOCURL

(d) Recall (TPR)

500

-+~ DAGMA

750 1000

—e- YDAG

Figure 8: Structure recovery performance under Gaussian noise with non-equal variances (NV)
across varying noise ratios (r € {5,10,15}). Rows correspond to ER2 and ER3 graphs with
d € {400, 500, 800, 1000}, and columns represent increasing noise ratios. Metrics reported include
(from left to right): Structural Hamming Distance (SHD, lower is better), Precision, F1 score, and
Recall (or TPR) (all higher is better). Each method’s mean performance is shown, with standard error

indicated by shaded regions around the curves.

20

713
714
715
716
717

718
719
720
721
722

723

724
725
726
727
728
729

730
731
732

734
735

737
738
739

740
741

742
743

of nodes increases, PC and FGES exhibit a marked rise in SHD, indicating limited scalability in
structural accuracy. NOTEARS and GOLEM, while competitive on small scales, incur significantly
higher runtime as d grows, making them less practical for large graphs. In contrast, 1’ DAG maintains
a low SHD and a consistently competitive runtime, demonstrating both scalability and robustness in
high-dimensional settings.

To evaluate structure recovery under more challenging conditions, we include additional results
on large-scale ER2 and ER3 graphs (d € {400, 500,800, 1000}) with Gaussian noise exhibiting
non-equal variances (NV) across varying noise ratios. As shown in Figure[8] ¥'DAG consistently
achieves the best or near-best performance across most metrics, demonstrating robustness even at a
large scale.

ER2 SF2 ER6
A
8 ,'*
6 /| 30 »
7 6
—_
=]
24 20 A
= » b 4 »
0] [|
E2y 4/ S 10
[,"F," o/ y
/i o l,"l « / =
A 7)
0 ¥< ——————— -~ 0 {.. ——————— - ol ¥ =
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Number of Nodes (d)
fffff GOLEM --+-- NOCURL --+-- DAGMA —-<-- YDAG

Figure 9: Runtime comparison of 1y DAG, GOLEM, NOCURL, and DAGMA on ER2, SF2 and
ERG6 graphs with d € {500, 1000, 3000, 5000, 10000}. The noise distribution is Gaussian with equal
variances. 1DAG scales efficiently to 10,000 nodes, while the baselines exhibit sharp runtime
increases or fail to complete within the 36-hour time budget. Notably, GOLEM, NOCURL, and
DAGMA fail to converge or exceed the time limit in multiple settings, especially for ER6. All
non-converging runs were excluded from the figures.

D.2 Scalability Comparison

We provide complementary scalability results to those reported in the main paper (Section [5.3).
1)DAG scales efficiently to graphs with up to d = 10,000 nodes, as shown in Figure[9} In sparse
settings such as ER2 and SF2, it converges within a few hours even for the largest graphs. In contrast,
the runtime of GOLEM, NOCURL, and DAGMA increases sharply with graph size. On ER2 graphs,
both GOLEM and NOCURL exceed the 36-hour runtime limit for d > 3000, while DAGMA fails to
complete within the time budget for d > 5000.

We also observe frequent convergence failures among baselines. For instance, NOCURL fails to
converge on SF2 graphs with Gaussian-EV noise when d = 500, and entirely fails on ER6. Both
GOLEM and DAGMA exhibit non-convergence in at least one of the three random seeds on ERG6.
All such failed runs are excluded from reported statistics. In contrast, 1) DAG converges in all runs
and maintains competitive runtime performance even at large scales, highlighting both its robustness
and practical efficiency.

We present results across combinations of the number of vertices d €
{10, 50, 100, 500, 1000, 3000, 5000, 10000}, graph types € {ER, SF}, graph densities k € {2,4,6},
and noise types (Gaussian, Exponential, and Gumbel). Figures are grouped by noise type and graph
size, with subplots showing results for ¢y DAG, GOLEM, and DAGMA.

ER graph types: Figures[I0|and[T1]report results on ER2 graphs; Figures [I2] and [I3]on ER4 graphs;
and Figure T4 on ER6 graphs.

SF graph types: Figures[13]and [T6]report results on SF2 graphs; Figures[17]and [I8|on SF4 graphs;
and Figure [19|on SF6 graphs.

