
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TEST-TIME ACCURACY-COST CONTROL
IN NEURAL SIMULATORS VIA RECURRENT-DEPTH

Anonymous authors
Paper under double-blind review

ABSTRACT

Accuracy-cost trade-offs are a fundamental aspect of scientific computing. Classi-
cal numerical methods inherently offer such a trade-off: increasing resolution, or-
der, or precision typically yields more accurate solutions at higher computational
cost. We introduce Recurrent-Depth Simulator (RecurrSim) an architecture-
agnostic framework that enables explicit test-time control over accuracy-cost
trade-offs in neural simulators without requiring retraining or architectural re-
design. By setting the number of recurrent iterations K, users can generate fast,
less-accurate simulations for exploratory runs or real-time control loops, or in-
crease K for more-accurate simulations in critical applications or offline stud-
ies. We demonstrate RecurrSim’s effectiveness across fluid dynamics bench-
marks (Burgers, Korteweg-De Vries, Kuramoto-Sivashinsky), achieving physi-
cally faithful simulations over long horizons even in low-compute settings. On
high-dimensional 3D compressible Navier-Stokes simulations with 262k points,
a 0.8B parameter RecurrFNO outperforms 1.6B parameter baselines while using
13.5% less training memory. RecurrSim consistently delivers superior accuracy-
cost trade-offs compared to alternative adaptive-compute models, including Deep
Equilibrium and diffusion-based approaches. We further validate broad architec-
tural compatibility: RecurrViT reduces error accumulation by 77% compared to
standard Vision Transformers on Active Matter, while RecurrUPT matches UPT
performance on ShapeNet-Car using 44% fewer parameters.

1 INTRODUCTION

Simulations are fundamental to science and engineering. They enable scientists to study and predict
the behavior of complex systems, and engineers to quickly iterate and optimize designs, without the
need for expensive or impractical experiments. Early scientific computing, limited by computational
resources, produced crude simulations with limited practical value. Today, with the availability of
enormous computers, simulations have led to breakthroughs across different domains, including
numerical weather prediction, fluid and particle flow, and drug and material design. Still, even
with today’s computational resources, less accurate but fast simulations are essential for early-stage
studies and prototyping.

In scientific computing, techniques for explicit control of the accuracy-cost trade-off are well-
established. Heuristic search methods, such as genetic algorithms and simulated annealing, enable
users to balance desired accuracy against available computational resources by controlling the size
of the search space. For instance, genetic algorithms obtain better solutions with larger population
sizes or by running more generations. Similarly, numerical methods, which have traditionally under-
pinned practically all simulations, have an inherent accuracy-cost trade-off: using finer discretiza-
tions, higher-order methods, and lower tolerances yields more accurate solutions but requires more
computational resources to execute. For high-dimensional or large-scale problems, this trade-off
becomes extremely unfavorable, rendering many real-world problems computationally intractable.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Machine learning provides a promising avenue to overcome this trade-off. Unlike numerical meth-
ods, which rely on explicitly defined formulations or heuristics, machine learning methods are
general-purpose learners that learn directly from the vast amounts of available measurement and
observational data, and are capable of generating simulations for a wide range of problems, ge-
ometries, discretizations, and boundary conditions. Machine learning methods also benefit from
hardware and software advancements specifically developed for the machine learning ecosystem,
including GPU acceleration frameworks and automated parallelization tools. Additionally, in favor-
able settings, machine learning methods can achieve comparable accuracy with less computational
resources, or deliver greater accuracy within the same computational budget. Several works have
successfully demonstrated these advantages on challenging applications including atmosphere and
weather forecasting and industrial automotive design (Price et al., 2025; Bleeker et al., 2025).

