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ABSTRACT

In real-world exposure correction, achieving high-quality images requires ad-
dressing multi-exposure conditions and managing images containing locally vary-
ing brightness. While recent deep learning models have improved image cor-
rection across various exposure levels, they often struggle in complex scenarios
where both under- and over-exposure coexist within an image or in over-saturated
areas with sparse pixel information. In this paper, we tackle these challenges
by proposing a color-aware guidance that employs a global prompt for tone ad-
justment and a local prompt for maintaining color consistency of the output. To
achieve this, we present a novel Prompt Interaction Module (PIM) that seamlessly
integrates the global and local prompts with the input image features. Extensive
experiments on multi-exposure benchmark datasets demonstrate that our method
achieves state-of-the-art performance, outperforming existing exposure correction
methods. Our approach sets a new standard in exposure correction, leveraging
prompt-based learning for improved color and exposure adjustments.

1 INTRODUCTION

In real-world photography, images are captured under various exposure conditions, and incorrect
exposure can obscure important details in images. To address this issue, modern cameras offer
exposure compensation features, and furthermore, many software-based solutions have been devel-
oped to automatically resolve this problem. Despite significant advancements in both hardware and
software that have greatly improved image quality and alleviated problems associated with severe
under-exposure and over-exposure, challenges remain that often necessitate expert intervention to
adjust settings such as aperture, shutter speed, or lighting to adapt to complex environments. While
manual adjustments can improve image quality, they are impractical for CCTV systems installed in
hard-to-reach areas or for vision cameras in automated factories, which require automated solutions
for reliable performance without manual input.

To address this issue, numerous exposure correction methods have been developed. Early research
primarily concentrated on addressing either under-exposure or over-exposure, which limited the ef-
fectiveness of these methods in managing complex exposure conditions. Considering the limitations
of conventional approaches in addressing various exposure issues, recent methods have focused
on developing models that can perform multi-exposure correction using a single deep neural net-
work by jointly training on both under- and over-exposure datasets. Among them, MSEC (Afifi
et al., 2021) presents a multi-exposure dataset for exposure correction and highlights that addressing
multi-exposure issues requires resolving the complex interaction between brightness and structural
information in images. Consequently, exposure correction methods have evolved to address the
complex degradation of lightness and structure, with approaches such as the use of Fourier trans-
formation (Huang et al., 2022b) and local color distributions (Wang et al., 2022; Li et al., 2024)
proposed for modeling this combined degradation. From another perspective, the emphasis on
feature-level enhancement is increasing in recent studies. For instance, DA (Wang et al., 2023b)
and ERL (Huang et al., 2023) introduce pluggable modules that enhance diverse exposure inputs in
the high-level feature space, thereby strengthening existing correction methods.

Although existing studies show significant performance improvements, sparse pixel information
from under- and over-exposure can result in inadequate enhancement outcomes. For instance, as
shown in Fig. 1, conventional approaches struggle in challenging scenarios where the captured im-
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FECNet Ground TruthCAGGLEInput ECLNet CSECDRBN+ENC

Figure 1: Comparison of exposure correction in dynamic scenes with existing methods. (Top)
In images with varying exposure issues, our method produces higher-quality results compared to
existing approaches. (Bottom) CAGGLE also demonstrates comparable reconstruction in cases
involving over-saturated regions.

ages are either extremely under-exposed or over-exposed, failing in one or both conditions. Partic-
ularly, conventional methods tend to cause color distortion when the captured images include areas
that are over-exposed due to a light source. Furthermore, even for the same object, color can be
represented differently depending on spatial brightness variations, making it crucial to understand
the local color distribution of the input image to achieve accurate enhancement.

Therefore, we propose a novel color-aware network utilizing Local and Global Prompts to capture
input-specific local color distribution and achieve natural exposure correction. In this approach, the
Local Prompt focuses on correcting spatial and localized features, while the Global Prompt manages
overall tone and exposure adjustment. These two learnable prompts interact dynamically within the
exposure correction network, offering essential guidance for accurate color and exposure correction.
Our color-aware approach for exposure correction is inspired by existing techniques that consider
local color distribution for other image enhancement tasks such as LCDPNet (Wang et al., 2022) and
CSEC (Li et al., 2024). However, unlike previous approaches, this work introduces Local Prompt
that is guided toward linguistically defined color categories in the low-dimensional space, based on
the Color Naming model (Van De Weijer et al., 2009). This allows Local Prompt to facilitate robust
spatial and color-specific enhancements across varying exposure conditions. As a result, even if
the color of the same object varies due to different exposure levels, the correct color can still be
accurately restored after applying exposure correction, even in challenging scenarios.

We call this approach CAGGLE (Color-Aware Guidance with Global and Local Prompts for
Exposure Correction). To the best of our knowledge, CAGGLE is the first approach to employ
prompt-based learning for exposure correction, establishing a new benchmark in the field. Our main
contributions can be summarized as follows:

• CAGGLE leverages the synergy between Global and Local Prompt to enhance image fea-
tures, demonstrating its effectiveness in correcting the overall image tone and addressing
challenges arising from exposure variations as depicted in Fig. 1.

• By integrating the Color Naming model to guide prompt learning, we leverage local color
statistics of input to enable color-aware exposure correction, ensuring color consistency.

• CAGGLE outperforms conventional exposure correction methods on multi-exposure
datasets, including MSEC (Afifi et al., 2021), SICE (Cai et al., 2018), and LCDP (Wang
et al., 2022), achieving state-of-the-art (SOTA) results across all datasets.

