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Abstract

Dataset distillation generates a small set of information-rich instances from a large dataset,
resulting in reduced storage requirements, privacy or copyright risks, and computational
costs for downstream modeling, though much of the research has focused on the image
data modality. We study tabular data distillation, which brings in novel challenges such
as the inherent feature heterogeneity and the common use of non-differentiable learning
models (such as decision tree ensembles and nearest-neighbor predictors). To mitigate
these challenges, we present TDColER, a tabular data distillation framework via column
embeddings-based representation learning. To evaluate this framework, we also present a
tabular data distillation benchmark, TDBench. Based on an elaborate evaluation on TDBench,
resulting in 226,890 distilled datasets and 548,880 models trained on them, we demonstrate
that TDColER is able to boost the distilled data quality of off-the-shelf distillation schemes
by 0.5-143% across 7 different tabular learning models.

1 Introduction

Dataset distillation or dataset condensation is the process of creating a small set of extremely informative
samples (usually synthetic) from a large dataset such that a model trained on this set will have predictive
performance comparable to that of a model trained on the original large dataset (Wang et al., 2018; Yu et al.,
2023). First, data distillation reduces data storage costs and can mitigate the privacy and copyright concerns
involved in keeping around (and continuously utilizing) large amounts of raw data. Furthermore, the reduction
in the data size implies a lower computational cost of model training, especially when multiple models need to
be trained on any given dataset. The above advantages of dataset distillation also facilitate various applications.
Continual learning, where we need to learn new tasks while avoiding forgetting older tasks sequentially, often
makes use of a “replay buffer” of old task data to be used while learning new tasks to mitigate forgetting of
the older tasks (Rolnick et al., 2019). Dataset distillation reduces the memory overhead of this replay buffer,
allowing learning of a larger number of tasks without forgetting (Tiwari et al., 2022; Rosasco et al., 2022).
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Figure 1: Overview of TDBench. The benchmarking suite
allows for flexible choice of datasets, distillation schemes,
and downstream models that enables for modular evaluation
of any new distillation method.

In federated learning, we need to train a model
using data spread across multiple clients with-
out ever moving the data between clients and
reducing the communication overhead. Dataset
distillation generates compact yet private syn-
thetic data from the client data that can be
safely exchanged for communication-efficient
model training (Song et al., 2023; Goetz &
Tewari, 2020; Zhou et al., 2020).

While dataset distillation has been widely stud-
ied for image datasets (Cui et al., 2022; Yu
et al., 2023), the equally important application
to other data modalities is limited. The prob-
lem of tabular data distillation has received
very little attention, though many real-world learning problems and applications involve tabular data (Guo
et al., 2017; Clements et al., 2020; Borisov et al., 2022). Various image data distillation schemes have been
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(a) Overview of TDColER. The top describes a vanilla distillation
scheme that only uses standard preprocessing techniques before dis-
tillation. The highlighted box describes the proposed TDColER, which
uses column embeddings after such preprocessing and encoder-decoder
architectures to generate rich compact representations.
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(b) Snapshot of downstream classifiers’ per-
formance increase when trained on data
distilled using k-means with TDColER (KM-
Enc) and without (KM) against random
sampling (RND).

Figure 2: Proposed approach – TDColER: Tabular Distillation Via Column Embeddings based Representation
Learning. Figure 2a shows the overview of our proposed approach, and Figure 2b shows the performance
gains when using k-means clustering as the distillation method. Throughout our experiments, a performance
increase from 0.5% to as large as 143% when TDColER is applied.

proposed in the literature, but their application to tabular data is not straightforward. First, all image
data distillation schemes rely on the choice of a differentiable “backbone model.” While differentiable neural
network-based schemes are standard for images, a wide variety of non-differentiable models are used with
tabular data, such as decision tree ensembles, nearest-neighbor models, and kernel machines. Second, almost
all data distillation methods for images generate distilled data in the original pixel space. While pixels are
homogeneous raw features of an image, the features in tabular data can be extremely heterogeneous, creating
a mismatch between what the image data distillation methods are designed for and what we have as an
inherent property of tabular data. Finally, it is standard to use vision-specific data augmentation schemes
(such as rotation, reflection, cropping, and translation) to train the model on the distilled image data. Such
standard augmentations are not available for tabular data, thus creating another discrepancy in the expected
conditions for the problem.

Our contribution. In this paper, we study tabular dataset distillation and present a novel scheme to
enhance the distilled data quality of multiple off-the-shelf data distillation schemes across various datasets,
models, and distillation sizes. Specifically, we make the following contributions:

• We propose Tabular Distillation via Column Embeddings based Representation Learning or TDColER
that can utilize modern neural-network architectures such as Transformers and graph neural networks
to generate rich compact representations. TDColER improves the quality of distilled data compared to
existing distillation schemes. Figure 2a provides an overview of our proposed TDColER.

• We present TDBench, a Tabular Distillation Benchmark with 23 tabular datasets, 7 model classes, and
11 distillation schemes. We present an overview of TDBench, an extensible and modular framework for
measuring various aspects of data distillation on tabular data, in Figure 1.

• With the elaborate evaluation of our proposed TDColER on TDBench, resulting in over 226,890 distilled
datasets and 548,880 model trainings, we show that, on aggregate across all datasets, TDColER improves
upon direct application of off-the-shelf distillation method on tabular data by 0.5-143% in terms of the
distilled data quality across all models at the smallest distillation of 10 instances-per-class. Figure 2b
presents a snapshot of our results.

• Based on our thorough evaluation, we present various insights regarding tabular dataset distillation,
such as (i) k-means clustering in the learned representations make for an extremely favorable distillation
scheme, (ii) transformer-based tabular data representations obtain the highest distilled data quality on
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aggregate, while (iii) graph neural network based tabular data representations perform slightly worse than
transformers but are significantly more parameter efficient.

1.1 Related Work

Dataset distillation was introduced by Wang et al. (2018) as a bilevel optimization problem (Feng et al., 2023)
and has been widely studied in the context of image data distillation. Most methods can be categorized into
approaches that match the original data by (i) backbone model performance, (ii) backbone model parameters,
or (iii) backbone representation distributions (Yu et al., 2023). Wang et al. (2018) minimized performance
differences between the original and distilled data, while Nguyen et al. (2020) introduced kernel-induced
points (KIP) using kernel ridge regression with a neural tangent kernel (Jacot et al., 2018). Alternatively,
methods have focused on parameter or gradient matching (Zhao et al., 2020; Lee et al., 2022; Jiang et al.,
2023; Cazenavette et al., 2022). Gradient matching (Zhao et al., 2020) aligns model gradients between
original and synthetic data, while trajectory matching (Cazenavette et al., 2022) minimizes discrepancies
between entire training trajectories. Other approaches include distribution matching (Zhao & Bilen, 2023),
which aligns per-class means, and cross-layer feature embedding matching (Wang et al., 2022). However, the
abovementioned methods rely on differentiable backbones, limiting cross-architecture generalization (Cui
et al., 2022; Nguyen et al., 2020). As a result, research has focused primarily on images, leaving tabular data
distillation largely unexplored (Medvedev & D’yakonov, 2021). We address this gap by proposing a more
general distillation framework.

Dataset distillation aligns with coreset selection (Feldman, 2020), which aims to reduce data size, typically
selecting real data instances (potentially risking privacy). In contrast, distillation generates synthetic data
beyond the real data manifold. Notably, coreset selection is a subset of dataset distillation, where the
synthetic data lies on the real data manifold. Generative modeling (Goodfellow et al., 2020; Kingma et al.,
2013) is another related area, usually focused on generating realistic data. In dataset distillation, the goal is
to generate informative rather than realistic samples. Recently, Cazenavette et al. (2023) demonstrated how
generative modeling can be used to seed the dataset distillation process, arguing that distillation methods
should be applied to a latent representation instead of the pixel space. This is aligned with our proposal, in
which we demonstrate that distillation in the latent space is critical to obtaining meaningful distilled data
quality with tabular datasets. However, the proposed Generative Latent Distillation(GLaD) scheme is very
focused on generative vision models, requiring a careful choice of the latent representation from within the
model for trade-off in realistic distilled data or expressivity, thus limiting cross-architecture generalization.

Cui et al. (2022) benchmarked several distillation methods and found trajectory matching (Cazenavette et al.,
2022) to be most effective, followed by KIP (Nguyen et al., 2020). Coreset methods, like k-means clustering,
also outperformed many model-based distillation techniques, which we corroborate. We focus on Gradient
Matching (GM) and Kernel Inducing Points (KIP) algorithms due to the high computational overhead of
trajectory matching and omit data augmentation due to its limited applicability to tabular data. As noted
before, data augmentation is not standard with tabular data, and we do not consider it in our evaluation
with TDBench.

2 Table Distillation

Data distillation has been primarily studied in the context of images where each data point is composed of
a homogeneous set of features – pixels – and the downstream models are neural networks. The two main
distinctions with tabular data distillation are: (i) Feature Heterogeneity: Features in tabular data are
usually heterogeneous in their data types and ranges and can have vastly different meanings, making it
challenging to generate appropriate feature aggregations as usually done with neural networks. For example,
a categorical feature for car_color cannot be treatd in the same way as a feature for car_price, in that
they are represented in a completely different way (categorical vs. numerical), and also mean very different
things, for example, unlike the uniform meaning of pixel values in a grid of an image. While one-hot encoding
is commonly used to convert the categorical features into the numerical space, this approach can introduce
sparsity in the resulting representation (e.g. a categorical feature with > 100 possible values). This is further
exacerbated by the common presence of missing values. (ii) Model Agnosticity: For tabular data, the
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downstream model that will use the distilled data can be quite varied, with decision-tree-based models
often being quite successful (Grinsztajn et al., 2022), while linear and nearest-neighbor models are used for
interpretability. Various increasing competitive neural-network-based models have also been developed for
tabular data (Borisov et al., 2022; Gorishniy et al., 2021; McElfresh et al., 2023; Grinsztajn et al., 2022).

Algorithm 1: Distill original data S with N samples
given a preprocessor P : Rr × Cc → RD and a distiller
F : RN×D × Y N → Rn×D × Y n.

1 S̃ ← {(P (x), y) ∀(x, y) ∈ S} // Preprocess
2 R← F (S̃) // Distill
3 return R

However, in the most common cases, we can-
not assume that the downstream model is dif-
ferentiable and thus will be unable to perform
a downstream model-specific distillation via
the common bilevel formulation of the prob-
lem. The distillation has to be model-agnostic,
which means that we have to retain as much of
the information in the original data as possible
since we do not know a priori what information

the downstream model might leverage.

We will consider a classification dataset S = {(x1, y1), . . . , (xN , yN )} with N samples, r numerical features
and c categorical features, and L labels, where each xi ∈ Rr × Cc and yi ∈ Y = {1, . . . , L}. Following Cui
et al. (2022), we only consider classification tasks in this work, but it should be noted that regression can
be easily added into our framework. Note that features may contain missing values. After appropriate
preprocessing steps to convert the categorical variables to numerical ones and imputing the missing values, 1

we can directly apply some existing distillation schemes such as KIP (Nguyen et al., 2020) or GM (Zhao
et al., 2020). This procedure is sketched in Algorithm 1.

2.1 Representation Learning via Column Embedding

A key ingredient in the development of neural networks for tabular data is the use of column embeddings.
First developed for categorical features, the idea is to learn an embedding for each of the categories in a
categorical feature (Guo & Berkhahn, 2016). This embedding would replace the one-hot encoded numerical
representation of the categories and be used in conjunction with the (appropriately scaled and imputed)
numerical features in standard and custom feed-forward networks (FFNs) (Borisov et al., 2022). Column
embeddings for numerical data were developed to use more standard modern architectures such as graph
neural networks (GNNs) and Transformers. As with categorical data, each numerical value in a numerical
feature of the table would be converted into a learnable embedding. Thus, more precisely, a sample (row) in a
table with r numerical features and c categorical features is now represented as a set of (r+ c) embeddings in
Rm each of size m (where m is a user-specified hyperparameter), thus effectively as the (m× (r + c)) matrix.
2

Encoder Architectures. Given the Rm×(r+c) representation of a row (sample) using column embeddings,
our goal is to learn a more compact yet faithful representation of a row. One simple strategy is to concatenate
all the (r + c) column embeddings into a single vector in Rm(r+c) of size m(r + c) and input it into an FFN
which projects it down to a lower dimensionality (Figure 14). However, one of our main motivations for
using column embeddings is to leverage the capabilities of more modern architectures. For a given row, the
(r+ c) column embeddings can be treated as initial token embeddings that are progressively updated through
multiple Transformer blocks as described by Gorishniy et al. (2021). Using a dummy [CLS] token, the above
process can create a m-dimensional representation of the row (Figure 17). An alternate procedure is to
represent a table as a bipartite graph between columns and rows (with column values and rows as vertices)
and utilize the column embeddings as representations for the column vertices (Wu et al., 2021). Then, the
row embeddings are obtained by filling in representations for the row vertices via multiple rounds of message
passing in a multi-layered GNN (Figure 15). For our purposes, we consider all three architectures – FFN,
Transformer and GNN – as encoders that project the Rm×(r+c) representation of row into an embedding in
Rm. While categorical column embeddings are standard, there are multiple techniques for numerical column

1For example, using data science tools such as preprocessing.OneHotEncoder and impute.SimpleImputer from the
scikit-learn machine learning toolkit.

