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ABSTRACT

Multi-domain image generation and unpaired image-to-to-image translation are
two important and related computer vision problems. The common technique
for the two tasks is the learning of a joint distribution from multiple marginal
distributions. However, it is well known that there can be infinitely many joint
distributions that can derive the same marginals. Hence, it is necessary to formulate
suitable constraints to address this highly ill-posed problem. Inspired by the recent
advances in nonlinear Independent Component Analysis (ICA) theory, we propose
a new method to learn the joint distribution from the marginals by enforcing
a specific type of minimal change across domains. We report one of the first
results connecting multi-domain generative models to identifiability and shows
why identifiability is essential and how to achieve it theoretically and practically.
We apply our method to five multi-domain image generation and six image-to-
image translation tasks. The superior performance of our model supports our theory
and demonstrates the effectiveness of our method. The training code are available
at https://github.com/Mid-Push/i-stylegan.

1 INTRODUCTION

Multi-domain image generation and unpaired image-to-image translation are two important and
closely related problems in computer vision and machine learning. They have many promising
applications such as domain adaptation (Liu & Tuzel, 2016; Hoffman et al., 2018; Murez et al., 2018;
Wang & Jiang, 2019) and medical analysis (Armanious et al., 2019; 2020; Kong et al., 2021). As
shown in Fig. 1, multi-domain image generation takes as input the random noise ϵ and domain label
u and the task aims to generate image tuples where the images in the tuple share the same content,
e.g., different facial expressions of the same people. The second task takes as input an image in one
domain and target domain label u and aims to generate another image which is in the target domain
but share the same content of input, e.g., the output image has the same identity but different facial
expression from the input image.

Figure 1: Two tasks.

Both tasks can be viewed as instantiations of joint distribution
learning problem. A joint distribution of multi-domain images
is a probability density function that gives a density value to
each joint occurrence of images in different domains such as
images of the same people with different facial expressions.
Once the joint distribution is learned, it can be used to generate
meaningful tuples (the first task) and translate an input image
into another domain without content distortion (the second
task). If the correspondence across domains is given (e.g., the
identity), we can apply supervised approaches to learn the joint
distribution easily. However, collecting corresponding data
across domains can be prohibitively expensive . For example,
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collecting different facial expressions of same person may need
controlled experiments.

By contrast, collecting image domains without correspondence can be relatively cheap, e.g., facial
expressions of different people can be easily accessed online (once permission is granted). Therefore,
we consider the problem of unsupervised joint distribution learning P (x(1), x(2), ..., x(d)) where we
are only given multiple marginal distributions in different yet related domains {P (x(i))}ni=1, where d
is the number of domains and x(i) denotes the images in domain i. However, there can be infinitely
many joint distributions that can produce the same marginals (Lindvall, 2002). For example, we can
apply conditional GANs (Mirza & Osindero, 2014; Odena et al., 2017; Miyato & Koyama, 2018;
Brock et al., 2018) to match the marginal distributions in each domain and they learn joint distributions
implicitly. We can sample a tuple ⟨x(0), ..., x(d)⟩ from its learned joint distribution using the same
random noise and different domain labels. However, there is no guarantee that the learned joint
distribution in conditional GANs are optimal and it may drop the correspondence in the generated
tuples (e.g., Fig.5(b)). To tackle this problem, CoGAN (Liu & Tuzel, 2016) proposes to use different
generators for each domain and share weights of high level layers in different generators. JointGAN
(Pu et al., 2018) proposes to factorize the joint distribution (e.g., P (x(1), x(2)) = P (x(1))P (x(2)|x(1)))
and learn one marginal and one conditional distribution with cycle consistency (Zhu et al., 2017).

While existing approaches (e.g., Liu et al. (2017); Pu et al. (2018) add constraints for the purpose
of removing unwanted joint distributions, they are not guaranteed to find the true joint distribution.
If we are unsure about the learned joint distribution, we cannot guarantee that the generated tuples
are meaningful. Learning the true joint distribution seems to be impossible since we only have
access to marginal distributions and domain label and we do not have access to the latent content and
style variables. Fortunately, recent advances in nonlinear Independent Component Analysis (ICA)
theory (Hyvarinen & Morioka, 2016; 2017; Hyvarinen et al., 2019; Khemakhem et al., 2020b;b;
Von Kügelgen et al., 2021; Kong et al., 2022) show that deep nonlinear latent variable models are
identifiable with auxiliary variables (e.g., domain label in our case), meaning that we can recover
the latent variables (e.g., content and style in our case) up to some component-wise transformation.
Inspired by these advances, we propose a new method to learn the true joint distribution from the
marginals by enforcing a specific type of minimal changes across domains. Specifically, we assume
that the influence of domain information (i.e., the underlying changes across domains) is minimal in
the data generation process, e.g., only facial expression changes and no hair style changes is allowed.
To achieve the minimal changes, we inject the domain information through a component-wise strictly
increasing transformation instead arbitrary complex transformation. In addition, we assume the
number of the underlying components affected by the domain information (and thus with changing
distributions) is minimal. Then we show that if the influence of domain information is minimal, the
true joint distribution can be recovered from the marginal distributions. Afterwards, we can use the
learned joint distribution to sample meaningful tuples and translate input images into another domain
without content distortion. Our method can be applied to datasets where the content across domains
are aligned and most existing datasets in multi-domain image generation and translation satisfy this
requirement, e.g., the facial image dataset, animal face and digit images. Our method may not be as
effective when the contents when some domains contain unaligned contents. We may need to pay
more attention to the artworks-related dataset, since different painters focus on different objects in
their painting (e.g., there are many fruit paintings by Cezanne and landscape paintings by Monet).

Our proposed method has several theoretical and practical contributions:

1. We provide the properties of an image generation process under which the true joint distri-
bution can be recovered from marginal distributions.

2. In light of our theoretical results, we provide a practical method for multi-domain image
generation. The proposed method can automatically determine the underlying dimension
of the latent variables with changing distributions. Our method achieves promising results
across five image generation tasks.

3. We propose to encourage the mapping function in image translation task to preserve the cor-
respondence learned by our image generation model. The significant gain over the baseline
methods on six image translation tasks demonstrate the effectiveness of our technique.
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2 RELATED WORK

Multi-domain image generation and translation Generative Adversarial Network (GAN) (Good-
fellow et al., 2014) performs adversarial training between the generator and the discriminator. At
the end, the distribution of sample generated by the generator is matched to the real data distribu-
tion. Conditional GAN (Mirza & Osindero, 2014) is a variant of GAN that incorporates additional
information and have been widely applied for class-conditional image generation (Brock et al.,
2018). CoGAN (Liu & Tuzel, 2016) learns the joint distribution by sharing the higher layers of
two generators. JointGAN (Pu et al., 2018) proposes to factorize the joint distribution and learn
marginal and conditionals and regularize the conditionals with cycle consistency. RegCGAN (Mao
& Li, 2018) penalizes the distance between the features of the synthesized pairs. Methods by Liu
& Tuzel (2016); Pu et al. (2018); Mao & Li (2018) are shown to be effective on some tasks but
they do not have identifiability guarantees that they are recovering the true joint distribution (we
provide a formal definition of identifiability later). Unpaired image-to-image translation relies on
additional assumptions to address the task and cycle consistency (Zhu et al., 2017) is arguably most
widely used. However, it has been argued that cycle consistency may not be enough to learn a good
mapping (Alami Mejjati et al., 2018; Xie et al., 2022). Therefore, we propose a new regularization
with generated tuples to help find a good mapping. We provide more related works in appendix C.

Nonlinear ICA Nonlinear ICA aims to recover independent latents from the data that are generated
by nonlinear invertible transformations from the underlying independent variables (Hyvarinen &
Morioka, 2016; 2017; Hyvarinen et al., 2019). Recent works have shown that the true latent variables
may be identifiable given additional information (Khemakhem et al., 2020a; Gresele et al., 2020;
Locatello et al., 2020; Shu et al., 2019; Zimmermann et al., 2021; Hälvä & Hyvarinen, 2020; Klindt
et al., 2020a)). Khemakhem et al. (2020a) prove that the latent variable is identifiable if the prior
distribution is conditionally factorized. Von Kügelgen et al. (2021) show that the latent content
variable is block-identifiable given two views of same image, which is not applicable in our case
since we do not have paired data. In the next section, we will show how our formulated problem is
related to some variant of nonlinear ICA and how we can establish the identifiability of the changes
across domains.

3 UNSUPERVISED JOINT DISTRIBUTION LEARNING

In this section, we first provide the formulations of our conditional generative model and some
additional conditioins, under which the true joint distribution is identifiable. Then we provide a
practical implementation based on conditional GAN to achieve unsupervised multi-domain image
generation. Finally, we propose a novel regularization technique to improve unpaired image-to-image
translation.

3.1 IDENTIFIABILITY OF THE JOINT DISTRIBUTION

Given d marginal distributions {Pθ(x(i))}di=1 derived from the true but unknown joint distribution
Pθ(x(1), ..., x(d)) where θ ∈ Θ is a vector of parameters, we need to recover the true joint distribution
to generate meaningful image tuples or translating images without content distribution. To recover
the true joint distribution, it needs to be identifiable. Formally, the true joint distribution is identifiable
if following hold:

∀θ′ : {Pθ(x(i)) = Pθ′(x(i))}ni=1 ⇔ Pθ(x(1), x(2), ..., x(d)) = Pθ′(x(1), x(2), ..., x(d)). (1)

That is, if another model with parameter θ′ ∈ Θ matches the marginal distributions in each domain,
then this would imply that the true joint distribution is also matched perfectly by the model with
parameter θ′. This is a well-known ill-posed problem: the joint distribution is not identifiable
from marginal distributions without further assumptions. Motivated by the multiple domain image
generation and translation problems, we define the following data generation process using a latent
variable model (we provide the graphical model in appendix D):

Pθ(x(1), ..., x(d)) =
∫

· · ·
∫ d∏

i=1

Pθ(x(i)|zc, z(i)s )Pθ(zc)
d∏

i=1

Pθ(z(i)s )dzcdz(1)s . . . dz(d)s , (2)

where zc is the common content and z(i)s is the style in the i-th domain. For instance, in expression
generation, zc represents the human identity information, and zs represents the expression. Then
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a data point sampled from the joint distribution of our model would be one person with different
expressions. In practice, we may not have sample from the joint distribution; instead, we only have
samples from the marginal distributions of Pθ(x(1), ..., x(d)):

Pθ(x(u)) =

∫
Pθ(x|zc, zs)Pθ(zc)Pθ(zs|u)dzcdzs, (3)

where u is the domain label and Pθ(zs|u = i) = Pθ(z
(i)
s ). To recover the true joint distribution, we

first recover the true content zc and true style zs up to some transformation and then we establish the
identifiability of the true joint distribtion.