At train-time, there are a number of tunable knobs available for controlling the test-time accuracy-
cost trade-off of a neural simulator. Generally, allocating more computational resources during
training leads to more accurate predictions—whether that is by increasing the training dataset size
through data acquisition, data augmentation, or synthetic data; by increasing the model size through
stacking more layers or using wider layers; or by improving the optimization process through more
advanced optimizers, higher numerical precision, or training for more steps. Each of these train-time
adjustments directly affect the test-time accuracy and cost.

At test-time, once a neural simulator has been trained, there are fewer tunable knobs. Deep Equi-
librium models can iterate for more steps by increasing the maximum iteration limit or lowering
the convergence tolerance, with additional iterations theoretically yielding solutions closer to the
true fixed point (Bai et al., 2019). Diffusion models can make use of additional denoising steps or
more advanced samplers to generate higher-quality outputs at greater cost (Ho et al., 2020; Lu et al.,
2022). Recent advances in large language model inference has developed adaptive computation
methods that dynamically allocate computational resources based on input complexity, enabling fast
inference on simple prompts while spending additional compute on more challenging prompts (Wei
et al., 2022; DeepSeek-AI et al., 2025; Geiping et al., 2025).

In this work, we present Recurrent-Depth Simulator (RecurrSim), a framework that enables explicit
test-time control over accuracy-cost trade-offs, with a simple implementation (see Algorithm 1 and
2). Our approach enables adaptive-depth inference without retraining or architectural redesign. By
setting a small number of recurrent steps K, the model is able to generate fast, less-accurate simula-
tions for exploratory runs or real-time control loops. Increasing K generates more accurate simula-
tions for critical applications or offline studies. We validate the recurrent-depth simulator on several
fluid-dynamics benchmarks, including Burgers’, Korteweg-De Vries, and Kuramoto Sivashinsky
and demonstrate physically faithful simulations over long horizons and superior accuracy-cost trade-
offs compared to alternative adaptive models, including Deep Equilibrium and diffusion-based mod-
els. We further validate RecurrSim on the challenging task of generating three-dimensional turbulent
compressible Navier-Stokes simulations, a 0.8B parameter RecurrSim with a single recurrent-depth
Fourier layer attains lower mean-squared error than a 1.6B parameter standard Fourier neural opera-
tor architecture with six Fourier layers, while matching computational resources and utilizing 13.5%
less memory during training.

2 BACKGROUND

Partial Differential Equations. We consider time-dependent partial differential equations of the
form

ut +N (t,x,u,ux,uxx, . . .) = 0,

where t ∈ [0, T] represents the temporal dimension, x ∈ X represents the (possibly multiple)
spatial dimension(s), and u(t,x) : [0, T]×X → Rn represents the state at (t,x). Here,N is a non-
linear operator that governs the systems’ dynamics, describing the interactions among the different
variables and their derivatives. We consider initial conditions given by u(0,x) = u0(x), and unless
otherwise specified, assume periodic boundary conditions.

Discretizing the partial differential equations transforms the continuous equations into a discrete
form, yielding a sequence of states at discrete time steps {Un}Nn=0, where N = T/∆t is the number
of time steps ∆t. This discretization induces an evolution operator G, which maps the state at any
given time step to the state at the subsequent time step G : Un → Un+1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

Neural Simulators. A neural (physics) simulator approximates the evolution operator G with a
learned operator Gθ, often by minimizing the one-step loss L = ||Ut+1 − Gθ(Ut)||22, using data
from high-fidelity simulations or real-world measurements. Repeated application of Gθ generates a
trajectory. Because the one-step loss does not measure trajectory performance, accuracy is typically
quantified by a trajectory error:

1

N · d

N∑
n=1

∣∣∣∣∣∣Un − G(n)θ (U0)
∣∣∣∣∣∣2
2
,

where d denotes the number of spatial points and G(n)θ denotes the n-fold application of the neural
simulator. However, for chaotic systems where small errors grow exponentially, the trajectory error
becomes unreliable as a measure of trajectory performance. Instead, we define

τα = min
{
t = n∆t

∣∣ρ(Un,G(n)θ (U0)
)
< α

}
,

to be the earliest time at which the Pearson correlation coefficient ρ between the true and predicted
state falls below a specified threshold α ∈ (0, 1). Computing τα for each test trajectory yields (i)
the average correlation horizon, obtained by averaging all τα values, and (ii) the worst-case corre-
lation horizon, obtained by selecting the minimum τα. Together, the trajectory error and correlation
horizons capture both long-term accuracy and stability.