2While each feature can have column embeddings of different sizes, many neural network architectures require the column
embedding size to match across all features.
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embeddings (Gorishniy et al., 2021; 2022). In this work, we mainly consider the embeddings from Gorishniy
et al. (2021), but we discuss and ablate the effect these different schemes have in Appendix B.2.

Learning Objective. Our goal is to retain as much information regarding the original data in the learned
representation as possible. The need for high-fidelity learned representations is critical because we do not
assume anything regarding the downstream model, which will be trained with the distilled data. Thus, we
try to reconstruct the original data from the learned representation as well as possible. Formally, given
column embeddings C : Rr × Cc → Rm×(r+c), and an encoder ϕ : Rm×(r+c) → Rm, we utilize a decoder
ψ : Rm → Rr × Cc to reconstruct the original data, and solve the following optimization problem:

min
C,ϕ,ψ

∑
(x,y)∈S

ℓ (x, ψ(ϕ(C(x)))) , (1)

where ℓ(·, ·) is a reconstruction error (RE) and ψ is implemented with a nψ-layer MLP where nψ is a tunable
parameter. Note that the above representation learning does not use the label information in the data S.
This representation learning framework allows us to infuse class information in the representations while
ensuring no loss of original information. Thus, after obtaining the column embeddings C, encoder ϕ and
decoder ψ by solving Equation (1), we apply supervised fine-tuning (SFT) to the encoder by learning a
classifier f : Rm → Y on top of the learned representations while keeping the reconstruction loss low:

min
C,ϕ,ψ,f

∑
(x,y)∈S

ℓ(x, ψ(ϕ(C(x))) + αL(y, f(ϕ(C(x)))), (2)

where L(·, ·) is the downstream learning loss function, α > 0 is a hyperparameter balancing the classification
and reconstruction quality, and f is a implemented with a nf layer MLP where nf is a tunable parameter.
We employ a 2-stage hyperparameter optimization (HPO) process for each optimization problem of each
dataset to find the best architecture. A more detailed version of this procedure can be seen in Algorithm 3.

Algorithm 2: TDColER: Distill dataset S with N samples
given distiller F : RN×m × Y N → Rn×m × Y n, and learn-
able column embeddings C : Rr × Cc → Rm×(r+c), encoder
ϕ : Rm(r+c) → Rm, decoder ψ : Rm → Rr × Cc, classifier
f : Rm → Y .

1 C, ϕ, ψ ← solve Equation (1) // minimize RE
2 C, ϕ, ψ, f ← solve Equation (2) // fine-tune
3 S̃ ← {(ϕ(C(x)), y), (x, y) ∈ S} // Encode
4 R̃← F (S̃) // Distill in latent space
5 R← {(ψ(x), y), (x, y) ∈ R̃} // Decode
6 return R, R̃, C, ϕ, ψ

Complete Distillation Pipeline. After
the column embeddings C, an autoencoder
composed of encoder ϕ and decoder ψ are
learned (with Equation (1)) and fine-tuned
(with Equation (2)), we convert the input
features of the whole original dataset (with
N samples) into the learned representations
in Rm using C and ϕ and apply the aforemen-
tioned distillation schemes to this dataset (N
samples in Rm) to get n distilled samples in
Rm. At this point, we decode the distilled
samples into the original representation us-
ing ψ. This whole pipeline is summarized in

Algorithm 2. Note that the distillation with the learned representation in Rm, and the availability of the
decoder ψ, allows us to have two versions of the distilled data – one in the learned representation (R̃ in
Algorithm 2, Line 4), and one in the original representation (R in Algorithm 2, Line 5). Thus, using R̃
corresponds to the bottom highlighted portion of Figure 2a, while just using R corresponds to the top portion
outside of the box. We can choose the appropriate distilled set based on the downstream application: If we
require the distilled data to be obfuscated with no explicit correspondence to the original features, we can
use R̃. In this setting, we are required to have the column embeddings C and the encoder ϕ during inference
with the downstream trained model to map the test points into the appropriate representation. If we require
the distilled data and the model trained on it to be interpretable in terms of the original features, we should
use the distilled set R in the original representation. In this case, we do not need the column embeddings or
the encoder during inference.
Remark 1. Our contribution is a novel representation learning and distillation pipeline for model-agnostic
tabular data distillation utilizing existing distillation schemes, column embeddings, and network architectures
such as transformers and GNNs. In our thorough empirical evaluations, we will demonstrate the distilled
data quality boost from this pipeline across multiple datasets and downstream models.
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3 Evaluation Benchmark

To thoroughly evaluate the various configurations of the proposed distillation pipeline, we establish a
comprehensive benchmark suite with a varied set of datasets and downstream models, evaluating the pipeline
at various levels of distillation sizes. With 3 encoder architectures, 12 distillation schemes (including variants),
20+ datasets, 7 downstream models, 10 distillation sizes, 5 repetitions per distillation pipeline, and model
training, we have generated over 226,890 distilled datasets and trained over 548,880 individual downstream
models 3

3.1 Datasets.

We consider 23 datasets from OpenML (Vanschoren et al., 2014) with the number of samples varying from
10,000 to over 110,000, and number of features varying from 7 to 54. Instead of investigating a few large
datasets, we choose to incorporate more datasets to generalize the findings across a wider range of datasets.
The datasets are chosen to be diverse in terms of the number of samples, features, and the type of features
(numerical, categorical, or mixed). There are 14/23 datasets with only numerical features, 2/23 with only
categorical features, and 7/23 with both numerical and categorical features. All these datasets correspond
to binary classification problems. Class imbalance is a common feature of tabular datasets (Johnson &
Khoshgoftaar, 2019; Thabtah et al., 2020), and we focus on binary classification to carefully study the effect
of class imbalance on the distilled data quality. There are 9/23 almost perfectly balanced datasets and 10/23
datasets with a ratio of close to 1:2 between the smaller and larger classes, with the worst imbalance ratio
smaller than 1:15. Note that while we only consider binary classification datasets, the distillation pipelines
are natively applicable to multi-class classification problems. We handle missing values by adding a new bin
for categorical features and replace with 0 for numerical features. More details about the datasets used in the
experiments can be found in Appendix A.1.

Distillation Methods. Given our aforementioned desiderata for model-agnosticity, we have the following
existing distillation schemes available, which take as input the set S of N samples and output a set R of
n≪ N distilled samples (further details regarding implementation of each distillation method is provided
in Appendix A.3.2):

• k-means Clustering (KM) finds n/L clusters for each of the L classes to produce a total of n distilled
samples using Lloyd’s k-means algorithm (Lloyd, 1982). We consider two variations here by (i) using the
Euclidean center of each cluster to generate a synthetic sample or (ii) choosing the closest real point to
the Euclidean center of each cluster. That is, R comprises n/L cluster centers (or closest real points) for
each of the L classes.

• Agglomerative Clustering (AG) (Müllner, 2011) again generates n/L clusters for each of the L classes
is similar to k-means. We use the Ward linkage scheme with the Euclidean distance metric. Similar to
k-means, we generate (i) synthetic samples by using the Euclidean center of a cluster or (ii) real samples
that are closest to the cluster centers.

• Kernel Induced Points (KIP) (Nguyen et al., 2020) uses the neural tangent kernel (NTK) (Jacot
et al., 2018) of a wide neural network and kernel ridge regression to produce a distilled set of samples.
Given the feature matrix X ∈ RN×D and the label vector y ∈ Y N , KIP learns the distilled feature matrix
X̄ ∈ Rn×D and label vector ȳ ∈ Y n by solving the following problem:

min
X̄,ȳ
L

(
y,KXX̄(KX̄X̄ + λI)−1ȳ

)
, (3)

where L is the downstream learning loss function, KXX̄ ∈ RN×n is the NTK matrix between X and X̄,
KX̄X̄ ∈ Rn×n is the NTK matrix of X̄ with itself, and λ > 0 is a regularization hyperparameter for the
kernel ridge regression. Essentially, we are learning a set of synthetic samples such that the predictions
made on the original dataset features using the distilled dataset via kernel ridge regression match the
original labels.
3The TDBench benchmarking suite (code provided in the supplement) can be extended to evaluate any new distillation

method, tabular representation, and downstream model and compared against our current database of results (also provided in
the supplement). More information can be found in Appendix C.
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• Gradient Matching (GM) (Zhao et al., 2020) produces the distilled set R for a given “backbone model”
Mθ (parameterized by θ) by directly optimizing for R to induce model parameter gradients that are similar
to the gradients obtained while training Mθ on the full dataset S. Given a distance metric D(·, ·), and
a distribution Pθ0 over the random model parameter initializations θ0, the distillation problem tries to
minimize the distance between the model gradients computed on the full and distilled datasets over the T
steps of model learning as follows:

min
R

Eθ0∼Pθ0

[
T−1∑
t=0

D (∇θL(θt;S),∇θL(θt;R))
]
, (4)

where L(θ;S) is the loss of the model Mθ on the original full dataset S, L(θ;R) is the loss of Mθ evaluated
on R, and the model parameters θt are updated at θt+1 ← θt − ηθ∇θL(θt;S) via gradient descent with a
learning rate ηθ using the full original dataset.

We consider KIP and GM as representatives from previous data distillation literature that are model-
agnostic and model-centric, respectively. Appendix A.3.1 further discusses our choice of distillation methods
considered in this work. However, based on the weaker downstream performance of these methods in our
initial experiments, we later included more recent methods from computer vision, such as trajectory-based
matching Cazenavette et al. (2022) and its evolved version difficultiy-based matching Guo et al. (2023),
and 4 representative NN-based coreset selection methods from DeepCore Guo et al. (2022). All the above
distillation schemes require the data to be preprocessed into a numerical form, and can be used in Algorithm 1
to distill tables. But, as we will see, this is not a very useful scheme. Our evaluation of TDColER on TDBench
will demonstrate how the performance of these distillation schemes are boosted via representation learning.

To study the ability of the distillation pipeline to generate really small but useful distilled datasets, we consider
extremely small distilled datasets with 10-100 instances per class (IPC), corresponding to a distillation fraction
of the order of 0.1-1.0% on the smallest datasets, and 0.01-0.1% for the largest datasets. This is comparable
to the compression ratio of 0.02-1% used in Cui et al. (2022) and Cazenavette et al. (2023).

Downstream models. We consider 7 downstream models to evaluate the distilled data quality. We
consider the Nearest-Neighbor Classifier (KNeighbors), Logistic Regression (LR), Gaussian Naive Bayes
(GNB), and the Multi-Layered Perceptron (MLP) from the scikit-learn library (Pedregosa et al., 2011).
We also consider the popular XGBoost ensemble of gradient-boosted decision trees (XGB) (Chen & Guestrin,
2016). We include two recent neural network models for tabular data, the ResNet and the FTTransformer
models (Gorishniy et al., 2021). Since our distillation pipeline is deliberately model-agnostic, we train these
models on the distilled data using the default hyperparameters of the corresponding libraries. We also
consider a hyperparameter optimization (HPO) use case using the distilled datasets in our evaluations, which
can be found in Appendix 4.4.