Recovering zc and zs seems to be impossible since we only have the observations {x(u)} and domain
label u. Fortunately, recent advances on nonlinear ICA theory have shown that deep non-linear latent
variable models are identifiable given auxiliary variable (e.g., domain label in our case) (Khemakhem
et al., 2020b;a; Von Kügelgen et al., 2021; Kong et al., 2022). Specifically, we define

Pθ(zs|u) =
P (z̃s)
|Jfu |

; zs = fu(z̃s), z̃s ∼ P (z̃s), (4)

where fu is domain-specific component-wise strictly increasing transformation (i.e., in each domain,
each dimension of zs is a strictly increasing function of the corresponding dimension of z̃s) and |Jfu |
is the absolute value of determinant of the Jacobian matrix of function fu. P (z̃s) is a prior distribution
and we define it as N (0, I). Then we also define:

Pθ(zc) = P (zc);Pθ(x|zc, zs) = δ(x− g(zc, zs)), (5)

where g is the true generation function, δ(.) is the Dirac delta function and P (zc) is a prior distribution
and we also define it as N (0, I) in our model.

We now have θ = (fu, g) and we can train a model with parameter θ′ = (f̂u, ĝ) to match the
marginal distributions Pθ(x(i)). As for the true variables (zc, zs, x(u)), we also have the learned
ones (ẑc, ẑs, x̂(u)). Now we show that the true content zc and style zs are identifiable up to some
transformations. We first define z = [zc; zs], n = dim(z), ns = dim(zs), nc = dim(zc), Z ⊆ Rn

is the domain of latent variable z, Zc ⊆ Rnc is the domain of latent variable zc, Zs ⊆ Rns is the
domain of latent variable zs, U is the support of the distribution of u. We say zs is component-wise
identifiable if there exists a component-wise invertible transformation hs s.t. ẑs = hs(zs) for the
recovered ẑs. The content zc is block-wise identifiable means that there exists an invertible function
hc s.t. ẑc = hc(zc) for the recovered ẑc.

Lemma 3.1. If the underlying data generation process is consistent with (3,4,5) and following
assumptions hold:

• A1 (Smooth and Positive Density): The probability density function of latent variables is
smooth (the second order derivative of the log density exists) and positive i.e. P (z|u) is
smooth and P (z|u) > 0 for all z ∈ Z and u ∈ U .

• A2 (Conditional independence): Conditioned on u, the components of z are mutually
independent, which implies P (z|u) =

∏n
i P (zi|u).

• A3 (Linear independence): For any zs ∈ Zs ⊆ Rns , there exist 2ns + 1 values of u, i.e., uj

with j = 0, 1, ..., 2ns, such that the 2ns vectors w(zs,uj)−w(zs,u0) with j = 1, ..., 2ns,
are linearly independent, where vector w(s,u) is defined as follows:

w(zs,u) =
(
∂qnc+1 (znc+1,u)

∂znc+1
, . . . ,

∂qn (zn,u)
∂zn

,
∂2qnc+1 (znc+1,u)

∂z2nc+1

, . . . ,
∂2qn (zn,u)

∂z2n

)
,

where qi(zi,u) = logP (zi|u).

• A4 (Domain Variability): For any set Az ⊆ Z with the following two properties: (1) Az
has nonzero probability measure, i.e. P ({z ∈ Az}|{u = u′}) > 0 for any u′ ∈ U . (2) Az
cannot be expressed as Bzc ×Zs for any set Bzc ⊂ Zc.

∃u1,u2 ∈ U , such that
∫

z∈Az
P (z|u1)dz ̸=

∫
z∈Az

P (z|u2)dz.
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by matching the marginal distributions {Pθ(x(i))}di=1 of each domain, the component-wise identifia-
bility of the style zs is ensured, zc is block-wise identifiable.

We provide the proof and conditions in the supplementary. Intuitively, assumptions A3 and A4
require that the distribution P (z|u) varies sufficiently across domains such that the we have sufficient
contrastive information to achieve the identifiability. A3 requires that the changes in the probability
density functions are complex enough such that they don’t always lie within (2ns + 1)-dimensional
subspace. Kong et al. (2022) provide a similar result in the context of domain adaptation but it
requires the dimensions of input and output of the generating function g to be the same. If we use
GAN, the dimension of input noise and output image are obviously different, so our results are more
general.

After recovering the true content zc with ẑc and true style zs with ẑs, we now proceed to address the
joint distribution identifiability problem. A main challenge is the indeterminacy of the recovered
content zc and style zs caused by the unknown transformation hc and hs. Fortunately, we show that
this indeterminacy can be removed and the recovered joint distribution is the true one.

Theorem 3.2. If 1) the underlying data generation process is consistent with (3,4,5), 2) assumptions
A1-A4 hold, and 3) the marginal distributions are matched, i.e., Pθ′(x(i)) = Pθ(x(i)) for any domain
i ∈ [d], then the true joint distribution is identical to that produced by the model with parameter θ′,
i.e., Pθ′(x(1), x(2), ..., x(d)) = Pθ(x(1), x(2), ..., x(d)).

The proof is provided in appendix F. Unlike existing approaches, this theorem provides a guarantee
that we are able to recover the true joint distribution under some conditions. In other words, the tuples
generated by the learned generative model with parameter θ′ can also be viewed being sampled
from the true generative model. As a consequence, elements in the generated tuple ⟨x(1), ..., x(d)⟩
have different styles but share the same content. We can apply this model to address the challenging
multi-domain image generation task directly. As for unpaired image-to-image translation, we will
show that we can also use the generated tuples to help improve the performance of image translation.

3.2 A PRACTICAL IMPLEMENTATION OF MULTI-DOMAIN IMAGE GENERATION

In this section, we provide a practical implementation of our conditional generative model and we can
use it to achieve multi-domain image generation. Given images from d domains, we would like to
train a conditional GAN model such that the generated tuples ⟨G(ϵ, 1), ..., G(ϵ, d)⟩ share the content
where G is the generator in GAN and ϵ is the random Gaussian noise and u ∼ {1, .., d}.

In order to generate meaningful tuples, we build our conditional GAN following (3,4,5). Given
random noise ϵ ∼ N (0, I) and domain label u, a naive way would be splitting the noise into two
parts, i.e., ϵ = [ẑc; z̃s] and apply component-wise strictly increasing transformation f̂u on z̃s. But
the problem is that the true latent variables zc, zs are only identifiable when the dimensions match,
i.e., dim(ẑc) = nc = dim(zc) and dim(ẑs) = ns = dim(zs). We usually do not have access to
the true dimension nc and ns. To address this problem, we have to assume the total dimension is
matched, i.e., ns + nc = dim(ẑc) + dim(ẑs). Then we only need to determine ns. We may treat
ns as a hyper-parameter and sweep the possible values. But it can be expensive since we have to
determine the values for each dataset. To address this issue, we propose a simple way to allow the
network to learn the optimal dimension automatically with an additional regularization term. The
whole computation flow is shown in Fig. 2. Specifically, we apply component-wise strictly increasing
transformation f̂u to all components of the input noise ϵ. Then we multiply it with a trainable mask
m and add it back to the input noise:

ẑ = ϵ+m⊙ f̂u(ϵ), G(ϵ,u) = ĝ(ẑc, ẑs) (6)

where the output ẑ is the input to the generator G. The mask m is of the same dimension as noise ϵ
and the elements are in the range [0,+∞). For any element i, if mi = 0, ẑi only contains information
from the shared ϵ and it belongs to ẑc. Otherwise, ẑi contains the domain information u and it belongs
to ẑs. In order to encourage the network determine the optimal dimension automatically, we apply L1

loss on the mask,

Lsparsity = ∥m∥1. (7)
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Figure 2: The computation flow of our model for multi-domain image generation. ϵ denotes the input
noise, u is domain index, f̂u is the domain-specific component-wise strictly increasing transformation,
m is the trainable mask, ẑc is the content which is shared across domains while ẑs is the style which
changes across domains and x̂u is the output image in domain u.

Finally, we can proceed as normal conditional GAN method. We introduce an conditional discrimina-
tor D and training objective is:

Lgan = E[log(D(x,u))] + E[log(1−D(G(ϵ,u),u))]. (8)

Our full objective for multi-domain image generation is

Lgeneration = Lgan + λLsparsity, (9)

where λ controls the influence of domain u. We found that λ = 0.1 works well across all datasets
and is more stable than tuning the dimension ns in section 4.1.2.

3.3 APPLICATION: UNPAIRED IMAGE-TO-IMAGE TRANSLATION

Figure 3: Our regularization.

Unpaired image-to-image translation aims to map input images to
a target domain while preserving important content information.
This task can also be formulated as a joint distribution learning
problem (Liu et al., 2017). For example, given two domains x(u0)

and x(u1), image translation aims to learn a reasonable condi-
tional distribution Pθ′(x(u1)|x(u0)) through a mapping function
F , which should be close to the true conditional Pθ(x(u1)|x(u0)).
Therefore, we can use our multi-domain image generation model
to help find a proper conditional distribution. The differences
between two tasks are visualized in Figure. 1.

We employ StarGAN-v2 (Choi et al., 2020) as our backbone
method and other methods are also applicable. StarGAN-v2
mainly consists of: the mapping function F , style encoder E.
The training loss is Lstargan = Ladv + Lcyc + Lsty − λdivLdiv, where Ladv, Lcyc, Lsty and Ldiv

are used for distribution matching, cycle consistency, style reconstruction and generation diversity,
respectively. For more details, we refer readers to the original paper or our appendix J.1.

After matching the marginal distributions, G(ϵ,u) allows us to sample meaningful tuples by changing
the value of domain label u, e.g., ⟨x(u0) = G(ϵ, u0), x

(u1) = G(ϵ, u1)⟩. Then we can use them to
further regularize the mapping function F as

Ltuple = E∥F (x(u0), s̃1)− x(u1)∥1, (10)

where s̃1 = E(x(u1), u1) is the style code of domain u1. Through Ltuple, we are encouraging the
mapping function F to reconstruct the corresponding image G(ϵ, u1) from the input image G(ϵ, u0).
It means that the mapping function F is trained to preserve the correspondence between images of
the generated tuples. Since we are able to recover the true joint distribution, Ltuple encourage the
mapping function to produce the true conditional distribution, i.e., Pθ(x(u1)|x(u0)).