21

744
745

746
747

748

749

751
752
753

754

755
756
757
758

759

760
761
762
763
764
765

We report the decrease in functional value over both (i) elapsed time and (ii) number of gradient
evaluations, the latter serving as a proxy for computational effort.

Figure[11b]highlights that DAGMA requires substantially more gradient computations compared to
both ¢ DAG and GOLEM, further emphasizing the efficiency of our approach.

D.3 Small to Moderate Number of Nodes

Our experiments demonstrate that while number of nodes is small, d < 100, GOLEM is more stable
than DAGMA, and y)DAG method is the most stable. While DAGMA shows impressive speed for
smaller node sets, the number of iterations required is still higher than both GOLEM and our method.
Across all scenarios, ¥’ DAG consistently demonstrates faster convergence compared to the other
approaches, requiring fewer iterations to reach the desired solution.

D.4 Large Number of Nodes

For graphs with a large number of nodes d € {5000, 10000}, we were unable to run neither of the
baselines, and consequently, Figureincludes only one algorithm. GOLEM was not feasible due to
its computation time exceeding 350 hours. DAGMA was impossible as its runs led to kernel crashes.
In all cases, we utilized a training set of 5,000 samples and a validation set of 10,000 samples.

D.5 Denser Graphs

For a thorough comparison, in Figures[14]and [T9] we compare graph structures ER6 and SF6 under
the Gaussian noise type. Plots indicate that while DAGMA exhibits a fast runtime when the number
of nodes is small, d < 100, it requires more iterations to achieve convergence. Algorithm ¢y DAG
consistently outperforms GOLEM and DAGMA in both training time and a number of stochastic
gradient computations, and the difference is more pronounced for a larger number of nodes and
denser graphs.

22

2
g
2

o —vors
10° —— GOLEM
~— DAGMA ~—— DAGMA 107
10°

= = =

g g &

Lo 3 3

gw g . Epve
— wors
— Goten
 oaoun

i H 3

1072 1077 1072
0o 25 so 75 10 Bs Bo 1s w0 T3 3 3 3 & 3 7
runtime, s Runtime, s Runtime, s
- — vore — vore
— cotem — cotem
10° ~—— DAGMA 10° ~—— DAGMA
X X X
g g g
3107 3 3
= = 107* =107
1077 1077 4 1077
G5 oz s R %o oz oa R %o oz o4 o5 os 1o 12 1t
Stoch, radient camputtions 1e7 Stoch, radient computations 107 Stoch. gradient computations 107

(a) d = 10 vertices

— worG
1o — GoLem
— DAGMA 100
g B g
g B g
j)]
£ £ 100 s
— yore
— GoLem
— DacvA
100 107
o 1 H 3 3 3 o 1o 0 s
Runtime, s Runtime, s Runtime, s
— wore — yorG — wore
100 — GoLem — coLem — GoLem
— DAGMA — DAGMA — DAGMA
100 o
g g g
g g 5
j j]
3 3 3
& K K
100
100
| 100 h
000 025 050 075 100 135 150 175 200 000 025 050 075 100 135 150 175 200 00 oz 04 o6 08 1o 12 14
Stoch. gradient computations 1e7 Stoch. gradient computations 107 Stoch. gradient computations 1e7
— wore
— GoLem
— DAGMA
100
T T T
£ o o
— wors — yoac
— GoLEm — GoLEm
— DAGMA — DAGMA
100
00 25 50 75 160 135 150 175 200 00 25 50 75 100 135 150 175 200 S 3 To T) %
Rntime, s Runtime, s Runtime. s
— wore — yorG
— GoLem — Goem
— DAcMA — DAcmA
g B g
g B B
)) h
3 3 10
E 3 3
& . 3
| b
00 o 15 20 25 00 05 20 15 20 25 00 05 o s 20 25 30
Stoch. gradient computations 167 Stoch. gradient computations 167 Stoch. gradient computations 107

(c) d = 100 vertices

Figure 10: Linear SEM methods on ER2 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).