Evaluation metric. To have a standardized way to quantify the quality of the distilled data across different
models and datasets, we use the notion of relative regret which compares the each model’s balanced accuracy
score when trained on the full, distilled and randomly sampled data points. Precisely, the relative regret is
defined as (AF −A)/(AF −AR10 ), where AF is the balanced accuracy of the model trained on the full training set,
AR10 is the balanced accuracy on the same test set when trained on 10 random samples per class averaged
over 5 random repetitions, and A is the balanced accuracy of the model when trained on the distilled dataset
over random 5 repetitions. This metric is used with two main assumption: 1) most methods will perform
better than 10 randomly sampled points AR10 , 2) most methods will not outperform the performance on the
full dataset (AF ). A relative regret of 1 matches the performance of random sampling at IPC=10, and a
relative regret of 0 matches the performance of the model trained on the full dataset (which is usually the
gold standard) – lower relative regret implies higher distilled data quality 4. It should be noted that while
this metric is designed to provide a sense of the improvement from the different pipelines, comparisons across
different downstream classifiers may be misleading as the scaling depends on the AF of each classifier. In

4For all the downstream models, the aggregate (median across all datasets) relative regret of random samples at IPC=10
(smallest distillation size) is 1.0 by definition, while the aggregate relative regret of random samples at IPC=100 (largest
distillation size) is around 0.5, indicating that the benchmark is challenging enough with significant room for improvement.
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Figure 3: Change in relative regret of downstream classifiers when trained on distilled data over IPC ∈ [10, 100],
aggregated over datasets and encoder architectures and compared against randomly sampled points (RND)
in the original space (no encoder). The text on top of each sub-plot refers to the relative performance
increase/decrease when using the encoded/reconstructed space when comparing to using no encoder at the
lowest IPC regime (IPC=10). Lower is better. Each row corresponds to a downstream classifier, and each
column corresponds to a distillation method. The encoders are denoted by color and the line style refers to
the encoding scheme used – original (no encoder involved), encoded (Enc.), and reconstructed (Rec.). For the
reconstructed setting, we pick the best performance between using the oringinal data point (only applicable
to clustering-based methods) or using the decoder. Data distilled by clustering methods (AG, KM) in the
encoded space show the best performance for all classifiers. In many cases, using the encoded representation
as the final output yields a performance comparable to using the original representation. Figure 18 shows a
more detailed version of this plot that includes FTTransformer and ResNet.

addition, it should also be noted that this metric does not have a strict lower or upper bound. If either the
target method (A) or random sampling 10 points (AR10) yields higher performance than training on the full
dataset (AF ), the relative regret can be below zero. We do not find any cases where AR10 > AF , but we do
rarely observe cases where A > AF by a slight margin. We do observe some instances where this metric can
result in negative values, meaing that the distilled data’s downstream performance is higher than that of the
full dataset. There are a few reasons why this may be occuring: 1) The dataset in its original (i.e. one-hot
encoded categoricals) representation can be very sparse, while the learned representation transforms it into a
dense form. 2) Some of the datasets are very imbalanced, and our distillation methods force balance between
labels by sampling (or initializing) the same number of points for each label.

4 Results Analysis

In this section, we present the analysis of the results obtained from our benchmarking experiments. For the
sake of brevity, we will use the following acronyms – Instances Per Class: IPC, random sampling: RND,
k-means: KM, agglomerative: AG, gradient matching: GM, kernel inducing points: KIP, feed-forward neural
network: FFN, graph neural network: GNN, transformer: TF. Additionally, the supervised-fine-tuned variant
of the autoencoder will be marked with a *. For example, the results of Algorithm 2 with a transformer
architecture for ϕ as TF*, whereas TF denotes the version that skips line 2 of Algorithm 2 to highlight the
importance of the supervised fine-tuning.
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Figure 5: Phishing Websites dataset.

Figure 6: PCA visualization of encoded points before and after applying SFT.

4.1 How beneficial are the learned representations for distillation?

As the first step of our analysis, we examine the performance difference between pipelines that use encoder’s
latent space and those that do not. To fully understand the effect of our latent space projection step,
we analyze our results from two angles: 1) Is it better to distill in the latent or original space? 2) If
latent space is better, is it better to decode the data back to the original space or stay in the latent
space? Figure 3 shows the relative regret score of distillation methods under different data representation
schemes. We start by examining the downstream performance difference between pipelines that use the
latent space to distill in vs. ones that do not (Algorithm 2 vs. Algorithm 1). The results show that using
the latent space is highly beneficial in most cases with lower IPC values. This trend is most apparent
in classifiers such as KNN (44.96-108.79% improvement at IPC=10), Logistic Regression (22.14-62.64%
improvement) or MLP (32.73-68.72% improvement), while XGBoost shows the least improvement from any
of the distillation methods (15.82-36.00% improvement). k-means and agglomerative clustering also show
a more apparent decrease in regret, while KIP and GM show noticeable improvements only when both

0.6 0.7 0.8 0.9 1.0 1.1
Relative Regret
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Figure 7: Scatterplot of encoder parame-
ter size and downstream classifier regret at
IPC=10 aggregated over datasets and classi-
fiers. The dots represent the median values,
and the error bars span the 25% and 75%
percentile, respectively. Note that the en-
coder sizes for both SFT and base versions
are the same for each dataset.

the distillation and the final dataset are in the latent space.
With this in mind, we examine the performance difference when
training on the distilled data in the latent space or decoding
to the original space before training the downstream classifier
(using R̃ or R from Algorithm 2). Figure 3 shows that training
on the dataset in the latent space improves the downstream
performance for all distillation pipelines – in fact, it is the
best performer for almost every instance over classifiers and
distillation methods. The change in performance is more appar-
ent in KNN (40.92-65.40%), Logistic Regression (33.75-67.29%)
and MLP (33.93-96.38%), while XGBoost shows a more subtle
change (7.28-19.20%). In order to verify the separability of the
encoded representation, we visualize some datasets in the en-
coded space both before and after applying SFT. Figure 6 shows
one example of this visualization, clearly showing that SFT im-
proves separation of data points with respect to the target
classes. This leads us to conclude that distillation methods
benefit the most when both distilling and downstream
training in on the latent representations. It is also worth noting that decoding the distilled data from
the latent space (Rec.) is also beneficial compared to random sampling in many cases.

4.2 How do different encoders compare?

Having observed that using the latent space is beneficial, we now seek to identify which encoder architecture
leads to the best performance. Table 1 shows the average rank of distillation pipelines that use the latent space
of different encoder architectures. The mean rank of each of the is calculated by comparing the performance
of each pipeline where the only difference is the encoder architecture and other components are kept constant.
That is, we group the experiments into sets that only differ in the encoder (i.e. same dataset d, classifier c,
ipc i, distillation method dm, encoding e) and a set of encoders Φ = {FFN,FFN*,GNN,GNN*,TF,TF*},
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Table 2: Relative regret of pipelines that use different combinations of distill methods and encoders at
IPC=10, aggregated over classifiers. The best value for each column is marked with bold, and the second
best is marked with underline. The best in each distillation method group is marked with italics. On
average, k-means with SFT transformer shows the best performance, but agglomerative clustering also shows
comparable performance.

Distill Method Encoder Regret
Min Q1 Mean Median Q3 Max

KM
TF* -14.4491 0.0733 -0.0464 0.4056 0.7379 1.1773
FFN* -11.9912 0.2039 0.1382 0.6035 0.8389 1.5368
GNN* -12.1045 0.0973 0.1054 0.5047 0.7887 1.0494

AG
TF* -15.3965 0.0810 0.0187 0.4135 0.6507 1.4982
FFN* -10.1288 0.2483 0.3695 0.6230 0.8823 4.1191
GNN* -13.1881 0.1397 0.2245 0.4793 0.7595 4.4801

KIP
TF* -4.1619 0.5226 1.1124 0.9415 1.2966 11.1034
FFN* -5.3973 0.8053 1.6363 1.2502 1.6434 16.4137
GNN* -1.4649 0.7403 1.1957 1.0136 1.3329 10.5175

GM
TF* -3.8002 0.4105 0.7273 0.7952 1.0564 4.9450
FFN* -4.3269 0.5975 1.2660 0.9938 1.3827 16.5044
GNN* -1.4776 0.4626 0.8073 0.8457 0.9779 8.4566

2 3 4

KM (1.6)
AG (1.7)
GM (3.5)

(4.2) KIP
(4) RND

CD

(a) IPC=10

2 3 4

AG (1.9)
KM (1.9)

RND (3.6)
(3.9) KIP
(3.6) GM

CD

(b) IPC=50

2 3 4

KM (2)
AG (2.2)

RND (3.4)
(3.9) KIP
(3.6) GM

CD

(c) IPC=100
Figure 8: Critical difference plot comparing ranks of distillation methods across datasets, encoders, and
classifiers per IPC value. The x-axis denotes the average rank, and a black horizontal line connects groups
of methods that are not significantly different in the rank distribution. k-means and agglomerative are
indistinguishable from each other in IPC ∈ {10, 50}, but k-means gains an edge in IPC=100.

the rank of one encoder ϕ ∈ Φ is computed as Rϕ =
∑
ϕ′∈Φ,ϕ′ ̸=ϕ{1 if Aϕ′ > Aϕ else 0} where Aϕ is the

downstream performance of the pipeline that uses ϕ. We then compute the average of this rank for every
possible combination of dataset, classifier, distillation method and IPC to compute the mean rank. Among
the tested architectures and training objectives, the transformer architecture with supervised fine-
tuning leads to the best downstream performance. We find that adding supervised fine-tuning to the
autoencoder training improves the downstream performance of all encoders in general.

Table 1: Average rank and median relative
regret of distillation pipelines that use the
latent space of different encoder architec-
tures evaluated at IPC=10, grouped over all
datasets and classifiers.

Encoder Mean Rank Median R.R.

TF 4.1176 0.9439
FFN 4.3407 0.9746
GNN 4.2243 0.9695
TF* 2.3591 0.6149
FFN* 3.3652 0.8082
GNN* 2.5931 0.7135

Another important aspect of data distillation is to improve
downstream classifier efficiency providing a lightweight proxy.
Thus, it is important to examine the resources required in the
distillation pipeline. Specifically, one aspect of our distillation
pipelines that can add an additional cost is the encoder. In
settings that require the data to be projected into latent space
at inference time, the encoder can be considered part of the
distilled data. Figure 7 shows the parameter size of the different
encoder architectures vs. the downstream classifier regret scores.
As noted before, the transformer architecture leads to the best
downstream performance. However, it is worth noting that
GNN architecture has the smallest overall parameter size while
providing the second-best performance. Further discussion on the parameter size analysis of each encoder
architecture can be found in Appendix A.2.2.
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(a) Logistic Regression
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(b) XGBoost
Figure 9: Comparison of HPO validation performance vs. time to train the classifier with full and distilled
data. The x axis denotes runtime of the HPO search procedure, while the y axis denotes the best performance
encoutered so far. To better visualize the performance difference, we truncate the plot for the full data run at
twice the runtime of the entire distilled run.

4.3 Which distillation method leads to the best downstream performance?

We now compare the most critical piece of the distillation pipeline – the distillation method. We wish to
understand which method leads to the best downstream performance across datasets, encoders, representation
space, and classifier configurations. To evaluate, we perform a Friedman test with a post-hoc Nemenyi test to
identify groups that stand out from the rest, as shown in Figure 8. The results show that clustering-based
methods (k-means, agglomerative) show the strongest performance across datasets and encoder
configurations, consistently placing in the top two ranks. While both methods show similar performance,
we find that k-means starts to outperform agglomerative as the IPC increases.

4.4 Which combination leads to best performance?

Our previous analysis has revealed that transformer encoders with SFT and clustering-based distil-
lation methods perform best in their respective comparisons. Now, we aim to identify which com-
bination of encoder and distillation method leads to the best downstream performance. We ap-
proach this question by examining the detailed statistics behind the combinations’ performance and
the top performers of each dataset, classifier, and n combinations. Table 2 shows detailed statis-
tics about each distill method and encoder combination, while Table 3 shows the count of the
top 5 distillation pipelines that placed in the top 10 by performance in each comparison group.

Table 3: The best performing
pipelines ranked by their appear-
ance count at the top 10 (out
of 50 possible combinations) of
each comparison at IPC=10. k-
means stands out as the strongest
performer in combination with a
supervised-fine-tuned transformer
encoder ranking at the top 10 in 67
instances out of 86 rankings.