2 RELATED WORKS

2.1 EXPOSURE CORRECTION

Before the advent of deep learning methods in computer vision, exposure correction primarily relied
on conventional techniques aimed at improving image contrast. Methods such as Histogram Equal-
ization (Gonzales & Wintz, 1987) and Gamma Correction were widely used to enhance contrast.
Additionally, Retinex theory (Land, 1977; Jobson et al., 1997; Rahman et al., 2004) was employed
to address not only image contrast but also color constancy problems. Since the introduction of deep
neural networks (DNNs), significant progress has been made in various computer vision tasks. In
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particular, in the field of exposure correction, DNN-based approaches employing a variety of con-
cepts have emerged. Methods such as (Wang et al., 2019; Wei et al., 2018; Wu et al., 2022; Zhang
et al., 2021; 2019), which are based on Retinex theory that decomposes images into reflectance and
luminance, have been proposed for under-exposed image enhancement. Additionally, Retinex-based
methods like CMEC (Nsampi et al., 2021) have addressed multi-exposure correction through atten-
tion mechanisms, while LCDPNet (Wang et al., 2022) introduced an approach that considers local
color distribution. Moreover, to address the multi-exposure correction problem, the MSEC (Afifi
et al., 2021) and SICE (Cai et al., 2018) datasets were developed for both training and evaluation,
with MSEC also proposing a Laplacian pyramid architecture capable of managing multiple exposure
conditions. Similarly, ECLNet (Huang et al., 2022c) employed a bilateral activation mechanism to
differentiate the treatment of multi-exposure images, while FECNet (Huang et al., 2022b) introduces
a lightweight spatial-frequency interaction model based on a Fourier-based approach.

Recent works have increasingly focused on regularizing and enhancing feature maps to improve
performance. ENC (Huang et al., 2022a) advanced this effort by incorporating an exposure nor-
malization module that maps varying exposure features to an exposure-invariant feature space.
CSNorm (Yao et al., 2023) enhanced the generalization capability of existing methods by selec-
tively normalizing lightness-relevant channels. ERL (Huang et al., 2023) applied regularization for
multi-exposure correction, while DA (Wang et al., 2023b) introduced a contrast and detail-aware unit
that can be integrated into existing architectures. The latest work, CSEC (Li et al., 2024), modeled
color distribution shifts at the feature level.

2.2 PROMPT LEARNING

Recently, prompt-based learning methods have gained widespread use in natural language pro-
cessing for fine-tuning inputs tailored to specific tasks. The process of finding appropriate in-
put prompts was introduced in (Brown et al., 2020). Unlike approaches that focus on finding
fixed-format prompts, CoOp (Zhou et al., 2022) introduced a method that treats prompt context
as learnable parameters, outperforming handcrafted prompts and demonstrating the superiority of
learnable prompts. Following CoOp, several methods have been proposed to generate appropriate
prompts (Smith et al., 2023; Derakhshani et al., 2023; He et al., 2022). CODA (Smith et al., 2023)
creates input-specific prompts through input-conditioned weights, HyperPrompt (He et al., 2022)
addresses multi-task learning with a prompt generator, and bayesian prompt-learning (Derakhshani
et al., 2023) models input prompts from a Bayesian perspective, adopting a probabilistic approach.
In computer vision, visual prompts refer to methods that modify inputs by applying additional train-
able parameters to effectively tune the model. VPT (Jia et al., 2022) shows significant performance
improvements over other fine-tuning methods by keeping the large transformer model backbone
fixed and applying a small number of trainable visual prompts. In addition, Bahng et al. (2022)
proposed visual prompts that can be combined with input images which are effective for CLIP. For
low-level vision tasks, PromptIR (Potlapalli et al., 2023) and PromptRestorer (Wang et al., 2023a)
use prompts to encode degradation-specific information and guide the restoration network to gen-
eralize to different degradation types and levels. In contrast, we propose input-specific global and
local prompts for multi-exposure correction, exploring both local and global information.

2.3 COLOR NAMING MODEL

Precise color naming ensures consistency across various tasks, enabling reliable image analysis,
object recognition, and visual understanding, which are critical for tasks like image annotation,
vision research, and photography. Basic Color Terms (Berlin & Kay, 1991) identifies semantic
universals in the color vocabulary across linguistic boundaries. They show that, despite variations
in the number of basic color terms across languages, there is a universal inventory of exactly 11
basic color categories: black, blue, brown, gray, green, orange, pink, purple, red, white, and yellow.
Building on this foundation, a color decomposition model was proposed (Van De Weijer et al.,
2009), and this model outputs probability values for each pixel, indicating the likelihood that the
pixel belongs to one of the 11 predefined color names based on its sRGB values (Appendix. Fig. 8
(a)). Recent study, Serrano-Lozano et al. (2024) cluster colors with similar hues into 6 broader
names (red, green, blue, orange-brown-yellow, pink-purple, and white-gray-black) to facilitate easy
computations (Appendix. Fig. 8 (b)). Our CAGGLE employs these 6 color names to guide the
color-aware prompts.
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Figure 2: Overall architecture of CAGGLE. CAGGLE follows a simple U-shaped residual net-
work design, with the Prompt Interaction Module (PIM) located between the Encoder and Decoder.
Within the PIM, learnable prompts PLocal and PGlobal are transformed into MLocal and MGlobal.
The PIM takes F as input and dynamically generates the enhanced feature F ′ through its interac-
tions with MLocal and MGlobal.

3 PROPOSED METHOD: CAGGLE

3.1 OVERALL PIPELINE

Fig. 2 presents the overall architecture of CAGGLE, which consists of three main components:
the Encoder, the Decoder, and the Prompt Interaction Module (PIM). CAGGLE is built upon a
U-shaped residual structure, where the Encoder processes the poorly exposed input image Iin and
progressively transforms it into a deep feature map F . The PIM serves as a crucial bridge between
the Encoder and Decoder, further refining the feature map by leveraging input-specific prompts that
dynamically adjust the overall tone and enhance finer details such as color accuracy, contrast, and
sharpness of edges. In the final stage, the Decoder takes the enhanced feature representation from the
PIM and reconstructs it into a well-exposed output image Iout, effectively addressing challenging
exposure issues.

