
1

EIQP: Execution-time-certified and Infeasibility-detecting QP Solver
Liang Wu1, Wei Xiao1, Richard D. Braatz1, Fellow, IEEE

Abstract—Solving real-time quadratic programming (QP) is
a ubiquitous task in control engineering, such as in model
predictive control and control barrier function-based QP. In such
real-time scenarios, certifying that the employed QP algorithm
can either return a solution within a predefined level of optimality
or detect QP infeasibility before the predefined sampling time
is a pressing requirement. This article considers convex QP
(including linear programming) and adopts its homogeneous
formulation to achieve infeasibility detection. Exploiting this
homogeneous formulation, this article proposes a novel infeasible
interior-point method (IPM) algorithm with the best theoretical
O(

√
n) iteration complexity that feasible IPM algorithms enjoy.

The iteration complexity is proved to be exact (rather than an
upper bound), simple to calculate, and data independent, with

the value
⌈

log(n+1
ϵ

)

− log(1− 0.414213√
n+1

)

⌉
(where n and ϵ denote the number

of constraints and the predefined optimality level, respectively),
making it appealing to certify the execution time of online
time-varying convex QPs. The proposed algorithm is simple
to implement without requiring a line search procedure (uses
the full Newton step), and its C-code implementation (offering
MATLAB, Julia, and Python interfaces) and numerical examples
are publicly available at https://github.com/liangwu2019/EIQP.

Index Terms—Quadratic programming, execution time cer-
tificate, infeasibility detection, model predictive control, control
barrier function.

I. INTRODUCTION

Like solving a linear system, solving a quadratic program-
ming (QP) problem has also been ubiquitous and extensively
used including in finance, machine learning, operations, com-
puter vision, energy, transportation, bioinformatics, signal pro-
cessing, robotics, and control. For example, i) model predictive
control (MPC), which formulates a receding horizon control
problem as a QP that is solved at each sampling time, has
been widely spread in the industry for controlling multivariable
systems subject to constraints [1] and ii) CLF-CBF-QP [2], a
control framework that combines stability (via control Lya-
punov function) and safety (via control barrier functions) into
a real-time QP, has been widely used in autonomous systems.
Specifically regarding applications, i) the quadrotor maneu-
vering field has a well-known QP-based framework [3] for
generating minimum snap trajectories with smooth transitions
through waypoints while satisfying constraints on velocities,
accelerations, and inputs; ii) the robotics field often uses QP
as a unified framework for task-space control paradigms [4],
[5]. All these QPs fall into the categories of online, as they are
required to be executed in real time, in contrast to the offline
QPs, which do not have this requirement.

Solving real-time QPs poses a pressing and open challenge
for algorithms: how to guarantee that the QP algorithm

1Massachusetts Institute of Technology, Cambridge, MA 02139, USA,
{liangwu,weixy,braatz}@mit.edu

can return the optimal solution or detect infeasibility before
the predefined sampling (or feedback) time. This is called
the execution time certificate problem. Without the execution
time certificate, control signals (the backup control signal if
detecting QP infeasibility) fail to return on time, which renders
the system open-loop and potentially leads to safety concerns,
especially in safety-critical process systems.

Certifying the execution time of QP algorithms can be
reduced to certifying the number of iterations of QP algo-
rithms if each iteration performs a fixed number of floating-
point operations ([flops]). In fact, nearly all QP solvers have
default settings that specify a maximum number of iterations,
seemingly addressing the worst-case execution time certificate
problem. However, this is a cheating approach for addressing
execution time certificate problem, because it can not guaran-
tee that all returned solutions have the same level of optimality.

An execution-time-certified QP algorithm should precisely
be defined as one that either returns an optimality-certified
solution (within a predefined level of optimality) or detects
QP infeasibility before the predefined sampling time. First
of all, the stability and safety guarantee of MPC and CLF-
CBF-QP control frameworks both assume that the QP at
each sampling time is exactly solved, in other words, the QP
solution should be optimality-certified. Second, the optimality-
certified QP solution is also pursued in practice. When the
plant suffers a sudden disturbance, MPC often requires that
the QP algorithm runs more iterations at this time instant
to ensure good performance. For example, in the case of an
autonomous car or drone making a sharp turn, if the MPC-
based QP does not run enough iterations, an autonomous car
or drone may fail and deviate from the desired trajectory.
Recently, the execution time certificate problem has attracted
significant scholarly interest and remains a vibrant research
area, especially within the context of MPC [6]–[18].

A. Related work

Current QP algorithms tailored for efficiently solving MPC
include first-order, active set, and interior point methods [19]–
[23]. The iteration complexity analysis of first-order methods
is provided in [6]–[8] for linear MPC problems, but their
iteration complexity result is dependent on the QP problem
data such as the Hessian matrix. Their data-dependent iteration
complexity result cannot guarantee the time-invariant number
of iterations for MPC-based QP with time-varying data such
as Real-Time Iteration (RTI)-based nonlinear MPC [24].

Although active set methods often have good performance
in small- to medium-scale problems in practice, in theory, they
can have an exponential number of iterations in the worst case
[25]. Refs. [9]–[13] develop a computationally complicated
and expensive (thus offline) worst-case partial enumeration

ar
X

iv
:2

50
2.

07
73

8v
2

 [
ee

ss
.S

Y
]

 1
4

Fe
b

20
25

https://github.com/liangwu2019/EIQP

2

technique, to certify the worst-case number of iterations for
active set methods. Their iteration complexity results are also
data-dependent and cannot be used in QPs that have time-
varying data. This also happens in work [14], which proposes
an N -step algorithm for input-constrained MPC problems,
and its worst-case iteration is the problem dimension N , but
assuming that a modified N-step vector is given. The authors
in [14] propose solving a linear program (LP) to find this
modified N-step vector, dependent on QP data, making it not
suitable for real-time QP that have time-varying data.

Interior point methods (IPMs) can be categorized as being
practical (such as Mehrotra predictor-corrector IPMs [26])
or theoretical. Thanks to the super-fast convergence speed
(O(log(n)) iteration complexity, with likely < 50 iterations),
the Mehrotra predictor-corrector IPMs are the foundation for
most interior point software such as [27], but are heuristic and
may diverge for some examples [28, see p. 411], [29], without
certified global convergence proof. Theoretical IPMs can be
classified as being infeasible or feasible, which generally have
certified O(n) and O(

√
n) iteration complexity [30], [31], re-

spectively. However, the faster iteration complexity of feasible
IPMs comes at the cost of requiring a strictly feasible initial
point lying in the neighborhood of the central path. Finding
this strictly feasible initial point for a general QP requires
solving an LP. To avoid this limit, our previous work [15] for
the first time proposed a cost-free initialization strategy for
feasible IPMs by exploiting the structure of the considered
box-constrained QP (arising from input-constrained MPC).
One interesting feature of our algorithm [15] is that its iteration

complexity is the exact value:
⌈

log(2n
ϵ)

−2 log(
√

2n√
2n+

√
2−1

)

⌉
+ 1, rather

than an upper bound as provided in previous works. This
exact iteration complexity is data independent (only dimension
dependent), so our algorithm can certify the iteration of QP
with time-varying data [17]. Although our algorithm [15] is
only valid for box-constrained QP, Ref. [18] then extends it to
general strictly convex QPs via an ℓ1-penalty soft constraint
which is transformed to box-constrained QP via duality theory.
This soft constraint approach can offer a viable solution when
the strictly convex QP is infeasible, such as in cases where
an MPC encounters unknown disturbances or modeling errors
that render the MPC-based QP problem infeasible.

However, some scenarios require real-time QP solvers to
have the ability to detect infeasibility. For example, the soft-
constrained solution is always approximate and hard to guar-
antee the stability of MPC. In this case, the backup control
law can be active when detecting the potential infeasibility
of real-time QP. Naturally, detecting infeasibility should also
be completed within the certified execution time; all the
aforementioned iteration complexity works [6]–[17] do not
have infeasibility-detection capability and either assume the
QP is feasible or restrict their consideration to box-constrained
QPs.

Regarding infeasibility detection in QP, i) the first-order
method, specifically the alternating direction method of multi-
pliers, has been reported to possess the infeasibility-detection
capability in [32] and its corresponding solver OSQP [19],
but lacks the iteration complexity analysis; ii) the active set

method, combined with the nonnegative least-squares (NNLS)
formulation, has infeasibility-detection capability in [33] and
can be combined with the offline (expensive) iteration com-
plexity certification procedure [34] to determine the worst-case
iterative behavior, but this NNLS formulation is only limited
to strictly convex QPs; iii) IPM, combined with the homoge-
neous slacked QP formulation [35], possesses the infeasibility-
detection capability but is limited to strictly convex QPs
and lacks a certified iteration complexity for the employed
IPM algorithm. IPMs based on the homogeneous self-dual
(HSD) formulation [36], [37] are well known to be capable
of detecting the infeasibility of LPs. Furthermore, Ref. [38]
extended the HSD formulation to the linear complementarity
problem (LCP) (more general than LP), but their proposed
IPM has data-dependent iteration complexity O(

√
nL) (where

L is the binary data length of LCP problem data). Ref. [39]
proposed a homogeneous formulation for nonlinear monotone
complementarity problems to support infeasibility detection,
and provided iteration complexity analysis for the employed
infeasible IPM, but its iteration complexity result is too
conservative and data dependent, specifically depending on the
scaled Lipschitz constants of the nonlinear monotone mapping.

B. Contributions

This article extends the homogeneous formulation from [39]
to detect the infeasibility of convex QPs and proposes a novel
infeasible IPM algorithm to solve convex QPs. Our novel
contributions are the following:

1) proves that this homogeneous formulation enables our
proposed infeasible IPM algorithm to achieve the best
theoretical O(

√
n) iteration complexity, that feasible IPM

algorithms enjoy, so there is no need to find a strictly
feasible initial point.

2) proves that the iteration complexity of our algorithm is
exact (rather than the upper bound), simple to calculate,
and data independent, with the value⌈

log(n+1
ϵ)

− log(1− 0.414213√
n+1

)

⌉
(where n and ϵ denote the number of constraints and
the predefined optimality level, respectively), making it
appealing to certify the execution time of online time-
varying convex QPs (including LPs).

3) shows that our algorithm is simple to implement as it does
not require a line-search procedure. Its C-code implemen-
tation is just one single C file, making it easy to integrate
with other software and appealing when deployed in
embedded production systems. Its MATLAB, Julia, and
Python interfaces and numerical examples are publicly
available at https://github.com/liangwu2019/EIQP. More-
over, our algorithm is parameter free as there are no
algorithm parameters, avoiding the tuning work with
algorithm parameters.