Our full objective for unpaired image translation is Ltranslation = Lstargan + λtupleLtuple, where λtuple is
the hyper-parameter to control the influence of our propose tuple regularization.
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4 EXPERIMENTS

In this section, we first present results and analysis on multi-domain image generation task. Then we
provide the results on unpaired image translation.

4.1 MULTI-DOMAIN IMAGE GENERATION

4.1.1 EXPERIMENT SETUP

Implementation We build our method based on the official pytorch implementation of StyleGAN2-
ADA (Karras et al., 2020a) and the hyper-parameters are selected automatically by the code. We
choose the deep sigmoid flow (DSF) (Huang et al., 2018a) to implement the domain transformation
fu (Huang et al., 2018a) because DSF is designed to be component-wise strictly increasing. We use
the embedding of domain label to generate pseudo-parameters for the flow. We only introduce one
hyper-parameter: λ to control the sparsity of the mask. We set λ = 0.1 for all experiments.

StyleGAN2-ADA TGAN Ours (λ = 0) Ours (λ = 0.1)

Figure 4: Samples of multi-domain image generation on the CELEBA-HQ, AFHQ, ArtPhoto,
CelebA5 and MNIST7. We provide more samples and methods in appendix G.2. Each row of the
method shares the same input noise ϵ. We observe that there are unnecessary changes between the
images (e.g., the added sun-glasses in the first row, the different poses of animals of StyleGAN2-ADA
in second row) without regularization.

Dataset Metrics StyleGAN2-ADA TGAN CoGAN Ours (λ = 0) Ours (λ = 0.1)

CELBEA-HQ FID ↓ 4.97 5.97 5.17 5.51 4.87
DIPD ↓ 0.61 0.60 0.58 0.60 0.58

AFHQ FID ↓ 6.16 7.15 6.52 8.58 4.36
DIPD ↓ 1.12 1.01 1.07 1.13 1.02

ArtPhoto FID ↓ 10.13 9.72 10.47 15.65 9.71
DIPD ↓ 1.56 1.63 1.57 1.65 1.49

CelebA5 FID ↓ 9.82 2.77 6.11 3.86 2.69
DIPD 0.40 0.25 0.38 0.26 0.23

MNIST7 FID ↓ 95.9 210.8 103.0 83.4 1.43
Joint-FID↓ 160.70 277.00 152.22 144.90 9.73

Table 1: Results of multi-domain image generation on five datasets.

Datasets We use five datasets to evaluate our method: CELEBA-HQ (Choi et al., 2020) contains
female and male faces domains; AFHQ (Choi et al., 2020) contains 3 domains: cat, dog and wild
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Figure 5: Experiments on MNIST7 dataset. We observe that our proposed sparsity constraint enables
network select the optimal dimension of changing components automatically (bottom left in (a)) and
is more stable than tuning the dimension manually (top left and right in the (a), examples in (b)).
We visualize the real and generated samples with t-SNE in (c). Different colors denote different
domains. We can find that the generated samples cover all classes in each domain. We provide t-SNE
comparisons in the Fig. 9.

life; ArtPhoto contains 4 domains: Cezanne, Monet, Photo and Ukiyoe; CelebA5 contains 5 domains:
Black Hair, Blonde Hair, Eyeglasses, Mustache and Pale Skin; MNIST7 contains 7 domains: blue,
cyan, green, purple, red, white and yellow MNIST digits. More information are in the appendix G.1.

Evaluation Metrics. We evaluate our method using the Frechet inception distance (FID), which is a
widely used metric for distribution divergence between the generated images and the real images.
lower FID is better. As for the first four datasets, there is no pair data. So, we use the domain-
invariant perceptual distance (DIPD) to measure the semantic correspondence (Liu et al., 2019).
DIPD computes the distance between two instance-normalized Conv5 features of VGG network. As
for MNIST7, we have ground truth tuples, so we first compute inception features of images in the
tuple, concatenate the features and reduce the dimension by variance thresholding. Then we can
compute the frechet distance between the features of ground truth and generated tuples. We name it
Joint-FID as it computes the divergence between joint distributions.

Baselines. Since our method is built on StyleGAN2-ADA (Karras et al., 2020a), we also run
StyleGAN2-ADA to verify the effectiveness of our introduced modules. We also run the most
recent conditional GAN model - TGAN (Shahbazi et al., 2022). TGAN observes that the result
of conditional generation of StyleGAN2-ADA is unsatisfactory when the number of classes are
large. Therefore it starts as the unconditional StyeleGAN2-ADA and then gradually transits to the
conditional training. We reimplement CoGAN (Liu & Tuzel, 2016) based on the StyleGAN2-ADA
architecture. We let the generators share all synthesis blocks except the last one.

4.1.2 RESULTS AND ANALYSIS

Comparison with Baselines We present the quantitative results in Table 3 and show samples gener-
ated by different methods in Fig. 4. Images of each row are generated by the same Gaussian noise
with different values of domain label u. Our method achieves best FID on all datasets. The signifi-
cant improvement over StyleGAN2-ADA highlight the importance to consider the correspondence
information across domains. Our method also achieves lowest DIPD values on three datasets. The
low values of DIPD demonstrates that images in our method share more content than other methods.
In other words, our method is able to learn a proper joint distribution given only marginals.

The proposed sparsity loss reduces the influence of domain stably and help us avoid expensive
hyper-parameter sweeping. As we mentioned in section 3.2, a naive way to further reduce the
influence of domain label u is to reducing the dimension of zs directly. But the results can be sensitive
to the dimension ns. To verify this point, we sweep the ns in [256, 64,32,16,8,4] (and set λ = 0) and
show the results in Fig. 5(a) (top two rows). We observe that our sparsity constraint works well if λ
is in the range [0,1], which is a common range for hyper-parameter. However, tuning ns works well
when ns = 16, 32. We plot the valid number of ẑs by checking the value of the trainable mask m in
Fig. 5(a) (bottom left), it learns to decrease ns to around 50, which is close to the optimal values by
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tuning ns. The samples in Fig. 5(b) also suggests that the generated tuples with sparsity loss share
more content (when dim=32, it confuses between digit 3 and 5, second row).

The identifiability when the number of domain is small The identifiability of the latent variables
requires 2ns + 1 domains as shown in section 3.1. Therefore, it would be interesting to see what
happens when the number of domains is small. We have shown that our method achieves the best
result across different real world datasets in Table 3. Now, we choose MNIST7 dataset and decrease
the number of domains used in the training. We show the results in Fig. 5 (a) (bottom right). We
only compute the Joint-FID of the first two domains to ensure the results are comparable. We can
observe a clear trend that the Joint-FID is improving as we increase the number of domains, which
supports our theory. We observe that the StyleGAN2-ADA achieves Joint-FID of 54 and our method
achieves 22 when there are only 2 domains. We also show the generated examples in Fig.5 (b), last
panel. StyleGAN2-ADA totally drops the correspondence between images in the generated tuples
while our method is able to preserve the correspondence.

4.2 APPLICATION: IMAGE-TO-IMAGE TRANSLATION

Method latent reference
FID↓ LPIPS ↑ FID ↓ LPIPS ↑

MUNIT (Huang et al., 2018b) 41.5 0.511 223.9 0.199
DRIT (Lee et al., 2018) 95.6 0.326 114.8 0.156

MSGAN (Mao & Li, 2018) 61.4 0.517 69.8 0.375
StarGAN-v2 (Choi et al., 2020) 16.2 0.450 19.8 0.432
SmoothGAN (Liu et al., 2021) 51.9 0.418 52.1 0.342
LETIT (Zhao & Chen, 2021) 15.9 - - -
StyleDis (Kim et al., 2022) - - 14.7 -

Ours 11.1 0.518 13.4 0.481

Table 2: Average results on 6 tasks
Figure 6: Samples of image
translation.

4.2.1 RESULTS

We present the experiment setup in the appendix J. We present the average results of 6 pairwise
image-to-image translation tasks in Table 2. We can observe significant improvements over StarGAN-
V2 in both latent and reference based tasks. The significant improvement of our method indicates
that the generated tuples can help match the distribution as well as improving the diversity of the
outputs. We present more samples in the appendix J.

5 LIMITATION AND FUTURE WORK

Figure 7: Failure case on ArtPhoto dataset,
columns are Cezanne, Monet, Photo and Ukyioe

Our model is trained to learn the true joint distri-
bution. However, an essential assumption is that
the content zc across domains are aligned. For
example, the female and male domains share
the same human content. For more complex
data where the content are not aligned, our as-
sumption may be violated. For example, we find
that Cezanne domain contains many fruit paint-
ings while other domains contains landscape in
the ArtPhoto dataset. Although our method has
achieved best quality as well as semantic correspondence compared to other methods, we still observe
some failure cases. As shown in Figure. 7, to match the distribution of Cezanne domain, the generator
learns to generate the fruit painting (first column). Although we can observe that our method still
works on other three domains (the rest columns), we can observe content mismatch due to the
unaligned training dataset. Our proposed architecture may over-constrain the influence of domain
label in this misalignment case. We may also resort to some other quantitative measures of the
influence to help address this challenging problem and we leave it as future work.

9



Published as a conference paper at ICLR 2023

ACKNOWLEDGEMENT

We thank the anonymous reviewers for their devoted time and constructive feedbacks, which are
really helpful to improve the quality of this paper.

This project was partially supported by the National Institutes of Health (NIH) under Contract
R01HL159805, by the NSF-Convergence Accelerator Track-D award 2134901, by a grant from
Apple Inc., a grant from KDDI Research Inc, and generous gifts from Salesforce Inc., Microsoft
Research, and Amazon Research. MG was supported by ARC DE210101624.

REFERENCES

Youssef Alami Mejjati, Christian Richardt, James Tompkin, Darren Cosker, and Kwang In Kim. Unsu-
pervised attention-guided image-to-image translation. Advances in neural information processing
systems, 31, 2018.

Karim Armanious, Chenming Jiang, Sherif Abdulatif, Thomas Küstner, Sergios Gatidis, and Bin
Yang. Unsupervised medical image translation using cycle-medgan. In 2019 27th European Signal
Processing Conference (EUSIPCO), pp. 1–5. IEEE, 2019.