3.2 ENCODER AND DECODER

The Encoder and Decoder are organized into conventional stages, with each stage consisting of
multiple convolutional layers that are responsible for progressively transforming the input and out-
put features. In the Encoder, pixel-shuffled downsampling is used to gradually reduce the spatial
resolution and batch normalization is used to normalize features, enabling the model to capture ab-
stract and compressed representations from images with varying exposure levels. Conversely, in the
Decoder, pixel-shuffled upsampling is applied to restore the spatial resolution of the feature maps,
progressively reconstructing the well-exposed output image. Additionally, at each corresponding
stage, concatenation operations are applied from the Encoder to the Decoder, facilitating the flow of
essential low- and mid-level features from the encoding process into the decoding process, thereby
preserving important details and aiding in the final image reconstruction.

For more detailed information, we provide detailed specifications of the Encoder and Decoder ar-
chitectures in Appendix. A.1.

3.3 PROMPT INTERACTION MODULE (PIM)

The purpose of the PIM is to effectively enhance the feature map F extracted from the Encoder
through interaction with two learnable prompts: the Local Prompt and Global Prompt. In particular,
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to provide appropriate input-specific guidance for Local Prompt, we introduce a color estimation
network h which captures spatially varying color information of the input image. The input-specific
Local Prompt is further processed through a specially designed cross-attention mechanism, and the
combined result with the Global Prompt produces an enhanced feature map, which is then passed to
the Decoder.

3.3.1 LOCAL PROMPT

Our Local Prompt PLocal consists of N learnable prompt vectors, represented as PLocal =
[P1

Local,P
2
Local, . . . ,P

N
Local], where the i-th local prompt vector Pi

Local is an C-dimensional vector.
Notably, unlike previous methods (Potlapalli et al., 2023; Jia et al., 2022) that apply prompts glob-
ally, differently weighted versions of the Local Prompt are applied at each spatial location, allowing
F to be handled in a distinct, localized manner.

Specifically, to provide input-specific local information to the Local Prompt, we combine the result
from a shallow color estimation network h with our Local Prompt. Specifically, h takes the feature
map F ∈ RH′×W ′×C as input, and outputs a weight map in RH′×W ′×N after a softmax operation.
This weight map is then flattened to a dimension of RH′W ′×N , and is used to control the importance
of the Local Prompt at every spatial location through matrix multiplication. After applying reshaping
and a single convolutional layer, it yields the Local Prompt Map as follows:

MLocal = Conv3×3

(
reshape(flatten(h(F ))×PLocal)

)
, (1)

where Conv3×3 denotes a 3×3 convolution layer, and MLocal ∈ RH′×W ′×C represents the Local
Prompt Map, containing spatially varying and input-specific information. Notably, by representing
our Local Prompt PLocal as a set of N vectors where each vector is in R1×C , we easily alleviate the
issue present in previous prompting methods that required the input image size to match the prompt,
a constraint that is often impractical. This approach allows the Local Prompt to be independent of
the input image size, offering greater scalability and enabling more effective local prompting.

Moreover, to address the color distortion issues commonly seen in conventional approaches, as in
Fig. 1, and to ensure consistent colors across spatially and exposure-varying objects, we design our
Local Prompt to capture spatially different color distribution using the Color Naming model and
propose a dedicated cross-attention mechanism to effectively leverage the color information.

Color-Aware Guidance with the Color Naming Model To address the existing issue of color
distortion, it is crucial that our color estimation network h accurately captures locally varying color
information in poorly exposed input images. While h can be trained in an unsupervised manner,
we leverage a color naming approach (Serrano-Lozano et al., 2024) and predefined color names.
Since color names represent colors in a low-dimensional space, they are well-suited for representing
distorted colors in over-exposed or under-exposed input images. This supervision ensures that Local
Prompts are weighted to align with the color names, which are more robust to color distortion at
each spatial location. Thus, h effectively captures the spatial and local color distributions of the
input image, allowing CAGGLE to produce color-consistent outputs regardless of input exposure
level. Moreover, this enables h to perform a comprehensive analysis of local structural features,
such as edges, in addition to color distribution, ultimately enhancing the quality of PLocal.

In this work, we utilize the Color Naming model from Serrano-Lozano et al., which further clusters
11 predefined color names based on sRGB values (Van De Weijer et al., 2009) into 6 categories of
similar hues. These 6 categories, grouped by colors that differ only in intensity and share similar
hues, can guide the Local Prompt and provide solid guidance for exposure correction. We present
a detailed explanation of the loss function used to train h in Sec. 3.4. Notably, as demonstrated in
our ablation study in Sec. 4.5, even without incorporating the Color Naming model into the prompt
design, CAGGLE exhibits outstanding effectiveness compared to existing methods. However, us-
ing the low-dimensional color names as supervision for prompt learning significantly boosts the
performance of CAGGLE.

Local Prompt Map Conditioned Cross-Attention The key role of our local prompting is to
enhance the feature map F by interacting with the input-specific Local Prompt. To facilitate this
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interaction, we propose a novel cross-attention mechanism, Local Prompt map conditioned Cross-
Attention (LP-CA), which can capture long-range dependencies and relationships between distant
spatial locations in F and MLocal.

First, as illustrated in Fig. 2, F ∈ RH′×W ′×C is reshaped and tokenized with K heads as:
X = [X1, X2, X3, . . . , XK ], (2)

where the i-th head Xi is in RH′W ′× C
K , and each head Xi is further projected into key Ki ∈

RH′W ′× C
K , query Qi ∈ RH′W ′× C

K , and value Vi ∈ RH′W ′× C
K , respectively, as follows:

Ki = XiW
T
Ki

, Qi = XiW
T
Qi
, Vi = XiW

T
Vi
, (3)

where, WKi
, WQi

and WVi
in R C

K × C
K represent the learnable parameters of the fully connected

layers and T denotes the transpose operation of the matrix. Similarly, we tokenize MLocal and split
it into K heads as:

Y = [Y1, Y2, Y3, . . . , YK ], (4)

where Yi ∈ RH′W ′× C
K . Then, our cross-attention mechanism employs Yi, as conditional informa-

tion, to correlate prompt information for Vi, represented as:

Attn(F,MLocal) = softmax(
QiK

T
i√

d
) · (Vi · Yi). (5)

Attn(F,MLocal) denotes the output of cross-attention, and d is a learnable parameter that adap-
tively scales matrix multiplication. Next, Attn(F,MLocal) is concatenated with F , followed by a
convolution operation and GeLU activation function, producing the LP-CA output as:

LP-CA(F,MLocal) = GeLU
(
Conv3×3([F,Attn(F,MLocal)])

)
. (6)

3.3.2 GLOBAL PROMPT

Inspired by previous prompt-based approaches (Zhou et al., 2022; Jia et al., 2022; He et al., 2022),
we introduce a Global Prompt PGlobal, a learnable one-dimensional vector, to provide guidance for
improving the overall and global exposure of the image. Specifically, in PIM, the Global Prompt is
reshaped through repeating copies to match the size of the feature map F from the Encoder, resulting
in the Global Prompt Map (MGlobal ∈ RH′×W ′×C). This design allows it to handle input images
of arbitrary size. Notably, unlike the Local Prompt, which helps enhance local details, MGlobal

can adjust the overall tone of the image and improve exposure correction quality. Therefore, in this
work, we employ both the Local Prompt and Global Prompt together to leverage their synergy, and
the process within PIM can be expressed as follows:

PIM(F ) = LP-CA(F,MLocal) +MGlobal. (7)

3.4 LOSS FUNCTIONS

To train CAGGLE, both reconstruction loss Lrecon and color naming loss Lcn are utilized.

Reconstruction loss We utilize a reconstruction loss to minimize the discrepancy between the
exposure correction result Iout and the ground-truth image Igt. The reconstruction loss, denoted as
Lrecon, is calculated as the L1 distance between Iout and Igt in the RGB color space as:

Lrecon = ||Iout − Igt||1. (8)

Color naming loss To train the color estimation network h in PIM, which predicts the weights
associated with PLocal, we employ the output of Color Naming model as the training target. This
loss, referred to as the color naming loss Lcn, is expressed as follows:

Lcn = ||h(F )↑ − Icn||22, (9)
where Icn denotes the color probability map of the input image from Color Naming model, and ↑
indicates the bilinear upscaling operation to ensure dimension matching between Icn and the weight
map from the color estimation network h.

Lastly, our final objective function LCAGGLE to optimize the Encoder, PIM, and the Decoder is as
follows:

LCAGGLE = Lrecon + Lcn. (10)
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Table 1: Quantitative results on MSEC (Afifi et al., 2021), SICE (Cai et al., 2018) and LCDP (Wang
et al., 2022) in terms of PSNR↑/SSIM↑. The best score is displayed in Red, the second in Blue.

Method #Params MSEC SICE LCPD
Under Over Average Under Over Average Average

CLAHE (Zuiderveld, 1994) - 16.77/0.6211 14.45/0.5842 15.38/0.5990 12.69/0.5037 10.21/0.4878 11.45/0.4942 16.33/0.6420
RetinexNet (Wei et al., 2018) 0.840M 12.13/0.6209 10.47/0.5953 11.14/0.6048 12.94/0.5171 12.87/0.5252 12.90/0.5212 19.25/0.7041
ZeroDCE (Guo et al., 2020) 0.079M 14.55/0.5887 10.40/0.5142 12.06/0.5441 16.92/0.6330 7.11/0.4292 12.02/0.5311 12.59/0.6530
RUAS (Liu et al., 2021) 0.002M 13.43/0.6807 6.39/0.4655 9.20/0.5515 16.63/0.5589 4.54/0.3196 10.59/0.4393 13.76/0.6060
SCI (Ma et al., 2022) 0.001M 9.97/0.6681 5.84/0.5190 7.49/0.5786 17.86/0.6401 4.45/0.3629 12.49/0.5051 11.87/0.5234
MSEC (Afifi et al., 2021) 7.040M 20.52/0.8129 19.79/0.8156 20.08/0.8210 19.62/0.6512 17.59/0.6560 18.58/0.6536 20.38/0.7800
LCDPNet (Wang et al., 2022) 0.960M 22.35/0.8650 22.17/0.8476 22.30/0.8552 17.45/0.5622 17.04/0.6463 17.25/0.6043 23.24/0.8420
ECLNet (Huang et al., 2022c) 0.018M 22.37/0.8566 22.70/0.8673 22.57/0.8631 22.05/0.6893 19.25/0.6872 20.65/0.6861 22.44/0.8061
FECNet (Huang et al., 2022b) 0.150M 22.96/0.8598 23.22/0.8748 23.12/0.8688 22.01/0.6737 19.91/0.6961 20.96/0.6849 22.41/0.8402
DRBN-ENC (Huang et al., 2022a) 0.580M 22.72/0.8544 22.11/0.8521 22.35/0.8530 21.89/0.7071 19.09/0.7229 20.49/0.7150 22.09/0.8271
MSEC+DA (Wang et al., 2023b) 7.040M 21.53/0.8590 21.55/0.8750 21.54/0.8670 20.94/0.7546 17.49/0.6640 19.22/0.7093 21.05/0.8119
ECLNet+ERL (Huang et al., 2023) 0.018M 22.90/0.8624 22.58/0.8676 22.70/0.8655 22.14/0.6908 19.47/0.6982 20.81/0.6945 22.63/0.8096
PromptIR (Potlapalli et al., 2023) 34.164M 15.80/0.7391 16.73/0.7852 16.36/0.7668 22.51/0.6955 19.29/0.6849 20.90/0.6902 23.49/0.8513
CSEC (Li et al., 2024) 1.364M 22.18/0.8502 22.69/0.8662 22.73/0.8638 20.79/0.7031 20.02/0.7093 20.41/0.7062 23.63/0.8550
CAGGLE 1.233M 23.12/0.8660 23.31/0.8749 23.20/0.8695 24.18/0.7096 21.94/0.7462 23.06/0.7279 24.01/0.8647

Table 2: Color difference metrics, ∆E2000 ↓ and ∆Eab ↓, defined in the CIELAB color space on
the SICE (Cai et al., 2018) dataset. The best score in Red, the second in Blue.