To the best of the authors’ knowledge, this article for
the first time provides a convex QP solver with exact and
data-independent Execution time certificate and Infeasibility
detection, thus referred to as EIQP.

https://github.com/liangwu2019/EIQP

3

C. Notations

⌈x⌉ maps x to the least integer greater than or equal to x.
Rn denotes the space of n-dimensional real vectors, Rn

+ and
Rn

++ are the set of all non-negative and positive vectors of
Rn, respectively. Q ≻ 0 (Q ⪰ 0) denotes positive definiteness
(semi-definiteness) of a square matrix Q, Q⊤ (or z⊤) denotes
the transpose of matrix Q (or vector z). min(z, y) denotes the
minimum value between scalar z and y. Given two arbitrary
vectors z, y ∈ Rn

++, their Hadamard product is z ⊙ y =

(z1y1, z2y2, · · · , znyn)⊤, z
y = z ⊙

(
y−1

)
=
(
z1
y1
, z2y2

, · · · , znyn

)⊤
.

For z, y ∈ Rn, let col(z, y) = [z⊤, y⊤]⊤ and max(z, y) =
(max(z1, y1),max(z2, y2), · · · ,max(zn, yn))

⊤. For a vector
z ∈ Rn, its Euclidean norm is ∥z∥ =

√
z21 + z22 + · · ·+ z2n,

∥z∥1 =
∑n

i=1 |zi|, ∥z∥∞ = maxi |zi|, diag(z) : Rn → Rn×n

maps an vector z to its corresponding diagonal matrix,
√
z =(√

z1,
√
z2, · · · ,

√
zn
)⊤

and 1
z = (1

z1
, 1
z2
, · · · , 1

zn
)⊤.

II. PROBLEM FORMULATIONS

This article considers the convex QP,

min
z

1

2
z⊤Q(t)z + c(t)⊤z

s.t. A(t)z ≥ b(t),
z ≥ 0

(1)

where the data Q(t) = Q(t)⊤ ∈ Rnz×nz ⪰ 0, c(t) ∈ Rnz ,
A(t) ∈ Rnb×nz , b(t) ∈ Rnb , are all often time-varying in
real-time applications. Problem (1) is common such as in real-
time MPC with state and input constraints and CLF-CBF-QP
with input bounds, see subsections V-B and V-C. For example,
a typical MPC or CLF-CBF-QP problem, minz

1
2z

⊤Q(t)z +
c(t)⊤z, s.t. lb(t) ≤ z ≤ ub(t), A(t)z ≤ b(t), (even its soft-
constrained formulation), can be easily formulated as Problem
(1) by letting z ← z− lb(t), c(t)← c(t)+Q(t)lb(t), A(t)←
[−I;−A(t)], and b(t) ← [lb(t) − ub(t);A(t)lb(t) − b(t)]. A
standard QP formulation can be reformulated as (1).

Remark 1. Consider the standard QP formulation,

min
z

1

2
z⊤Q(t)z + c(t)⊤z

s.t. A(t)z ≥ b(t)
(2)

which does not have the additional non-negative constraints
z ≥ 0. It is trivial to transform this QP to (1) by introducing
z̄ ≜ col(z+, z−), where z+, z− denote the positive and
negative part of z, respectively. That is, z = z+ − z− and
z+i z

−
i = 0, i = 1, · · · , nz . Based on this representation, a

standard QP formulation can be reformulated as

min
z̄

1

2
z̄⊤Q̄(t)z̄ + c̄(t)⊤z̄

s.t. Ā(t)z̄ ≥ b(t)
z̄ ≥ 0

(3)

where Ā(t) = [A(t),−A(t)],

Q̄(t) =

[
Q(t) −Q(t)
−Q(t) Q(t)

]
, and c̄(t) =

[
c(t)
−c(t)

]
.

Note that the constraint z+i z
−
i = 0, i = 1, · · · , nz is

eliminated since the following Lemma holds,

Lemma 1. Let z̄ = col(z+, z−) be the minimizer of (3), then
it always satisfies z+i z

−
i = 0, i = 1, · · · , nz .

Proof. The proof is by contradiction. Assume that the min-
imizer col(z+, z−) ∈ argmin (3) does not satisfy z+i z

−
i =

0 for i = 1, · · · , nz . Then another col(z̃+, z̃−) can be con-
structed as

z̃+i = z+i −min(z+i , z
−
i), for i = 1, · · · , nz

z̃−i = z−i −min(z+i , z
−
i), for i = 1, · · · , nz

Clearly, (z̃+, z̃−) ≥ 0 and z̃+i z̃
−
i = 0 for i = 1, · · · , nz hold.

Moreover,
z̃+ − z̃− = z+ − z−,

thus the inequality constraints Ā(t)col(z̃+, z̃−) ≥ b(t) hold.
Then, the objective function of (3) at col(z̃+, z̃−) and
col(z+, z−) is equal, which contradicts the assumption that
col(z+, z−) ∈ argmin (3), which completes the proof.

Remark 2. When Q = 0, Problem (2) becomes an LP. It is
emphasized that the proposed Algorithm 2 (see Section IV-C),
with execution time certificate and infeasibility detection, is
also valid for solving LP.

A. KKT condition and LCP formulation

The Karush–Kuhn–Tucker (KKT) condition [40, Ch. 5] for
(1) is

v = Q(t)z −A(t)⊤y + c(t)

w = A(t)z − b(t)
v ⊙ z = 0, v ≥ 0, z ≥ 0

w ⊙ y = 0, w ≥ 0, y ≥ 0

(4)

where y ∈ Rnb denotes the Lagrangian variable for inequality
constraints A(t)z ≥ b(t), v ∈ Rnz denotes the Lagrangian
variable for z ≥ 0, and w ≜ A(t)z − b(t) ∈ Rnb is the
slack variable. Eq. (4) is an LCP; for simplicity, we adopt the
notations,

x ≜ col(z, y) ∈ Rn, s ≜ col(v, w) ∈ Rn,

where the dimension n = nz+nb. Then Eq. (4) is reformulated
as

LCP

 s = f(x) ≜Mx+ q
x ⊙ s = 0
x ≥ 0, s ≥ 0

(5)

where

M ≜

[
Q(t) −A(t)⊤
A(t) 0

]
, q ≜

[
c(t)
−b(t)

]
.

Note that M ̸= M⊤. M ⪰ 0, and M +M⊤ ⪰ 0 (easy to
prove as Q(t) ⪰ 0).

The QP (1) may be infeasible, such that the set {z ∈ Rnz :
A(t)z ≥ b(t), z ≥ 0} is empty and there is no solution for the
LCP (5). To achieve infeasibility detection, this paper adopts
a homogeneous LCP formulation from [39] and LCP (5) is a
linear case of nonlinear monotone complementarity problem
[39] by the following Lemma.

Lemma 2. f(x) is a continuous monotone mapping in Rn
+,

namely ∀x1, x2 ∈ Rn
+, (x1 − x2)⊤(f(x1)− f(x2)) ≥ 0.

4

Proof. For two arbitrary points x1, x2 ∈ Rn
+, define the

function

ϕ(δ) ≜ (x2 − x1)⊤(f(xδ)− f(x1))

with δ ∈ [0, 1] and xδ ≜ (1 − δ)x1 + δx2 ∈ Rn
++. Clearly,

ϕ(0) = 0. As ∇f(x) =M is positive semi-definite in Rn
++,

ϕ′(δ) = (x2 − x1)⊤M(x2 − x1) ≥ 0,

so ϕ(δ) is non-decreasing. Hence ϕ(1) ≥ 0 is proved, which
completes the proof.

B. Homogeneous LCP formulation

By introducing two additional scalars τ ∈ R and κ ∈ R, a
homogeneous LCP (HLCP) is formulated as

HLCP



[
s
κ

]
= ψ(x, τ)[

x
τ

]
⊙

[
s
κ

]
= 0

(x, τ, s, κ) ≥ 0

(6)

where

ψ(x, τ) ≜

[
Mx+ qτ

−x⊤Mx/τ − x⊤q

]
: Rn+1

++ → Rn+1. (7)

Note that the HLCP (6) inherits the monotone feature by the
following Lemma.

Lemma 3. The gradient of ψ(x, τ) is

∇ψ(x, τ) =
[

M q
−x⊤(M +M⊤)/τ − q⊤ x⊤Mx/τ2

]
(8)

and ∇ψ(x, τ) is semi-positive definite in Rn+1
++ .

Furthermore, ψ(x, τ) is a continuous monotone mapping in
Rn+1

++ .

Proof. By the definition of ψ(x, τ) (7), its gradient ∇ψ(x, τ)
indeed follows (8).

Given an arbitrary col(dx, dτ) ∈ Rn+1 (where dx ∈ Rn,
dτ ∈ R) and M is semi-positive definite,[

d⊤x , dτ
]
∇ψ(x, τ)

[
dx
dτ

]
= d⊤xMdx + (d⊤x q)dτ −

dτ
τ
x⊤(M +M⊤)dx − dτq⊤dx

+
dτ
τ
x⊤Mx

dτ
τ

=
1

2
d⊤x (M +M⊤)dx −

dτ
τ
x⊤(M +M⊤)dx

+
1

2

dτ
τ
x⊤(M +M⊤)x

dτ
τ

=
1

2

(
dx −

dτ
τ
x

)⊤
(M +M⊤)

(
dx −

dτ
τ
x

)
≥ 0,

(9)
which completes the first part of the proof.

Similarly, like Lemma 2 in proving the monotone property,
ψ(x, τ) is a continuous monotone mapping in Rn+1

++ under
the fact that its gradient ∇ψ(x, τ) is semi-positive definite in
Rn+1

++ .

Lemma 4. HLCP (6) is always asymptotically feasible. Every
asymptotically feasible solution of HLCP (6) is an asymptoti-
cally “optimal” or “complementary” solution.

Proof. HLCP (6) is said to be asymptotically feasible if and
only if there is positive and bounded iterates (xk, τk, sk, κk) >
0, k = 1, 2, · · · such that limk→∞ col(sk, κk)− ψ(xk, τk) →
0. An asymptotically feasible solution (xk, τk, sk, κk) of
HLCP (6) such that (xk)⊤sk + τkκk = 0 is said to be
an asymptotically “optimal” or “complementary” solution of
HLCP (6).