Count Encoder D.M. Output

67 TF* KM Enc.
63 GNN* KM Enc.
61 GNN* AG Enc.
61 TF* AG Enc.
42 FFN* KM Enc.

In line with our previous findings, the results show that k-means
clustering with supervised-fine-tuned transformer encoder leads
to the best overall performance. All of the top performers are
clustering-based methods, and all of them use the latent space, again
confirming that using the latent representation from the encoder
greatly benefits distillation methods. In addition, the GNN encoder
shows a comparative performance to that of the transformer encoder.
This is especially noteworthy, considering that GNN has the smallest
parameter size among the encoder architectures.

We additionally run a smaller-scale HPO experiment to consider a use
case for distilled data, as seen in Figure 9. Specifically, we consider a case
where the validation and testing data is sampled from the original data,
and the classifier is trained on either the full or distilled data. In general,
we note that training on the distilled data gives comparable performance
to training on the full data in a fraction of the time, consuming on
average 21.84% of the runtime and reaching 98.37% of the performance.
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(c) IPC=100
Figure 10: Critical difference plot comparing ranks of distillation methods across datasets per IPC value
when applied with TF-SFT encoder for XGBoost classifier with additional baselines. The x-axis denotes the
average rank, and a black horizontal line connects groups of methods that are not significantly different in
the rank distribution. k-means and agglomerative are indistinguishable from each other in IPC ∈ {10, 50},
but k-means gains an edge in IPC=100. (FG: Forgetting, GN: GraNd, GL: Glister, GC: Graph Cut)
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Figure 11: Critical difference plot comparing ranks of distillation methods across datasets per IPC value
when applied with TF-SFT encoder for MLP classifier with additional baselines. The x-axis denotes the
average rank, and a black horizontal line connects groups of methods that are not significantly different in
the rank distribution. k-means and agglomerative are indistinguishable from each other in IPC ∈ {10, 50},
but k-means gains an edge in IPC=100. (FG: Forgetting, GN: GraNd, GL: Glister, GC: Graph Cut)

4.5 How do more recent data distillation methods compare?

We conduct a further comparison of more recent distillation methods against the methods compared in Section 4
to verify whether these methods will show superior performance. Specifically, we incorporate four representative
NN-based coreset selection methods examined in DeepCore Guo et al. (2022) – Forgetting Toneva et al.
(2018), GraNd Paul et al. (2021), Glister Killamsetty et al. (2021), Graph Cut Iyer & Bilmes (2013) and
MTT Cazenavette et al. (2022) and DATM Guo et al. (2023). Figure 10 shows the updated critical difference
plot comparing the additional methods in the best-performing setting. The raw regret scores can be found
in Table 18. Consistent to our previous findings, we find that more recent distillation methods that rely on
NNs do not fair well on non-differentiable downstream classifier (XGBoost), and that clustering methods
still show dominance. It is also worth noting that GM shows superior performance to MTT and DATM,
suggesting that the latter two methods may actually be overfitting to the teacher network’s architecture.

In addition to the analysis seen in Figure 10, we conduct the same experiment on a neural-network based
downstream classifier (MLP) to see if our hypothesis that gradient-based distillation methods perform worse
due to the downstream model’s architecture will hold. Figure 11 shows the critical difference comparison of
distillation methods when applied on a MLP downstream classifier and Table 19 shows the balanced regret
score statistics of each method. While k-means and agglomerative clustering still show superior performance,
we observe that other gradient-based methods indeed show better performance when compared to random
sampling, further supporting our initial suscpicion that gradient-based distillation methods produce distilled
datasets that are useful only for NN-based classifiers.

4.6 Does distillation preserve feature correlation?

We further investigate the presevation of feature correlation in the distilled data. Figure 12 shows th feature
correlation heatmaps for each version of the dataset. While the randomly sampled data also preserves most of
the correlation, we observe that the dataset distilled with k-means is more similar (e.g. interaction between
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Figure 12: Feature correlation of the original, randomly sampled, and k-means distilled version of the Credit
dataset@IPC=100.

features 3 and 7 of Credit dataset) to the original dataset. We also observe this trend for other datasets,
which can be seen in Figure 23.

4.7 How does class imbalance affect performance?
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Figure 13: Average median relative re-
gret of distillation methods aggregated
over downstream classifiers and en-
coders at IPC=10 with a least-squares
linear regression. Compared to KIP and
GM, k-means and agglomerative show
much stronger performance in imbal-
anced data.

Finally, we examine the downstream performance of classifiers with
respect to the label balance, or the imbalance, of the original dataset,
shown Figure 13.Compared to other methods, including random
sampling, clustering-based methods show impressive strength when
distilling datasets with high label imbalance, highlighting their
robustness under challenging data distributions. One possible expla-
nation behind this phenomenon is that while NN-based distillation
methods may prioritize the majority class due to the imbalance, the
clustering methods are forced to place equal emphasis on all classes,
preventing an overfitting on the majority class.

5 Discussion

This work introduced a tabular data distillation pipeline and eval-
uated it extensively leveraging various distillation methods, with
a focus on supporting both non-NN and NN ML classifiers. We
introduce a novel framework, TDColER, that leverages latent repre-
sentation of tabular data in distillation, and evaluate it thoroughly
in our benchmark, TDBench, which included 23 datasets, 11 distillation algorithms, 3 autoencoder architectures,
and 7 downstream classifiers, resulting in over 226,890 distilled datasets and 548,880 downstream classifier
instances. Our results show that TDColER can induce superior performance in distillation methods on tabular
data, improving the quality by 0.5-143%. We also show that k-means clustering and transformer autoencoder
are a particularly strong combination for tabular data distillation. We hope that this work will serve as a
starting point for future research in tabular data distillation and plan to extend this benchmark further to
incorporate new distillation pipelines.
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Table 4: Dataset name and OpenML Vanschoren et al. (2014) url

Dataset Name Dataset URL

adult https://api.openml.org/d/1590
Amazon_employee_access https://api.openml.org/d/4135
Bank_marketing_data_set_UCI https://api.openml.org/d/44234
credit https://api.openml.org/d/45027
default-of-credit-card-clients https://api.openml.org/d/45020
Diabetes130US https://api.openml.org/d/45022
electrcity https://api.openml.org/d/151
elevators https://api.openml.org/d/846
higgs https://api.openml.org/d/23512
hcdr https://api.openml.org/d/45071
house_16H https://api.openml.org/d/821
jannis https://api.openml.org/d/45021
law-school-admission-bianry https://api.openml.org/d/43890
MagicTelescope https://api.openml.org/d/1120
Medical-Appointment-No-Shows https://api.openml.org/d/43439
MiniBooNE https://api.openml.org/d/44088
numerai28.6 https://api.openml.org/d/23517
nursery https://api.openml.org/d/959
PhishingWebsites https://api.openml.org/d/4534
pol https://api.openml.org/d/722
road-safety https://api.openml.org/d/44161
Click_prediction_small https://api.openml.org/d/1220
2dplanes https://api.openml.org/d/727

A Appendix

A.1 Datasets

Tables 4 and 5 show the information about datasets used in our experiments along with their OpenML Van-
schoren et al. (2014) URLs. These datasets were chosen mainly based on two characteristics: 1) the row
count must be greater than 10,000 and 2) it must have more than 5 features. The main rationale for the
selection is that the dataset must be big enough so that we can conduct meaningful distillation. The list
of datasets is gathered by searching on OpenML Vanschoren et al. (2014) and removing entries that were
incomplete/duplicates.

A.2 Autoencoder implementation details
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Table 5: Metadata of each dataset seen in Table 4

Dataset # Instances # Features # Cont. # Cat. # Class 0 # Class 1

2dplanes 40,768 10 10 0 20,420 20,348
Amazon_employee_access 32,769 9 8 1 1,897 30,872
Bank_marketing_data_set_UCI 45,211 16 7 9 39,922 5,289
Click_prediction_small 39,948 11 11 0 33,220 6,728
Diabetes130US 71,090 7 7 0 35,545 35,545
MagicTelescope 19,020 11 11 0 12,332 6,688
Medical-Appointment-No-Shows 110,527 13 10 3 88,208 22,319
MiniBooNE 72,998 50 50 0 36,499 36,499
PhishingWebsites 11,055 30 0 30 4,898 6,157
adult 48,842 14 6 8 37,155 11,687
credit 16,714 10 10 0 8,357 8,357
default-of-credit-card-clients 13,272 20 20 0 6,636 6,636
electrcity 45,312 8 7 1 26,075 19,237
elevators 16,599 18 18 0 5,130 11,469
hcdr 10,000 22 22 0 5,000 5,000
higgs 98,050 28 28 0 46,223 51,827
house_16H 22,784 16 16 0 6,744 16,040
jannis 57,580 54 54 0 28,790 28,790
law-school-admission-bianry 20,800 11 6 5 6,694 14,106
numerai28.6 96,320 21 21 0 47,662 48,658
nursery 12,960 8 0 8 8,640 4,320
pol 15,000 48 48 0 5,041 9,959
road-safety 111,762 32 29 3 55,881 55,881
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Algorithm 3: TDColER: An expanded version of Algorithm 2 to distill dataset S with N samples given:
distiller F : RN×m × Y N → Rn×m × Y n,
learnable column embeddings C : Rr × Cc → Rm×(r+c),
encoder ϕ : Rm(r+c) → Rm,
decoder ψ : Rm → Rr × Cc,
classifier f : Rm → Y ,
set of encoder hyperparameters Θ as described in Tables 6 to 8,
set of decoder hyperparameters Z as described in Table 9,
set of classifier hyperparameters Ω as described in Table 10,
and stage 1 and 2 HPO iterations K and K′ respectively.
In our experiments, we set K = 500 and K′ = 100.

1 Stage 1: Hyperparameter search for encoder/decoder for k = 1, . . . ,K do
2 θk ∼ Θ, ζk ∼ Z // Sample encoder and decoder HP
3 (C, ϕ, ψ)← minimize LR(C, ϕ, ψ) from Equation (9). // Minimize RE
4 Record validation performance vrecon(θk, ζk)
5 θ∗, ζ∗ = arg minθk,ζk

vrecon(θk, ζk). // Select the best HP

6 (C, ϕ, ψ)← train
(
C, ϕ, ψ; θ∗, ζ∗

)
on entire training set S. // Train final with best hyperparameters

7 Stage 2: Fine-tuning jointly with classifier head
8 for k = 1, . . . ,K′ do
9 ωk ∼ Ω, αk ∼ [0, 1] // Sample classifier HP and balancing factor

10 (C, ϕ, ψ, f)← minimize LR + αLC from Equation (11). // Minimize joint objective
11 Record validation performance vjoint(ωk, αk)
12 ω∗, α∗ = arg minω,α vjoint(ω, α). // Select the best HP

13 (C, ϕ, ψ, f)← train
(
C, ϕ, ψ, f ; θ∗, ζ∗, ω∗, α∗

)
on entire training set S. // f is discarded after this step

14 Encoding and distillation steps S̃ ← {(ϕ(C(x)), y), (x, y) ∈ S} // Encode
15 R̃← F (S̃) // Distill in latent space
16 R← {(ψ(x), y), (x, y) ∈ R̃} // Decode
17 return R, R̃, C, ϕ, ψ

Here we provide more details on the implementation and training procedure of the autoencoders used in
our experiments. Algorithm 3 shows the full procedure of the distillation pipeline, including the hyperpa-
rameter optimization (HPO) steps for the encoder and decoder modules. Each of the hyperparameter and
implemenation details are documented below.

A.2.1 Hyperparameter optimization for encoders

Tables 6 to 10 show the hyperparameters considered for different modules of the autoencoders. We use
{x, y, z} to denote a set of variables and [a, b] to denote an inclusive range of values. We conduct HPO
for each autoencoder + dataset pair using an implementation of hyperopt Bergstra et al. (2015) from Ray
Tune Liaw et al. (2018) with a maximum of 500 samples for each HPO run. As noted in Section 2.1, we
first train the vanilla autoencoders for each dataset using the encoder hyperparameters seen in Tables 6 to 8

Table 6: Hyperparameters tested for FFN encoder.

Hyperparameter Values

d_hidden (100, 200)
n_hidden [1, 4]
dropout (0, 0.2, 0.4)
d_embedding (10, 20, 50, 100, 200)
use_embedding (True,False)
learning_rate 10[−3,−1]

weight_decay 10[−4,−1]

lr_scheduler (None, Plateau, Cosine)
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Table 7: Hyperparameters tested for GNN encoder.