23

fix) = %)
flx) =)

— uDAG — yoAG
100 ul o
— GoLem — GoLem
— DAGMA — DAGMA
102
_ 100
B
]
&
100
— wDAG o |
— GOLEM 10

= oaoma
; I T T R T R TR : W w0 we we 1w
untme, untime, s Runtme,
) — e E— — e
10 ~—— GOLEM —— GOLEM —— GOLEM
 oacma oo — oacma
107 102
X X X
g g g
E g g
10!
100 10
oo 3 1o P 0 25 o0 0k ok 0 b 1 1o 1% 2w o P 0 5 B 25
Stoch,gradent compitations 10 Stoch.sradient computations e Stoch.gradient computations 167
— s — w0
— couem — couem
— oaoma — oxoma
107
. . .
g g €
i ‘ :
X X X
E E E
—— YDAG
10!
10+ | — couem
 oacma
10
¢ a0 w0 s 1w @0 1w 1o T W0 w0 ww oo w0 70w T Wo mo ww aw sw w0
i, Runime, = untime, s
— e
— couem
— oromn
= = =
g g g
]] 1102
X = £
E g E
o s P53 o 0% ok 07 b 1m ik 15 zho

Stoch. gradient computations 1e7 Stoch. gradient computations 1e7 Stoch. gradient computations 17

(b) d = 1000 vertices

— WDAG — uDAG — uDAG
—— DAGMA 100 —— DAGMA 108 —— DAGMA
102 102

0 10000 20000 30000 40000 0 5000 10000 15000 20000 25000 30000 35000 40000 10000 20000 30000 40000 5000
Runtime, s Runtime, s Runtime, s

flxe) = %)

flxe) = %)

flxe) = %)

2

—— YDAG — YDAG — yDAG
—— DAGMA 100 —— DAGMA 100 —— DAGMA

102

flxi) = fIR)
3
flxi) = fIR)
flxi) = f(R)

00 05 20 25 000 025 050 075 100 125 150 175 200 025 050 075 100 125 150 175 2

10 15
Stoch. gradient computations 107 Stoch. gradient computations 1e7 Stoch. gradient computations 1le7

8

(c) d = 3000 vertices

Figure 11: Linear SEM methods on ER2 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).

10t 10*
— yoAG
— GoLEM
— DAGMA
] T 100
X £
2 2
10°
— yDAG
— GOLEM
— DAGMA
107
00 05 10 15 20 25 30 35 40 000 025 050 075 100 125 150 175 200 0 1 2 3 a 5
Runtime, s Runtime, s Runtime, s
10* 100
— yDAG WoAG — yDAG
GOLEM ~—— GOLEM —— GOLEM
DAGMA ~——— DAGMA ~—— DAGMA
_ 100
= & &
g B B 100
L o100 '
= & 2
107
10 10
0o os 10 15 20 25 30 000 025 050 075 150 175 200 000 025 050 075 100 125 150 175 200
Stoh. gradient computations 1e7 Stoh. gradient computations 1e7 Stoh. gradient computations 1e7
10? 10?
IDAG —— YDAG —— YDAG
GOLEM —— GOLEM —— GOLEM
DAGMA ~—— DAGMA ~— DAGMA
_ 10
£ Zaot [
X] T 100
: 3 3
= s s
10°
10° 10°
o 20 40 60 80 100] To 20 B 50 0 20 o0 80 100
Runtime, s Runtime, s Runtime, s
107 107
— yDAG — yDAG — yDAG
GOLEM —— GOLEM —— GOLEM
DAGMA ~— DAGMA ~— DAGMA
10!
10*
g g B
1 T]
g 2 2
= g 2
10°
10°
10°
107t
0o o5 10 15 20 25 30 0o os 10 15 20 25 30 0o os 10 15 20 25 30
Stoh. gradient computations 167 Stoh. gradient computations 1e7 Stoh. gradient computations 167
— uDAG — yDAG
— GOLEM — GoLEmM
—— DAGMA 107 —— DAGMA
10?
T T T
g g 2
10 100
0 0 20 30 40 o 5 10 5 20 2 0 5 10 15 20 25 3
Runtime, s Runtime, s Runtime, s
102
WOAG — yDAG — yDAG
Gotem o — GOLEM 100 — GOLEM
DAGHA — DAGMA — DAGMA
=z [B
g &
T 10 n 2
3 3 3
ES 2 = 10
10t
10°
0o 05 1 25 o 00 o5 o 15 20 25 oo 05 10 15 20 25 30 35 40
Stoch. gradient computations 1e7 Stoch. gradient computations 167 Stoch. gradient computations 1e7

(c) d = 100 vertices

Figure 12: Linear SEM methods on ER4 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).