Take xk = (12)
ke, τk = (12)

ke, sk = (12)
ke, and κk = (12)

k.
Then, as k →∞,[

sk

κk

]
− ψ(xk, τk) =

(
1

2

)k [
e−Me− q

1 + e⊤Me+ e⊤q

]
→ 0,

which completes the first part of the proof.
For each (xk, τk, sk, κk) asymptotically feasible solution of

HLCP (6), by (7) it always holds that (xk)⊤sk + τkκk = 0,
which completes the second part of the proof.

Definition 1. An “optimal” or “complementary” solution
(x∗, s∗) for LCP (5) (or (x∗, τ∗, s∗, κ∗)) for HLCP (6)) is said
to be a maximal complementary solution such that the number
of positive components in (x∗, s∗) (or in (x∗, τ∗, s∗, κ∗)) is
maximal.

Lemma 5. (see [41, Theorem 2.3]): The indices for those
positive components are invariant among all maximal com-
plementary solutions for LCP (5) (or HLCP (6)).

Thus, finding a maximal complementary solution for HLCP
(6) is equivalent to finding a maximal complementary solution
for LCP (5), and the relationship between the solutions of
HLCP (6) and LCP (5) can be described by the following
Lemma.

Lemma 6. (see [39, Thm. 1]): Let (x∗, τ∗, s∗, κ∗) be a
maximal complementary for HLCP (6). Then

i) LCP (5) has a solution if and only if τ∗ > 0. In this case,
col(x∗/τ∗, s∗/τ∗) is a maximal complementary solution
for LCP (5);

ii) LCP (5) is infeasible if and only if κ∗ > 0. In this case,
col(x∗/κ∗, s∗/κ∗) is a certificate to prove infeasibility.

Thus, finding the solution or detecting the infeasibility of
LCP (5) is equivalent to finding a maximal complementary
solution of HLCP (6).

C. Central path of HLCP

Denote r̄ ≜ col(r, r̃) ∈ Rn+1 (where r ∈ Rn, r̃ ∈ R) as the
residual vector for the nonlinear equation[

s
κ

]
− ψ(x, τ) = 0

from HLCP (6). For example, given an initial point x0 >
0, s0 > 0, τ0 > 0, k0 > 0, the initial residual vector is shown
as follows,

r0 = s0 −Mx0 − qτ0,
r̃0 = κ0 + (x0)⊤Mx0/τ0 + (x0)⊤q

5

Next, the following lemma defines the central path of HLCP
(6) and its existence.

Lemma 7. (see [39, Thm. 2]): Considering HLCP (6):
(i) for any 0 < θ ≤ 1, there exists a strictly positive point

(x > 0, τ > 0, s > 0, κ > 0) such that[
s
κ

]
− ψ(x, τ) = θ

[
r0

r̃0

]
. (10)

(ii) starting from (x0 = e, τ0 = 1, s0 = e, κ0 = 1), for
any 0 < θ ≤ 1 there is a unique strictly positive point
(x(θ), τ(θ), s(θ), k(θ)) satisfying (10) and[

xs
τκ

]
= θe. (11)

(iii) for any 0 < θ ≤ 1, the solution (x(θ), τ(θ), s(θ), κ(θ))
in (ii) is bounded. Therefore, the defined central path

C(θ) ≜ {(x, τ, s, κ) : (10), (11), 0 < θ ≤ 1} (12)

is a continuous bounded trajectory.
(iv) when θ → 0, any limit point (x(θ), τ(θ), s(θ), κ(θ)) is a

maximal complementary solution for HLCP (6).

By Lemma 7, interior point algorithms can generate iterates
with a neighborhood of C(θ) and converge toward a maximal
complementary solution for HLCP (6).

III. INFEASIBLE FULL NEWTON IPM ALGORITHM FOR
HLCP

The previous section primarily explains how the homo-
geneous formulation, HLCP (6), enables the detection of
infeasibility. Remarkably, this homogeneous formulation also
surprisingly allows infeasible IPMs to achieve an iteration
complexity of O(

√
n), a property traditionally reserved for

feasible IPMs.
In this section, we introduce an infeasible IPM algorithm

with the full Newton step, whose iteration complexity is
proved to be data independent (only dimension dependent)
and exact with the value:

N =

⌈
log(n+1

ϵ)

− log(1− 0.414213√
n+1

)

⌉
.

We adopt the notations for simplicity,

x̄ ≜ col(x, τ) ∈ Rn+1, s̄ ≜ col(s, k) ∈ Rn+1.

At the kth iterate (x̄k, s̄k) > 0, the proposed algorithm
adopts the full Newton direction, which is the solution of the
linearized equations

ds̄ −∇ψ(x̄k)dx̄ = −ηr̄k (13a)

x̄k ⊙ ds̄ + s̄k ⊙ dx̄ = γµ̄ke− x̄k ⊙ s̄k (13b)

where
r̄k = s̄k − ψ(x̄k),

µ̄k =
(x̄k)⊤s̄k

n+ 1
,

and η, γ ∈ (0, 1) are specified parameters by our algorithm
for ensuring convergence (see the later analysis).

We first summarize our proposed infeasible full Newton
IPM algorithm in Algorithm 1, wherein the choice of η, γ for
convergence guarantee, the scaling and initialization strategy,
and the exact number iterations are discussed in Subsections
III-A, III-B and III-C, respectively.

Algorithm 1 Infeasible full Newton IPM algorithm for finding
a maximal complementary solution of HLCP (6)
Input: given the data (M, q) of HLCP (6), let β =
0.414213, η = β√

n+1
, γ = 1−η, and a stopping tolerance ϵ, the

required exact number of iterations is N =

⌈
log(n+1

ϵ)

− log(1− 0.414213√
n+1

)

⌉
Initialize: x̄ ← e, s̄ ← e, σ ← max(1,Mx + q,−x⊤Mx −
x⊤q), M ← 1

σM , q ← 1
σ q;

for k = 1, · · · ,N do
1. r̄ ← s̄− ψ(x̄)

2. µ̄← x̄⊤s̄
n+1

3. calculate (dx̄, ds̄) by solving (13)

4. x̄← x̄+ dx̄

5. s̄← ψ(x̄) + γr̄

end
return (x̄, s̄);

A. Convergence analysis

Before showing the convergence analysis, we need to prove
the following lemmas.

Lemma 8. Let ψ(x̄) be given by (7). Then, for any x̄ ∈ Rn+1
++ ,

x̄⊤ψ(x̄) = 0,

x̄⊤∇ψ(x̄) = −ψ(x̄)⊤.
(14)

Proof. The proof is straightforward from the definitions ψ(x̄)
(7) and ∇ψ(x̄) (8).

Lemma 9. Let the direction (dx̄, ds̄) be obtained from (13).
Then, the equality

d⊤x̄ ds̄ = d⊤x̄∇ψ(x̄k)dx̄ + η(1− η − γ)(x̄k)⊤s̄k

holds.
Furthermore, by letting γ = 1− η, we have(√

s̄k

x̄k
⊙ dx̄

)⊤(√
x̄k

s̄k
⊙ ds̄

)
= d⊤x̄ ds̄ ≥ 0 (15)

and∥∥∥∥∥
√
s̄k

x̄k
⊙ dx̄

∥∥∥∥∥
2

+

∥∥∥∥∥
√
x̄k

s̄k
⊙ ds̄

∥∥∥∥∥
2

≤

∥∥∥∥∥
√
s̄k

x̄k
⊙ dx̄ +

√
x̄k

s̄k
⊙ ds̄

∥∥∥∥∥
2

.

(16)

Proof. Premultiplying each side of (13a) by d⊤x̄ gives

d⊤x̄ ds̄ − d⊤x̄∇ψ(x̄k)dx̄ = −ηd⊤x̄ r̄k (17)

6

and premultiplying each side of (13a) by (x̄k)⊤ gives

(x̄k)⊤ds̄ − (x̄k)⊤∇ψ(x̄k)dx̄ = −η(x̄k)⊤r̄k. (18)

By Lemma 8, we have (x̄k)⊤ψ(x̄k) = 0 and (x̄k)⊤∇ψ(x̄k) =
−ψ(x̄k)⊤, which can reduce (18) to

(x̄k)⊤ds̄ + ψ(x̄k)⊤dx̄ = −η(x̄k)⊤r̄k

= −η(x̄k)⊤
(
s̄k − ψ(x̄k)

)
= −η(x̄k)⊤s̄k.

(19)

Also, (17) leads to

d⊤x̄ ds̄ = d⊤x̄∇ψ(x̄k)dx̄ − ηd⊤x̄
(
s̄k − ψ(x̄k)

)
= d⊤x̄∇ψ(x̄k)dx̄ − η

(
d⊤x̄ s̄

k − d⊤x̄ ψ(x̄k)
)

= d⊤x̄∇ψ(x̄k)dx̄ − η
(
d⊤x̄ s̄

k + (x̄k)⊤ds̄ + η(x̄k)T s̄k
)

(by (19))

= d⊤x̄∇ψ(x̄k)dx̄ − η
[
e⊤(γµ̄ke− x̄ks̄k) + η(x̄k)⊤s̄k

]
(by (13b))

= d⊤x̄∇ψ(x̄k)dx̄ − η
[
γ(x̄k)⊤s̄k − (x̄k)⊤s̄k + η(x̄k)⊤s̄k

]
= d⊤x̄∇ψ(x̄k)dx̄ + η (1− γ − η) (x̄k)⊤s̄k,

which completes the first part of the proof.
Then, by letting γ = 1−η and by Lemma 3 (∇ψ(x̄k) ⪰ 0),

the above equality results in(√
s̄k

x̄k
⊙ dx̄

)⊤(√
x̄k

s̄k
⊙ ds̄

)
= d⊤x̄ ds̄

= d⊤x̄∇ψ(x̄k)dx̄ ≥ 0,

which can be used to derive the inequality∥∥∥∥∥
√
s̄k

x̄k
⊙ dx̄

∥∥∥∥∥
2

+

∥∥∥∥∥
√
x̄k

s̄k
⊙ ds̄

∥∥∥∥∥
2

≤

∥∥∥∥∥
√
s̄k

x̄k
⊙ dx̄ +

√
x̄k

s̄k
⊙ ds̄

∥∥∥∥∥
2

.

This completes the second part of the proof.