Related Work. A wide range of architectures have been explored for neural simulators. For reg-
ular domains, convolutional-based architectures such as the Residual Network (ResNet (He et al.,
2016)) and the U-shaped Encoder-Decoder (UNet (Ronneberger et al., 2015)) effectively capture
local interactions, whereas spectral-based architectures, such as the Fourier Neural Operator (FNO
(Li et al., 2020)) and its factorized variant (F-FNO (Tran et al., 2021)), leverage global frequency-
domain features. For irregular domains, Brandstetter et al. (2022) propose a message-passing graph
neural network, while Li et al. (2023) extend the FNO architecture with a geometry encoder and
decoder, deforming an irregular mesh into a uniform latent space suitable for FNO application, and
subsequently reversing this deformation. Pokle et al. (2022) propose FNO-DEQ, a Deep Equilibrium
Model (DEQ (Bai et al., 2019)) variant with Fourier layers, to solve steady-state PDEs, showing im-
provements in accuracy and robustness to noise over baselines with four times as many parameters.
Kohl et al. (2023) demonstrated that diffusion models are viable for turbulent flow simulation. Their
results show that diffusion models outperform, in terms of long-term accuracy and stability, more
efficient (and more commonly used) neural simulators. Recently, transformer-based architectures
have gained prominence. Alkin et al. (2024) introduce the Universal Physics Transformer, a unified
Eulerian-Lagrangian framework capable of handling large-scale simulations. Separately, McCabe
et al. (2023) show that a single transformer pre-trained on multiple physics tasks can match or exceed
task-specific baselines without additional fine-tuning.

These diverse architectures have demonstrated the potential of neural simulators across various sci-
entific domains. Luz et al. (2020) performed experiments on a broad class of problems demon-
strating improved convergence rates compared to highly efficient numerical methods. Pathak et al.
(2020) found that the machine learning-assisted coarse-grid evolution resulted in corrected solution
trajectories that were consistent with the solutions at a much higher resolution in space and time us-
ing highly-efficient spectral solvers. Stevens & Colonius (2020) proposed a method that outperforms
a highly efficient numerical method in simulations where the numerical solution becomes overly dif-
fused due to numerical viscosity.1 Aurora (Bodnar et al., 2024), a foundation model for the Earth
system, outperforms operational forecasts in predicting air quality, ocean waves, tropical cyclone
tracks and high-resolution weather, all at orders of magnitude lower computational costs. Aurora
generates these predictions in approximately 0.6s per hour lead time on a single A100 GPU—this
yields roughly a 100,000 times speed-up over CAMS. The fine-tuned model improves on all tar-
gets with an average magnitude of 54%. While these advances demonstrate the potential of neural
simulators, explicit test-time control of the accuracy-cost trade-off remains largely unexplored.

1The results of Luz et al. (2020), Pathak et al. (2020), and Stevens & Colonius (2020) have been indepen-
dently verified by McGreivy & Hakim (2024) and have been deemed “fair”. The verification process ensured
comparisons satisfied two critical criteria: (i) comparisons at equal accuracy or equal runtime, and (ii) compar-
ison against efficient numerical methods appropriate for each specific PDE.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Figure 1: Schematic of the Recurrent-Depth Simulator (RecurrSim) framework. RecurrSim con-
sists of three main components: an encoder, a recurrent-depth block, and a decoder. At test-time, the
user is able to control the accuracy-cost trade-off by setting the number of recurrent iterations K.