Hyperparameter Values

graph_layer (graphsage, gcn, gat)
graph_aggr (mean, softmax)
n_graph [1, 15]
edge_direction (bidirectional, multipass)
edge_dropout (0, 0.2, 0.4)
learning_rate 10[−3,−1]

weight_decay 10[−4,−1]

lr_scheduler (None, Plateau, Cosine)

Table 8: Hyperparameters tested for TF autoencoder.

Hyperparameter Values

n_blocks [1, 10]
n_attention_heads 2[1,4]

d_qkv 2[0,7]

layer_norm_eps 10[−5,−1]

d_mlp 2[7,11]

d_mlp_hidden (100, 200)
n_mlp_hidden [1, 4]
dropout [0, 0.4]
learning_rate 10[−3,−1]

weight_decay 10[−4,−1]

lr_scheduler (None, Plateau, Cosine)

Table 9: Hyperparameters tested for decoders. The decoder architecture is kept the same for all encoders
and optimized individually.

Hyperparameter Values

d_hidden (100, 200)
n_hidden [1, 4]
learning_rate 10[−3,−1]

weight_decay 10[−4,−1]

lr_scheduler (None, Plateau, Cosine)
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and decoder parameters seen in Table 9. Once the vanilla autoencoders are trained, we then conduct an
additional fine-tuning with a classifier head with hyperperameters seen in Table 10 where α is used to balance
the objective functions of the decoder and classifier heads.

A.2.2 Discussion on parameter size of autoencoders

Here we expand on our parameter size of the encoder architectures of the autoencoders. This is worth noting
because if the distilled data is in the latent space, the encoder module is required to project any new data to
the same space. Thus, the encoder is considered to be a part of the distilled output.

We can characterize the parameter size of each encoder architecture given a D-dimensional binarized dataset
with c categorical features and r continuous features that is projected to a d-dimensional latent space.

FFN. We used an FFN architecture with an M -dimensional embedding layer followed by H hidden layers
that receive and output W -dimensional vectors. The parameter size of such an FFN is as follows:

O(DM + (c+ r)MW +HW 2 +Wd) (5)

The column embeddings are of size O(DM), the input layer maps the concatenated (c+ r)M -dimensional
vector to hidden layer dimension W with (c+ r)MW size. The hidden layers are of sizes O(W 2) each for H
hidden layers. The output layer maps the W -dimensional hidden layer output to the desired d-dimensions.

GNN. We use a GNN encoder with H consecutive layers. The dimension of the vectors passed between
the graph layers are fixed to d, meaning that M = d. Thus, each graph layer maintains a d by d matrix to
handle a d-dimensional input vector and output a d-dimensional vector.

O(Dd+Hd2) (6)

The column embeddings are of size O(Dd) since M = d. Each of the H GNN layers is of size O(d2).

Transformer. We consider an implementation of a transformer autoencoder inspired by the architecture of
FT-Transformer Gorishniy et al. (2021). The encoder has an M -dimensional embedding layer followed H
transformer blocks. Each transformer block takes in a sequence of M -dimensional embeddings and oututs
a single d-dimensional vector. The block is composed of a multihead-attention module with m heads and
a FFN module to project the attention scores back to the input space. We modify the architecture seen
in (Gorishniy et al., 2021) by allowing the dimension of the attention head to be configurable – i.e. instead
of using M/m as the dimension of a single attention head, we allow the module to compute the attention
in dqkv. This choice is motivated by the fact that our encoders were trained with a latent size of 16, which
may not be wide enough for the TF encoder. We then project the resulting embedding in dqkvm-dimension
back to M -dimensionals with Wo. Thus, each of Wq, Wk, Wv and Wo has dqkvmM parameters. The MHA
module is then followed by an FFN module which takes a M -dimensional vector and projects it back to
M -dimensions with a W -dimensional hidden layer.

O(H(4dqkvMm+ 2MW )) (7)

Table 10: Hyperparameters tested for classifier head in SFT.

Hyperparameter Values

d_hidden {100, 200}
n_hidden [1, 3]
dropout {0, 0.2, 0.4}
alpha {0.3, 0.5, 0.7}
learning_rate 10[−3,−1]

weight_decay 10[−4,−1]

lr_scheduler (None, Plateau, Cosine)
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A.2.3 Optimization function

For the decoder ψ : Rd → RD, we consider a multi-layered fully-connected feed-forward network. Given the
encoder ϕ and the decoder ψ, we use a group-wise softmax operator σ to map the output of the decoder to a
per-input-feature probability simplex: given an initial binary vector b ∈ {0, 1}D constituting per-input-feature
one-hot encodings bi (that is b = [b1 ⊕ . . . ⊕ bc+r] after binarizing the continuous features and one-hot
encoding the categorical features), and a decoder output B ∈ RD with per-input-feature constituents Bi
(that is B = [B1 ⊕ . . .⊕Bc+r], we apply the softmax operation to each per-input-feature constituent to get
b̂ = [b̂1 ⊕ . . .⊕ b̂c+r] ∈ [0, 1]D, where b̂i = softmax(Bi). We utilize the following per-sample reconstruction
loss:

ℓ(b, b̂) = 1
c+r

∑c+r
i=1

1
log2 |bi| CE(bi, b̂i), (8)

where CE is the standard cross-entropy loss between a one-hot vector and a softmax output, and |bi| is the
length of the i-th constituent one-hot encoding in b, corresponding to the number of categories (or bins) in the
i-th categorical (or numerical) feature. This loss is a weighted average of the per-input-feature cross-entropy
loss, with weights (1/log2 |bi|) to normalize the loss across all features with varying number of categories or
bins.

The column embeddings, encoder and decoder are then learned by optimizing the following unsupervised loss:

LR(C, ϕ, ψ) = 1
N

∑
(x,y)∈S ℓ (P (x), σ(ψ(ϕ(C(P (x)))))) , (9)
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where P is the data homogenizer, and σ is the aforementioned group-wise softmax operator. Learning the
latent representation in such an unsupervised manner makes this distillation pipeline agnostic to the choice
of downstream model. Another advantage of this choice is that the decoder allows us to map the distilled
artificial samples in the latent space to the original features, which might be necessary in some applications
(for interpretability reasons).

A.2.4 Supervised latent space fine-tuning

Given the already learned encoder and decoder, we consider a supervised fine-tuning (FT) step where we
utilize a classifier f : Rd → Y that utilizes the latent representation. f is initiallized with random weights
and is updated alongside the encoder and decoder as they are fine-tuned by minimizing the following loss to
ensure that the latent space is quite predictive while the reconstruction loss stays low:

LC(f) = 1
N

∑
(x,y)∈S CE(y, f(ϕ(P (x)))), (10)

LR(ϕ, ψ) + αLC(f) (11)

where α > 0 is penalty parameter to balance the two losses, and CE is the cross-entropy loss. We consider
multi-layer FFN architecture as the classifier f .

A.2.5 Encoder architectures

Fully-connected feed-forward network (FFN). This encoder first selects the column embeddings
corresponding to nonzero entries in the binary representation b, concatenates them to get a (c + r)M -
dimensional dense vectors (recall that b will only have c+ r nonzeros out of the D dimensions), and inputs
them to a fully-connected feed-forward network µ : R(c+r)M → Rd. The encoder ϕ : {0, 1}D → Rd can be
written as:

z = ϕ(b) = µ(⊕([wi, i ∈ {1, . . . , D} : b[i] = 1])), (12)

where b[i] is the i-th entry of the D-dimensional vector, and ⊕ is the concatenation operator. The FFN µ and
the column embeddings {wi, i ∈ {1, . . . , D}} constitute the parameters of the encoder ϕ. For a FFN with H
hidden layers, each of width W , the total number of parameters in this encoder is O(DM + (c+ r)MW +
HW 2 +Wd). Figure 14 shows a simplified architecture of the FFN encoder.

Graph neural network (GNN) encoder. We also consider a more recent encoder for tabular data proposed
in Wu et al. (2021). A bipartite graph is constructed between the column embeddings {wi, i ∈ {1, . . . , D}}
and the (zero-initialized) row (sample) embeddings {zj ∈ Rd, j ∈ {1, . . . , N}}, with a bidirectional edge
between wi and zj if the bj [i] = 1, where bj ∈ {0, 1}D is the binary representation of the j-th sample. Given
the (learned) column embeddings, the row embeddings are obtained via multiple rounds of message passing
through multiple GNN layers. This can be written as:

zhj = µh(zh−1
j ,Agg(wh−1

i , i ∈ Nj)),

whi = µh(wh−1
i ,Agg(zhj , j ∈ Ni)),

(13)

where µh is the h-th GNN layer, Agg is an aggregation, Ni (or Nj) is the neighbor set of the i-th column
embedding (or j-th row embedding). We set the initial z0

j = 0 (zero-initialized row embeddings), w0
i = wi,

and utilize zHj as the latent representation for distillation after H GNN layers. While Wu et al. (2021)
only considered Graph Convolutional Networks Kipf & Welling (2016) as GNN modules, we extend it to
GraphSage Hamilton et al. (2017) and Graph Attention Networks Veličković et al. (2018). An important
aspect of the GNN encoder is that the desired row embedding size d must match the column embedding size
M , thus d = M . With H GNN layers, the total number of parameters in this encoder is usually O(Dd+Hd2),
which can be significantly smaller than the FFN encoder with moderately sized FFN (large enough M , W ).
Figure 15 shows the graph formulation (left) and the GNN encoder architeture (right).

Transformer encoder. Finally, we consider a transformer-based autoencoder inspired by the architecture
of FT-Transformer Gorishniy et al. (2021). This encoder uses the same embedding layer as the FFN encoder,
which is then followed by transformer blocks. We learn an additional cls embedding, which is placed before all
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other tokens in every sequence. Each block takes in a sequence (one row) of d embeddings, and is composed
of a multihead-attention (MHA) module and a feed-forward network (FFN) module.

For a MHA module with m attention heads, we modify the architecture seen in (Gorishniy et al., 2021) by
allowing the dimension of the attention head to be separately configurable – i.e. instead of using d/m as the
dimension of a single attention head, we allow the module to compute the attention in dqkv. This choice is
motivated by the fact that our encoders were trained with a latent size of 16, which may not be wide enough
for the TF encoder. We then project the resulting embedding in dqkvm-dimension back to d-dimension with
Wo. For an input wi at the ith transformer block, the computation for the MHA module is as follows:

ai = W i
o(softmax(

W i
q(wi)W i

k(wi)√
dqkv

)W i
v(wi)) (14)

The resulting attention score ai is then added with the original embedding and passed through an FFN
module. Similarly to Gorishniy et al. (2021), the [cls] embedding is used as the final output of the encoder.
Figure 16 shows our modified MHA component, and Figure 17 shows the TF encoder block.

Additional encoder architectures. While we do not consider any additional architectures in our
experiments, we note that any architecture that is capable of encoding a table row to a vector can be
used in place of these. One example is a Variational AutoEncoder (VAE), which aims to learn a more
robust representation by injecting noise in the training process. Our observations suggest that if different
representation learning schemes like VAEs do indeed result in better embeddings, we can expect the quality
of the distilled data to increase. However, it is also worth noting that we already observe high test-time
reconstruction accuracy with the existing (especially TF and GNN) encoders, so the difference may not be
significant.

A.3 Distill Methods

A.3.1 Choice of Distill Methods (KIP, GM)

The clustering-based distillation schemes and KIP are not explicitly tied to a specific model and thus satisfy
our desiderata of model-agnosticity. In contrast, the Gradient Matching or GM distillation scheme heavily
relies on the choice of the backbone model Mθ (as well as the learning algorithm parameters such as the
learning rate), and there is no guarantee that the distilled samples R would be useful for any other model.
Thus, this scheme is not model-agnostic. However, we consider GM to be representative of the model-specific
distillation schemes for the sake of completeness of our evaluations. For our table distillation, we choose Mθ

to be a multi-layered perceptron with a single hidden layer. This will pose a mismatch when we evaluate the
quality of the distilled data R on standard tabular models such as decision tree ensembles and nearest-neighbor
models, highlighting the need for model-agnosticity in tabular data distillation.