In our proposed Algorithm 1, Step 4 (x̄← x̄+dx̄) and Step
5 (s̄← ψ(x̄) + γr̄) are derived from the two different update
equations for x̄ and s̄:

x̄+ ≜ x̄k + αdx̄ > 0 (20)

and

s̄+ ≜ s̄k + αds̄ + ψ(x̄+)− ψ(x̄k)− α∇ψ(x̄k)dx̄
= ψ(x̄+) +

(
s̄k − ψ(x̄k)

)
+ α

(
ds̄ −∇ψ(x̄k)dx̄

)
= ψ(x̄+) + r̄k − αηr̄k

= ψ(x̄+) + (1− αη)r̄k

(21)

when choosing the step size α = 1 and η = 1− γ.

Remark 3. Thanks to this special update (21) for s̄, which was
also suggested in [42] for the feasible case, the next iterate
of the residual vector r̄+ satisfies

r̄+ ≜ s̄+ − ψ(x̄+)
= (1− αη)r̄k.

(22)

Then, we have the following Lemma.

Lemma 10. If the next iterate (x̄+, s̄+) is given by (20) and
(21), then

(x̄+)⊤s̄+ = (1− α(1− γ)) (x̄k)⊤s̄k+α2η(1−η−γ)(x̄k)⊤s̄k.

Furthermore, by letting η = 1−γ, the residual r̄ (infeasibility
measure) and the complementarity gap (x̄)⊤s̄ are reduced at
the same rate (1− αη).

Proof. Based on the updates of x̄ (20) and s̄ (21), we have

(x̄+)⊤s̄+

= (x̄+)⊤
(
s̄k + αds̄ + ψ(x̄+)− ψ(x̄k)− α∇ψ(x̄k)dx̄

)
= (x̄+)⊤

(
s̄k + αds̄

)
− (x̄k + αdx̄)

⊤ (ψ(x̄k) + α∇ψ(x̄k)dx̄
)

= (x̄+)⊤
(
s̄k + αds̄

)
− (x̄k)⊤ψ(x̄k)− α(dx̄)⊤ψ(x̄k)

− α(x̄k)⊤∇ψ(x̄k)dx̄ − α2d⊤x̄∇ψ(x̄k)dx̄
(by Lemma 8)

= (x̄+)⊤
(
s̄k + αds̄

)
− α2d⊤x̄∇ψ(x̄k)dx̄

= (x̄k + αdx̄)
⊤ (s̄k + αds̄

)
− α2d⊤x̄∇ψ(x̄k)dx̄

= (x̄k)⊤s̄k + α
(
d⊤x̄ s̄

k + d⊤s̄ x̄
k
)
+ α2

(
d⊤x̄ ds̄ − d⊤x̄∇ψ(x̄k)dx̄

)
= (x̄k)⊤s̄k + α

(
d⊤x̄ s̄

k + d⊤s̄ x̄
k
)
+ α2η(1− η − γ)(x̄k)⊤s̄k

(by Lemma 9)

= (1− α(1− γ)) (x̄k)⊤s̄k + α2η(1− η − γ)(x̄k)⊤s̄k.
(by (13b))

which completed the first part of the proof.
Furthermore, by letting η = 1 − γ, the update of the

complementarity gap x̄⊤s̄ is

(x̄+)⊤s̄+ = (1− αη)(x̄k)⊤s̄k, (23)

which is the same as the update (22) of the infeasibility
residual r̄. This completes the second part of the proof.

Lemma 11. Suppose that ∥x̄k ⊙ s̄k − µ̄ke∥ ≤ βµ̄k where
0 < β <

√
2 − 1 (e.g., β = 0.414213); letting η = β√

n+1
,

γ = 1 − η, and adopting the full Newton step (α = 1), then
x̄+ > 0.

Proof. Since ∥x̄k ⊙ s̄k − µ̄ke∥ ≤ βµ̄k where 0 < β <
√
2− 1,

we have that

∥x̄k ⊙ s̄k − µ̄ke∥∞ ≤ ∥x̄k ⊙ s̄k − µ̄ke∥ ≤ βµ̄k,

that is,
−βµ̄ke ≤ x̄k ⊙ s̄k − µ̄ke ≤ βµ̄ke

Thus, we have

min(x̄k ⊙ s̄k) ≥ (1− β)µ̄k. (24)

As α = 1 and by Lemma 10, specifically (23), we have

µ̄+ = γµ̄k, (25)

where µ̄+ = (x̄+)⊤s̄+

n+1 . Therefore, (13b) is equivalent to the
equality

s̄k ⊙ dx̄ + x̄k ⊙ ds̄ = µ̄+e− x̄k ⊙ s̄k,

which can also be reformulated as√
s̄k

x̄k
⊙ dx̄ +

√
x̄k

s̄k
⊙ ds̄ = −

x̄k ⊙ s̄k − µ̄+e√
x̄k ⊙ s̄k

. (26)

7

As a result,∥∥∥∥∥
√
s̄k

x̄k
⊙ dx̄ +

√
x̄k

s̄k
⊙ ds̄

∥∥∥∥∥
2

=

∥∥∥∥ x̄k ⊙ s̄k − µ̄+e√
x̄k ⊙ s̄k

∥∥∥∥2
≤ ∥x̄

k ⊙ s̄k − µ̄+e∥2

min
(√
x̄k ⊙ s̄k

)2 ≤ ∥x̄k ⊙ s̄k − µ̄+e∥2

(1− β)µ̄k
(by (24))

=
∥x̄k ⊙ s̄k − µ̄ke+ (1− γ)µ̄ke∥2

(1− β)µ̄k
(by (25))

=
∥x̄k ⊙ s̄k − µ̄ke∥2 + ∥(1− γ)µ̄ke∥2

(1− β)µ̄k

(as e⊤(x̄ks̄k − µ̄ke) = 0)

≤ β2(µ̄k)2 + η2(n+ 1)(µ̄k)2

(1− β)µ̄k
(as η =

β√
n+ 1

)

=
2β2(µ̄k)2

(1− β)µ̄k
=

2β2µ̄k

1− β
.

(27)
Therefore, by Lemma 9 (namely (16)), we have that∥∥∥∥∥

√
s̄k

x̄k
⊙ dx̄

∥∥∥∥∥
2

+

∥∥∥∥∥
√
x̄k

s̄k
⊙ ds̄

∥∥∥∥∥
2

≤ 2β2µ̄k

1− β
.

Then we have that∥∥∥∥dx̄x̄k
∥∥∥∥ =

∥∥∥∥∥ 1√
x̄k ⊙ s̄k

√
s̄k

x̄k
⊙ dx̄

∥∥∥∥∥
≤

∥∥∥∥√ s̄k

x̄k ⊙ dx̄

∥∥∥∥
min

(√
x̄k ⊙ s̄k

) ≤
√∥∥∥∥√ s̄k

x̄k ⊙ dx̄

∥∥∥∥2 + ∥∥∥∥√ x̄k

s̄k
⊙ ds̄

∥∥∥∥2
min

(√
x̄k ⊙ s̄k

)
≤

√
2β2µ̄k

1−β√
(1− β)µ̄k

(by (24)))

=

√
2β

1− β
< 1 (as 0 < β <

√
2− 1)

Therefore, ∥∥∥∥dx̄x̄k
∥∥∥∥
∞
< 1,

which proves x̄+ = x̄k + dx̄ > 0. The proof is complete.

Lemma 12. Suppose that ∥x̄k ⊙ s̄k − µ̄ke∥ ≤ βµ̄k where
0 < β <

√
2 − 1 (e.g., β = 0.414213); letting η = β√

n+1
,

γ = 1− η, and adopting the full Newton step (α = 1), then

∥x̄+ ⊙ s̄+ − µ̄+e∥ ≤ βµ̄+,

where µ̄+ = (x̄+)⊤s̄+

n+1 , and s̄+ > 0.

Proof. By choosing α = 1 and according to the update of s̄
(21), we have

x̄+ ⊙ s̄+ − µ̄+e

= x̄+ ⊙
(
s̄k + ds̄ + ψ(x̄+)− ψ(x̄k)−∇ψ(x̄k)dx̄

)
− µ̄+e

= (x̄k + dx̄) ⊙ (s̄k + ds̄)− µ̄+e

+ x̄+ ⊙
(
ψ(x̄+)− ψ(x̄k)−∇ψ(x̄k)dx̄

)
= dx̄ ⊙ ds̄ + x̄+ ⊙

(
ψ(x̄+)− ψ(x̄k)−∇ψ(x̄k)dx̄

)
.

(by (13b) and (25))

According to the definition of ψ and ∇ψ (see (7) and (8),
respectively), and the full Newton update of x̄+ = x̄k + dx̄,
we have that

ψ(x̄+)− ψ(x̄k)−∇ψ(x̄k)dx̄

=

[
Mx+ + qτ+

−(x+)⊤Mx+

τ+ − q⊤x+

]
−

[
Mxk + qτk

−(xk)⊤Mxk

τk − q⊤xk

]

−

[
M q

− (xk)⊤(M+M⊤)
τk − q⊤ (xk)⊤Mxk

(τk)2

] [
dx
dτ

]

=

[
Mdx + qdτ

(xk)⊤Mxk

τk − (x+)⊤Mx+

τ+ − q⊤dx

]

−

[
Mdx + qdτ

− (xk)⊤(M+M⊤)dx

τk − q⊤dx + dτ (x
k)⊤Mxk

(τk)2

]

=

[
0

(xk)⊤Mxk+(xk)⊤(M+M⊤)dx

τk − (x+)⊤Mx+

τ+ − dτ (x
k)⊤Mxk

(τk)2

]
(as d⊤x (M +M⊤)x = 2d⊤xMx)

=

[
0

dτ (x
k)⊤Mxk+2dτd

⊤
x Mxk−τkd⊤

x Mdx

τk(τk+dτ)
− dτ (x

k)⊤Mxk

(τk)2

]

and, by multiplying x̄+, we have that

x̄+ ⊙
(
ψ(x̄+)− ψ(x̄k)−∇ψ(x̄k)dx̄

)
=

[
xk + dx
τk + dτ

]
⊙

[
0

dτ (x
k)⊤Mxk+2dτd

⊤
x Mxk−τkd⊤

x Mdx

τk(τk+dτ)
− dτ (x

k)⊤Mxk

(τk)2

]

=

[
0

dτ (x
k)⊤Mxk+2dτd

⊤
x Mxk−τkd⊤

x Mdx

τk

]

−

[
0

dτ (τ
k+dτ)(x

k)⊤Mxk

(τk)2

]

=

[
0

τkdτ (x
k)⊤Mxk+2τkdτd

⊤
x Mxk−(τk)2d⊤

x Mdx

(τk)2

]

−

[
0

(τkdτ+d2
τ)(x

k)⊤Mxk

(τk)2

]

=

[
0

2τkdτd
⊤
x Mxk−(τk)2d⊤

x Mdx−d2
τ (x

k)⊤Mxk

(τk)2

]

=

[
0

−
(
d⊤xMdx − 2 dτ

τk d
⊤
xMxk +

d2
τ

(τk)2
(xk)⊤Mxk

)]

=

[
0

−
(
dx − dτ

τk x
k
)⊤
M
(
dx − dτ

τk x
k
)] .