25

flxy) = fx)
I
£8%
o) = %)
3
fixi) = fix)
[T

— e
01| — cotem 100
10* ~—— DAGMA
R B 200 w0 w0 w0 T T SR T S
Runtime, Runtime, s funtime, s
— yorc — yorc — yorc
— Gotem — Goem — Goem
oo " oaowa " oaomn
107
® ® ®
g g g
i Tie Tie
s = &
10
O 75 0 o o5 10 15 20 25 a do o5 1 35 a0
Stoch gadient computations 1 Stoch radient computations 197 Stoch gadient computations 107

(a) d = 500 vertices

fix) = %)

5 s w0 10 200 250 3000 300 0 0 s 7 10 120 1500 10 2000 5 st o 10 200 0 000
Runtime, s runtime, s Runtime. s
) o ! o
10° —— GOLEM 10 —— GOLEM
" onomn " onown
= = =
g g g
: : :
3 < 3
g g g
.
- 10
G0 o5 1o 15 20 75 30 G0 o5 1o 15 20 75 30 G o5 1o 15 20 75 30
Stoch,aradient computations 1 Stoch,gradient computations 17 Stoch,gradient computations 197
— s e e
— oacun w e 10 — oaeun
10°
H H H
107
107 107

g

0 10000 20000 30000 40000 50000 60000 0 5000 10000 15000 20000 25000 30000 35000 40000 10000 20000 30000 40000 501
Runtime, s Runtime, s Runtime, s

—— YDAG — YDAG — yDAG
—— DAGMA 100 —— DAGMA 100 —— DAGMA

102

fixe) = %)
fixe) = %)
flxe) = %)

00 05 10 s 20 25 30 000 025 050 075 100 125 150 175 200 025 050 075 100 125 150 175 200
Stoch. gradient computations 107 Stoch. gradient computations 1e7 Stoch. gradient computations 1le7

8

(c) d = 3000 vertices

Figure 13: Linear SEM methods on ER4 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).

100 — woac
— GoLem
— Dacua
6x10°
&
)
Eaxao
3x10°
2x10°
000 025 050 075 100 125 150 175 200
Runtime, s
10" —— WDAG
— Gotem
— oaca
g
Lo
E
107"
00 os 25 30
Stoh. gradient computations 107
By
]
&
—— YDAG
— Gotem
— Dama
10t
o 00 200 300 a0 500 600

Runtime, s

) = %)

10 1 o
Stoch. gradient computations 107

(d) d = 500 vertices

) = %)

o) = (%)

o) = %)

20 3
Runtime, s

Stoh. gradient computations 1e7

(b) d = 50 vertices

0 500 1000 1500 2000 2500
Runtime, s
— yDAG
— GOLEM
—— DAGMA
00 [10 15 o 25 30
Stoch. gradient computations 167

(e) d = 1000 vertices

107
g
]
2
10t
— woac
— GoLem
— DA
G 3) i % % 3
Runtime, s
— woAs
— Gotem
102 ~— DAGMA
B
]
2
100
00 0 b 25 30
Stoch. gradient computations 107
— voAG
— DAGMA
B
]
g
0 10000 20000 30000 40000 50000 60000 70000
— woAG
— oacMa
B
]
00 o5 1o 15 30 35 4o
Stoch. gradient computations 107

(f) d = 3000 vertices

Figure 14: Linear SEM methods on graphs of type ER6 with the Gaussian noise distribution.