Karim Armanious, Chenming Jiang, Marc Fischer, Thomas Küstner, Tobias Hepp, Konstantin Niko-
laou, Sergios Gatidis, and Bin Yang. Medgan: Medical image translation using gans. Computerized
medical imaging and graphics, 79:101684, 2020.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large scale gan training for high fidelity natural
image synthesis. arXiv preprint arXiv:1809.11096, 2018.

Jiezhang Cao, Langyuan Mo, Yifan Zhang, Kui Jia, Chunhua Shen, and Mingkui Tan. Multi-marginal
wasserstein gan. Advances in Neural Information Processing Systems, 32, 2019.

Yunjey Choi, Minje Choi, Munyoung Kim, Jung-Woo Ha, Sunghun Kim, and Jaegul Choo. Star-
gan: Unified generative adversarial networks for multi-domain image-to-image translation. In
Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 8789–8797,
2018.

Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis for
multiple domains. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pp. 8188–8197, 2020.

Mingming Gong, Yanwu Xu, Chunyuan Li, Kun Zhang, and Kayhan Batmanghelich. Twin auxilary
classifiers gan. Advances in neural information processing systems, 32, 2019.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron Courville, and Yoshua Bengio. Generative adversarial nets. Advances in neural information
processing systems, 27, 2014.

Luigi Gresele, Paul K Rubenstein, Arash Mehrjou, Francesco Locatello, and Bernhard Schölkopf.
The incomplete rosetta stone problem: Identifiability results for multi-view nonlinear ica. In
Uncertainty in Artificial Intelligence, pp. 217–227. PMLR, 2020.

Hermanni Hälvä and Aapo Hyvarinen. Hidden markov nonlinear ica: Unsupervised learning from
nonstationary time series. In Conference on Uncertainty in Artificial Intelligence, pp. 939–948.
PMLR, 2020.

Junlin Han, Mehrdad Shoeiby, Lars Petersson, and Mohammad Ali Armin. Dual contrastive learning
for unsupervised image-to-image translation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 746–755, 2021.

Judy Hoffman, Eric Tzeng, Taesung Park, Jun-Yan Zhu, Phillip Isola, Kate Saenko, Alexei Efros,
and Trevor Darrell. Cycada: Cycle-consistent adversarial domain adaptation. In International
conference on machine learning, pp. 1989–1998. PMLR, 2018.

10



Published as a conference paper at ICLR 2023

Chin-Wei Huang, David Krueger, Alexandre Lacoste, and Aaron Courville. Neural autoregressive
flows. In International Conference on Machine Learning, pp. 2078–2087. PMLR, 2018a.

Xun Huang, Ming-Yu Liu, Serge Belongie, and Jan Kautz. Multimodal unsupervised image-to-image
translation. In Proceedings of the European conference on computer vision (ECCV), pp. 172–189,
2018b.

Aapo Hyvarinen and Hiroshi Morioka. Unsupervised feature extraction by time-contrastive learning
and nonlinear ica. Advances in neural information processing systems, 29, 2016.

Aapo Hyvarinen and Hiroshi Morioka. Nonlinear ica of temporally dependent stationary sources. In
Artificial Intelligence and Statistics, pp. 460–469. PMLR, 2017.

Aapo Hyvarinen, Hiroaki Sasaki, and Richard Turner. Nonlinear ica using auxiliary variables and
generalized contrastive learning. In The 22nd International Conference on Artificial Intelligence
and Statistics, pp. 859–868. PMLR, 2019.

Phillip Isola, Jun-Yan Zhu, Tinghui Zhou, and Alexei A Efros. Image-to-image translation with
conditional adversarial networks. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 1125–1134, 2017.

Minguk Kang and Jaesik Park. Contragan: Contrastive learning for conditional image generation.
Advances in Neural Information Processing Systems, 33:21357–21369, 2020.

Minguk Kang, Woohyeon Shim, Minsu Cho, and Jaesik Park. Rebooting acgan: Auxiliary classifier
gans with stable training. Advances in Neural Information Processing Systems, 34, 2021.

Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
generative adversarial networks with limited data. Advances in Neural Information Processing
Systems, 33:12104–12114, 2020a.

Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyzing
and improving the image quality of stylegan. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 8110–8119, 2020b.

Ilyes Khemakhem, Diederik Kingma, Ricardo Monti, and Aapo Hyvarinen. Variational autoencoders
and nonlinear ica: A unifying framework. In International Conference on Artificial Intelligence
and Statistics, pp. 2207–2217. PMLR, 2020a.

Ilyes Khemakhem, Ricardo Monti, Diederik Kingma, and Aapo Hyvarinen. Ice-beem: Identifiable
conditional energy-based deep models based on nonlinear ica. Advances in Neural Information
Processing Systems, 33:12768–12778, 2020b.

Junho Kim, Minjae Kim, Hyeonwoo Kang, and Kwanghee Lee. U-gat-it: Unsupervised generative
attentional networks with adaptive layer-instance normalization for image-to-image translation.
arXiv preprint arXiv:1907.10830, 2019.

Kunhee Kim, Sanghun Park, Eunyeong Jeon, Taehun Kim, and Daijin Kim. A style-aware discrimi-
nator for controllable image translation. arXiv preprint arXiv:2203.15375, 2022.

Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jung Kwon Lee, and Jiwon Kim. Learning to discover
cross-domain relations with generative adversarial networks. In International conference on
machine learning, pp. 1857–1865. PMLR, 2017.

David Klindt, Lukas Schott, Yash Sharma, Ivan Ustyuzhaninov, Wieland Brendel, Matthias Bethge,
and Dylan Paiton. Towards nonlinear disentanglement in natural data with temporal sparse coding.
arXiv preprint arXiv:2007.10930, 2020a.

David Klindt, Lukas Schott, Yash Sharma, Ivan Ustyuzhaninov, Wieland Brendel, Matthias Bethge,
and Dylan Paiton. Towards nonlinear disentanglement in natural data with temporal sparse coding.
arXiv preprint arXiv:2007.10930, 2020b.

Lingjing Kong, Shaoan Xie, Weiran Yao, Yujia Zheng, Guangyi Chen, Petar Stojanov, Victor
Akinwande, and Kun Zhang. Partial disentanglement for domain adaptation. In International
Conference on Machine Learning, pp. 11455–11472. PMLR, 2022.

11



Published as a conference paper at ICLR 2023

Lingke Kong, Chenyu Lian, Detian Huang, Yanle Hu, Qichao Zhou, et al. Breaking the dilemma
of medical image-to-image translation. Advances in Neural Information Processing Systems, 34:
1964–1978, 2021.

Tuomas Kynkäänniemi, Tero Karras, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Improved
precision and recall metric for assessing generative models. Advances in Neural Information
Processing Systems, 32, 2019.

Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based learning applied to
document recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

Hsin-Ying Lee, Hung-Yu Tseng, Jia-Bin Huang, Maneesh Singh, and Ming-Hsuan Yang. Diverse
image-to-image translation via disentangled representations. In Proceedings of the European
conference on computer vision (ECCV), pp. 35–51, 2018.

Torgny Lindvall. Lectures on the coupling method. Courier Corporation, 2002.

Alexander H Liu, Yen-Cheng Liu, Yu-Ying Yeh, and Yu-Chiang Frank Wang. A unified feature
disentangler for multi-domain image translation and manipulation. Advances in neural information
processing systems, 31, 2018.

Ming-Yu Liu and Oncel Tuzel. Coupled generative adversarial networks. Advances in neural
information processing systems, 29, 2016.

Ming-Yu Liu, Thomas Breuel, and Jan Kautz. Unsupervised image-to-image translation networks.
Advances in neural information processing systems, 30, 2017.

Ming-Yu Liu, Xun Huang, Arun Mallya, Tero Karras, Timo Aila, Jaakko Lehtinen, and Jan Kautz.
Few-shot unsupervised image-to-image translation. In Proceedings of the IEEE/CVF international
conference on computer vision, pp. 10551–10560, 2019.

Yahui Liu, Enver Sangineto, Yajing Chen, Linchao Bao, Haoxian Zhang, Nicu Sebe, Bruno Lepri,
Wei Wang, and Marco De Nadai. Smoothing the disentangled latent style space for unsupervised
image-to-image translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 10785–10794, 2021.

Ziwei Liu, Ping Luo, Xiaogang Wang, and Xiaoou Tang. Deep learning face attributes in the wild. In
Proceedings of International Conference on Computer Vision (ICCV), December 2015.

Francesco Locatello, Ben Poole, Gunnar Rätsch, Bernhard Schölkopf, Olivier Bachem, and Michael
Tschannen. Weakly-supervised disentanglement without compromises. In International Conference
on Machine Learning, pp. 6348–6359. PMLR, 2020.

Qi Mao, Hsin-Ying Lee, Hung-Yu Tseng, Siwei Ma, and Ming-Hsuan Yang. Mode seeking generative
adversarial networks for diverse image synthesis. In Proceedings of the IEEE/CVF conference on
computer vision and pattern recognition, pp. 1429–1437, 2019.

Xudong Mao and Qing Li. Unpaired multi-domain image generation via regularized conditional gans.
arXiv preprint arXiv:1805.02456, 2018.

Mehdi Mirza and Simon Osindero. Conditional generative adversarial nets. arXiv preprint
arXiv:1411.1784, 2014.

Takeru Miyato and Masanori Koyama. cgans with projection discriminator. arXiv preprint
arXiv:1802.05637, 2018.

Takeru Miyato, Toshiki Kataoka, Masanori Koyama, and Yuichi Yoshida. Spectral normalization for
generative adversarial networks. arXiv preprint arXiv:1802.05957, 2018.

Zak Murez, Soheil Kolouri, David Kriegman, Ravi Ramamoorthi, and Kyungnam Kim. Image to
image translation for domain adaptation. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 4500–4509, 2018.

Augustus Odena, Christopher Olah, and Jonathon Shlens. Conditional image synthesis with auxiliary
classifier gans. In International conference on machine learning, pp. 2642–2651. PMLR, 2017.

12



Published as a conference paper at ICLR 2023

Taesung Park, Alexei A Efros, Richard Zhang, and Jun-Yan Zhu. Contrastive learning for unpaired
image-to-image translation. In European Conference on Computer Vision, pp. 319–345. Springer,
2020.