By the semi-positive definiteness of M and Lemmas 3 and 9,
we have that∥∥x̄+ ⊙

(
ψ(x̄+)− ψ(x̄k)−∇ψ(x̄k)dx̄

)∥∥
=

(
dx −

dτ
τk
xk
)⊤

M

(
dx −

dτ
τk
xk
)

= d⊤x̄∇ψ(x̄k)dx̄ = d⊤x̄ ds̄.

8

Then, by summarizing the above analysis, we have that

∥x̄+ ⊙ s̄+ − µ̄+e∥
≤ ∥dx̄ ⊙ ds̄|∥+

∥∥x̄+ ⊙
(
ψ(x̄+)− ψ(x̄k)−∇ψ(x̄k)dx̄

)∥∥
≤ ∥dx̄ ⊙ ds̄∥+ dTx̄ ds̄ =

∥∥∥∥∥
(√

s̄k

x̄k
⊙ dx̄

)
⊙

(√
x̄k

s̄k
⊙ ds̄

)∥∥∥∥∥
+

(√
s̄k

x̄k
⊙ dx̄

)⊤√
x̄k

s̄k
⊙ ds̄.

For simplicity, we introduce two vectors a ≜
√

s̄k

x̄k ⊙ dx̄ and

b ≜
√

x̄k

s̄k
⊙ ds̄; then we have that

∥x̄+ ⊙ s̄+ − µ̄+e∥ ≤ ∥a ⊙ b∥+ a⊤b ≤ ∥a∥ · ∥b∥+ a⊤b

= ∥a∥ · ∥b∥+ 1
2∥a+ b∥2 − 1

2

(
∥a∥2 + ∥b∥2

)
= 1

2∥a+ b∥2 − 1
2 (∥a∥ − ∥b∥)

2

≤ 1
2∥a+ b∥2 = 1

2

∥∥∥∥∥
√
s̄k

x̄k
⊙ dx̄ +

√
x̄k

s̄k
⊙ ds̄

∥∥∥∥∥
2

≤ β2µ̄k

1− β
=

β

(1− β)γ
(βµ̄+).

by (27) and (25)

Therefore, to prove ∥x̄+s̄+ − µ̄+e∥ ≤ βµ̄+, we only need to
prove the inequality

β

(1− β)γ
≤ 1,

which is equivalent to proving that

β

1− β
≤ 1− β√

n+ 1
, ∀n ≥ 1,

as γ = 1− η = 1− β√
n+1

. When 0 < β <
√
2− 1, ∀n ≥ 1,

the inequalities

β

1− β
+

β√
n+ 1

≤ β

1− β
+

β√
2
<

√
2− 1

2−
√
2
+

√
2− 1√
2

= 1

hold, which completes the first part of the proof.
Now we have that ∥x̄+ ⊙ s̄+ − µ̄+e∥ ≤ βµ̄+; thus

∥x̄+ ⊙ s̄+ − µ̄+e∥∞ ≤ ∥x̄+ ⊙ s̄+ − µ̄+e∥ ≤ βµ̄+.

That is,
−βµ̄+e ≤ x̄+ ⊙ s̄+ − µ̄+e ≤ βµ̄+e,

which clearly shows that min(x̄+ ⊙ s̄+) ≥ (1− β)µ̄+ > 0.
By Lemma 11 we have x̄+ > 0, so we have s̄+ > 0, which

completes the second part of the proof.

Summarizing Lemmas 11 and 12, if the current iterate
(x̄k, s̄k) satisfies ∥x̄ks̄k − µ̄ke∥ ≤ βµ̄k (i.e., is located in
a neighborhood of the central path), letting β = 0.414213,
η = 1√

n+1
, γ = 1− η, α = 1, and adopting the update for x̄

(20) and s̄ (21). The next iterate (x̄+, s̄+) will keep positive
and stay in the neighborhood of the central path. Clearly, the
initialization strategy (29) ensures that

∥x̄0 ⊙ s̄0 − µ̄0∥ = 0 ≤ βµ̄0, x̄0 > 0, s̄0 > 0,

so the iterates, (x̄k, s̄k) ∀k = 1, 2, · · · generated by Algorithm
1 satisfy

∥x̄k ⊙ s̄k − µ̄k∥ ≤ βµ̄k,

x̄k > 0, s̄k > 0.

Moreover, by Lemma 10, the infeasibility residual r̄ and
the complementarity gap x̄⊤s̄ are both reduced at the same
rate (1 − η) = 1 − 0.414213√

n+1
. Therefore, by Lemma 7, the

iterates generated by Algorithm 1 will converge to a maximal
complementary solution for the HLCP.

The number of iterations N required by Algorithm 1
will depend on the initial infeasibility residual r̄0 and the
complementarity gap (x̄0)⊤s̄0, which is discussed in the next
Subsection.

B. Scaling and initialization strategy

To develop a QP algorithm with data-independent (only
dimension-dependent) iteration complexity, we first introduce
a scaling strategy for the matrix M and the vector q in the
LCP as

M̄ ← 1

σ
M, q̄ ← 1

σ
q, (28)

where
σ = max(1,Me+ q,−e⊤Me− e⊤q).

This scaling strategy (28) does not affect the optimal value of
x in (LCP).

After that, we adopt the initialization strategy

x0 = e, τ0 = 1, s0 = e, κ0 = 1. (29)

Lemma 13. The scaling strategy (28) and the initialization
strategy (29) ensure that the initial complementarity gap

(x̄0)⊤s̄0 = (x0)⊤s0 + (τ0)⊤κ0 = n+ 1

and the initial infeasibility residual

∥r̄0∥ ≤ n+ 1.

Proof. Clearly, the initialization strategy (29) results in the
initial complementarity gap

(x̄0)⊤s̄0 = (x0)⊤s0 + (τ0)⊤κ0 = n+ 1.

After adopting the scaling strategy (28), the initial infeasi-
bility residual

r̄0 =

[
e− M̄e− q̄

1 + e⊤M̄e+ e⊤q̄

]
and the scaling factor σ ensure that all elements of r̄0 are
nonnegative (i.e., r̄0 ≥ 0). Thus, we have that

∥r̄0∥2 ≤ (e⊤r̄0)2 = (n+ 1)2

that is, ∥r̄0∥ ≤ n+ 1. This completes the proof.

Thus, our proposed scaling and initialization strategies make
the initial complementarity gap (x̄0)⊤s̄0 and initial infeasibil-
ity residual r̄0 independent from the problem data (M, q) (only
dependent on the problem dimension n).

9

C. Exact iteration complexity

Thanks to the above scaling and initialization strategies,
our proposed infeasible full Newton IPM Algorithm 1 is
only dimension dependent (data independent), is simple to
calculate, and has exact iteration complexity.

Theorem 1. The infeasible full Newton IPM Algorithm 1
returns a ϵ-approximate maximal complementary solution of
HLCP (6) in an exact

N =

⌈
log(n+1

ϵ)

− log(1− 0.414213√
n+1

)

⌉
iterations, where an ϵ-approximate maximal complementary
solution satisfies ∥r̄∥ ≤ ϵ, x̄⊤s̄ ≤ ϵ.

Proof. Since our previous summarization of Lemmas 11 and
12 (see the last paragraph of the Subsection III-A), shows the
convergence of Algorithm 1, here we only show how to derive
the required number of iterations for satisfying ∥r̄k∥ ≤ ϵ and
(x̄k)⊤s̄k ≤ ϵ.

By Lemma 10, the infeasibility residual r̄k and complemen-
tarity gap (x̄k)⊤s̄k at the kth iterate are

r̄k = (1− η)kr̄0,
(x̄k)⊤s̄k = (1− η)k(x̄0)⊤s̄0.

(30)

Then, the inequalities ∥r̄k∥ ≤ ϵ and (x̄k)⊤s̄k ≤ ϵ hold if

(1− η)k∥r̄0∥ ≤ ϵ,
(1− η)k(x̄0)⊤s̄0 ≤ ϵ.

Taking logarithms gives

k log(1− η) + log(∥r̄0∥) ≤ log(ϵ),

k log(1− η) + log((x̄0)⊤s̄0) ≤ log(ϵ).

Thus, the inequalities ∥r̄k∥ ≤ ϵ and (x̄k)⊤s̄k ≤ ϵ hold if

k ≥

⌈
log(max(∥r̄0∥,(x̄0)⊤s̄0)

ϵ)

− log(1− η)

⌉
=

⌈
log(n+1

ϵ)

− log(1− η)

⌉
.

(by Lemma 13, max(∥r̄0∥, (x̄0)⊤s̄0) = n+ 1)

The expressions (30) hold as equalities rather than inequalities,
thus the number of iterations is exact, rather than an upper
bound. Therefore, after the exact number of iterations

N =

⌈
log(n+1

ϵ)

− log(1− 0.414213√
n+1

)

⌉
, (31)

the inequalities ∥r̄k∥ ≤ ϵ and (x̄k)⊤s̄k ≤ ϵ hold, which
completes the proof.

IV. ALGORITHM IMPLEMENTATION

A. Robust procedure for solving Newton systems

In Algorithm 1, the most computationally expensive step is
Step 3, solving the linear system (13). To meet our mentioned
execution time certificate requirement, we cannot adopt itera-
tive methods to solve the linear system (13) as their [flops] are
hard to determine and data dependent; here we have to use
direct methods (such as LU, QR, and Cholesky decomposition)
as their [flops] are determined and data independent.

In fact, Algorithm 1 does not use ds̄ (as s̄ ← ψ(x̄) + γr̄,
rather than s̄← s̄+ ds̄). By eliminating ds̄ with

ds̄ =
s̄k

x̄k
dx̄k + γµ̄k 1

x̄k
− s̄k,

we can reduce the linear system (13) to the compact system(
∇ψ(x̄k) + diag

(
s̄k

x̄k

))
dx̄ = γµ̄k 1

x̄k
− s̄k + ηr̄k. (32)

Remark 4. By Lemma 3, ∇ψ(x̄k) is semi-positive definite.
Thus, for arbitrary x̄k, s̄k ∈ Rn+1

++ , (32) is a positive definite
system and thus there exists a unique solution.