3 RECURRENT-DEPTH SIMULATOR

Overview. The proposed Recurrent-Depth Simulator (RecurrSim) framework consists of three
main components: an encoder, a recurrent-depth block, and a decoder (see Figure 1). The encoder
transforms the input state x into a conditioning vector c. An initial latent z0 is drawn from a fixed
distribution p(z) (which may be deterministic). For a user-chosen number of recurrent iterations K,
the recurrent-depth blockR(·, θR)—conditioned on c—iteratively updates the latent:

zk = R ([c, zk−1] , θR) , k = 1, . . . ,K.

After the final recurrent iteration, the decoder maps zK to the predicted state ŷ.

Training. RecurrSim is trained end-to-end. For each training sample, a number of recurrent itera-
tions K is drawn from a distribution p(K), the recurrent-depth block is applied that many times, a
supervised loss is evaluated, and gradients are back-propagated through the computation (see Algo-
rithm 1). Sampling a wide range of recurrent iterations K encourages the recurrent block to contract
toward a fixed point.

A large number of recurrent iterations K inflates memory because every intermediate activation must
ordinarily be stored. To bound the memory footprint, we use truncated backpropagation-through-
depth with a fixed backpropagation window B (Williams & Peng, 1990). Gradients are propagated
through, at most, the last B recurrent iterations, while earlier iterations are treated as constants.
This caps memory at O(B) regardless of K and has proved sufficient for optimization. Empirically,
performance saturates at B = 4, with larger values yielding diminishing returns but significantly
increasing memory usage (see Appendix D).

Inference. At test-time, the user is free to choose the number of recurrent iterations K according
to their desired accuracy and available computational resources (see Algorithm 2). Choosing a
small K generates fast, less-accurate simulations ideal for exploratory runs, or real-time control
loops; whereas choosing a large K value generates more-accurate, but slow, simulations suitable
for critical applications or offline studies. Empirically, the first few recurrent steps make the largest
adjustments to the latent vector zk; and subsequent steps contribute progressively smaller, yet still
beneficial, adjustments. This behavior mirrors numerical methods, such as fixed-point and Newton
methods, endowing RecurrSim with a strong inductive bias suitable for scientific computing tasks.

Modularity. RecurrSim is modular: each of, the encoder, recurrent-depth block, and decoder may
be instantiated with the architecture primitive best suited to the problem—e.g., convolutional layers
for Eulerian simulations or graph-convolutional layers for Lagrangian simulations—without altering
training or inference algorithms. The entire framework remains a standard end-to-end, supervised
model with no custom losses, schedulers, or tricks, so adoption is essentially plug-and-play.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Algorithm 1 Recurrent-Depth Simulator Training
Input: training data x,y
Output: model parameters θE ,θR,θD
repeat

for i ∈ B do ▷ for every training example index in batch
c← E(xi,θE) ▷ compute conditioning vector
z0 ∼ p(z) ▷ sample initial latent representation
K ∼ p(K) ▷ sample number of recurrent iterations
for k = 1 to K do ▷ unroll K recurrent iterations

z′k−1 ← [c, zk−1] ▷ concatenate conditioning and latent representation
zk ← R(z′k−1,θR) ▷ apply recurrent block

end for
ŷi ← D(zK ,θD) ▷ decode latent representation
li ← ||yi − ŷi|| ▷ compute individual loss

end for
accumulate losses for batch and take gradient step

until converged

Algorithm 2 Recurrent-Depth Simulator Inference
Input: input state x, number of recurrent iterations K, model parameters θE ,θR,θD
Output: output state y
c← E(x,θE) ▷ compute conditioning vector
z0 ∼ p(z) ▷ sample initial latent representation
for k = 1 to K do ▷ unroll K recurrent iterations

z′k−1 ← [c, zk−1] ▷ concatenate conditioning and latent representation
zk ← R(z′k−1,θR) ▷ apply recurrent block