Yunchen Pu, Shuyang Dai, Zhe Gan, Weiyao Wang, Guoyin Wang, Yizhe Zhang, Ricardo Henao,
and Lawrence Carin Duke. Jointgan: Multi-domain joint distribution learning with generative
adversarial nets. In International Conference on Machine Learning, pp. 4151–4160. PMLR, 2018.

Mohamad Shahbazi, Martin Danelljan, Danda Pani Paudel, and Luc Van Gool. Collapse by con-
ditioning: Training class-conditional gans with limited data. arXiv preprint arXiv:2201.06578,
2022.

Rui Shu, Yining Chen, Abhishek Kumar, Stefano Ermon, and Ben Poole. Weakly supervised
disentanglement with guarantees. arXiv preprint arXiv:1910.09772, 2019.

Hung-Yu Tseng, Lu Jiang, Ce Liu, Ming-Hsuan Yang, and Weilong Yang. Regularizing generative
adversarial networks under limited data. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 7921–7931, 2021.

Julius Von Kügelgen, Yash Sharma, Luigi Gresele, Wieland Brendel, Bernhard Schölkopf, Michel
Besserve, and Francesco Locatello. Self-supervised learning with data augmentations provably
isolates content from style. Advances in neural information processing systems, 34:16451–16467,
2021.

Jinghua Wang and Jianmin Jiang. Conditional coupled generative adversarial networks for zero-shot
domain adaptation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pp. 3375–3384, 2019.

Weilun Wang, Wengang Zhou, Jianmin Bao, Dong Chen, and Houqiang Li. Instance-wise hard
negative example generation for contrastive learning in unpaired image-to-image translation. In
Proceedings of the IEEE/CVF International Conference on Computer Vision, pp. 14020–14029,
2021.

Yan Wu, Jeff Donahue, David Balduzzi, Karen Simonyan, and Timothy Lillicrap. Logan: Latent
optimisation for generative adversarial networks. arXiv preprint arXiv:1912.00953, 2019.

Shaoan Xie, Mingming Gong, Yanwu Xu, and Kun Zhang. Unaligned image-to-image translation
by learning to reweight. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 14174–14184, 2021.

Shaoan Xie, Qirong Ho, and Kun Zhang. Unsupervised image-to-image translation with density
changing regularization. In Advances in Neural Information Processing Systems, 2022.

Yanwu Xu, Shaoan Xie, Wenhao Wu, Kun Zhang, Mingming Gong, and Kayhan Batmanghelich.
Maximum spatial perturbation consistency for unpaired image-to-image translation. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 18311–18320,
2022.

Zili Yi, Hao Zhang, Ping Tan, and Minglun Gong. Dualgan: Unsupervised dual learning for image-
to-image translation. In Proceedings of the IEEE international conference on computer vision, pp.
2849–2857, 2017.

Xiaoming Yu, Yuanqi Chen, Shan Liu, Thomas Li, and Ge Li. Multi-mapping image-to-image
translation via learning disentanglement. Advances in Neural Information Processing Systems, 32,
2019.

Han Zhang, Ian Goodfellow, Dimitris Metaxas, and Augustus Odena. Self-attention generative
adversarial networks. In International conference on machine learning, pp. 7354–7363. PMLR,
2019a.

Han Zhang, Zizhao Zhang, Augustus Odena, and Honglak Lee. Consistency regularization for
generative adversarial networks. arXiv preprint arXiv:1910.12027, 2019b.

13



Published as a conference paper at ICLR 2023

Yang Zhao and Changyou Chen. Unpaired image-to-image translation via latent energy transport.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
16418–16427, 2021.

Zhengli Zhao, Sameer Singh, Honglak Lee, Zizhao Zhang, Augustus Odena, and Han Zhang.
Improved consistency regularization for gans. arXiv preprint arXiv:2002.04724, 2020.

Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A Efros. Unpaired image-to-image translation
using cycle-consistent adversarial networks. In Proceedings of the IEEE international conference
on computer vision, pp. 2223–2232, 2017.

Roland S Zimmermann, Yash Sharma, Steffen Schneider, Matthias Bethge, and Wieland Brendel.
Contrastive learning inverts the data generating process. In International Conference on Machine
Learning, pp. 12979–12990. PMLR, 2021.

14



Published as a conference paper at ICLR 2023

A ETHICAL STATEMENT

Generative models such as GAN used in our paper enable various applications and our model
facilitates the technique and may reduce the manual labeling cost. Unfortunately, as revealed by
previous reports, it becomes easier to manipulate image data, such as the deepfakes. In addition, the
generative models may reveal the training data information. How to address these negative impacts
still remains an important problem. All datasets we used are publicly available.

B DISCUSSION ABOUT OUR MODEL AND THE CONDITIONAL GANS

Conditional GANs usually feed the concatenation of the input noise ϵ and domain label u into the
generator G. By contrast, we inject the domain influence to the noise ϵ through a component-wise
strictly increasing transformation f̂u. From a theoretic perspective, our architecture allows us to
recover the true joint distribution as shown in section 3.1. From an empirical perspective, we would
like to reduce the influence of domain information in our generative model. To generate images in
each domain, the generator needs to utilize the input domain label u. However, the influence of u can
be very large if no constraint is applied. If the influence of domain variable is unnecessarily large,
the generator focuses on the domain variable u and pays little attention to the content variable zc.
As a consequence, the generated images in the tuple may lose correspondence (e.g., the generated
animals have different poses on AFHQ dataset, Fig. 4). An extreme case would be that the content is
totally ignored by the generator. So the generator still outputs images in different domains (because
the input domain labels are different ) but all images in the same domain look the same (because the
content variable zc is ignored) (e.g., the generated digits look the same on MNIST7 dataset, Fig. 4).
By contrast, we first use the simple transformation fu to inject the domain information into ϵ rather
than concatenating it with ϵ. Secondly, the sparsity loss Lsparsity reduces the number of components
affected by the domain label u. Therefore, there are will only be necessary changes between the
images in the generated tuples.

C RELATED WORK

Multi-domain Image Generation Conditional GAN aims to maximize the influence of conditioning
variable to improve the diversity of the generated samples (Gong et al., 2019; Brock et al., 2018;
Miyato & Koyama, 2018; Odena et al., 2017; Kang et al., 2021; Kang & Park, 2020; Tseng et al.,
2021; Karras et al., 2020a; Miyato et al., 2018; Zhang et al., 2019a; Brock et al., 2018; Wu et al.,
2019; Zhang et al., 2019b; Zhao et al., 2020). Our task is also related to the conditional GAN problem
if we regard the domain label as the conditioning information. A major difference is that conditional
GAN mostly focusing on enlarging the influence of the condition class label and generate diverse
images across classes (Kang et al., 2021) while our method is trying to reduce the influence of the
condition domain label and generate meaningful tuples across domains.

Unpaired Image-to-Image Translation Image-to-image translation can also be viewed as a joint
distribution learning problem between the source and the target image domain. With pair data,
pix2pix (Isola et al., 2017) applies conditional GAN to match the distribution of the target domain
and penalize the distance of generated image to the ground truth image. Unfortunately, paired data is
usually difficult to collect. Therefore, additional assumptions are made to address the unsupervised
task, such as the cycle consistency (Zhu et al., 2017; Kim et al., 2017; Yi et al., 2017; Choi et al.,
2018; 2020; Liu et al., 2021; Kim et al., 2022), shared latent space (Liu et al., 2017; Huang et al.,
2018b; Lee et al., 2018; Yu et al., 2019; Liu et al., 2018), relationship preservation(Park et al., 2020;
Han et al., 2021; Wang et al., 2021; Cao et al., 2019; Xu et al., 2022), density changing Xie et al.
(2022), importance reweighting Xie et al. (2021). We build our method based on StarGAN-v2 (Choi
et al., 2020), which relies on cycle consistency to preserve content.

D THE GRAPHICAL MODEL

To address the ill-posed problem, we assume the generation process follows following graphical
model:
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Figure 8: The graphical model of our method. zc is the shared content and z(i) is the style from
domain i and x(i) is the observation: data (images) in domain i.

E PROOF OF THE IDENTIFIABILITY OF LATENT VARIABLES

We show that the true content zc and style zs are identifiable in Lemma. 3.1.

E.1 THE IDENTIFIABILITY OF THE STYLE

We first provide the proof of the identifiability of the style variable zs.

Proof. As we have matched marginal distributions Pθ′(x̂|u) = Pθ(x|u), we have P (ĝ(ẑ)|u) =
P (g(z)|u) since x̂ = ĝ(ẑ), x = g(z). Then we can apply same transformation ĝ−1 to the variables
ĝ(ẑ) and g(z), which results in P (ĝ−1 ◦ ĝ(ẑ)|u) = P (ĝ−1 ◦ g(z)|u) ⇒ P (ẑ|u) = P (ĝ−1 ◦ g(z)|u).
We define h = g−1 ◦ ĝ, then h−1 = ĝ−1 ◦ g, we have

P (ẑ|u) = P (h−1(z)|u), (11)

which suggests that h is the indeterminacy between the recovered latent variable ẑ and the true latent
z. It is worth noting that we don’t need to assume that the dimension of z and x are same in order to
compute the determinant of g−1.

We further define qu
i = logP (zi|u) and q̂u

i = logP (ẑi|u). With the conditional independence
assumption in A2, we have

P (z|u) =
n∏

i=1

P (zi|u) ⇔ logP (z|u) =
n∑

i=1

qu
i

P (ẑ|u) =
n∏

i=1

P (ẑi|u) ⇔ logP (ẑ|u) =
n∑

i=1

q̂u
i

According to the change of variable rule, we can transform equation. 11 into

P (ẑ|u) = 1

|Jh−1 |
P (z|u)· ⇐⇒

n∑
i=1

q̂u
i =

n∑
i=1

qu
i + |Jh| (12)

where Jh−1 is the absolute value of the determinant of the Jacobian matrix of h. Since h is invertible
and the input and output share the same number of dimension, we have 1

|Jh−1 | = |Jh| ≠ 0.

To simplify the notation, we define the following objects:

h′
i,(k) :=

∂zi
∂ẑk

, h′′
i,(k,q) :=

∂2zi
∂ẑk∂ẑq

;

η′i(zi,u) :=
∂qui
∂zi

, η′′i (zi,u) :=
∂2qui
(∂zi)2

.

