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Abstract

Unsupervised representation learning provides an attractive alternative to its super-
vised counterpart because of the abundance of unlabelled data. Contrastive learning
has recently emerged as one of the most successful approaches to unsupervised
representation learning. Given a datapoint, contrastive learning involves discrimi-
nating between a matching, or positive, datapoint and a number of non-matching,
or negative, ones. Usually the other datapoints in the batch serve as the negatives
for the given datapoint. It has been shown empirically that large batch sizes are
needed to achieve good performance, which led the the belief that a large number
of negatives is preferable. In order to understand this phenomenon better, in this
work investigate the role of negatives in contrastive learning by decoupling the
number of negatives from the batch size. Surprisingly, we discover that for a fixed
batch size performance actually degrades as the number of negatives is increased.
We also show that using fewer negatives can lead to a better signal-to-noise ratio
for the model gradients, which could explain the improved performance.

1 Introduction

Large amounts of supervised data are usually needed to train deep neural networks successfully
and acquiring the necessary amount of supervised signal can be costly or impractical. On the other
hand, large amounts of unsupervised data are often readily available. We can leverage this data by
pretraining representations for the unknown downstream tasks of interest. Self-supervised methods
utilize proxy tasks defined on unsupervised data in order to pretrain representations. Recently,
a particular kind of self-supervised methods, contrastive learning, has achieved state-of-the-art
performance in unsupervised representation learning [10, 6, 7, 2, 3].

Contrastive representation learning methods work by learning to discriminate between datapoints
that are similar to the current one and randomly sampled other datapoints, known as the negative
examples, which are presumed to be dissimilar. To perform this classification, similarity scores
of pairs of similar examples and negative examples are computed. Usually, similar examples are
different augmentations of the original datapoint. The most performant contrastive methods such as
CPC [10, 6], AMDIM [2] and SimCLR [3] all follow this general approach. The main differences
between these approaches are in the data augmentations and encoder architecture used. While CPC
and AMDIM use large custom networks, SimCLR uses a standard ResNet50 [5] in combination with
strong data augmentations.

Notwithstanding the differences in encoder architectures employed in contrastive learning coupled
with some differences in the computation of the similarity scores between representations, [10, 6,
7, 2, 3] all argue for using large sets of negative examples. They argue that this leads to more hard
negatives being used in learning, which improves the quality of the resulting representation. Thus,
they use very large batches in order to have larger number of negatives available and have reported
significant performance gains with increasing batch sizes. Recently, [4] proposed to include a queue
of data samples in order to increase the number of negative examples beyond the batch size.
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In this work we examine the role of negatives in contrastive learning and test the widely held belief
that using large numbers of negatives is important for learning good representations. We decouple
the batch size from the number of negatives by randomly sampling negatives for each datapoint. We
perform experiments on CIFAR100 [9] and downsampled ImageNet [12] for two highly performant
contrastive methods, SimCLR [3] and RELIC [1]. Keeping the batch size fixed, we vary the number
of negative examples and discover that using a large number of negatives actually hurts performance.
This shows that the widely used heuristic of using as many negatives as feasible can lead to sub-
optimal performance. For CIFAR100, we find that the best performance is attained with just 1 and 2
negative examples for RELIC and SimCLR, respectively. For downsampled ImageNet, we find that
the best performance is achieved with 100 negative examples which is much lower than the batch
size of 4096.

2 Background

Denote by X the unlabelled observed data and by Y the targets of the unknown downstream task.
We want to pretrain a representation f(X) using unsupervised data only such that it is useful for
solving the downstream task Y . Contrastive methods learn representations by comparing a data
point to a series of similar and dissimilar data points. Specifically, for an observation x from X , the
representation f(x) is optimized such that the similarity between f(x) and f(x+) is maximized,
while the similarity between f(x) and f(x−) is minimized; x+ and x− are data points that are
semantically similar and dissimilar to x, respectively, and are called positive and negative examples.
Given a mini-batch {xi}Bi=1, a general form of the contrastive loss is:
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with zi = g(f(xi)), τ a temperature parameter, Pi the set of positive examples and Ni the set of
negative examples for data point xi, and g is a simple function (e.g. identity or a small fully connected
network) called the projection head.