A.3.2 Distill Method Implementaion

k-means We use the sklearn.cluster.KMeans from Pedregosa et al. (2011) with the n_init set to "auto".

Agglomerative We use sklearn.cluster.AgglomerativeClustering from Pedregosa et al. (2011) with
the linkage set to "ward". Because agglomerative clustering does not have a “centroid”, we manually
calculate a euclidean centroid for each cluster by using sklearn.neighbors.NearestCentroid to compute
the centroid or the closest real point.

KIP We use the implementation provided by Nguyen et al. (2020) available at https://github.com/
google-research/google-research/tree/master/kip.

GM We use the implementation provided by Zhao et al. (2020) available at https://github.com/
VICO-UoE/DatasetCondensation.
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Table 11: Parameters of distillation methods.

Method Hyperparameter Value Description

Common

distill space - Whether to use the encoder latent space or the raw
binary representation.

use_closest* - Whether to use median points instead of the euclidean
center. Only applicable to clustering methods.

output_space† - Whether to keep the encoder latent/ decode or use the
raw binary space. The binary space is only applicable
to clustering methods when use_closest is set to True.

random_seed‡ - Random seed for distillation algorithm. Not applicable
to agglomerative.

KIP n_epochs 1000 Number of epochs to train the distilled data.
mlp_dim 1024 Width of the neural network to compute the NTK of.

GM

n_epochs 500 Number of epochs to train the distilled data.
mlp_dim 1024 Size of the hidden layer of the target model.
n_layers 2 Number of hidden layers in the target model.
lr_mlp 0.01 Learning rate for the target model.
lr_data 0.1 Learning rate for the distilled data.
mom_data 0.5 Momentum for distilled data.

Table 11 shows the parameters available for each distillation methods. The common parameters are used for
every algorithm, with the exceptions marked on the right-most column. The method-specific parameters for
KIP and GM are for the original algorithms as proposed in Nguyen et al. (2020); Zhao et al. (2020).

A.4 Downstream Classifier Hyperparameters

Table 12 shows the hyperparameters used for each downstream classifier. We use scikit-learn Pedregosa et al.
(2011)’s implementation of Naive Bayes, K-Nearest-Neighbors, Logistic Regression, and MLP, and Gorishniy
et al. (2021)’s implementation of FT-Transformer and ResNet.

A.5 ResNet and FT-Transformer performance

We test ResNet and FT-Transformer for 5 datasets. We found that even with early stopping, the two classifiers
take significantly longer to train given the same computing resources. On average, we find that ResNet takes
around 10 times longer to finish training, while FT-Transformer takes around 28 times when compared to
XGBoost. We also find that the performance of resnet and FT-Transformer does not stand out – in fact,
the average test performance when trained on the full dataset shows that both ResNet and FTTransformer
show a similar performance to MLP, and are outperformed by XGBoost. A similar trend is also observed
by Grinsztajn et al. (2022) and McElfresh et al. (2023) who note the superior performance of GBDT models.

A.6 Performance of GM in original space

Figure 3 showed the performance of distillation methods in various spaces including the oringal space. We
note that the performance of GM in the original space is almost shadowed by the performance of random
sampling. Upon inspection, we find that the GM algorithm does not learn any meaningful updates past
the first randomly sampled points when using the sparse original representation. And because we control
the random seed for every experiment, the resulting points also end up being very close to the randomly
sampled points, leading to the overlap in the results plot. In fact, this further highlights the necessity of
learning a dense transformation of tabular data for some distillation algorithms to begin showing meaningful
performance gains (over random sampling).
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Table 12: Hyperparameters of downstream classifiers.

Classifier Hyperparameter Value

FT-Transformer

d_token 128
n_blocks 2
attention_n_heads 8
attention_dropout 0.15
ffn_d_hidden_multiplier 1.25
ffn_dropout 0.05
residual_dropout 0
learning_rate 10−4

weight_decay 10−5

early_stopping True

Naive Bayes var_smoothing 10−9

K-Nearest-Neighbors
n_neighbors 5
leaf_size 30
p 2

Logistic Regression

penalty l2
tol 10−4

C 1
solver lbfgs

MLP

d_hidden 100
n_hidden 1
learning_rate 10−4

early_stopping True

ResNet

n_blocks 4
d_block 128
d_hidden_multiplier 1.25
dropout 0.2
learning_rate 0.0001
weight_decay 0.00001
early_stopping True
patience 16

Table 13: Average train/test times and test performance comparison for all downstream classifiers.

Classifier Train Time Test Time Test Perf.

FTTransformer 281.3431 0.17934 0.7879
NB 0.0030 0.00232 0.6624
KNN 0.0007 0.54309 0.7474
LR 0.4901 0.00646 0.7709
MLP 2.4444 0.00554 0.7826
ResNet 154.9824 0.08508 0.7833
XGB 11.4055 0.01439 0.8180

A.7 Determining the best overall performance

We describe the best overall pipeline in Section 4.4 and Table 3. Here, we provide a more detailed explanation
of how we determined the best overall pipeline. The runs are grouped by their classifier, dataset and distill
size n. Similar to other parts of analysis, the grouping is done in order to ensure that the comparisons are fair.
In this instance, we are interested in only the pipeline components that lead to the best classifier performance,
regardless of the exact classifier kind. Thus, we group every run by their non-pipeline-specific parameters,
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Figure 18: Full results of distillation methods by downstream classifiers.

which are the classifier, dataset and distill size n. In each group, we then count the instances the pipeline
places on the top 3 in terms of the regret score and sum up the counts for each pipeline.

Following the previous findings, Table 3 shows that k-means based methods have the best performance,
placing in the top 3 with all SFT encoder variants. Surprisingly, we also find pipelines that use KIP and GM
as the 4th and 5th best performers. While we were not able to determine any specific conditions that cause
KIP and GM to place on top, this result shows that there are exist some conditions which leads the pipelines
using gradient-based methods (KIP, GM) to be the top performer. On the other hand, the consistent rank
placement of pipelines that use the autoencoder latent space shows that fine-tuned autoencoders can indeed
boost the performance of distillation methods significantly.

A.8 Training/Inference setting of HPO example

Here, we discuss the detailed setting of the HPO use case presented in Figure 9. A dataset D is split into
train, validation and test sets Dtr, Dva, Dte. Only Dtr is used to produce the distilled dataset R (i.e. S = Dtr
in Algorithm 1.). Then either Dtr or R is used to train the HP of the downstream classifier, and the HP is
adjusted by the performance of the classifier on Dva. The final performance of the classifier is than evaluated
on Dte, which the classifier has never seen in any of the settings before. This setting assumes that one has
access to two of the splits, Dtr and Dva, to produce the final classifier, and they may choose to speed-up the
HPO process by reducing the size of Dtr.
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Table 14: A comparison of relative regret scores of distillation pipelines that use the encoded space of
autoencoders trained with different column embeddings, tested on 5 datasets (Adult, Amazon Employee
Access, Credit, House, Phishing Websites). The center value shows the median relative regret, and smaller
values on each side refers to the first and third quantile, respectively. In general, PLE embeddings show
the strongest performance. However, it is worth noting that PLE embeddings are not applicable to GNN
encoders, and that binary embeddings also show superior performance to scaled embeddings.

Col. Emb. KM AG GM KIP

Binary 0.1082 0.5645 0.7886 0.0976 0.4633 0.7181 0.5504 0.9038 1.0063 0.6551 0.9254 1.1918
Scaled 0.7214 0.8613 1.0671 0.4908 0.6939 1.0249 1.0092 1.4412 1.8658 1.3304 1.6137 2.2985
PLE −0.2428 0.1976 0.9305 −0.2698 0.2173 0.6752 −0.0865 0.2747 1.0524 −0.0263 0.7398 1.3923

B Additional Analysis

B.1 Full results of distillation methods by downstream classifiers

B.2 Effect of column embedding scheme on downstream performance

While column embeddings are standard for categorical columns – each category is represented with a vector,
there are various ways of embedding numerical columns: (i) A numerical feature can be binned, and each
bin treated as a category with an embedding w ∈ Rm corresponding to each bin. (ii) With linearly scaled
column embeddings, a single column embedding w ∈ Rm is used for each numerical column, and the column
embedding for a particular numerical value v ∈ R is obtained by scaling w to v ·w. (iii) Piecewise linear
encoding or PLE (Gorishniy et al., 2022) also bin the numerical feature but use a more sophisticated way of
generating the column embeddings for a given numerical value. We considered binned numerical features
in the main paper for a couple of reasons: (a) Binned numerical features naturally handle missing values
(quite prevalent in tabular data) by maintaining a “missing” bin instead of relying on a heuristic intermediate
imputation step; sometimes, the fact that a value is missing is in itself a signal, and heuristic imputation
schemes often lose this information. (b) The binned features can be used for all architectures we consider
here – FFN, Transformer, and GNN – and using a common embedding scheme allows us to ablate the effect
of the different architectures. The other numerical embedding schemes do not apply to GNNs.

To understand the effect of different kinds of column embeddings schemes, we conduct a smaller scale
experiment on 5 datasets. Specifically, we compare scaled embeddings as seen in Gorishniy et al. (2021),
piecewise linear encoding (PLE) as seen in Gorishniy et al. (2022), against using binary column embeddings
where continuous features are binarized by binning, and examine the downstream performance of distillation
pipelines that use the latent space of the autoencoders trained with the corresponding column embedding
scheme. Table 14 shows that using the both binary column embeddings and PLE consistently leads
to lower regret scores compared to scaled column embeddings. While PLE embeddings show the
strongest performance, they are not applicable to the GNN autoencoder architecture. Thus, we conduct
most of our experiments using binary column embeddings for a fair comparison across different autoencoder
architectures for a fair comparison.

B.3 Pairwise comparision of distillation methods.

In addition, we compare the downstream classifier performance with every pair of pipelines that use different
distillation methods under otherwise equal settings. The left table of Figure 19 reveals that KIP had the
highest tendency to underperform other distillation methods, while k-means had the highest tendency to
outperform other distillation methods. This is consistent with our previous findings, where k-means outranked
other distillation methods most frequently. In order to gain further insights behind the performance lag
of graident-based distillation methods, we conduct a pairwise comparison of the distillation methods for
different classifiers as well. The center and right tables of Figure 19 shows the pairwise comparison of
distillation methods for XGBoost and MLP as downstream models. This suggests that gradient-based
methods’ underperformance is not solely due to its kernel, but that tabular data itself may pose a unique
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Figure 19: Pairwise comparision of distillation methods. The relative performances of distillation methods
under otherwise equal sttings. Rows denote win ratio, columns denote loss ratio.
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Figure 20: Runtime vs. Regret The runtime vs. regret score for distilling the data for each pipeline. The
times include the autoencoder’s training/encoding time if it is used. The colors refer to different distillation
methods, while the encoders used are differentiated by the shapes. Closer to lower left corner is better.

challenge in distillation that is not seen in image data. It is also worth noting that while the clustering-based
approaches had the best overall rank, random sampling proved to be a strong baseline with a near 50% win
ratio against them.

B.4 Runtime comparison of distillation methods

Figure 20 shows the runtime of distillation methods vs. regret score with different encoders. As expected, we
find that the clustering methods – k-means and agglomerative clustering – show much lower runtime. As
expected, using the encoders in addition the the distillation methods adds more overhead, but the clustering
methods still show much shorter runtime in average. It is again worth noting that the GNN encoder provides
a competetive performance while taking much less time.
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Figure 21: Multi-class dataset. The performance of distillation methods on the Eye Movements dataset.
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Figure 22: Effect of changing latent dimension size. The performance of distillation methods on the Bank
Marketing and Phishing Websites datasets with different latent dimension sizes.

B.5 Multi-class dataset

This work focused on binary classification datasets. However, our proposed framework is easily extendable to
multi-class datasets. As an example, we conduct additional analysis on the Eye Movements5 dataset that
has 3 classes. Figure 21 shows the comparison of k-means distillation when applied on the dataset with and
without the TF encoder. We find that the trend is the same with this dataset – using the encoder shows a
steady improvement in performance consistently throughout the IPC values.