Differentiating Equation 12 twice w.r.t. ẑk and ẑq where k, q ∈ [n] and k ̸= q yields
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n∑
i=1

(
η′′i (zi,u) · h′

i,(k)h
′
i,(q) + η′i(zi,u) · h′′

i,(k,q)

)
+

∂2 log |Jh|
∂ẑk∂ẑq

= 0. (13)

Therefore, there are 2ns + 1 equations corresponding to u = u0, . . . ,u2ns respectively. We subtract
equations associated with u1, . . . ,u2ns with the equation of u0, and we obtain the following 2ns

equations:
n∑

i=nc+1

(
(η′′i (zi,uj)− η′′i (zi,u0)) · h′

i,(k)h
′
i,(q) + (η′i(zi,uj)− η′i(zi,u0)) · h′′

i,(k,q)

)
= 0, (14)

where j = 1, . . . 2ns. Due to the invariance of z̃c, we have P (zc) = P (zc|u). Thus, we have
η′′i (zi,uj) = η′′i (zi,uj′) and η′i(zi,uj) = η′i(zi,uj′),∀j, j′. Hence only the style components
i = nc + 1, . . . , n remain in the summation of each equation.

Under the linear independence condition in Assumption A3, the linear system is a 2ns × 2ns

invertible. Therefore, the only solution is h′
i,(k)h

′
i,(q) = 0 and h′′

i,(k,q) = 0 for i = nc + 1, . . . , n and
k, q ∈ [n], k ̸= q.

As h(·) is smooth over Z , its Jacobian can be written as:

Jh =

[
A := ∂zc

∂ẑc
B := ∂zc

∂ẑs

C := ∂zs

∂ẑc
D := ∂zs

∂ẑs
,

]
(15)

Note that h′
i,(k)h

′
i,(q) = 0 implies that for each i = nc +1, . . . , n, h′

i,(k) ̸= 0 for at most one element
k ∈ [n]. Therefore, there is only at most one non-zero entry in each row indexed by i = nc+1, . . . , n
in the Jacobian matrix Jh−1 . Further, the invertibility of h(·) necessitates Jh−1 to be full-rank which
implies that there is exactly one non-zero component in each row of matrices C and D.

Since for every i ∈ {nc + 1, . . . , n}, ẑi has changing distributions over u and all ẑk’s for
i ∈ {1, . . . , nc} (i.e. ẑc) have invariant distributions over u, we can deduce that C = 0 and the
only non-zero entry ẑi

zk
must reside in D with k ∈ {nc + 1, . . . , n}. Therefore, for each estimated

variable in the changing part ẑi, i ∈ {nc + 1, . . . , n}, there exists one true variable in the changing
part zk, k ∈ {nc +1, . . . , n} such that ẑi = h′

i(zk). Further, because Jh−1 is of full-rank (h(·) being
invertible) and C is a zero matrix, D must be of full-rank, which implies that h′

i(·) is invertible for
each i ∈ {nc + 1, . . . , n}. Thus, the changing components zs are identified up to component-wise
invertible transformations.

E.2 THE IDENTIFIABILITY OF THE CONTENT VARIABLE

Now we provide the proof for the block-identifiability of the content variable zc.

Proof. The proof is presented in four steps as follows.

Step 1. Due to assumption of the data generating process of the learned model, we can ob-
tain the independence between the generating process ẑc and u. Thus, it follows that for any
Azc

⊆ Zc,

{ĝ−1
1:nc

(x̂) ∈ Azc
}|{u = u1} = {ĝ−1

1:nc
(x̂) ∈ Azc

}|{u = u2}, ∀u1,u2 ∈ U
⇐⇒

{x̂ ∈ (ĝ−1
1:nc

)−1(Azc
)}|{u = u1} = {x̂ ∈ (ĝ−1

1:nc
)−1(Azc

)}|{u = u2}, ∀u1,u2 ∈ U (16)

where ĝ−1
1:nc

: X → Zc denotes the estimated transformation from the observation to the content
variable and (ĝ−1

1:nc
)−1(Azc) ⊆ X is the pre-image set of Azc .
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On account of the matching assumption, we are able to extend Equation 16 as follows:

{x ∈ (ĝ−1
1:nc

)−1(Azc)}|{u = u1} = {x ∈ (ĝ−1
1:nc

)−1(Azc)}|{u = u2}
⇐⇒

{ĝ−1
1:nc

(x) ∈ Azc}|{u = u1} = {ĝ−1
1:nc

(x) ∈ Azc}|{u = u2}. (17)

Because g and ĝ are smooth and injective, there exists a smooth and injective h = ĝ−1 ◦ g : Z → Z .
Expressing ĝ−1 = h ◦ g−1 and hc(·) := h1:nc

(·) : Z → Zc in Equation 17 yields

{hc(z) ∈ Azc}|{u = u1} = {hc(z) ∈ Azc}|{u = u2},
⇐⇒

{z ∈ h−1
c (Azc

)}|{u = u1} = {z ∈ h−1
c (Azc

)}|{u = u2},
⇐⇒∫

z∈h−1
c (Azc )

pz|u(z|u1) dz =

∫
z∈h−1

c (Azc )

pz|u(z|u2) dz, (18)

where h−1
c (Azc

) = {z ∈ Z : hc(z) ∈ Azc
} is the pre-image of Azc

, i.e. those latent variables
containing content variables in Azc after the indeterminacy transformation h.

Based on the generating process, we can re-write Equation 18 as follows: ∀Azc ⊆ Zc,∫
[z⊤

c ,z⊤
s ]⊤∈h−1

c (Azc )

pzc
(zc)

(
pzs|u(zs|u1)− pzs|u(zs|u2)

)
dzsdzc = 0. (19)

Step 2. In this step, we prove that zc := hc([z
⊤
c , z

⊤
s ]

⊤) does not depend on zs. To this end, we first
develop an equivalent statement (i.e. Statement 3 below) and prove it subsequently. This enables us
to leverage the full-supported density function assumption to avert technical issues.

• Statement 1: hc([z
⊤
c , z

⊤
s ]

⊤) does not depend on zs.

• Statement 2: ∀zc ∈ Zc, it follows that h−1
c (zc) = Bzc

×Zs where Bzc
̸= ∅ and Bzc

⊆ Zc.

• Statement 3: ∀zc ∈ Zc, r ∈ R+, it follows that h−1
c (Br(zc)) = B+

zc
×Zs where Br(zc) :=

{z′c ∈ Zc : ||z′c − zc||2 < r}, B̄zc
̸= ∅, and B+

zc
⊆ Zc.

Statement 2 is a mathematical formulation of Statement 1. Statement 3 generalizes singletons zc in
Statement 2 to open, non-empty balls Br(zc). Later, we show that under this generalization, B̄zc

is
necessarily of probability measure greater than 0. With this, we can proceed to show its contraction
to Equation 19.

Leveraging the continuity of hc(·), we show the equivalence between Statement 2 and
Statement 3 as follows. We first show that Statement 2 implies Statement 3. ∀zc ∈ Zc, r ∈ R+,
h−1
c ((Br(zc))) = ∪z′

c∈Br(zc)h
−1
c (z′c). Statement 2 indicates that every participating sets in the

union satisfies h−1
c (z′c) = B′

zc
×Zs, thus the union h−1

c ((Br(zc))) also satisfies this property, which
is Statement 3.
Then, we show that Statement 3 implies Statement 2 by contradiction. Suppose that Statement 2
is false, then ∃ẑc ∈ Zc such that there exist ẑBc ∈ {z1:nc : z ∈ h−1

c (ẑc)} and ẑBs ∈ Zs resulting
in hc(ẑ

B) ̸= ẑc where ẑB = [(ẑBc )
⊤, (ẑBs )

⊤]⊤. As hc(·) is continuous, there exists r̂ ∈ R+ such
that hc(ẑ

B) ̸∈ Br̂(ẑc). That is, ẑB ̸∈ h−1
c (Br̂(ẑc)). On the other hand, Statement 3 suggests

that h−1
c (Br̂(ẑc)) = B̂zc

× Zs. By definition of ẑB , it is clear that ẑB1:nc
∈ B̂zc

. However, the
fact that ẑB ̸∈ h−1

c (Br̂(ẑc)) contradicts Statement 3. Therefore, Statement 2 is true under the
premise of Statement 3. We have shown that Statement 3 implies Statement 2. Consequently, State-
ment 2 and Statement 3 are equivalent, and therefore proving Statement 3 suffices to show Statement 1.

Step 3. In this step, we prove Statement 3 by contradiction. Intuitively, we show that if
hc(·) depended on ẑs, the pre-image h−1

c (Br(zc)) could be partitioned into two parts (i.e. B∗
z and

h−1
c (A∗

zc
) \B∗

z defined below). The dependency between hc(·) and ẑs is characterized by B∗
z , which
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would not emerge otherwise. In contrast, h−1
c (A∗

zc
) \B∗

z also exists when hc(·) does not depend on
ẑs. We evaluate the invariance relation Equation 19 and show that the integral over h−1

c (A∗
zc
) \B∗

z
(i.e. T1) is always 0, however, the integral over B∗

z (i.e. T2) is necessarily non-zero, which leads to
the contraction with Equation 19 and thus shows the hc(·) cannot depend on ẑs.

First, note that because Br(zc) is open and hc(·) is continuous, the pre-image h−1
c (Br(zc))

is open. In addition, the continuity of h(·) and the matched observation distributions
∀u′ ∈ U , {x ∈ Ax}|{u = u′} = {x̂ ∈ Ax}|{u = u′} lead to h(·) being bijection as shown
in (Klindt et al., 2020b),which implies that h−1

c (Br(zc)) is non-empty. Hence, h−1
c (Br(zc)) is

both non-empty and open. Suppose that ∃A∗
zc

:= Br∗(z
∗
c) where z∗c ∈ Zc, r∗ ∈ R+, such that

B∗
z := {z ∈ Z : z ∈ h−1

c (A∗
zc
), {z1:nc} × Zs ̸⊆ h−1

c (A∗
zc
)} ̸= ∅. Intuitively, B∗

z contains the
partition of the pre-image h−1

c (A∗
zc
) that the style part znc+1:n cannot take on any value in Zs. Only

certain values of the style part were able to produce specific outputs of indeterminacy hc(·). Clearly,
this would suggest that hc(·) depends on zc.
To show contraction with Equation 19, we evaluate the LHS of Equation 19 with such a A∗

zc
:∫

[z⊤
c ,z⊤

s ]⊤∈h−1
c (A∗

zc
)

pzc
(zc)

(
pzs|u(zs|u1)− pzs|u(zs|u2)

)
dzsdzc

=

∫
[z⊤

c ,z⊤
s ]⊤∈h−1

c (A∗
zc

)\B∗
z

pzc
(zc)

(
pzs|u(zs|u1)− pzs|u(zs|u2)

)
dzsdzc︸ ︷︷ ︸

T1

+

∫
[z⊤

c ,z⊤
s ]⊤∈B∗

z

pzc
(zc)

(
pzs|u(zs|u1)− pzs|u(zs|u2)

)
dzsdzc︸ ︷︷ ︸

T2

.