Metrics ZeroDCE RUAS SCI ECLNet FECNet DRBN-ENC PromptIR CSEC CAGGLE
∆E2000↓ (Sharma et al., 2005) 23.78 29.59 25.64 9.15 8.85 8.68 9.27 8.72 6.68
∆Eab↓ (Sharma & Bala, 2017) 29.31 37.05 31.22 11.58 11.19 11.02 11.59 11.39 8.54

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

For training, we adopt the Adam optimizer with a patch size of 256×256 and a batch size of 16. The
total number of epochs is set to 500, and the learning rate is 2× 10−4. Additionally, we set N = 6
and C = 128 for Local Prompt. The implementation is based on the PyTorch framework, utilizing a
single NVIDIA RTX 4090 GPU, and our code will be released upon acceptance.

Datasets. The training and benchmark settings follow the existing exposure correction
tasks (Huang et al., 2022c;b; Li et al., 2024; Wang et al., 2022). We train the network on three
multi-exposure datasets, including the Multiple Exposure (ME) (Afifi et al., 2021), Single Image
Contrast Enhancement (SICE) (Cai et al., 2018), and LCDP (Wang et al., 2022). The ME dataset
contains 17,675 training images, 750 validation images, and 5,905 test images across five expo-
sure levels. The SICE dataset consists of sequences of 4–7 images of the same content at different
exposure levels, and the LCDP dataset contains 1,700 different scenes with both over- and under-
exposure to facilitate training and evaluation. In addition, to confirm the performance under different
low-light conditions, we use RELLISUR (Aakerberg et al., 2021) dataset, which has multiple low-
light exposure settings. This contains 850 distinct sequences with three different scales, and 2,550
pairs are provided, and we only use the ×1 scale for low-light image enhancement. Each image has
exposure values ranging from -4.5 to -2.5 or -5.0 to -3.0 in 0.5 intervals, resulting in 12,750 paired
images and RELLISUR dataset is split into 85% for training, 5% for validation, and 10% for testing.

Comparative methods. We compare CAGGLE to several state-of-the-art exposure correction
methods, including CSEC (Li et al., 2024), LCPDNet (Wang et al., 2022), ECLNet (Huang
et al., 2022c), FECNet (Huang et al., 2022b) and pluggable approaches DA (Wang et al., 2023b),
ERL (Huang et al., 2023), and ENC (Huang et al., 2022a). Additionally, for low-light image en-
hancement, we benchmark CAGGLE against various previous methods, including Zero-DCE (Guo
et al., 2020), Retinex-Net (Wei et al., 2018), RUAS (Liu et al., 2021), KinD (Zhang et al., 2019),
GLADNet (Wang et al., 2018), MIRNet (Zamir et al., 2020), and MBLLEN (Lv et al., 2018). Each
comparison model is evaluated using its official network parameter weights and reproduced with its
official code for the RELLISUR (Aakerberg et al., 2021) dataset. For PromptIR (Potlapalli et al.,
2023), we set the number of prompts equal to the number of exposure values in each dataset: 5 for
MSEC, 2 for SICE, 2 for LCDP, and 5 for RELLISUR. The evaluations are measured in terms of
Peak-Signal-to-Noise-Ratio (PSNR) and Structural Similarity (SSIM).

4.2 PERFORMANCE EVALUATION

We present the exposure correction results on the representative multi-exposure datasets MSEC,
SICE, and LCDP in Table 1. On the MSEC dataset, our proposed method consistently outperforms
previous approaches in terms of average PSNR and SSIM values. CAGGLE achieves the highest
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Input (Under-exposure)

Ground-truth

ECLNet       FECNet       DRBN-ENC       

CAGGLE       CSEC       PromptIR       

Input (Over-exposure) ECLNet       FECNet       DRBN-ENC       

Ground-truthCAGGLE       CSEC       PromptIR       

Figure 3: Qualitative comparisons on the SICE (Cai et al., 2018) dataset. (Top) Examples of images
enhanced from under-exposed condition. (Bottom) Images enhanced from over-exposed condition.
To facilitate precise quality comparison, zoomed-in details are provided for each case.

scores in all cases except one, where it ranks second in SSIM for the over-exposed case, trailing
by only 0.001. Similarly, for the SICE dataset, our approach demonstrates the best performance
except for the SSIM value in the under-exposed case, where it also ranks second. Compared to
the previous SOTA methods (Huang et al., 2022b;a), our method achieves a large gain of 2.1 dB in
PSNR and 0.0108 in SSIM. Lastly, on the LCDP dataset, our method achieves the highest results,
outperforming CSEC (Li et al., 2024).

Additionally, to evaluate color correction performance, we conducted a comparison using
∆E2000 (Sharma et al., 2005) and ∆Eab (Sharma & Bala, 2017) metrics in the LAB color space. Ta-
ble 2 presents the results, demonstrating that our method also excels in color correction. CAGGLE
shows a performance improvement of more than 2.0 in both ∆E2000 and ∆Eab compared to previ-
ous methods. Achieving state-of-the-art performance across three distinct multi-exposure correction
datasets demonstrates that our approach, by employing Global and Local Prompts, is highly effective
for image exposure correction.

Fig. 3 shows the visual results of under- and over-exposure on the SICE dataset. For under-exposed
images, CAGGLE restores brightness closer to the ground truth, balancing shadows without washing
out highlights. In zoomed-in areas, CAGGLE preserves fine details, especially textures like writing
on signs, and delivers the sharpest and most refined details compared to other methods. It accurately
reproduces natural colors in greenery and restores details and color in over-exposed areas, such as
tree leaves and sky, where other methods tend to brighten or wash out. Overall, CAGGLE maintains
superior detail and natural colors, demonstrating both quantitative and qualitative superiority.