27

— y0AG — oA — oA
100 — GOLEM 100 — GoLEm — GoLem
— DAGMA — DAGMA — DAGMA
100
g g g
g = g
]]]
3 S0 =
5 ERY 2
107
1072 107
000 025 050 075 100 125 150 175 200 000 025 050 075 100 125 150 175 200 [1 2 3 3 5
Runtime, s Runtime, s Runtime, s
— woaG . — woaG — woaG
100 — GoLEM — GoLEmM — coLem
— DAGMA — DAGMA — DAGMA
100
g g1 g
E E g
]]]
2 & 2
102
107
107 1 10
00 o2 04 06 o8 1o 1z 14 00 02z 04 06 08 10 12 14 00 02 04 06 o8 10 12
Stoh. gradient computations 1e7 Stoh. gradient computations 167 Stoh. gradient computations 1e7

(a) d = 10 vertices

— WDAG
10! — GoLEM
—— DAGMA
E
0
3
£
10°
0 20 80 100 2 3
Runtime, s Runtime, s Runtime, s
— uDAG — uDAG
10!

—— DAGMA 10

6x10°

4x100

3x100

2x10° — GOLEM

flxi) = f(x)
\
.
g
2
flxi) = fix)
1
283
:
flxi) = fx)
I
os
g8
£

°

02 04 06 08 10 12 14 1 2 3 4 00 02 04 06 08 10 12 14
Stoh. gradient computations 1e7 Stoh. gradient computations 1e6 Stoh. gradient computations 1e7

(b) d = 50 vertices

— uDAG

— GoLEM
—— DAGMA

fixi) = fix)
fixid) = fix)
g
8%
ggs
2E5
w10
98t
552
52

00 25 50 75 100 125 150 175 200 0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
Runtime, s Runtime, s Runtime, s
—— YDAG —— UDAG — WDAG
— GoLem — GOLEM — GOLEM
—— DAGMA —— DAGMA —— DAGMA
10!
B 3 B
< = =
T T T
3 310 2
S 5 <
s = =100
00 02 4 06 12 14 00 02 04 06 12 14 0.0 05 10 15 20 2
Stoch. gradient computations 1e7 Stoch. gradient computations 1e7 Stoch. gradient computations 1e7

(c) d = 100 vertices

Figure 15: Linear SEM methods on SF2 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).

28

(c) d = 3000 vertices

— yoAG . — yDAG
— GOLEM — Gouem — GOLEM
— DAGMA
102 107
= 100 =
E B g
L ! L
g K 2
10t
10 10
0 100 200 300 400 500 600 700 800 0 500 1000 1500 2000 2500 3000 3500 0 1000 2000 3000 4000 5000 6000
Runtime, s Runtime, s Runtime, s
— yDAG — wDAG — DA
) — GoLEM — GoLEM — GoLem
10/ ~— DAGMA
107
10?
X X X
g g g
]] T
2 2 2
10t 10*
10"
0o 0 10 15 20 25 30 oo 0 1 25 30 0o os 10 15 20 2 30
Stoch. gradient computations 1e7 Stoh. gradient computations 167 Stoh. gradient computations 167
10°
— oAG — oA
— cotem — GOLEM
10?
5 g €
L 1102 L
3 3 3
2 S 2
10t
— uDAG
— GOLEM
—— DAGMA 100
10t
o 500 1000 1500 2000 2500 o 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 12000 14000 16000
Runtime, s Runtime, s Runtime, s
10°
— woAG — yoAG
— eowem — GoLEM
& &
= =102
T I
3 3
S g
10! 10
0o 0 ¥ 25 30 oo s 25 30 0o os ¥ 25 30
Stoch. gradient computations 167 Stoh. gradient computations 1e7 Stoh. gradient computations 1e7
10?
WAG — uDAG — uoAG
DAGHA — DAGMA — DAGMA
10° 10°
= E B
B E E
! L L
3 5 5
E 2 2
10?
107 10?
0 10000 20000 30000 40000 o 10000 20000 30000 40000 50000 0 10000 20000 30000 40000 50000 60000 70000
Runtime, s Runtime, s Runtime, s
10?
WOAG — yDAG — yDAG
DAGHA — DAGMA — DAGMA
10° 10°
=z E [
g g g
! L L
3 3 5
& 2 2
107
10? 10?
oo s o 15 20 2 oo o s 20 25 0o s 10 25 o
Stoch. gradient computations 1e7 Stoch. gradient computations 1e7 Stoch. gradient computations 167

Figure 16: Linear SEM methods on SF2 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).