We first look at the value of T1. When h−1
c (A∗

zc
)\B∗

z = ∅, T1 evaluates to 0. Otherwise, by definition
we can rewrite h−1

c (A∗
zc
) \B∗

z as C∗
zc

×Zs where C∗
zc

̸= ∅ and C∗
zc

⊂ Zc. With this expression, it
follows that ∫

[z⊤
c ,z⊤

s ]⊤∈C∗
zc

pzc(zc)
(
pzs|u(zs|u1)− pzs|u(zs|u2)

)
dzsdzc

=

∫
zc∈C∗

zc

pzc
(zc)

∫
zs∈Zs

(
pzs|u(zs|u1)− pzs|u(zs|u2)

)
dzsdzc

=

∫
zc∈C∗

zc

pzc(zc) (1− 1) dzc = 0.

Therefore, in both cases T1 evaluates to 0 for A∗
zc

.

Now, we address T2. As discussed above, h−1
c (A∗

zc
) is open and non-empty. Because of

the continuity of hc(·), ∀zB ∈ B∗
z , there exists r(zB) ∈ R+ such that Br(zB)(zB) ⊆ B∗

z . As
pz|u(z|u) > 0 over (z,u), we have {z ∈ B∗

z}|{u = u′} ≥ {z ∈ Br(zB)(zB)|{u = u′}} > 0 for
any u′ ∈ U . Assumption A4 indicates that ∃u∗

1,u
∗
2, such that

T2 :=

∫
[z⊤

c ,z⊤
s ]⊤∈B∗

z

pzc(zc)
(
pzs|u(zs|u

∗
1)− pzs|u(zs|u

∗
2)
)
dzsdzc ̸= 0.

Therefore, for such A∗
zc

, we would have T1 + T2 ̸= 0 which leads to contradiction with Equation 19.
We have proved by contradiction that Statement 3 is true and hence Statement 1 holds, that is, hc(·)
does not depend on the style variable zs.

Step 4. With the knowledge that hc(·) does not depend on the style variable zs, we now
show that there exists an invertible mapping between the true content variable zc and the estimated
version ẑc.

As h(·) is smooth over Z , its Jacobian can written as:

Jh =

[
A := ∂ẑc

∂zc
B := ∂ẑc

∂zs

C := ∂ẑs

∂zc
D := ∂ẑs

∂zs
,

]
(20)
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where we use notation ẑc = h(z)1:nc
and ẑs = h(z)nc+1:n. As we have shown that ẑc does not

depend on the style variable zs, it follows B = 0. On the other hand, as h(·) is invertible over Z , Jh

is non-singular. Therefore, A must be non-singular due to B = 0. Note that A is the Jacobian of
the function h′

c(zc) := hc(z) : Zc → Zc, which takes only the content part zc of the input z into hc.
Also, note that the result of Theorem 3.1 implies that C = 0. Together with the invertibility of h,
we can conclude that h′

c is invertible. Therefore, there exists an invertible function h′
c between the

estimated and the true content variables such that ẑc = h′
c(zc), which concludes the proof that zc is

block-identifiable via ĝ−1(·).
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F PROOF OF THE IDENTIFIABILITY OF TRUE JOINT DISTRIBUTION

In this section, we provide the proof of theorem 3.2.

Proof. Two domains We consider the case of two variables first, i.e., we prove that Pθ′(x(1), x(2)) =
Pθ(x(1), x(2)). We factorize the joint distribution P (x(1), x(2)) = P (x(1))P (x(2)|x(1)). Since we
have matched the marginal distributions for each domain, we already have Pθ′(x(1)) = Pθ(x(1)). So
we now only need to prove Pθ′(x(2)|x(1)) = Pθ(x(2)|x(1)).

Given x = g(zc, zs), we can identify the style and content through the inverse of the model, i.e.,
ẑc, ẑs = ĝ−1(x). According to lemma. 3.1, we have hc(zc) = ẑc and hs(zs) = ẑs, where hc is an
invertible transformation and hs is component-wise invertible transformation. Therefore, we have

g(zc, zs) = ĝ(ẑc, ẑs) = ĝ(hc(zc), hs(zs)) (21)

For the ease of notation, we denote c = zc, s = zs. Given a pair of images ⟨x(1), x(2)⟩ sampled from
the true joint distribution, we have

x(1) = g(c(1), s(1)); x(2) = g(c(1), s(2)); (22)

Since we assume that the domain specific transformation is component-wise monotonic fu, fu is
component-wise invertible. We denote f1 = fu=1, f2 = fu=2, then we have

s(2) = f2 ◦ f−1
1 (s(1)) s(1) = f−1

2 ◦ f1(s(2)) (23)

Similarly, the learned model f̂u is also component-wise invertible, we also have

ŝ(2) = f̂2 ◦ f̂−1
1 (ŝ(1)). (24)

Given x(1) in the first domain, we have

ĉ(1) = hc(c
(1)), ŝ(1) = hs(s

(1)); x(1) = g(c(1),s
(1)

) = ĝ(ĉ(1), ŝ(1)). (25)

Then we have

ŝ(2) = f̂2 ◦ f̂−1
1 (ŝ(1)), by equality in 24 (26)

= f̂2 ◦ f̂−1
1 (hs(s

(1))), by equality in 25

= f̂2 ◦ f̂−1
1 (hs(f1 ◦ f−1

2 (s(2)))), by equality in 23

We now prove that ŝ(2) is a function of the true s(2). According to our lemma, the function between
ŝ(2) and s(2) can only be hs. Therefore, we have ŝ(2) = hs(s

(2)). Then the output generated by our
learned model with parameter θ′ is

x̂(2) = ĝ(ĉ(1), ŝ(2)) (27)

= ĝ(hc(c
(1)), hs(s

(2)))

= g(c(1), s(2)), by equality in 21

= x(2)

The results show that given a input x(1), our learned generative model with parameter θ′ outputs
the same result as the true generative model with parameter θ. In other words, Pθ′(x(2)|x(1)) =
Pθ(x(2)|x(1)).

Generalization of the result with mathematical induction So far, we have proved that
Pθ′(x(1), x(2)) = Pθ(x(1), x(2)). Now we generalize the results into more domains with mathe-
matical induction on the number of domains.

• Base Case When the number of domains is 2, we have proved that Pθ′(x(1), x(2)) =
Pθ(x(1), x(2)).
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• Inductive Step. Suppose the true joint distribution is identifiable when the num-
ber of domains is d − 1, i.e., Pθ′(x(1), ..., x(d−1)) = Pθ(x(1), ..., x(d−1)), now we
prove that the true joint distribution is still identifiable when the number of domains
is d, i.e., Pθ′(x(1), ..., x(d)) = Pθ(x(1), ..., x(d)). In fact, we only need to prove
Pθ′(x)(x(d)|x(1),...,x(d−1)

) = Pθ′(x)(x(d)|x(1),...,x(d−1)

) according to the induction assump-
tion.

P (x(d)|x(1),...,x
(d−1)

) = P (x)(x(d)|c(1), s(1), c(1), s(2), ..., ), we apply the invertible function g−1

(28)

= P (x(d)|c(1), s(1), ..., s(d−1)) (29)

= P (x(d)|c(1), f−1
1 (s(1)), ..., , fd−1(s

(d−1))),we apply the invertible transformations f−1

(30)

= P (x(d)|c(1), s̃, s̃, ..., s̃), (31)

= P (x(d)|c(1), s̃) (32)

= P (x(d)|c(1), f1(s̃)) (33)

= P (x(d)|c(1), s(1)) (34)

We can find that it becomes the two domain case, i.e., we just need to prove Pθ′(x(d)|x(1)) =
Pθ(x(d)|x(1)) , which already holds according to our results in two domains.

Therefore, the true joint distribution is identifiable.

G MULTI-DOMAIN IMAGE GENERATION

G.1 DATASET

We use five datasets to verify our model.

• CELEBA-HQ (Choi et al., 2020) contains 2 domain: female and male. We also use the
training set to train our model. Female domain contains 17943 images and male domain
contains 10057 images. We train the model at resolution 256×256.

• AFHQ (Choi et al., 2020) contains 3 domains: cat, dog and wild life (e.g., foxes, tigers and
lions). We use the training set to train our conditional GAN model. Three domains contain
5153, 4739, 4738 images, respectively. We train the model at resolution 256× 256.

• ArtPhoto contains 4 domains: Monet, Cezanne, Ukiyoe paintings and real photos (Zhu et al.,
2017).

• CelebA5 contains 5 domains: Black Hair, Blonde Hair, Eyeglasses, Mustache and Pale Skin.
They are subsets of domain CelebA (Liu et al., 2015). We train them at 64×64 resolution.

• MNIST7 contains 7 domains: blue, cyan, green, purple, red, white and yellow MNIST digits.
We generate these digits using the training MNIST dataset (LeCun et al., 1998). We train
the model at resolution 32×32.

G.2 MORE RESULTS

We now provide more results of multi-domain image generation.