4.3 EXTENSION TO LOW-LIGHT ENHANCEMENT

Table 3 presents results on the RELLISUR dataset (Aakerberg et al., 2021), where CAGGLE out-
performed MIRNet (Zamir et al., 2020) with a 0.24dB gain in PSNR and 0.01 in SSIM, despite
having only 1.2M parameters compared to MIRNet’s 31.8M. This highlights CAGGLE’s potential
for low-light enhancement as well as multi-exposure correction. Visual comparisons in Fig. 4 show
CAGGLE closely matches the ground-truth brightness and excels in brick detail depiction.

4.4 ANALYSIS OF PROMPTS

To achieve consistent exposure correction results regardless of the input exposure level, it is im-
portant to extract features that are invariant to exposure variations. Our input-specific prompts in
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Table 3: Quantitative results on the RELLISUR (Aakerberg et al., 2021) dataset. The best score is
highlighted in Red, the second in Blue.

Metrics ZeroDCE RetinexNet RUAS EnlightenGAN KinD GLADNet MBLLEN MIRNet PromptIR CSEC CAGGLE
PSNR↑ 12.99 15.43 11.92 11.61 15.84 21.09 17.52 21.62 20.77 10.66 21.86
SSIM↑ 0.44 0.34 0.34 0.39 0.49 0.69 0.60 0.77 0.75 0.30 0.78

#Params (M) 0.079 0.840 0.002 8.370 8.540 1.132 0.450 31.787 34.164 1.364 1.233

Input MIRNet PromptIR CSEC CAGGLE Ground Truth

Figure 4: Visual comparison on the RELLISUR (Aakerberg et al., 2021) dataset. From left to right:
MIRNet (Zamir et al., 2020), PromptIR (Potlapalli et al., 2023), CSEC (Li et al., 2024), CAGGLE
(our approach), and the ground-truth image.

CAGGLE dynamically interact with deep features, transforming over-exposed and under-exposed
features into distinct representations for enhanced exposure correction. To verify the impact of our
prompts, we compare cosine similarity values between images of the same scene but with different
exposures (i.e., under-exposure and over-exposure) in the feature space, before and after the PIM.
(please see Appendix A.2 for more details).

The visualization of cosine similarity in Fig.5 (a) shows low similarity values (blue) before applying
PIM and high similarity values (red) afterward. These analyses demonstrate that CAGGLE enhances
performance by maintaining feature consistency between over- and under-exposed images, in line
with previous approaches (Huang et al., 2022a; 2023; Yao et al., 2023). To further illustrate the
consistency of our method, we present improved results of state-of-the-art models on the same scene
under different exposure levels in Fig. 5 (b)-(e). The zoomed-in region shows that CAGGLE better
preserves fine details compared to other methods (Huang et al., 2022b; Li et al., 2024) and minimizes
color differences caused by under- and over-exposure. Our method produces the most consistent
outputs across varying exposures, outperforming (Huang et al., 2022b; Li et al., 2024) in both the
quantitative measure of ∆Eab and qualitative results.

4.5 ABLATION STUDY

Impact of Prompts In PIM, we introduce two prompts: Local Prompt and Global Prompt. To
analyze their impact, we present ablation experiments in Table 4. Case (a) in Table 4, which does
not employ MGlobal and MLocal (baseline), yields the lowest performance on average, while the
case (b), applying only MLocal, and case (c) applying only MGlobal, exhibit improvements in av-
erage PSNR and SSIM over the baseline. Notably, applying only MLocal results in a significant
performance improvement on both under- and over-exposed images, whereas applying MGlobal

shows better results on over-exposed images. This suggests that Local Prompt excels at refining
spatial and localized features necessary for exposure correction, while Global Prompt effectively
handles natural tone adjustment for over-exposure. Lastly, case (d), which combines both MLocal

and MGlobal, outperforms the other ablation cases, demonstrating that Global and Local Prompts
create a synergistic effect to achieve significantly enhanced results.

Fig. 6 presents the visual results of the prompt ablation experiments, with the corresponding ∆Eab

values indicating the color correction performance. Employing only MLocal, showcases enhanced
color, spatial, and structural details, while using only MGlobal, achieves effective tonal adjustments,

𝚫𝐄𝒂𝒃 = 𝟏𝟐. 𝟑𝟓

𝚫𝐄𝒂𝒃 = 𝟏𝟐. 𝟗𝟖 𝚫𝐄𝒂𝒃 = 𝟏𝟕. 𝟎𝟗

𝚫𝐄𝒂𝒃 = 𝟏𝟒. 𝟕𝟖Under-exposed

Over-exposed𝒔𝒊𝒎(𝑭) = 𝟎. 𝟓𝟏𝟕𝟗 𝒔𝒊𝒎(𝑭.) = 𝟎. 𝟖𝟕𝟕𝟐
(a) Cosine similarity Map (b) Multi-exposure Input (c) CAGGLE (d) FECNet

𝚫𝐄𝒂𝒃 = 𝟏𝟓. 𝟗𝟖

𝚫𝐄𝒂𝒃 = 𝟏𝟑. 𝟔𝟔

(e) CSEC

Figure 5: Visualization of prompt analysis. (a) Cosine similarity results between images of the same
scene with different exposure values. The left image shows the similarity map before applying PIM,
while the right one shows it after applying PIM. (b)-(e) Visual comparison for the same scene with
different exposures with FECNet (Huang et al., 2022b) and CSEC (Li et al., 2024).
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Table 4: Ablations on local and global prompts.
Case MLocal MGlobal

Under Over AVG.
PSNR SSIM PSNR SSIM PSNR SSIM

(a) · · 23.28 0.7075 20.36 0.7215 21.82 0.7145
(b) ✓ · 23.57 0.7081 21.10 0.7262 22.34 0.7171
(c) · ✓ 23.19 0.6936 21.23 0.7380 22.21 0.7158
(d) ✓ ✓ 24.18 0.7096 21.94 0.7462 23.06 0.7279

Table 5: Ablations on color names constraint.
Case color names PSNR↑ SSIM↑ ∆E2000↓ ∆Eab↓
(a) · 22.31 0.7184 7.58 9.70
(b) hard-code 22.61 0.7192 7.04 8.94
(c) trainable 23.06 0.7279 6.68 8.54

Input (b) !!"#$% "#$% (c) !&%"'$% "#$% (d) !!"#$% + !&%"'$%

!"!" = $%. '( !"!" = $%. $$ !"!" = ). %(!"!" = *). +'

!"!" = +%. ,+ !"!" = $$. -, !"!" = $(. -* !"!" = $%. $)

Input 𝐌!"#$% only 𝐌&%"'$% only 𝐌!"#$% + 𝐌&%"'$%

Figure 6: Visual results of using only MLocal, only MGlobal, and both for the input image.