29

— yDAG

— GOLEM
—— DAGMA
100 10°
3
&
0
S
2
107
107

a0 60 80 100 000 025 050 075 100 125 150 175 2.00 a
Runtime, s Runtime, s Runtime, s

— uDAG — uDAG — yDAG
— GoLEM — GOLEM ax10° — GOLEM
—— DAGMA —— DAGMA — DAGMA
10f 3x10°
10°
2x10°
107
14

00 02 04 06 08 10 12 00 02 04 06 08 10 12 14 00 02 04 06 08 10
Stoh. gradient computations 1e7 Stoh. gradient computations 1e7 Stoh. gradient computations 1e7

flx) = %)

flx) = %)
flx) = %)
) = fiR)

(a) d = 10 vertices

— yDAG
— GoLem
— DAGMA
10! "
= z 10 =
g g B
T T]
5 5 3
& g g
100 100
10°
0 20 0 60 80 100 3 10 20 3 40 5 o o 2 3) 5
Runtime, s Runtime, s Runtime, s
107 107
— woAG — woac

fx) =)

fixe) = fx)
I
°g
H
i
fixi) = fiX)
[
og
g8
it

00 05 10 s 20 25 30 000 025 050 075 100 125 150 175 2.00 00 05 10 15 20 25
Stoh. gradient computations 1e7 Stoh. gradient computations 17 Stoh. gradient computations 1e7

(b) d = 50 vertices

— wDAG — wDAG
— GoLEM — GOLEM
— DAGMA — DAGMA 107
102
T T T
2100 ES K
100 10t { — ¥DAG
— GOLEM
— DAGMA
0 0 20 30 40 oo 25 50 75 100 125 150 175 200 0 2 } 6 s o 12 1
Runtime, s Runtime, s Runtime, s
— wDAG — wDAG — DA
— GOLEM 0 — GOLEM 10 — GOLEM
— DAGMA — DaGMA — DaGMA
=5 g 5
g & &
T T T
10 = =
3 2 2
2 2 2
10t
100
0o 0’5 10 15 20 25 30 0o os 10 15 20 25 0o os 1 1 2 30
Stoch. gradient computations 167 Stoch. gradient computations 1e7 Stoch. gradient computations 167

(c) d = 100 vertices

Figure 17: Linear SEM methods on SF4 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).

30

e e e
— cowem — Gouem — Gouem
Eip E B
; ! 102 T 102
3 s £
2 E K
10! 10*
5 % w0 1o a0 20 5 200 w000 w00 2000 5 s w0 10 200 280 30w 300
Runtime, s Runtime, s Runtime, s
10°
— e — — e
— Gowem e — Gowew
5 10° & g
g B
; S 102
ES Z S
10t 10! 10t
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0 0.0 05 1. 1. . 25 3.0
Stoh. gradient computations 1le7 Stoh. gradient computations le7 Stoh. gradient computations le7
e — e — e
— Gowew — couem . — Gouew
10°
102
= = ®
g g g
3 Z]
ES ES 2
. 10
10*
T 20 st 70 w0 130 100 1750 2000 0 2000 40;0 eda0 aoo 1000 12000 14600 B W0 aom0 e g0 10000
Runtime, s Runtime, & auntime,
—— YDAG —— yDAG —— yDAG
—— GOLEM —— GOLEM 100 —— GOLEM
10®
102
: : :
10? 102
10t
0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 1.0 15 2.0 25 3.0 0.0 0.5 2.0 25 3.0
Stoh. gradient computations 1e7 Stoh. gradient computations 1e7 Stoh. gradient computations le7

(b) d = 1000 vertices

Figure 18: Linear SEM methods on SF4 graphs with different noise distributions: Gaussian (first),
exponential (second), Gumbel (third).