B.6 Affect of changing latent dimension size

In this work, we focused on using autoencoders with a fixed latent dimension of 16. However, the latent
size is another hyperparameter that can be set to different values. In this subsection, we showcase a mini
experiment using the Bank Marketing and Phishing Websites datasets on the TF autoencoder with SFT
in increasing latent sizes – 16, 32, and 128 – with a XGBoost downstream classifier. The results show that
the performance of the downstream classifier increases as larger latent sizes are used. However, The change
between 16 and 32 is appears more significant than the change between 32 and 128. This suggests that while
larger latent sizes may be beneficial to a degree, the relationship may not be linear.

C Documentation of TDBench

The information in this section is also available in a markdown format in the README.md file of the supple-
mentary material.

5https://api.openml.org/d/1044
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C.1 Reproducing Results

Every plot and table in the main paper can be reconstructed using the following scripts:

• Q0_experiment_scale.py
• Q1_1_col_embeds.py
• Q1_encoding.py
• Q2_distill_methods.py
• Q3_autoencoders.py
• Q4_1_runtime.py
• Q4_2_get_hpo_dirs.py
• Q4_2_hpo.py
• Q4_combinations.py
• Q5_class_imbal.py

The scripts are organized in order of the question addressed in Section 4 and will be populated in iclr-figures
directory. These can be simply ran by calling python SCRIPT_NAME.

The following files are included in the supplementary material and contain all the necessary information for
the scripts:

• dataset_stats.csv
• enc_stats.csv
• *data_mode_switch_results.csv
• hpo-measure/
• *mixed_tf_results.csv
• *ple_tf_results.csv

The files marked with an asterisk (*) are not included in the repository, but can be downloaded from this url:
https://drive.google.com/drive/folders/1tJ5e1iCvaz-UbxEgpmuCPj-58crgYRJW?usp=share_link

C.2 Description of the workflow

The ## Running the Code section of README.md file discusses the actual commands and available options
for running each stage in detail.

The procedure is as follows:

• Train the autoencoder with the desired configuration.
• (Optional) Fine-tune the autoencoder with a classifier head.
• Run distillation methods against specified downstream classifiers.

C.3 Constructing a new pipeline

Changing default parameters The configurations for this project are managed by hydra and can be
modified by adding new files/directories under the ‘config‘ directory.

Adding new datasets Adding new datasets is as simple as adding a new
config/data/datasets/DATASET_NAME.yaml file. Currently, only openml datasets are supported.

The following flags must be specified for the dataset to be correctly loaded as seen in Table 15.

Adding new preprocessing methods The preprocessing is handled by the TabularDataModule object
that lives in tabdd/data/tabulardatamodule.py. The preprocessing strategies are identified by a string,
and can be configured under config/data/mode. The fields seen in Table 16 must be specified for the
preprocessing to work correctly. One can additionally define any type of scale_mode or bin_strat, which
will be consumed by the TabularDataModule.
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Field Type

dataset_name string
download_url string
label string
n_classes int
source_type string

Table 15: Configuration details for datasets

Field Type

parse_mode string
scale_mode string
bin_strat string
n_bins int

Table 16: Configuration details for data preprocessing

This object is configured with DatasetConfig and DataModeConfig. The DatasetConfig is the configuration
for the dataset, and the DataModeConfig is the configuration for the preprocessing method.

It’s TabularDataModule.prepare_data is the method that will parse the data accordingly and save to cache.
One can add arbitrary preprocessing methods in this file by adding new flags to DataModeConfig and handling
it inside the prepare_data method.

Field Type

is_random string
is_cluster string
can_use_encoder string
args int

Table 17: Configuration details for distillation methods

Adding new distillation methods The distillation methods are identified by a string, which should have
a configuration with the same name under config/distill/methods. Once can characterize the method the
following fields seen in Table 17.

• is_random: Whether there is randomness in the method. If true, the pipeline will be ran multiple times.
• is_cluster: Whether the method is a clustering method. If true, an option that uses the nearest-to-center

method will be included.
• can_use_encoder: Whether the method can be applied in the latent space.
• args: any additional arguments to the actual function.

Once the configuration is created, it will be consumed by load_distilled_data method of
tabdd/distill/load_distilled_data.py. This method can then be modified to include the new dis-
tillation method.

Adding new encoders All encoders used in the benchmark are subclasses BaseEncoder from
tabdd/models/encoder/base_encoder.py. A simple example of how to implement can be seen in
tabdd/models/encoder/mlp_autoencoder.py. The module needs to encoder the following methods:
__init__(), encode, decode and forward.

The autoencoders are specified by the configuration files in config/encoder/models/. The class of the
encoder is specified by cls, and the hyperparameters are specified by tune_params.
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Table 18: Relative regret of pipelines that use different combinations of distill methods and encoders at
IPC=10 for XGBoost downstream classifier. The best value for each column is marked with bold, and the
second best is marked with underline. (FG: Forgetting, GN: GraNd, GL: Glister, GC: Graph Cut)

Distill Method Regret
Min Q1 Mean Median Q3 Max

Random Sample 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

KM 0.0597 0.5256 0.6682 0.6654 0.8186 1.1094
AG 0.0000 0.5177 0.6301 0.6036 0.8914 0.9965
KIP 0.6728 0.8483 1.1109 1.0544 1.2523 2.2713
GM 0.4175 0.7707 0.9858 0.9377 1.1461 1.7292
FG 0.8705 1.1400 2.3837 1.4465 1.8731 16.0146
GN 0.7748 1.1498 2.0530 1.3704 2.2624 10.6670
GL 0.8376 1.1000 2.0907 1.3146 1.6823 14.1625
GC 0.6361 0.9077 1.5084 1.1031 1.5998 6.8392
MTT 0.4175 0.7707 1.0340 0.9699 1.2176 2.3026
DATM 0.4175 0.7707 1.0340 0.9699 1.2176 2.3026

Table 19: Relative regret of pipelines that use different combinations of distill methods and encoders at
IPC=10 for MLP downstream classifier. The best value for each column is marked with bold, and the second
best is marked with underline.

Distill Method Regret
Min Q1 Mean Median Q3 Max

Random Sample 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

KM -14.4491 0.0517 -1.2423 0.3637 0.5900 0.9920
AG -15.3965 0.0597 -0.9031 0.4098 0.6199 1.4982
KIP -4.1619 0.3722 1.4318 0.8068 1.2664 11.1034
GM -3.8002 0.4215 0.7141 0.8443 1.1779 4.9450
FG -2.6999 1.3400 3.3639 1.8150 3.5621 18.6769
GN -5.4217 1.2375 2.7412 1.6194 2.5591 13.6653
GL 0.0931 1.1744 3.3400 1.5641 2.2287 14.2601
GC -5.7194 0.5772 1.5557 1.0039 1.4415 11.4803
MTT -3.8002 0.4215 1.0297 0.7876 1.1894 6.2999
DATM -3.8002 0.4215 1.0297 0.7876 1.1894 6.2999

D Additional Analysis

D.1 Dataset Feature Correlation

We further investigate the presevation of feature correlation in the distilled data. Figure 23 shows the change
in feature correlation in the original, randomly sampled and distilled with k-means in the latent space of
TF-SFT in 3 datasets – Credit, Magic Telescope and Tencent CTR.

D.2 Relation to Previous Work

Kang et al. (2024) presented a preliminary abstract on work that explores data distillation for tabular data.
The authors utilize an MLP and GNN based autoencoder networks to transform the data to before distilling
and show that simple clusetering-based methods can outperform competetive distillation algorithms proposed
in computer vision (KIP (Nguyen et al., 2020))

Building upon this work, our work provides a comprehensive analysis of distillation methods on tabular data,
and provides a detailed comparison of distillation methods across a wide range of datasets and classifiers. We
also provide a detailed analysis of the effect of IPC on the performance of distillation methods, and provide
insights into the effect of distillation on the feature correlation of the data.

Below, we provide a detailed comparison of our work with the preliminary abstract presented by Kang et al.
(2024):
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Figure 23: A side-by-side comparison of correlation of numerical features in the training data before distillation,
after random sampling@IPC=100, and after distillation@ICP=100. While some weaker correlations are not
entirely accurately portrayed, the distilled data preserves the stronger correlations remarkably well.
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• We conduct a comprehensive comparison of different binning methods and their effect on downstream
performance.

• We test with a transformer-based autoencoder, and show that it outperforms MLP and GNN based
autoencoders.

• We additionally consider gradient matching Zhao et al. (2020) as an additional baseline to represent the
gradient-based family of distillation methods Cazenavette et al. (2022); Zhao & Bilen (2023); Guo et al.
(2023)

• We provide a complete python package, TDBench, that can be used and extended by anyone in the
community.

• We explore a realistic use case for data distillation in the context of HPO and show the trade-offs in utility
and cost saving.

• We introduce a relative regret metric to compare the performance of different distillation methods across
datasets and classifiers.

D.3 Data distillation in natural language processing

While data distillation has been proposed and explored mostly in the domain of computer vision, this
technique has also been studied in the domain of natural language processing. The discrete nature of text
data, in contrast to image data, is a closer parallel to tabular datasets. Previous works have approached by
adapting techniques from vision (Wang et al., 2018) to language domain (Li & Li, 2021; Han et al., 2022) with
a set of pretrained word embeddings and report success. On the other hand, Sucholutsky & Schonlau (2021)
propose an algorithm for distilling language data by first distilling the token embeddings with a modified
version of Wang et al. (2018) and locating the nearest real token of the distilled embeddings to produce
human readable distilled text. Maekawa et al. (2023) extend this approach by using attention scores of a
pre-trained language model (BERT) to produce a distilled text dataset that can be used to fine-tune the
same language model. Similar to the dataset distillation techniques seen in image datasets, it is important
to note that these works leverage the existence of a well-trained word embeddings/language models, and
thus are sensitive to those architectures. Maekawa et al. (2024) overcome this obstacle by using a generative
model to directly generate the text data. Among these works, one core factor stands out – the existence of a
well-trained latent representation of text data. However, such a universal representation scheme does not yet
exist for tabular data. And in this work, we show that learning a good per-dataset representation can be
leveraged to close the gap between the literature from dataset distillation in natural language.

D.4 Raw balanced Accuracy score

Below is a comparison of the raw balanced accuracy of each distillation pipelines averaged over random
iterations. Table 20 shows a comparison of all 10 distillation methods that were ran with TF-SFT encoder
and tested on XGB downstream classifier, and Table 21 shows the performance of the baseline methods when
applied without the encoders. Tables 22 and 23 show the same comparison that with and without TF-SFT
encoder for the 4 baselines methods (k-means, aggloermative, KIP, GM) on KNN classifier, and Tables 24
and 25 show the same for MLP classifier.

The last two rows of the tables each denote the number of instances that the pipeline ranked at the top,
and the number of times it outperformed random sampling. The results show that random sampling is not
a trivial baseline for many methods, and that both clustering methods, AG and KM, show the strongest
performance. We also see that adding the encoder to the pipeline significantly increases the downstream
performer of all 3 representative models.
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Dataset AG GM KIP KM

AD 0.6078±0.0354 0.7175±0.0423 0.5353±0.0562 0.5949±0.0644
AE 0.5252±0.0195 0.5304±0.0167 0.5060±0.0066 0.5007±0.0126
BM 0.5599±0.0525 0.5816±0.0448 0.5114±0.0179 0.5842±0.0914
CR 0.5667±0.0491 0.5394±0.0334 0.5106±0.0383 0.5612±0.0578
CD 0.5887±0.0310 0.5607±0.0448 0.5309±0.0466 0.5526±0.0382
DB 0.5133±0.0157 0.5053±0.0265 0.5008±0.0140 0.5146±0.0137
EL 0.5929±0.0782 0.5617±0.0545 0.5093±0.0290 0.5866±0.0741
EV 0.6120±0.0658 0.5968±0.0567 0.5730±0.0590 0.6009±0.0754
HG 0.5159±0.0107 0.5130±0.0143 0.5028±0.0094 0.5141±0.0196
HE 0.5909±0.0372 0.5918±0.0378 0.5112±0.0396 0.5790±0.0608
HS 0.6770±0.0526 0.6257±0.0567 0.5288±0.0671 0.6484±0.0956
JN 0.6076±0.0176 0.6111±0.0262 0.5759±0.0654 0.5755±0.0511
LA 0.8079±0.1752 0.8006±0.1236 0.7352±0.1598 0.8101±0.1533
MT 0.8217±0.1813 0.9581±0.0285 0.8029±0.1473 0.8082±0.1785
MA 0.5146±0.0185 0.5585±0.0324 0.4991±0.0108 0.5112±0.0222
MB 0.6715±0.0942 0.6480±0.0710 0.5559±0.0732 0.6476±0.1124
NU 0.5047±0.0079 0.5005±0.0060 0.5004±0.0041 0.5022±0.0050
NS 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000 1.0000±0.0000
PW 0.7665±0.1429 0.8466±0.0613 0.6758±0.1216 0.7918±0.1242
PL 0.5966±0.0441 0.6813±0.0515 0.6045±0.1043 0.6834±0.0898
RS 0.6469±0.0546 0.5810±0.0373 0.5200±0.0350 0.6469±0.0541
TC 0.5343±0.0295 0.5118±0.0357 0.5031±0.0228 0.5301±0.0245
TD 0.8162±0.0100 0.7790±0.0270 0.6355±0.0884 0.7736±0.0584