end for
y← D(zK ,θD) ▷ decode latent representation to predicted state

Initial Latent Distribution. The initial latent vector z0 is drawn from a fixed distribution p(z).
Common choices include degenerate distributions (e.g., zeros or average of target fields), standard
normal distributions, or heavy-tailed alternatives like Student-t priors (Pandey et al., 2025). Empiri-
cally, this choice primarily affects early iterations, with minimal impact later as the latent converges
toward the fixed point. We use the standard normal distribution N (0, I) for consistency with DEQ
and diffusion models.

Recurrent Iteration Distribution. The number of recurrent iterations K is drawn from a Poisson
log-normal distribution:

υ ∼ N
(
log K̄ − 1

2
σ2, σ

)
,

K ∼ Poisson (eυ) + 1,

where K̄ + 1 is the desired mean (Geiping et al., 2025). This distribution exposes the model to a
broad spectrum of compute budgets during training: it is positively skewed with most draws landing
near K̄, but occasional very small and very large values are sampled, encouraging the recurrent-
block to remain stable across both shallow and deep rollouts. Empirically, performance saturates
around K̄ = 32 (σ = 0.5), with larger values providing diminishing returns (see Appendix E).

Merging Conditioning and Latent Vectors. At each recurrent iteration, the conditioning vector
c is merged with the current latent vector zk. The most straightforward scheme is plain addition:
z′k = c + zk. A slightly richer variant introduces learnable scalar weights: z′k = αc + βzk; the
weights can be made element-wise: z′k = α⊙c+β⊙zk. Alternatives include point-wise projection,
or concatenating and passing the result through a width-halving layer. Empirically, addition with
element-wise weights offers the best balance between parameter efficiency and performance (see
Appendix F).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

4 RESULTS

Complete experimental details, including hardware specifications, data acquisition, data generation,
preprocessing pipelines, training pipelines, and architectural configurations, are provided in Ap-
pendix A-C. We conduct experiments across diverse datasets including Burgers Equation, Korteweg-
De Vries Equation, Kuramoto-Sivashinsky Equation, Compressible Navier-Stokes Equations, Ac-
tive Matter, and ShapeNet-Car; and across multiple architectural backbones including Fourier Neu-
ral Operator (RecurrFNO), Vision Transformer (RecurrViT), and Universal Physics Transformer
(RecurrUPT).

4.1 EQUATIONS

Burgers Equation. The Burgers equation is a second-order nonlinear partial differential equation
derived to model convective steepening and diffusive smoothing. Its one-dimensional variant can be
expressed as:

ut + uux = νuxx.
Here, ν plays the role of kinematic viscosity. Setting ν = 0 yields the inviscid form ut + uux = 0,
whose solutions develop finite-time shock discontinuities; the viscous term νuxx regularises these
shocks but introduces extremely thin internal layers that remain numerically stiff. Machine learning
methods must learn to represent sharp gradients, moving shocks and the delicate interplay between
nonlinearity and diffusion.

Korteweg-De Vries Equation. The Korteweg-De Vries (KdV) is a third-order nonlinear partial
differential equation derived to model weakly nonlinear, weakly dispersive unidirectional waves. Its
one-dimensional variant can be expressed as:

ut + αuux + uxxx = 0.

Here, α (often set to ±1 or ±6) controls nonlinear steepening while the third-order derivative uxxx

introduces dispersion. The exact balance of these effects produces solitary-wave solutions (solitons)
that preserve their shape and speed and undergo only phase shifts upon interaction –small amounts
of artificial dissipation can destroy these very structures making KdV an ideal candidate for evaluat-
ing whether machine learning methods can maintain accuracy, stability and conservation over long
horizons.