G.3 T-SNE OF REAL AND GENERATED SAMPLE

H TWO VERSIONS OF MASK MECHANISM

In our main paper, we propose to use zs = ϵ+m⊙ fu(ϵ) to encourage the network select the optimal
dimension of ns automatically. Another possible version would be z2s = (1−m2)⊙ ϵ+m2 ⊙ fu(ϵ).
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Dataset Metrics StyleGAN2-ADA TGAN CoGAN Ours (λ = 0) Ours (λ = 0.1)

CELBEA-HQ FID ↓ 4.97 5.97 5.17 5.51 4.87
DIPD ↓ 0.61 0.60 0.58 0.60 0.58

Precison ↑ 0.716 0.703 0.700 0.739 0.721
Recall ↑ 0.454 0.382 0.418 0.391 0.445

AFHQ FID ↓ 6.16 7.15 6.52 8.58 4.36
DIPD ↓ 1.12 1.01 1.07 1.13 1.02

Precision ↑ 0.757 0.710 0.745 0.769 0.706
Recall ↑ 0.241 0.400 0.202 0.190 0.490

ArtPhoto FID ↓ 10.13 9.72 10.47 15.65 9.71
DIPD ↓ 1.56 1.63 1.57 1.65 1.49

Precision ↑ 0.696 0.651 0.690 0.715 0.651
Recall ↑ 0.281 0.373 0.298 0.106 0.359

CelebA5 FID ↓ 9.82 2.77 6.11 3.86 2.69
DIPD ↓ 0.40 0.25 0.38 0.26 0.23

Precision ↑ 0.751 0.661 0.718 0.689 0.662
Recall ↑ 0.323 0.510 0.181 0.452 0.537

MNIST7 FID ↓ 95.9 210.8 103.0 83.4 1.43
Joint-FID↓ 160.70 277.00 152.22 144.90 9.73
Precision ↑ 0.046 0.000 0.009 0.022 0.453

Recall ↑ 0.000 0.000 0.000 0.000 0.614

Table 3: Results of multi-domain image generation on five datasets. We observe that the precisons of
our method are slightly lower while the recalls are high across datasets, which is generally desirable
since recall can be traded into precision via truncation, whereas the opposite is not true (Karras et al.,
2020b; Kynkäänniemi et al., 2019).

There is a main implementation-related reason why we choose the first version: if we choose the
second version, we have to wrap m as a value inside [0,1]. A common way is to use sigmoid function.
However, sigmoid is known for gradient vanishing (the gradient is very small when input is far from
0). So, our sparsity penalty and the GAN loss may have little effect on the sigmoid mask, which
leaves the influence of domain very large. To testify the claim, we run experiments on AFHQ and
CELEBA-HQ dataset with two versions in Table. 4. We set λ = 0.1.

Mask Version AFHQ MNIST7
FID ↓ FID ↓

Version1: zs = ϵ+m⊙ fu(ϵ), 4.36 1.42
Version2: zs = (1−m)⊙ ϵ+m⊙ fu(ϵ) 7.52 95.6

Table 4: The results of two mask mechanisms.

I THE NECESSITY OF THE MASK MECHANISM

Our mask mechanism allows selecting the dimensions for injecting domain influences automatically.
Another possible way seems to be manually define the dimension of style ns and tune it. It is worth
noting that when one tries to find the optimal value of from 4,8,16,32.., in principle, one has to
consider not only different values, but also which dimensions of the input of GAN should have
changing distributions for each value of ns, in order to achieve the best performance. Because of the
complexity of the transformation implied by GAN, which dimensions of the input of GAN should
have changing distributions may heavily depend on the initialization of GAN. That is, if we just allow
the first inputs of GAN to have changing distributions, it is completely possible that other inputs,
actually should learn to be one of those with changing distributions. In this case, it will be hard for
GAN to learn the optimal function , and hence the strategy of forcing the first dimensions of the input
of GAN to have changing distribution, even with the optimal value, may lead to high variability in the
final performance. (On the other hand, it is not computationally feasible to consider each subset of the
inputs of GAN of size , run the procedure, and find the best one.) This phenomenon is analogous to
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Datset ns = 32 ns = 16 ns = 8 Ours
AFHQ 4.97 5.05 4.63 4.36

MNIST7 2.0 3.7 32.6 4.87

Table 5: FID values when tuning ns.

the relationship between traditional information criterion (like BIC)-based model selection or subset
selection and parameter shrinkage (say, with the penalty) for variable selection.

J UNPAIRED IMAGE-TO-IMAGE TRANSLATION

J.1 DETAILS ABOUT STARGAN-V2

As mentioned in section 3.3, we build our method based on StarGAN-V2 Choi et al. (2020). Now we
provide more details about the method. StarGAN-v2 consists of four modules: mapping network
H(., .), style encoder E(., .), the shared generator F and the discriminator D. The training loss is

Lstargan = Ladv + Lcyc + Lsty − λdivLdiv, (35)

where Ladv, Lcyc, Lsty and Ldiv are used for distribution matching, cycle consistency, style recon-
struction and generation diversity, respectively. StarGAN-V2 supports two kinds of tasks: latent-
based image translation and reference-based image translation. Given an input image, latent-based
generates the style code s̃ from the random noise ϵ with the mapping network H , i.e., s̃ = H(ϵ, y),
where y is the target domain label. As for the reference based, the style is extracted from an image x2

in the target domain y, i.e., s̃ = E(x2, y). The shared generator takes an input image x and the style
code s̃ and outputs an image from the domain y. StarGAN-V2 concatenates multiple domain specific
heads for each domain and we denote it as Dy for domain y.

Ladv = E[logDy(x)] + E[log(1−Dỹ(F (x, s̃)))], (36)

performs adversarial training between the generator and the discriminator.

Lsty = ∥s̃− E(F (x, s̃))∥1, (37)

encourages the network F contains the style information of s̃.

Ldiv = E[∥F (x, s̃1)− F (x, s̃2)∥1], (38)

which encourages two output images to be different by maximizing this loss.

The final one is the cycle consistency (Zhu et al., 2017),

Lcyc = E[∥x− F (F (x, s̃), s̃)∥1], (39)

which encourages the network F to reconstruct the input from the translated one. In other words, it
encourages the mapping to be one-to-one.

J.2 OUR TUPLE LOSS

However, as shown in previous literature (Alami Mejjati et al., 2018; Kim et al., 2019), the cycle
consistency is not enough and can still leads to large content distortion. Hence, we introduce our loss

Ltuple = E∥F (G(ϵ, u0), s̃2)−G(ϵ, u1)∥1, (40)

where G(ϵ, u0), G(ϵ, u1) are pair data generated by our multi-domain image generation model. As
proved in section F, the tuples can be viewed as sampling from the true joint distribution. Therefore,
we are using Ltuple to encourage the mapping network F to recover the second image from the first
image. In other words, by minimizing this tuple loss, the network F learns the correspondence
relationship between our method. Therefore, our tuple loss helps further regularize the mapping
network F and avoid large content distortion.
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J.2.1 SETUP

Implementation We build on the official pytorch implementation of StarGAN-V2 (Choi et al., 2018).
We set λtuple to 0.1. We add our regularization loss in the every latent and reference iteration.

Datasets and Metrics. We use the benchmark AFHQ dataset (Choi et al., 2020) for image-to-image
translation. It consists of three domains as stated before. Unlike the image generation task, we now
have 6 pair-wise image-to-image translation tasks since we have 3 domains: cat→dog, cat→wild,
dog→cat, dog→wild, wild→cat and wild→dog. We use the benchmark metrics: FID and LPIPS.

Baselines. We compare the results with MUNIT (Huang et al., 2018b), DRIT (Lee et al., 2018),
MSGAN (Mao et al., 2019) and recent methods StarGAN-V2 (Choi et al., 2020), SmoothGAN (Liu
et al., 2021), LETIT (Zhao & Chen, 2021) and StyleDis (Kim et al., 2022). We cite the results of
MUNIT, DRIT, MSGAN and StarGAN-v2 from (Choi et al., 2020). StyleDis only reports the FID of
reference based task. But it doesn’t support the latent-based generation defined in StarGAN-v2.
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StyleGAN TGAN CoGAN Ours (λsparse=0) Ours

Figure 9: The t-SNE of real andgenerated samples for MNIST7 dataset. We can find that the baseline
methods fail to recover the joint distribution. By contrast, our method matches the joint distributions.

26



Published as a conference paper at ICLR 2023

StyleGAN2-ADA TGAN CoGAN λ = 0 λ = 0.1

Figure 10: CelebA-HQ. Without the sparsity regularization, i.e., λ = 0, we observe some unnecessary
changes between the image tuples in each row. For example, e.g.,the added sun-glasses and skin color
change in the first row. TGAN changes the background (first row of third panel). CoGAN changes
the skin color (second row, second panel).
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StyleGAN2-ADA TGAN CoGAN λ = 0 λ = 0.1

Figure 11: AFHQ. StyleGAN2-ADA changes animal poses in many examples, e.g., second and third
row of first panel. Our base (λ = 0) also changes the poses, e.g., first and third row of second panel.
CoGAN and TGAN are slightly better in preserving poses but we can observe that some generated
images are unrealistic. For example, the wolf (first row, third panel of TGAN) and the dog (third row,
third panel of CoGAN).

28



Published as a conference paper at ICLR 2023

StyleGAN2-ADA TGAN CoGAN λ = 0 λ = 0.1

Figure 12: ArtPhoto. This case is probably the most challenging one since the content is not aligned.
We can observe many changes between the images of the generated tuples of the baselines method,
StyleGAN2-ADA, TGAN, CoGAN and our base λ = 0.
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StyleGAN2-ADA TGAN CoGAN λ = 0 λ = 0.1

Figure 13: Celeba5. StyleGAN2-ADA suffers the mode collapse (samples in the columns are
identical). TGAN and our base (λ = 0) often changes the background.
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StyleGAN2-ADA TGAN CoGAN λ = 0 λ = 0.1

Figure 14: MNIST7. All baselines seem to suffer the mode collapse issue while TGAN seems to be
affected by the augmentation in StyleGAN2-ADA negatively.
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Figure 15: The trend of dimension of zs as training proceeds on MNIST7 dataset. We observe that
the sigmoid version decreases much slower than our proposed version when we set λ = 0.1. Even
if we set λ = 1.0, the speed of decreasing the dimension zs is smaller than our version. However,
decreasing the dimension of zs is very important at the beginning phase as we need to reduce the
influence of domain variable to avoid conditional collapse. The sigmoid version decreases faster than
our proposed method in the middle of training progress. The reason is that the GAN already collapse
and GAN loss is close to 0 and it helps little in selecting the optimal dimension ns.
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Figure 16: The trend of dimension of zs as training proceeds on AFHQ dataset. .
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Figure 17: Latent-Based: cat→dog and cat→wild

Figure 18: Latent-Based: dog→cat and dog→wild
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Figure 19: Latent-Based: wild→cat and wild→dog

Figure 20: Reference-Based: cat→dog and cat→wild
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Figure 21: Reference-Based: dog→cat and dog→wild

Figure 22: Reference-Based: wild→cat and wild→dog
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