Both SimCLR [3] and RELIC [1] apply augmentations to datapoints before computing the similarities
between them and use one positive example per datapoint. The objective in SimCLR is
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with zi,a = g(f(xi,a)) and xi,a denotes the datapoint xi under augmentation a. For RELIC, we use
the following version of the objective
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with pvwi (m) = exp
(
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)
/Zvwi , where Zvwi is the normalizing constant. KL denotes the

Kullback-Leibler divergence, M negative examples are sampled uniformly at random from the batch
for each datapoint and α is the invariance penalty weight.

3 Experiments

We study the impact of the number of negative examples on the quality of the learned representation.
We measure representation quality under the linear evaluation protocol as proposed in [8] by training
a linear classifier on top the frozen representation and reporting the top 1 accuracy on the test set.
While in previous research the batch size and number of negatives were tightly coupled, we believe
this work is the first one to consider the effect of the number of negative examples separately from the
batch size. We achieve this by decoupling the batch size and the number of negatives by restricting the
sum in the denominator in (2) and (3) to be over a random subset of all negative examples available
in the current batch.
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We assess the performance SimCLR and RELIC, both of which use the data-augmentation scheme
proposed in [3] but differ in their objectives as described in Section 2. For each method and each
number of negatives we sweep over the temperature, learning rate, and, for RELIC the invariance
penalty weight. For SimCLR we optimized over the following ranges: learning rate in [0.2, 1.5],
temperature in [0.2, 10]. For RELIC we considered: learning rate in the range [0.5, 1.5], temperature
in the range [0.2, 50] and invariance pentalty weight in the interval [0.1, 500]. In all experiments we
use Resnet50 [5] as the encoder. For the non-linear projection head we use fully-connected networks
with dimensions [2048, 128] for SimCLR and [4092, 2048, 1024, 512, 128] for RELIC. All models
are trained for 2000 epochs using the LARS optizimer [13] with the same parameters as in [3] and a
batch size of 1120.

In Figure 1a and 1b we report the top 1 accuracy on CIFAR100 obtained for different numbers of
negative examples under the linear evaluation protocol [9]. We report the average performance over
5 random seeds, with the errors bars denoting the standard deviation. In Figure 1a we observe that
performance decreases with as number of negatives increases apart from when 1 negative is used. In
Figure 1b we see that performance decreases with as number of negatives increases. Unlike SimCLR,
RELIC has the highest performance with 1 negative. Moreover, the gain when using fewer negatives
is more pronounced with RELIC than with SimCLR. These results directly contradict the commonly
held belief that a large number of negatives is needed for good performance.

(a) SimCLR on CIFAR100 (b) RELIC on CIFAR100 (c) RELIC on ImageNet

Figure 1: (a) and (b) Top 1 linear test accuracy on CIFAR100 as a function of the number of negative
examples. stand denotes the standard approach of using all available negative examples in the
batch. We report the mean and standard deviation (error bars) over 5 random seeds. (c) Top 1 linear
test accuracy on ImageNet for RELIC, for each number of negative examples we report the best
performance across across hyperparameters.

We also examined this phenomenon for RELIC and SimCLR on the ImageNet dataset [12] after
downsampling the images to 64 × 64 pixels. We followed the same protocol and experimental
setup as for CIFAR100 apart from the batch size which we set to be 4096. In Figure 1c we see that
the best performance for RELIC is achieved with 100 negatives which is significantly lower than
what the full batch size of 4096; top 1 test accuracy with 100 negatives examples is 0.7% higher
than under the standard approach to using negatives that utilizes all the remaining points in the
batch as negatives. For SimCLR, we found that we could achieve the same performance as the
standard approach utilizing all the remaining points in the batch as negatives with only 75 negatives.
While not leading to improved performance, using fewer negatives in SimCLR can help reduce the
computational cost significantly.