Kuramoto-Sivashinsky Equation. The Kuramoto-Sivashinsky (KS) equation is a fourth-order
nonlinear partial differential equation derived to model diffusive-thermal instabilities in laminar
flame fronts. Its one-dimensional variant can be expressed as:

ut + uxx + uxxxx + uux = 0.

Here, the fourth-order derivative uxxxx and the nonlinear term uux contribute to complex and
chaotic behavior which present a challenge for traditional numerical solvers. The challenges and
the wide applicability of the KS equation make it an ideal candidate for evaluating machine learning
methods.

Compressible Navier-Stokes Equations. The three-dimensional Compressible Navier-Stokes
(CNS) equations model complex phenomena such as shock wave formation and propagation. They
are widely used across various engineering and physics applications, including aircraft wing aero-
dynamics and the formation of interstellar gases. The equations can be expressed as:

∂tρ+∇ · (ρv) = 0, ρ(∂tv + v · ∇v) = −∇p+ η∆v + (ζ + η/3)∇(∇ · v),
∂t(ϵ+ ρv2/2) +∇ ·

[
(p+ ϵ+ ρv2/2)v − v · σ′] = 0,

where ρ is the mass density, v is the fluid velocity, p is the pressure, and ϵ is the internal energy deter-
mined by the equation of state. The term σ′ denotes the viscous stress tensor, while η and ζ represent
the shear and bulk viscosities, respectively. In this case, using a classical numerical solver to approx-
imate the fluid flow is particularly challenging due to strict stability constraints, high computational
cost, and the need for accurate yet robust numerical schemes that handle shocks, dissipation, and
grid adaptivity in large-scale domains. Even though machine learning can overcome several of the
challenges posed by traditional solvers, training a neural simulator on three-dimensional data comes
with considerable engineering complexity. The primary limitation arises from storing the activations
during training, increasing the memory requirement compared to smaller dimensions problems.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Figure 2: Top: Trajectory Error (L2) versus Recurrent Steps (K) for the Burgers (left), short-
horizon KdV (middle), and long-horizon KdV (right). Bottom: Trajectories at K = 4 (orange) and
K = 16 (purple) (highlighted above). Increasing K sharpens shocks in Burgers and aligns soliton
crests in KdV, illustrating how recurrent depth controls the accuracy–cost trade-off.

4.2 EXPERIMENT: ACCURACY-COST TRADE-OFF

Commonly used neural simulators are trained for a single accuracy-cost setting: once the model
is trained, every forward pass delivers the same expected accuracy and incurs the same cost. Re-
currSim, on the other hand, has a tunable knob for controlling the accuracy-cost setting (the number
of recurrent iterations K). The purpose of this experiment is to empirically demonstrate whether
rolling out the trajectory across values of recurrent iterations K is viable.

Experimental Setup. We conduct experiments on three datasets: Burgers, short-horizon KdV, and
long-horizon KdV. Two instantiations of RecurrSim are benchmarked. The first variant (RecurrFNO
wo/ EncDec) lifts the input with a point-wise operation, recursively applies a recurrent-depth
block with a single Fourier layer, and projects back to physical space; the second variant (Recur-
rFNO w/ EncDec) inserts an additional Fourier layer in, both, the encoder and decoder. For each
variant, we target three parameter budgets (∼ 1.0M, 3.5M, 7.5M), yielding six models per dataset.
We use K̄ = 32 and B = 4. After convergence, we generate trajectories for every K ∈ {1, . . . , 32}
and measure the trajectory error. All experiments are repeated with three seeds and averaged.