After adopting the scaling (28) and according to the defi-
nition ∇ψ (8), M , and x̄ = col(z, y, τ), s̄ = col(v, w, κ), the
linear system (32) is expanded as Q(t) + diag(v

k

zk) −A(t)⊤ c(t)

A(t) diag(w
k

yk) −b(t)
− 2(zk)⊤Q(t)

τk − c(t)⊤ b(t)⊤ (zk)⊤Q(t)zk

(τk)2
+ κk

τk


·

 dz
dy
dτ

 =

 γµ̄ 1
zk − vk + ηrz

γµ̄ 1
yk − wk + ηry

γµ̄ 1
τk − κk + ηrτ


(33)

where rz ≜ vk − Q(t)zk + A(t)⊤yk − c(t)τk, ry ≜ wk −
A(t)zk+b(t)τk, rτ ≜ κk+(zk)⊤Q(t)zk+c(t)⊤zk−b(t)⊤yk,
and µ̄ ≜ (zk)⊤vk+yk)⊤wk+τkκk

n+1 .
The linear system (33) is not a symmetric positive definite

system, and we tried to reduce it to a smaller symmetric pos-
itive definite system to allow the use of an efficient Cholesky
decomposition method, but this approach is not robust and
cannot provide a high-accuracy solution when close to the end
of the iterations. This occurs because, when close to the end
of the iterations, the linear system (33) is too ill-conditioned,
which is the cost of the use of the homogeneous formulation.
For solving (33), we choose to call Lapack’s function dgesv
[43], which uses the LU decomposition with partial pivoting
and row interchanges.

Future work will investigate an effective preconditioner to
allow the use of Cholesky decomposition (which has half of
the cost of LU factorization) on the smaller compact system.
Currently, we observe that the diagonal preconditioner reduces
the condition number of (33).

B. Infeasibility reporting criteria

As for the iterates {xk, τk, sk, κk} generated by Algorithm
1, Lemma 6 indicates that τk will be bounded away from
zero and κk will quadratically converge to zero if the QP (1)
is feasible, or κk will be bounded away from zero and τk

will quadratically converge to zero if the QP (1) is infeasible.
Thus, this paper adopts τ < κ as the infeasibility reporting
criteria.

C. Execution time certificate

Summarizing the above analysis, we rewrite Algorithm 1 as
an implementable Algorithm 2. Note that Step 1 of Algorithm
1 is equal to Step 5 (before the iteration) and Step 6.6 of

10

Algorithm 2. In addition to using the Lapack library, we
also use the efficient BLAS library [44] to implement matrix-
vector multiplications and vector inner product operations of
Algorithm 2.

Thanks to the exact iteration complexity and the use of
LU decomposition in solving the linear system (33), the
total [flops] of Algorithm 2 is easily countable and fixed. In
practice, running Algorithm 2 once on a given processor, the
execution time is obtained and will almost surely be the same
among all QPs with the same problem dimension.

Algorithm 2 EIQP: execution-time-certified and infeasibility-
detecting QP solver, an infeasible homogeneous full Newton
IPM algorithm for convex QP (1).
Input: given the data of QP (1) (Q(t), c(t), A(t), b(t)), β =
0.414213, η = β√

n+1
, γ = 1 − η, and a optimality level ϵ,

and then the required exact number of iterations is N =⌈
log(n+1

ϵ)

− log(1− 0.414213√
n+1

)

⌉
1. z ← e, y ← e, τ ← 1, v ← e, w ← e, κ← 1;

2. cache: Qz ← Q(t)z,Ay ← A(t)⊤y,Az ← A(t)z, zc ←
z⊤c(t), yb← y⊤b(t), zQz ← z⊤Qz;

3. σ ← max(1, Qz−Ay+c(t), Az−b(t),−zQz−zc+yb);

4. scale: Q(t) ← 1
σQ(t), c(t) ← 1

σ c(t), A(t) ←
1
σA(t), b(t) ←

1
σ b(t), Qz ←

1
σQz,Ay ←

1
σAy,Az ←

1
σAz, zc←

1
σ zc, yb←

1
σyb, zQz ←

1
σ zQz;

5. rz ← v − Qz + Ay − c(t)τ , ry ← w − Az + b(t)τ ,
rτ ← κ+ zQz

τ + zc− yb;

6. for k = 1, · · · ,N do
6.1. µ̄← z⊤v+y⊤w+τκ

n+1 ;

6.2. call dgesv to solve (33), obtain dz, dy, dτ ;

6.3. z ← z + dz, y ← y + dy, τ ← τ + dτ ;

6.4. cache: Qz ← Q(t)z,Ay ← A(t)⊤y,Az ←
A(t)z, zc← z⊤c(t), yb← y⊤b(t), zQz ← z⊤Qz;

6.5. v ← Qz − Ay + c(t)τ + γrz , w ←
Az − b(t)τ + γry, κ← − zQz

τ − zc+ yb+ γr̃;

6.6. rz ← γrz, ry ← γry, rτ ← γrτ ;
end

7. if τ < κ, return (1) is infeasible; otherwise,

8. return z = 1
τ z.

V. NUMERICAL EXPERIMENTS

This section first compares the infeasibility-detection capa-
bilities of Algorithm 2 with the known MATLAB’s quadprog

solver and popular OSQP solver. Then Algorithm 2 is applied
to the AFTI-16 MPC example and ACC CBF-QP example.
The reported simulation results were obtained on a Mac mini
with an Apple M4 Chip (10-core CPU and 16 GB RAM).

The C-code implementation of Algorithm 2 is just one sin-
gle C file, making it easy to integrate with other software and
appealing in deploying in embedded production systems. Its
MATLAB, Julia, and Python interfaces and numerical exam-
ples are publicly available at https://github.com/liangwu2019/
EIQP.

A. Random infeasible QP examples

To demonstrate the infeasibility-detection capability of
our proposed Algorithm 2, we randomly generate 100 QPs
(min 1

2z
⊤Qz + c⊤z, s.t. Az ≤ b) for each case: condi-

tion number cond(Q) varies from 101 to 106. To make
QPs infeasible, we then add the contradictory constraints:
A ← [A;−A(1, :);−A(2, :)], b ← [b;−b(1) − 1;−b(2) − 1].
As for solver settings, “quadprog” uses its default setting,
“OSQP-default” uses its default setting, “OSQP-5e5” changes
the maximum number of iterations to 5e5, and other set-
tings as (’eps abs’,1e-10,’eps rel’,1e-10,’polish’,true), and our
“EIQP” chooses ϵ = 1e-6. The infeasibility detection rate of
these QP solvers is plotted in Fig. 1.

The quadprog solver has poor infeasibility-detection results
and its detection rate gradually becomes lower as the condition
number of Q increases. The OSQP solver with the default
setting cannot detect 100% of QP infeasibility; increasing the
maximum number of iterations to 5e5 and decreasing the
optimality level can increase its detecting rate but still cannot
reach 100%. It is hard to tune the OSQP algorithm parameters
to achieve 100% detection rate which is also computationally
expensive. Our EIQP solver has a 100% infeasibility detection
rate among all cases, consistent with the proof.

101 102 103 104 105 106

Condition number of Q

0.7

0.75

0.8

0.85

0.9

0.95

1

In
fe

as
ib

ili
ty

 D
et

ec
tin

g
R

at
e

quadprog
OSQP-default
OSQP-5e5
EIQP

Fig. 1. Comparison of quadprog, OSQP-default, OSQP-5e5, and EIQP solvers
in detecting infeasibility of random infeasible QP problems as a function of
condition number of the Hessian matrix Q.

https://github.com/liangwu2019/EIQP
https://github.com/liangwu2019/EIQP

11

B. Real-time MPC applications

A general linear MPC for tracking is

min
1

2

Np−1∑
k=0

∥Cxk+1 − r(t))∥2Wy
+ ∥uk − uk−1∥2W∆u

s.t. xk+1 = Axk +Buk, k = 0, . . . , Np − 1,

Exxk+1 + Euuk ≤ fk, k = 0, . . . , Np − 1,

x0 = x(t), u−1 = u(t− 1),

(34)

where xk ∈ Rnx denotes the states and uk ∈ Rnu denotes
the control inputs. The control objective is to minimize the
tracking errors between the output Cxk+1 and the reference
signal r(t), while penalizing the control input increments ∆uk,
along the prediction horizon Np. The matrices Wy ≻ 0
and W∆u ≻ 0 are the weights for the output tracking
error and control input increments, respectively. x(t) and
u(t − 1) denote the current feedback states and previous
control inputs, respectively. Exxk+1 + Euuk ≤ fk denotes
the general constraints formulation such as the box constraints
umin ≤ uk ≤ umax, xmin ≤ xk+1 ≤ xmax or the terminal
constraints xNp

∈ XNp
. Denoting

z ≜ col(u0 − umin, · · · , uNp−1 − umin) ∈ Rnz

(nz = Npnu), we can eliminate the states (see [45]), to get
a compact QP (1). Here we consider the classical AFTI-16
example from [46], [47]:

ẋ =


−0.0151 −60.5651 0 −32.174
−0.0001 −1.3411 0.9929 0
0.00018 43.2541 −0.86939 0

0 0 1 0

x

+


−2.516 −13.136
−0.1689 −0.2514
−17.251 −1.5766

0 0

u
y =

[
0 1 0 0
0 0 0 1

]
x

which is sampled using zero-order hold every 50 ms. Our MPC
controller feedback time is also 50 ms, so we need to ensure
that the MPC design meets this execution time requirement.
The input constraints are |ui| ≤ 25◦, i = 1, 2, the output
constraints are −0.5 ≤ y1 ≤ 0.5 and −100 ≤ y2 ≤ 100.
The control goal is to make the pitch angle y2 track a
reference signal r2. In designing the MPC controller, we take
Wy = diag([10,10]), Wu = 0, and W∆u = diag([0.1, 0.1]).

Now, the remaining MPC setting is to choose the prediction
horizon to meet the requirement that the execution time is
smaller than the feedback time 50 ms and maintain good
closed-loop performance.