FECNet Ground TruthCAGGLEInput ECLNet CSEC

Figure 7: Visual results on over-saturated region. Although CAGGLE also struggles to correct this
region, it produces a more natural result overall compared to other methods.

improving the background and structure more distinguishable. Finally, combining both global and
local prompts captures the strengths of each approach and shows the best improvement over ∆Eab.

Effectiveness of Color Naming Model In Sec. 3.3.1, we introduce the color estimation network
h to predict the weights for PLocal, and to ensure that PLocal provides color-aware information,
we apply supervision using color names to train h (Sec. 3.3.1). To validate this, we compared the
results on the SICE (Cai et al., 2018) dataset as shown in Table 5. Case (a) represents the scenario
where the Color Naming model is not used in the color estimation network (w/o Lcn). Case (b)
employs the probability map of the 6 color names estimated by the Color Naming model (Van
De Weijer et al., 2009) directly as the weight for PLocal, without employing a color estimation
network, while case (c) represents CAGGLE approach. Case (a) already achieves state-of-the-art
performance compared to existing methods, while case (b) shows improvements in PSNR, SSIM,
∆E2000, and ∆Eab over case (a). Additionally, our proposed approach, case (c), further enhances
all metrics. This demonstrates that our method effectively integrates color names into the prompts,
resulting in color-aware prompts that improve overall performance.

5 LIMITATIONS

While the prompts learn and provide useful information in the feature space for image enhancement,
improvement remains challenging in extreme cases where the input image lacks sufficient informa-
tion, such as over-saturated regions where pixel values are close to 255 (as shown in the red box of
Fig. 7). To address this issue, we are exploring the application of generative models in areas that
contain missing information. We will prioritize and continue to solve this problem in future work.

6 CONCLUSIONS

In this work, we tackle exposure correction through color-aware prompt learning with both Global
and Local Prompts. We emphasize spatially-aware adjustment and introduce a novel color-aware
prompt design incorporating color names. Our method, CAGGLE, enhances local details like color
and structure through the Local Prompt while managing overall tone via the Global Prompt. Ad-
ditionally, we propose LP-CA, which enhances Local Prompt performance. By leveraging these
prompt techniques, CAGGLE achieves state-of-the-art results on multi-exposure benchmarks, effec-
tively balancing global tone adjustment with local detail enhancement.
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A APPENDIX

A.1 ENCODER AND DECODER

As described in Fig. 2, we utilize simple U-shaped network as our CAGGLE backbone. Table 6
presents the detailed architecture of the Encoder and Decoder. In Table 6, the Conv-block consists
of a convolution operation with a stride of 1 and padding of 1.

Table 6: Specification of the CAGGLE backone architecture.
Stage Operations Outputs

Enc-1
Conv-block, 3× 3 h× w × 32
Conv-block, 3× 3 h× w × 32
batchnorm2d(32) h× w × 32

Enc-2

Conv-block, 3× 3 h× w × 16
PixelShuffle(2) h/2× w/2× 64
Conv-block, 3× 3 h/2× w/2× 64
batchnorm2d(64) h/2× w/2× 64

Enc-3

Conv-block, 3× 3 h/2× w/2× 32
PixelShuffle(2) h/4× w/4× 128
Conv-block, 3× 3 h/4× w/4× 128
batchnorm2d(128) h/4× w/4× 128

PIM Prompt Interaction module h/4× w/4× 128

Dec-1 Conv-block, 3× 3 h/4× w/4× 256
PixelUnshuffle(2) h/2× w/2× 64

- Skip-connection with Enc-2 h/2× w/2× 128

Dec-2

Conv-block, 3× 3 h/2× w/2× 128
PixelUnshuffle(2) h× w × 32
Conv-block, 3× 3 h× w × 32
Conv-block, 3× 3 h× w × 32

- Skip-connection with Enc-1 h× w × 64

Dec-3
Conv-block, 3× 3 h× w × 32
Conv-block, 3× 3 h× w × 32
Conv-block, 1× 1 h× w × 3

A.2 COSINE SIMILARITY

In Sec. 4.4 of our main manuscript, to assess the similarity between the feature representations
of under- and over-exposed images, we employed cosine similarity as a metric. Cosine similarity
provides a measure of alignment between feature vectors, with values ranging from -1 to 1, where
higher values indicate greater similarity. The formula for cosine similarity used is as follows:

sim(FeaU , FeaO) =
FeaU · FeaO

||FeaU ||2 · ||FeaO||2
, (11)

where FeaU and FeaO represent the features of under-exposure and over-exposure, respectively.

Additionally, the following process is carried out to generate the cosine similarity map shown in
Fig. 5 (a) and (b) of the main manuscript.

1. To facilitate calculation, the input images is resized to 256× 256.
2. Feature Extraction: Two feature maps are extracted from the corresponding layers of the

network, one for the under-exposed condition and another for the over-exposed condition.
For Encoder and PIM, each feature map has spatial dimensions of 64× 64 with 128 chan-
nels.

3. Flattening the Spatial Dimensions: To enable pairwise comparison, we first flatten the
spatial dimensions of the feature maps. Each feature map is reshaped from a 64 × 64
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Figure 8: (a) 11 color names from Van De Weijer et al. (2009) organized in the Munsell color chart.
(b) 6 color names from Serrano-Lozano et al. (2024) organized in the Munsell color chart.

spatial grid into a vector of size 4,096, resulting in a flattened feature matrix of shape [128,
4,096].