31

100

1) = 100

/

107

) = 100

¢

) = %)

|

7

0

i) - %)

— YDAG
— GOLEM
—— DAGMA

I

Runtime, s

— yDAG
— GOLEM
—— DAGMA

000 025 050 075 100 125 150 175 2.00
Stoh. gradient computations 1e7

(a) d = 10 vertices

— WDAG
— GoLEM

o 1000 2000 3000 4000
Runtime, s

— YDAG
— GoLEM

1 o
Stoh. gradient computations 107

(d) d = 500 vertices

sx10 — DAGMA

o) ()

3% 10!

o) = (%)

) = %)

) = %)

ax10!

— GoLem
— DAGMA
10t

— wDAG
— GoLEM

000 025 050 075 100 125 150 175 2,
Runtime, s

— yoAG

100
oo 05 10 15 20 25 30 35
Stoh. gradient computations 1e7
10°
— YDAG
— GOLEM
102
0 500 1000 1500 2000 2500 3000 3
Runtime, s
— wDAG

— GoLem
10°
10?

10 15 o
Stoch. gradient computations 167

(e) d = 1000 vertices

25 30

— wDAG

— GoLEM
107 —— DAGMA
E
T
E
10!
[5 20 2

10 15
Runtime, s

o) = 1)

Stoch. gradient computations 1e7

(c) d = 100 vertices

— WDAG
— GoLEM
100
T
E
102
0 10000 20000 30000 40000 50000 60000
Runtime, s
— yDAG
— GoLEM
g1’
T
102
00 05 10 15 30 35 40
Stoh. gradient computations 107

(f) d = 3000 vertices

Figure 19: Linear SEM methods on graphs of type SF6 with the Gaussian noise distribution.

32

—— yDAG —— yDAG
10° 4
10 4
= K 1024
| |
K K
= =
104
10? 10° -
1000 2000 3000 4000 5000 6000 7000 0 500 1000 1500 2000 2500 3000
Runtime, s Runtime, s
—— yDAG —— yDAG
10° 4
103 4
102 4
= 5
= =
| |
3 X 10+
= 102 4 =
1004
10t 1071 T T T T T 1
2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000 12000
Stoh. gradient computations Stoh. gradient computations
(a) ER2 (b) SF2
—— yDAG 10 4 —— yDAG
x x
= =
I I
1103 5
g &
103 4

25000 50000 75000 100000 125000 150000 175000 25000 50000 75000 100000 125000 150000 175000
Runtime, s Runtime, s

!‘3 |

o

fixi) = f(x)
"
<

) — ()
-
U
/
o
4 >
[}

25000 50000 75000 100000 125000 150000 175000 200000 0 25000 50000 75000 100000 125000 150000 175000 200000
Stoh. gradient computations Stoh. gradient computations
(c) ER4 (d) SF4

Figure 20: ¥’ DAG method for graph types ER2, ER4, SF2 and SF4 graphs with d = 10000 and
Gaussian noise. Other linear SEM methods do not converge in less than 350 hours.

33

766

767
768

769

770

771
772

773
774
775
776

—— yDAG
-=-- yDAG Weighted
—— DAGMA

&5 —— YDAG &
L1024 --- yYDAG Weighted 0
K \ —— DAGMA 21074
A
0 5000 10000 15000 20000 25000 0.0 0.5 1.0 15 2.0 2.5
Runtime, s Stoch. gradient computations le7

Figure 21: Comparison of ©’DAG, ¢y DAG weighted and DAGMA for ER2 graph with d = 3000
nodes and Gaussian noise.

E Weighted Projection

Inspired by the importance sampling, we considered adjustment of the projection method by weights.
Specifically, we considered the elements of the W to be weighted element-wisely by the second

. 2
directional derivatives of the objective function, L[i][7] = (W) Ex~p [[(W;X)]. As we do
not have access to the whole distribution D, we approximate it by the mean of already seen samples,

Ll () Zzka LS (il (14)

Weights (T4) are identical for whole columns; hence, they impose storing only one vector. Updating
them requires a few element-wise vector operations.

—— yDAG —— yDAG
-—- yDAG Weighted —-- yYDAG Weighted

103 4
= ~ 10° 4
x x
= =
] |
£ S
= =

10?