# Best 12/23 8/23 1/23 5/23
vs RND 15/23 16/23 3/23 15/23

Table 21: Comparison of raw balanced accuracy scores of distillation methods applied in the original space
(no encoder) on XGB classifier. Last two rows of the tables each denote the number of instances that the
pipeline ranked at the top, and the number of times it outperformed random sampling. Best performance at
for each dataset is marked in bold, and second-best performance is marked with underline.
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Dataset AG GM KIP KM

AD 0.7904±0.0171 0.7609±0.0170 0.6645±0.0662 0.7940±0.0078
AE 0.5371±0.0022 0.5246±0.0244 0.5129±0.0130 0.5365±0.0192
BM 0.7898±0.0052 0.7546±0.0317 0.6997±0.0556 0.7897±0.0083
CR 0.5437±0.0127 0.5337±0.0260 0.5500±0.0170 0.5219±0.0199
CD 0.6490±0.0302 0.6449±0.0471 0.5819±0.0483 0.6674±0.0112
DB 0.5607±0.0019 0.5054±0.0474 0.5408±0.0335 0.5565±0.0064
EL 0.6163±0.0173 0.5758±0.0423 0.5655±0.0241 0.6276±0.0126
EV 0.7152±0.0017 0.6621±0.0319 0.6205±0.0448 0.7130±0.0193
HG 0.5796±0.0338 0.5239±0.0128 0.5205±0.0106 0.5792±0.0130
HE 0.6870±0.0061 0.6588±0.0174 0.6325±0.0600 0.6786±0.0103
HS 0.7759±0.0119 0.7211±0.0279 0.6575±0.0831 0.7721±0.0128
JN 0.7383±0.0050 0.6972±0.0111 0.6795±0.0142 0.7308±0.0035
LA 0.9979±0.0000 0.9654±0.0255 0.9395±0.0760 0.9935±0.0055
MT 0.9717±0.0002 0.9674±0.0040 0.9714±0.0065 0.9715±0.0026
MA 0.5570±0.0096 0.5587±0.0252 0.5063±0.0160 0.5683±0.0083
MB 0.6478±0.0156 0.6871±0.0152 0.6307±0.0494 0.6939±0.0241
NU 0.4971±0.0083 0.4994±0.0060 0.4967±0.0058 0.5075±0.0020
NS 0.9944±0.0063 0.9573±0.0063 0.9716±0.0095 0.9941±0.0056
PW 0.8964±0.0158 0.8620±0.0170 0.6696±0.0283 0.9016±0.0158
PL 0.7829±0.0206 0.7505±0.0500 0.6717±0.0584 0.8277±0.0313
RS 0.7154±0.0216 0.6357±0.0386 0.6679±0.0459 0.7208±0.0134
TC 0.5530±0.0256 0.5261±0.0222 0.5173±0.0106 0.5609±0.0138
TD 0.9230±0.0012 0.9117±0.0167 0.8204±0.0502 0.9242±0.0052

# Best 11/23 0/23 1/23 11/23
vs RND 22/23 21/23 15/23 22/23

Table 22: Comparison of raw balanced accuracy scores of distillation methods with TF-SFT and KNN
downstream classifier. Best performance at for each dataset is marked in bold, and second-best performance
is marked with underline.

Dataset AG GM KIP KM

AD 0.7352±0.0212 0.7292±0.0136 0.5600±0.0599 0.7246±0.0309
AE 0.5309±0.0252 0.5204±0.0109 0.5131±0.0235 0.5143±0.0162
BM 0.7111±0.0136 0.6352±0.0335 0.5374±0.0504 0.7210±0.0277
CR 0.5364±0.0178 0.5393±0.0256 0.5161±0.0210 0.5508±0.0180
CD 0.6082±0.0252 0.6005±0.0292 0.5525±0.0275 0.6005±0.0312
DB 0.5154±0.0162 0.5139±0.0261 0.5049±0.0213 0.5288±0.0178
EL 0.6300±0.0314 0.5630±0.0346 0.5273±0.0463 0.6210±0.0331
EV 0.6840±0.0477 0.6380±0.0361 0.5907±0.0423 0.6949±0.0317
HG 0.5397±0.0181 0.5121±0.0124 0.5118±0.0064 0.5281±0.0128
HE 0.6442±0.0253 0.5837±0.0354 0.5194±0.0449 0.6546±0.0183
HS 0.6954±0.0497 0.6340±0.0532 0.5274±0.0498 0.7115±0.0275
JN 0.6555±0.0197 0.6320±0.0185 0.5891±0.0515 0.6597±0.0211
LA 0.8267±0.0424 0.7451±0.0585 0.8233±0.0684 0.8039±0.0672
MT 0.8070±0.0590 0.7332±0.0815 0.7098±0.0900 0.8236±0.0855
MA 0.5756±0.0098 0.5632±0.0237 0.5111±0.0340 0.5676±0.0186
MB 0.6712±0.0703 0.6122±0.0577 0.5565±0.0573 0.6731±0.0627
NU 0.5065±0.0033 0.5019±0.0050 0.5005±0.0054 0.5035±0.0049
NS 0.9278±0.0753 0.8064±0.0162 0.9775±0.0140 0.8876±0.0842
PW 0.8700±0.0175 0.8128±0.0311 0.6291±0.0598 0.8678±0.0240
PL 0.6327±0.0557 0.5675±0.0262 0.5634±0.0362 0.6554±0.0705
RS 0.6350±0.0324 0.5440±0.0214 0.5213±0.0200 0.6261±0.0304
TC 0.5129±0.0285 0.5152±0.0240 0.4953±0.0155 0.5205±0.0195
TD 0.7632±0.0386 0.7125±0.0293 0.6139±0.0481 0.7814±0.0377

# Best 10/23 0/23 1/23 12/23
vs RND 22/23 18/23 3/23 22/23

Table 23: Comparison of raw balanced accuracy scores of distillation methods in the original space (no
encoder) KNN downstream classifier. Best performance at for each dataset is marked in bold, and second-best
performance is marked with underline.
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Dataset AG GM KIP KM

AD 0.7627±0.0039 0.7406±0.0168 0.7318±0.0212 0.7628±0.0210
AE 0.5467±0.0250 0.5324±0.0090 0.5189±0.0063 0.5630±0.0212
BM 0.7894±0.0319 0.7685±0.0210 0.7632±0.0312 0.7887±0.0142
CR 0.5299±0.0242 0.5443±0.0228 0.5525±0.0185 0.5349±0.0134
CD 0.6323±0.0845 0.6358±0.0411 0.6138±0.0261 0.6542±0.0414
DB 0.5364±0.0051 0.5211±0.0278 0.5348±0.0349 0.5405±0.0139
EL 0.6432±0.0317 0.5690±0.0326 0.6131±0.0309 0.6543±0.0187
EV 0.7310±0.0019 0.6792±0.0421 0.6742±0.0347 0.7202±0.0350
HG 0.6058±0.0126 0.5302±0.0068 0.5477±0.0254 0.5997±0.0152
HE 0.6540±0.0057 0.6364±0.0225 0.6256±0.0370 0.6580±0.0157
HS 0.7801±0.0029 0.7257±0.0336 0.7478±0.0149 0.7768±0.0141
JN 0.7192±0.0036 0.6911±0.0130 0.6952±0.0315 0.7153±0.0102
LA 0.9983±0.0010 0.9893±0.0192 0.9883±0.0238 0.9980±0.0017
MT 0.9698±0.0055 0.9627±0.0056 0.9697±0.0050 0.9733±0.0032
MA 0.5694±0.0127 0.5571±0.0283 0.5160±0.0107 0.5878±0.0149
MB 0.6818±0.0092 0.6555±0.0568 0.6697±0.0217 0.6707±0.0169
NU 0.4958±0.0047 0.5012±0.0057 0.4987±0.0060 0.5071±0.0045
NS 0.9749±0.0153 0.9731±0.0179 0.9838±0.0139 0.9842±0.0129
PW 0.8804±0.0107 0.8466±0.0383 0.7921±0.0523 0.9046±0.0108
PL 0.9010±0.0198 0.8502±0.0175 0.8198±0.0426 0.9000±0.0059
RS 0.6842±0.0019 0.6210±0.0500 0.6627±0.0714 0.6877±0.0205
TC 0.5785±0.0231 0.5150±0.0307 0.5366±0.0251 0.5734±0.0197
TD 0.9191±0.0104 0.9010±0.0260 0.8999±0.0213 0.9200±0.0037

# Best 9/23 0/23 1/23 13/23
vs RND 21/23 19/23 18/23 23/23

Table 24: Comparison of raw balanced accuracy scores of distillation methods with TF-SFT and MLP
downstream classifier. Best performance at for each dataset is marked in bold, and second-best performance
is marked with underline.

Dataset AG GM KIP KM

AD 0.7183±0.0392 0.7576±0.0148 0.6756±0.0604 0.7385±0.0276
AE 0.5743±0.0265 0.5444±0.0153 0.5267±0.0241 0.5618±0.0410
BM 0.7406±0.0224 0.6573±0.0312 0.5776±0.0569 0.7351±0.0311
CR 0.5607±0.0216 0.5388±0.0272 0.5037±0.0440 0.5618±0.0277
CD 0.6146±0.0276 0.5920±0.0524 0.5706±0.0564 0.6040±0.0332
DB 0.5168±0.0171 0.5203±0.0207 0.5052±0.0281 0.5329±0.0203
EL 0.6713±0.0315 0.5904±0.0363 0.5568±0.0787 0.6573±0.0347
EV 0.6828±0.0270 0.6570±0.0289 0.6380±0.0651 0.6900±0.0255
HG 0.5463±0.0218 0.5184±0.0120 0.5190±0.0163 0.5423±0.0221
HE 0.6221±0.0210 0.6213±0.0397 0.5369±0.0574 0.6309±0.0227
HS 0.7514±0.0159 0.6746±0.0321 0.5970±0.0850 0.7397±0.0396
JN 0.6352±0.0188 0.6328±0.0214 0.6209±0.0370 0.6339±0.0137
LA 0.8530±0.0389 0.7621±0.0419 0.8924±0.1000 0.7970±0.0443
MT 0.9008±0.0332 0.8068±0.0741 0.8904±0.0269 0.8839±0.0584
MA 0.5710±0.0124 0.5591±0.0198 0.5294±0.0387 0.5640±0.0151
MB 0.7411±0.0577 0.6768±0.0636 0.5995±0.0945 0.7248±0.0656
NU 0.5076±0.0025 0.5009±0.0057 0.5004±0.0028 0.5063±0.0059
NS 0.9799±0.0208 0.8159±0.0102 0.9967±0.0038 0.9006±0.0746
PW 0.9018±0.0178 0.8248±0.0253 0.8084±0.0546 0.8775±0.0323
PL 0.7934±0.0946 0.6883±0.0491 0.7319±0.0239 0.7961±0.0719
RS 0.6304±0.0134 0.5567±0.0191 0.5386±0.0350 0.6305±0.0228
TC 0.5404±0.0253 0.5177±0.0141 0.5016±0.0358 0.5154±0.0328
TD 0.7924±0.0154 0.7164±0.0507 0.6930±0.0413 0.7751±0.0265

# Best 14/23 1/23 2/23 6/23
vs RND 22/23 19/23 6/23 21/23

Table 25: Comparison of raw balanced accuracy scores of distillation methods with in the original space (no
encoder) MLP downstream classifier. Best performance at for each dataset is marked in bold, and second-best
performance is marked with underline.
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