We test our EIQP solver (ϵ = 10−8) for different prediction
horizon settings: Np = 5, 10, 15, 20, 25, and their execution
times, MPC closed-loop cost (average), and MPC constraint
violations are listed in Table I. For the prediction horizon
Np ≤ 20, the execution time of our EIQP is less than the feed-
back time of 50 ms. As the prediction horizon Np increases,
the MPC tracking costs decrease but the MPC gradually
violates the constraints in Np ≥ 15 settings, this is because

as the prediction horizon Np increases, the resulted QPs
become gradually ill-conditioning, and thus requires smaller
optimality level, which can reduce the constraint violations
to 0 but increase the execution time. In our given processor,
Np = 10 should be chosen. The closed-loop simulation results
for Np = 10 are plotted in Fig. 2, which shows that the pitch
angle correctly tracks the reference signal from 0◦ to 10◦ and
then back to 0◦, and that both the input and output constraints
are satisfied.

TABLE I
EIQP (ϵ = 10−8) COMPUTATIONAL PERFORMANCE FOR MPC WITH

DIFFERENT PREDICTION HORIZON (Np = 5, 10, 15, 20, 25) SETTINGS

Prediction Execution Less than MPC MPC constraint
horizon time [ms] 50 [ms]? costs (avg) violations (avg)

Np = 5 1.6 42.6218 0.0
Np = 10 8.7 42.5558 0.0
Np = 15 22.8 42.5336 0.0001
Np = 20 47.6 42.4517 0.0009
Np = 25 86.3 41.4774 0.0103

0 1 2 3 4 5 6 7 8 9 10
0

5

10
y2

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

y1

0 1 2 3 4 5 6 7 8 9 10
-25

0

25

u1

0 1 2 3 4 5 6 7 8 9 10

time

-25

0

25

u2

Fig. 2. Closed-loop performance of AFTI-16 under the MPC prediction
horizon Np = 10 setting and EIQP (ϵ = 10−8).

C. Real-time CLF-HOCBF-QP applications

This subsection uses of EIQP to solve High-Order Control
Barrier Function (HOCBF)-based QP [48], and compares it to
the interior point and active set algorithms in QuadProg.

HOCBF has been shown to be capable of transforming
nonlinear optimizations for nonlinear systems and constraints
into QPs with formal guarantees [49]. We consider the Adap-
tive Cruise Control (ACC) problem with nonlinear vehicle
dynamics [50][

ż
v̇

]
︸ ︷︷ ︸

ẋ

=

[
vp − v
− 1

M Fr(v)

]
︸ ︷︷ ︸

f(x)

+

[
0
1
M

]
︸ ︷︷ ︸

g(x)

u (35)

where z denotes the distance between the ego vehicle and its
preceding vehicle; v, vp denote the speed of the ego and its

12

preceding vehicle, respectively; u is the control (acceleration)
of the ego vehicle; M is the mass of the ego vehicle, and
Fr(v) = f0sgn(v) + f1v + f2v

2, where f0 > 0, f1 > 0, and
f2 > 0 are scalars. The first term in Fr(v(t)) denotes the
coulomb friction force, the second term denotes the viscous
friction force, and the last term denotes the aerodynamic drag.

Constraint 1 (Control bounds): There are constraints on
control for the ego vehicle, i.e.,

−cdMg ≤ u ≤ caMg, (36)

where cd > 0 and ca > 0 are deceleration and acceleration
coefficients, respectively, and g is the gravity constant.
Constraint 2 (Safety constraint): The distance z is re-

quired to satisfy
z ≥ δ, (37)

where δ > 0 is determined by the length of the two vehicles.
Objective 1 (Desired speed): The ego vehicle always

attempts to achieve a desired speed vd > 0.
Objective 2 (Minimum control effort): The control input

effort of the ego vehicle,

Ji(ui(t)) =

∫ T

0

(
u(t)− Fr(v(t))

M

)2
dt, (38)

should be minimized, where T > 0 is the final time.
Problem: The ACC problem is to determine control laws

to achieve Objectives 1 and 2 subject to Constraints 1 and 2
for the ego vehicle governed by dynamics (35).

We use the Control Lyapunov Function (CLF) [51] to
achieve the desired speed and use the HOCBF to enforce
the safety constraint (37). Then the ACC problem can be
transformed into the QP that is solved at every time step:

u∗(t) = argmin
u(t)

1

2
u(t)⊤Hu(t) + F⊤u(t) (39)

u(t)=

[
u(t)
δacc(t)

]
, H=

[
2

M2 0
0 2pacc

]
, F =

[−2Fr(v(t))
M2

0

]
.

subject to

L2
fb(x) + LgLfb(x) + 2Lfb(x) + b(x) ≥ 0,

LfV (x) + LgV (x) + ϵaccV (x) ≤ δacc,
−cdMg ≤ u ≤ caMg,

where b(x) = z − δ is the HOCBF, V (x) = (v − vd)
2

is the CLF; Lf , Lg denotes the Lie derivative along f, g,
respectively; ϵacc > 0; and δacc is a relaxation variable that
ensures the CLF will not conflict with the HOCBF constraint.

The simulation parameters are listed in Table II. The initial
conditions are z(0) = 100m, v(0) = 20m/s, and vp(t) =
13.89m/s, ∀t ∈ [0, T].

Simulation results. The simulation results are given in
Table III and Fig. 3. The proposed EIQP is around 5 times
faster than the QuadProg in Matlab, while being able to detect
the infeasible case when cd decreases to 0.375. All the solvers
can ensure the correctness of the solutions and guarantee the
safety of the ACC problem, as shown by b(x(t)) ≥ 0 for
all t ∈ [0, T] in Fig. 3. In our processor, EIQP certifies that

TABLE II
SIMULATION PARAMETERS FOR ACC

Parameter Value Units
δ 10 m
vd 24 m/s
M 1650 kg
g 9.81 m/s2

f0 0.1 N
f1 5 Ns/m
f2 0.25 Ns2/m
ϵacc 10 unitless
ca, cd 0.4 unitless
pacc 1 unitless

its execution time is below 0.075 [ms], enabling our CLF-
HOCBF-QP controller to operate at a maximum frequency of
13.3 kHz. Moreover, the execution time of EIQP solver has
the smallest standard deviation, which is consistent with our
theoretical result: EIQP performs exact and fixed iterations.

TABLE III
EIQP COMPARISON WITH QUADPROG (INTERIOR POINT, ACTIVE SET) IN

CLF-HOCBF-QP

Method Execution time HOCBF Infeasibility
[ms] b(x(T)) detected?

Active set 0.297±0.252 2.010e-7
Interior point 0.361±0.196 1.825e-7

EIQP 0.065± 0.008 1.812e-7

Fig. 3. State profiles and HOCBFs for QuadProg and EIQP. b(x(t)) ≥ 0
denotes safety guarantees.

VI. CONCLUSION

This article proposes an execution-time-certified and
infeasibility-detecting solver for convex QP (including LP),
which is based on an infeasible IPM algorithm. The homoge-
neous formulation of convex QP’s KKT condition is adopted
to achieve the infeasibility-detecting capability. Moreover, by

13

exploiting this homogeneous formulation, our proposed infea-
sible IPM algorithm can achieve the best theoretical O(

√
n)

iteration complexity that feasible IPM algorithms enjoy. The
iteration complexity is proved to be exact (rather than an upper
bound), simple to calculate, and data independent, with the

value
⌈

log(n+1
ϵ)

− log(1− 0.414213√
n+1

)

⌉
, making it appealing to certify the

execution time of online time-varying convex QPs and LPs.
The homogeneous formulation comes at the cost of ill-

conditioned linear systems to be solved; we achieved numer-
ical robustness in our current implementation by employing
LU decomposition. Future work includes: i) developing a good
preconditioner for solving the linear system at each iteration,
to enable the faster decomposition to be used; ii) taking
advantage of the full Newton step feature to parallelize the
predetermined sequential iterations, which can greatly improve
the computational efficiency.

VII. ACKNOWLEDGEMENT

This research was supported by the U.S. Food and Drug Ad-
ministration under the FDA BAA-22-00123 program, Award
Number 75F40122C00200.

REFERENCES

[1] S. J. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control engineering practice, vol. 11, no. 7, pp.
733–764, 2003.

[2] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, “Control barrier
function based quadratic programs for safety critical systems,” IEEE
Transactions on Automatic Control, vol. 62, no. 8, pp. 3861–3876, 2016.

[3] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” in 2011 IEEE international conference on
robotics and automation. IEEE, 2011, pp. 2520–2525.

[4] A. Escande, N. Mansard, and P.-B. Wieber, “Hierarchical quadratic
programming: Fast online humanoid-robot motion generation,” The
International Journal of Robotics Research, vol. 33, no. 7, pp. 1006–
1028, 2014.

[5] K. Bouyarmane, K. Chappellet, J. Vaillant, and A. Kheddar, “Quadratic
programming for multirobot and task-space force control,” IEEE Trans-
actions on Robotics, vol. 35, no. 1, pp. 64–77, 2018.

[6] S. Richter, C. N. Jones, and M. Morari, “Computational complexity
certification for real-time MPC with input constraints based on the fast
gradient method,” IEEE Transactions on Automatic Control, vol. 57,
no. 6, pp. 1391–1403, 2011.

[7] P. Giselsson, “Execution time certification for gradient-based optimiza-
tion in model predictive control,” in Proceedings of the 51st IEEE
Conference on Decision and Control, 2012, pp. 3165–3170.

[8] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection
algorithm for embedded linear model predictive control,” IEEE Trans-
actions on Automatic Control, vol. 59, no. 1, pp. 18–33, 2013.

[9] G. Cimini and A. Bemporad, “Exact complexity certification of active-
set methods for quadratic programming,” IEEE Transactions on Auto-
matic Control, vol. 62, no. 12, pp. 6094–6109, 2017.

[10] D. Arnström and D. Axehill, “Exact complexity certification of a
standard primal active-set method for quadratic programming,” in Pro-
ceedings of the 58th IEEE Conference on Decision and Control, 2019,
pp. 4317–4324.

[11] G. Cimini and A. Bemporad, “Complexity and convergence certification
of a block principal pivoting method for box-constrained quadratic
programs,” Automatica, vol. 100, pp. 29–37, 2019.

[12] D. Arnström, A. Bemporad, and D. Axehill, “Complexity certification of
proximal-point methods for numerically stable quadratic programming,”
IEEE Control Systems Letters, vol. 5, no. 4, pp. 1381–1386, 2020.

[13] D. Arnström and D. Axehill, “A Unifying Complexity Certification
Framework for Active-Set Methods for Convex Quadratic Program-
ming,” IEEE Transactions on Automatic Control, vol. 67, no. 6, pp.
2758–2770, 2021.