0 10000 20000 30000 40000 50000 60000 70000 80000 0 10000 20000 30000 40000
Runtime, s Runtime, s
—— yDAG —— yDAG
—== yDAG Weighted —== yDAG Weighted

10° 4
= ~ 103
X X
= =
| |
= =

102 4

0.0 0.2 0.4 0.6 0.8 1.0 0 25000 50000 75000 100000 125000 150000 175000 200000
Stoh. gradient computations le6 Stoh. gradient computations
(a) d = 3000 vertices (b) d = 5000 vertices

Figure 22: ¢yDAG method with weighted projection for graph types ER4 and Gaussian noise.

Figures [21] and 22| show that this weighting can lead to an improved convergence (slightly faster
convergence to a slightly lower functional value) without imposing any extra gradient computation.
However, we noticed that the improvement over runtime is not consistent across different experiments;
hence, for simplicity, we deferred this to the appendix.

34

77

778

779
780

781

782

783

784

785

786
787

789
790

791
792

794

795

796

797

798

799

800
801

803
804
805

806
807
808

809
810
811
812
813
814
815
816
817
818
819

821
822
823

824

825
826

827

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: See Sections [} [3] [A]and D]
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: See Limiation paragraph in Section [6]

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

35

828

829

830
831

833
834
835
836
837
838

839

840

841
842
843

844

845

846

847
848
849
850
851
852
853
854
855
856

858
859
860
861
862
863
864
865
866

868
869
870
871
872
873
874
875
876
877

878

880
881

Justification: See Section[Al
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

e Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: See Section[3 and
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

36

882

883
884

885

886

887
888

889
890
891
892

893
894
895

896
897

898
899
900

901
902

903
904
905

906
907
908

909

910

911

912

913
914

915
916
917

918
919

920

921

922

923
924
925
926
927
928
929
930
931

932

Answer: [Yes]

Justification: See footnote at Section [5] (https://anonymous.4open.science/r/
psiDAG-8F42)

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section[3] and
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

¢ The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: See Section[3] and
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

37

https://anonymous.4open.science/r/psiDAG-8F42
https://anonymous.4open.science/r/psiDAG-8F42
https://anonymous.4open.science/r/psiDAG-8F42
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

933
934

935
936
937

938
939
940

941
942

943

944
945

947

948

949

950
951

953
954

955
956

958

959
960

961

962

963

964

965
966

967
968
969

970
971

972

973
974

975

976

977
978

979
980
981
982

8.

10.

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Appendix [C]
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have read and respected the NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper focuses on the efficient solving of a causal inference problem. We
do not anticipate any direct societal impacts that require specific consideration.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

38

https://neurips.cc/public/EthicsGuidelines

983
984
985
986
987
988
989

990
991
992
993

994
995
996
997

998

999
1000
1001

1002

1003

1004

1005

1006
1007
1008
1009

1010
1011

1012
1013
1014

1015

1016
1017
1018

1019

1020

1021

1022
1023

1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

11.

12.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: See Section Appendix [C]
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

39

paperswithcode.com/datasets

1035
1036

1037

1038
1039

1040

1041

1042

1043
1044
1045
1046
1047
1048
1049
1050

1051

1052
1053
1054

1055

1056

1057

1058

1059

1060
1061
1062
1063
1064
1065

1066
1067

1068
1069
1070
1071

1072

1073

1074

1075

1076
1077
1078
1079
1080
1081
1082
1083
1084

1085

13.

14.

15.

16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: See Section[3 and
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: the paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LM usage

40

1086
1087
1088
1089

1090

1091

1092

1093
1094
1095
1096

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: The core method development in this research does not involve LLMs.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

41

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Background
	Graph Notation
	Linear DAG and SEM

	Stochastic Approximation for DAGs
	Stochastic Reformulation

	Scalable Optimization Framework for DAG Learning
	Optimization for the fixed vertex ordering
	Methodology

	Experiments
	Synthetic Data Generation
	Structure Recovery
	Scalability Comparison
	Real-world Experiment

	Conclusion
	Related Work
	Theoretical Results
	Detailed Experiment Description
	Supplementary Experiments Results
	Structure Recovery Performance
	Scalability Comparison
	Small to Moderate Number of Nodes
	Large Number of Nodes
	Denser Graphs

	Weighted Projection