Hypothesis: Better intra-class concentration

We first hypothesized that the improved performance with fewer negatives was due to better intra-class
concentration of the learned representations. Better intra-class concentration would make the learned
latent space of representations more easily linearly separable and thus directly lead to improved
classification performance under the linear evaluation protocol. To evaluate intra-class concentration
we used two measures – the intra-class average pairwise distance between representations and the
Silhouette score. The Silhouette score is calculated using the mean intra-cluster distance (a) and the
mean nearest-cluster distance (that the datapoint is not part of) (b) and computed as (b−a)/max(a, b).
Note that higher Silhouette score indicates better intra-class concentration. For RELIC both the
intra-class average pairwise distance and the Silhouette score indicate that for lower numbers of
negatives there is a better intra-class concentration; see Figures 2a and 3a. For SimCLR, neither the
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intra-class average pairwise distances nor the Silhouette scores do strongly correlate with downstream
performance; see Figure 2b and Figure 3b.

(a) RELIC (b) SimCLR

Figure 2: We compare the intra-class average pairwise distance for different numbers of negatives for
RELIC and SimCLR on CIFAR100. The horizontal bars denote the median.

(a) RELIC (b) SimCLR

Figure 3: We compare the Silhouette scores for different numbers of negatives for RELIC and
SimCLR on CIFAR100.

Hypothesis: Better gradient signal-to-noise ratio

Could the surprising performance obtained with fewer negative examples be partially explained by
better gradient dynamics? Gradient variance alone is not always a good indicator since gradients
with different magnitudes will be affected differently by the same amount of noise. We therefore
focus on the gradient signal-to-noise ratio (SNR) which has been established as a useful measure to
assess training dynamics [11]. SNR is defined for each model parameter θi as the absolute value of
the gradient mean divided by its standard deviation:

SNRθi =
|E (∇θiL) |
std (∇θiL)

,

where ∇θiL denotes the gradient of the loss L w.r.t. θi. As we are dealing with a large number of
model parameters and are primarily interested in the evolution of gradient SNR during training, we
report both the SNR average over parameters 1

#θ

∑
i SNRθi and its standard deviation. We computed

SNR by using an exponentially moving average to estimate the first two moments of the gradient
during training. Figure 4 shows how these quantities evolve during training on CIFAR100. We
observe similar dynamics for SimCLR and RELIC. With a small number of negative examples, the
SNR variance is often higher (see bottom panels) but the average SNR is clearly improved (see top
panels). This is particularly noticeable for very small numbers of negatives such as 5 and 10. Using
only 1 negative example seems to be a special case and the gradient behaviour looks qualitatively
different.1 From these findings, we conclude that the improvement in performance observed when

1Dynamics for SimCLR with 1 negative example are still to be computed.
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(a) RELIC gradient SNR mean, for dif-
ferent numbers of negatives:1 (green),
5 (orange), 10 (blue), 50 (pink), 100
(light green), 900 (yellow), and two ran-
dom seeds.

(b) SimCLR gradient SNR mean, for
different numbersrs of negatives:5 (dark
green), 10 (orange), 50 (blue), 100 (pink),
900 (light green), and two random seeds.

(c) RELIC gradient SNR standard de-
viation.

(d) SimCLR gradient SNR standard de-
viation.

Figure 4: Gradient signal-to-noise (SNR) for training on CIFAR100 with the temperature of 1.0 and
learning rate of 1.2. The top panels show the evolution of SNR average over all model parameters
during training. The bottom panels show the standard deviation of SNR across model parameters.
Each experiment was conducted for two random seeds.

using fewer negatives is at least in part due to an improvement in the signal-to-noise ratio in the
gradients, i.e. using fewer negatives yields improved gradient dynamics.

4 Conclusion

In this work we examined the role of negative examples in contrastive learning. Specifically, we
examined the widely held belief that using as many negatives as possible improves the quality of
the learned representation. We decoupled the batch size from the number of negatives in order to
perform experiments with fixed batch size and varying number of negatives for two very performant
contrastive methods SimCRL and ReLIC. For both methods, we observe that performance increases
as the number of negatives decreases, which strongly suggests that the heuristic of using as many
negatives as possible does not lead to the best performance. We also notice increasing gradient SNR
with decreasing number of negatives and hypothesize that this is one of the causes of improved
performance. Finally, together with previous results, our findings point towards large batch sizes and
not the number of negatives having a decisive influence on performance.
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