[14] I. Okawa and K. Nonaka, “Linear complementarity model predictive
control with limited iterations for box-constrained problems,” Automat-
ica, vol. 125, p. 109429, 2021.

[15] L. Wu and R. D. Braatz, “A Direct Optimization Algorithm for Input-
Constrained MPC,” IEEE Transactions on Automatic Control, vol. 70,
no. 2, pp. 1366–1373, 2025.

[16] L. Wu, K. Ganko, and R. D. Braatz, “Time-certified Input-constrained
NMPC via Koopman operator,” IFAC-PapersOnLine, vol. 58, no. 18, pp.
335–340, 2024, 8th IFAC Conference on Nonlinear Model Predictive
Control NMPC 2024.

[17] L. Wu, K. Ganko, S. Wang, and R. D. Braatz, “An Execution-time-
certified Riccati-based IPM algorithm for RTI-based Input-constrained
NMPC,” in 63nd IEEE Conference on Decision and Control, 2024, in
press, arXiv:2402.16186.

[18] L. Wu, L. Zhou, and R. D. Braatz, “A Parallel Vector-form LDL⊤ De-
composition for Accelerating Execution-time-certified ℓ1-penalty Soft-
constrained MPC,” arXiv preprint arXiv:2403.18235, 2024.

[19] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” Mathematical
Programming Computation, vol. 12, no. 4, pp. 637–672, 2020.

[20] L. Wu and A. Bemporad, “A Simple and Fast Coordinate-Descent
Augmented-Lagrangian Solver for Model Predictive Control,” IEEE
Transactions on Automatic Control, vol. 68, no. 11, pp. 6860–6866,
2023.

[21] ——, “A construction-free coordinate-descent augmented-Lagrangian
method for embedded linear MPC based on ARX models,” IFAC-
PapersOnLine, vol. 56, no. 2, pp. 9423–9428, 2023.

[22] H. Ferreau, C. Kirches, A. Potschka, H. Bock, and M. Diehl, “qpOASES:
A parametric active-set algorithm for quadratic programming,” Mathe-
matical Programming Computation, vol. 6, pp. 327–363, 2014.

[23] Y. Wang and S. Boyd, “Fast model predictive control using online opti-
mization,” IEEE Transactions on Control Systems Technology, vol. 18,
no. 2, pp. 267–278, 2009.

[24] S. Gros, M. Zanon, R. Quirynen, A. Bemporad, and M. Diehl, “From
linear to nonlinear MPC: Bridging the gap via the real-time iteration,”
International Journal of Control, vol. 93, no. 1, pp. 62–80, 2020.

[25] V. Klee and G. Minty, “How good is the simplex algorithm,” Inequalities,
vol. 3, no. 3, pp. 159–175, 1972.

[26] S. Mehrotra, “On the implementation of a primal-dual interior point
method,” SIAM Journal on optimization, vol. 2, no. 4, pp. 575–601,
1992.

[27] A. Zanelli, A. Domahidi, J. Jerez, and M. Morari, “FORCES NLP: an
efficient implementation of interior-point methods for multistage non-
linear nonconvex programs,” International Journal of Control, vol. 93,
no. 1, pp. 13–29, 2020.

[28] J. Nocedal and S. Wright, Numerical optimization. Springer, 2006.
[29] C. Cartis, “Some disadvantages of a Mehrotra-type primal-dual corrector

interior point algorithm for linear programming,” Applied Numerical
Mathematics, vol. 59, no. 5, pp. 1110–1119, 2009.

[30] S. Wright, Primal-dual interior-point methods. SIAM, 1997.
[31] Y. Ye, Interior Point Algorithms: Theory and Analysis. New York:

John Wiley & Sons, 2011.
[32] G. Banjac, P. Goulart, B. Stellato, and S. Boyd, “Infeasibility detection in

the alternating direction method of multipliers for convex optimization,”
Journal of Optimization Theory and Applications, vol. 183, pp. 490–519,
2019.

[33] A. Bemporad, “A quadratic programming algorithm based on nonneg-
ative least squares with applications to embedded model predictive
control,” IEEE Transactions on Automatic Control, vol. 61, no. 4, pp.
1111–1116, 2015.

[34] D. Arnström, A. Bemporad, and D. Axehill, “Exact complexity certifica-
tion of a nonnegative least-squares method for quadratic programming,”
IEEE Control Systems Letters, vol. 4, no. 4, pp. 1036–1041, 2020.

[35] A. U. Raghunathan, “Homogeneous formulation of convex quadratic
programs for infeasibility detection,” in 2021 60th IEEE Conference on
Decision and Control (CDC). IEEE, 2021, pp. 968–973.

[36] Y. Ye, M. Todd, and S. Mizuno, “An O(
√
nL)-iteration homogeneous

and self-dual linear programming algorithm,” Mathematics of operations
research, vol. 19, no. 1, pp. 53–67, 1994.

[37] X. Xu, P. Hung, and Y. Ye, “A simplified homogeneous and self-
dual linear programming algorithm and its implementation,” Annals of
Operations Research, vol. 62, no. 1, pp. 151–171, 1996.

[38] Y. Ye, “On homogeneous and self-dual algorithms for LCP,” Mathemat-
ical Programming, vol. 76, no. 1, pp. 211–221, 1997.

14

[39] E. Andersen and Y. Ye, “On a homogeneous algorithm for the monotone
complementarity problem.” Mathematical Programming, vol. 84, no. 2,
pp. 375–399, 1999.

[40] S. P. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[41] O. Güler, “Existence of interior points and interior paths in nonlinear
monotone complementarity problems,” Mathematics of Operations Re-
search, vol. 18, no. 1, pp. 128–147, 1993.

[42] R. Monteiro and I. Adler, “An extension of Karmarkar type algorithm
to a class of convex separable programming problems with global linear
rate of convergence,” Mathematics of Operations Research, vol. 15,
no. 3, pp. 408–422, 1990.

[43] E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel, J. Don-
garra, J. Du Croz, A. Greenbaum, S. Hammarling, A. McKenney, and
D. Sorensen, LAPACK Users’ Guide, 3rd ed. Philadelphia, PA: Society
for Industrial and Applied Mathematics, 1999.

[44] C. L. Lawson, R. J. Hanson, D. R. Kincaid, and F. T. Krogh, “Basic
linear algebra subprograms for Fortran usage,” ACM Transactions on
Mathematical Software (TOMS), vol. 5, no. 3, pp. 308–323, 1979.

[45] J. L. Jerez, E. C. Kerrigan, and G. A. Constantinides, “A condensed and
sparse QP formulation for predictive control,” in 50th IEEE Conference
on Decision and Control and European Control Conference, 2011, pp.
5217–5222.

[46] P. Kapasouris, M. Athans, and G. Stein, “Design of feedback control
systems for stable plants with saturating actuators,” in Proceedings of
the 27th IEEE Conference on Decision and Control, 1988, pp. 469–479
vol.1.

[47] A. Bemporad, A. Casavola, and E. Mosca, “Nonlinear control of
constrained linear systems via predictive reference management,” IEEE
Transactions on Automatic Control, vol. 42, no. 3, pp. 340–349, 1997.

[48] W. Xiao and C. Belta, “High-order control barrier functions,” IEEE
Transactions on Automatic Control, vol. 67, no. 7, pp. 3655–3662, 2021.

[49] W. Xiao, C. G. Cassandras, and C. Belta, Safe autonomy with control
barrier functions: Theory and applications. Springer, 2023.

[50] H. K. Khalil, Nonlinear Systems. Prentice Hall, third edition, 2002.
[51] A. D. Ames, K. Galloway, K. Sreenath, and J. W. Grizzle, “Rapidly

exponentially stabilizing control lyapunov functions and hybrid zero
dynamics,” IEEE Transactions on Automatic Control, vol. 59, no. 4,
pp. 876–891, 2014.

Liang Wu received a B.E. and M.E. in chemical
engineering, with majors in computational fluid dy-
namics and process modeling. He then turned his
research interest to model predictive control and
received his Ph.D. in 2023 from the IMT School for
Advanced Studies Lucca supervised by Prof. Alberto
Bemporad.

He is now a postdoctoral associate at the Mas-
sachusetts Institute of Technology (MIT) supervised
by Prof. Richard D. Braatz since April 2023. His
research interests include quadratic programming,

model predictive control, convex nonlinear programming, and control of PDE
systems.

Wei Xiao (Member, IEEE) received the B.Sc. in me-
chanical engineering and automation from the Uni-
versity of Science and Technology Beijing, China
in 2013, the M.Sc. in robotics from the Chinese
Academy of Sciences (Institute of Automation), Bei-
jing, China in 2016, and the Ph.D. in systems engi-
neering from Boston University, MA, USA, in 2021.
He is currently a Postdoctoral Associate with the
Massachusetts Institute of Technology, Cambridge,
MA, USA. His current research interests include
control theory and machine learning, with particular

emphasis on robotics and traffic control.
Dr. Xiao was the recipient of an Outstanding Student Paper Award at the

2020 IEEE Conference on Decision and Control.

Richard D. Braatz is the Edwin R. Gilliland Pro-
fessor at the Massachusetts Institute of Technology
(MIT). He received an M.S. and Ph.D. from the Cal-
ifornia Institute of Technology. He is a past Editor-
in-Chief of the IEEE Control Systems Magazine,
Past President of the American Automatic Control
Council, and General Co-Chair of the 2020 IEEE
Conference on Decision and Control. Honors include
the AACC Donald P. Eckman Award, the Antonio
Ruberti Young Researcher Prize, and best paper
awards from IEEE- and IFAC-sponsored control

journals. He is a Fellow of IEEE and IFAC and a member of the U.S. National
Academy of Engineering.

	Introduction
	Related work
	Contributions
	Notations

	Problem formulations
	KKT condition and LCP formulation
	Homogeneous LCP formulation
	Central path of HLCP

	Infeasible full Newton IPM Algorithm for HLCP
	Convergence analysis
	Scaling and initialization strategy
	Exact iteration complexity

	Algorithm implementation
	Robust procedure for solving Newton systems
	Infeasibility reporting criteria
	Execution time certificate

	Numerical Experiments
	Random infeasible QP examples
	Real-time MPC applications
	Real-time CLF-HOCBF-QP applications

	Conclusion
	Acknowledgement
	References
	Biographies
	Liang Wu
	Wei Xiao
	Richard D. Braatz