4. Normalization: We normalize the feature vectors along each channel to ensure that the
cosine similarity measure is not influenced by the magnitude of the vectors. Each feature
vector is normalized using the L2 norm.

5. Cosine Similarity Calculation: Cosine similarity is then computed between the flattened
and normalized feature maps of the under-exposed and over-exposed images. This results
in a 128× 128 cosine similarity matrix, where each entry represents the similarity between
the corresponding channels of the two feature maps.

6. Visualization: The computed cosine similarity matrix is visualized as a heatmap. The
heatmap provides an intuitive view of how closely aligned the features are between the
under-exposed and over-exposed images. The cosine similarity matrix is color-coded,
where higher values indicate stronger similarity.

A.3 COLOR NAME

A color term or color name refers to a word or phrase that represents a specific color, and the
terms we use are based on the theory introduced by Berlin and Kay in Basic Color Terms (Berlin &
Kay, 1991). Berlin and Kay argued that color perception is more influenced by physiological and
perceptual factors than by cultural ones. They analyzed data collected from speakers of 20 languages
across various language families and identified 11 basic color categories: white, black, red, green,
yellow, blue, brown, purple, pink, orange, and gray. Since these color categories are based on human
physiological processes, models that classify colors using these names are perceptually grounded.

Based on this theory, Van De Weijer et al. introduce a Color Naming model that categorizes the color
of each part of real-world images. The Color Naming model does not aim to improve the naming
of color patches, but instead focuses on accurately naming colors in real-world applications. In
real-world scenarios, images are captured under various conditions such as different illuminations,
reflections, unknown cameras, colored shadows, compression artifacts, acquisition aberrations, and
unknown camera settings. Therefore, robust color naming is crucial for applied research. The Color
Naming model uses pLSA (probabilistic Latent Semantic Analysis) (Hofmann et al., 1999) to model
the probability of each pixel in an image belonging to a specific color name. As the objective of our
method is to robustly recognize color names even under varying exposure levels and use this in the
Local Prompt learning process, this approach aligns well with our research.
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Input black-gray-white red orange-brown-yellow green blue purple-pink

Figure 9: Visualization of color probability maps generated by the Color Naming model for images
of the same scene under different exposure levels.

Input black-gray-white red orange-brown-yellow green blue purple-pink

Figure 10: Visualization of color probability maps generated by the color estimation network (h) for
images of the same scene under different exposure levels.

Meanwhile, Serrano-Lozano et al. grouped the 11 color names into 6 categories based on having
the same hue and being implemented with changes in intensity. It is argued that grouping color
names by hue is a more efficient approach. Similarly, our method uses 6 color names for training
the network h.

To facilitate comprehension, we present the 11 color names from Basic Color Terms, along with
the 6 color names employed by our method, in a Munsell color chart in Fig 8. Additionally, Fig.9
illustrates the visual outcomes of the probability maps for each color name under diverse exposure
conditions for the same scene. Fig.10 also presents the visual outcomes of the probability maps
for each color name generated by our color estimation network h. The color estimation network in
CAGGLE produces results with fewer artifacts compared to the color naming map.

A.3.1 ABLATIONS ON THE NUMBER OF COLOR NAMES

To evaluate the performance differences based on the number of color names, we conduct a com-
parative experiment in Table 7, applying (a) commonly used RGB categories, (b) the 6 color names
we used, and (c) the 11 color names defined in Basic Color Terms to train h for Local Prompt. The
number of Local Prompt vectors is set to 3, 6, and 11, corresponding to the number of color names,
and the results show that using color names (Table 7, (b), and (c)) outperformed using only RGB
categories (Table 7,(a)), demonstrating the importance of using color names defined in Berlin & Kay
(1991). Although (b) and (c) in Table 7 showed different superiority depending on the condition, on
average, the 6 color names we used achieved the highest PSNR.

A.4 PROMPT INTERACTION MODULE ON DECODER BRANCH

In here, we apply the Prompt Interaction Module (PIM) to the deep features between the Encoder
and Decoder. This aligns with our intent of enhancing features before entering the decoder, similar
to a normalization process. We study the result of applying PIM at each decoder layer, as shown in
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Table 7: Ablation studies on the number of color names: (a) divides colors into RGB, (b) uses our
proposed method, and (c) employs color names based on Van De Weijer et al. (2009).

Case color names Under Over Average
PSNR SSIM PSNR SSIM PSNR SSIM

(a) 3 22.90 0.7016 20.10 0.7026 21.50 0.7021
(b) 6 24.18 0.7096 21.94 0.7462 23.06 0.7279
(c) 11 23.81 0.7125 21.73 0.7471 22.77 0.7298

Table 8: Effect of prompt addition in each decoder stage. ✓represents the inclusion of the Prompt
Interaction Module (PIM) before each decoder stage.

Case Dec-1 Dec-2 Dec-3 Size (MB) Under Over AVG.
PSNR SSIM PSNR SSIM PSNR SSIM

backbone · · · 2.8 23.28 0.7075 20.36 0.7215 21.82 0.7145

(a) ✓ · · 4.7 24.18 0.7096 21.94 0.7462 23.06 0.7279
(b) ✓ ✓ · 5.2 23.55 0.7049 21.78 0.7433 22.66 0.7241
(c) ✓ ✓ ✓ 5.5 23.83 0.7131 21.83 0.7401 22.83 0.7250

Table 8. While there were performance improvements in all cases (Table 8) (a), (b), and (c)), Table 8
(a) demonstrate the best results in terms of PSNR/SSIM, with the smallest network size.

A.5 QUALITATIVE RESULTS

We present more qualitative results from LCDP (Wang et al., 2022).

CSEC CAGGLELCDPNetInput

Figure 11: Visual examples on multi-exposure images.
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CSEC CAGGLELCDPNetInput

Figure 12: Visual examples on multi-exposure images.
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