Results. Across all three datasets, both variants show the same qualitative accuracy-cost curve
(Figure 2), but RecurrFNO w/ EncDec achieves consistently lower trajectory error. As K in-
creases, the trajectory error falls steadily and plateaus around K = 16 for Burgers and K = 8
for both, short- and long-horizon KdV ; further steps neither help nor harm. For each dataset, we
plot low-compute (K = 4) and high-compute (K = 16) trajectories. In Burgers, the two settings
reproduce the same shock patterns, with the low-compute run showing slightly larger absolute error
around the fronts. In both KdV datasets, the low-compute run already recovers the full soliton train;
the absolute error is almost entirely a small amplitude and/or phase offset, visible as narrow streaks
along the soliton trajectories. Increasing to K = 16 sharpens the shocks and aligns the soliton crests.
These results demonstrate that RecurrFNO delivers physically faithful simulations over a range of
accuracy-cost settings. Extended results are presented in Appendix G.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

RucurrFNORucurrFNO

Figure 3: Trajectory Error (L2) versus Recurrent Steps (K) for the Burgers (left), and long-horizon
KdV (right). Curves compare RecurrFNO (teal), FNO-DEQ (blue) (Marwah et al., 2023), ACDM
(orange) (Kohl et al., 2023), and PDE-Refiner (green) (Lippe et al., 2023). Across both tasks, Re-
currFNO achieves the best accuracy-cost curve and reaches the lowest plateau.

4.3 EXPERIMENT: ALTERNATIVES

There are a few recent neural simulators that have test-time controllable knobs. FNO-DEQ is a Deep
Equilibrium Model with Fourier layers whose runtime is set by a maximum number of iterations or
a minimum update. ACDM—an autoregressive conditional diffusion model—is able to adjust the
prediction quality by varying the number and schedule of denoising steps. PDE-Refiner applies
the same diffusion principle in a direct prediction and refinement process. In this experiment, we
benchmark RecurrFNO against the three alternatives under identical data and training setups.

Experimental Setup. We conduct experiments on three datasets: Burgers, long-horizon KdV, and
long-horizon Kuramoto-Sivashinsky. For RecurrSim, we carry over the best variant from the pre-
vious set of experiments: point-wise lift + Fourier layer encoder, a recurrent-depth block with one
Fourier layer, Fourier layer with point-wise projection decoder—configured with ∼ 7.5M parame-
ters, K̄ = 32, and B = 4 steps. FNO-DEQ follows the setup of Pokle et al. (2022), with its width
scaled to match a parameter count of ∼ 7.5M. ACDM and PDE-Refiner use a modern UNet back-
bone from their original implementations (Kohl et al., 2023; Lippe et al., 2023). In early tests, both
diffusion-based models proved parameter-inefficient and could not rollout beyond a few steps, so we
train them with ∼ 15M parameters for Burgers and KdV, and ∼ 50M parameters for KS (the scale
used by Lippe et al. (2023)). After convergence, we generate trajectories for every K ∈ {1, . . . , 32}
(where K is equal to the recurrent steps for RecurrSim, iterations for FNO-DEQ, and denoising
steps for ACDM and PDE-Refiner). On Burgers and KdV, we measure and report the trajectory
error. Since the KS equation produces chaotic behavior, we measure the average and worst-case
correlation horizon over a sweep of 30 thresholds (α = 0.7-0.99 in increments of 0.01).

Results. On Burgers, FNO-DEQ, ACDM, and PDE-Refiner all plateau by K ≈ 4 (see Figure 3
(left)); PDE-Refiner gains practically nothing beyond its second refinement step. RecurrFNO, by
contrast, continues to improve until K ≈ 16, while using half the parameters of the diffusion-based
models. On KdV, FNO-DEQ exhibits the convergence limitation reported by Sittoni & Tudisco
(2024)—the latent representation oscillates around, rather than converges to, the fixed point—so ad-
ditional iterations provide no improvement. The ten-fold larger training dataset helps the diffusion-
based models, however, once again, ACDM plateaus near K ≈ 4. PDE-Refiner improves up to
K = 11 before degrading because larger K values are out-of-distribution. RecurrFNO delivers
the best accuracy-cost curves and lowest trajectory errors. On KS (see Appendix G), where the
diffusion-based models have 7-fold the amount of parameters as RecurrFNO, ACDM plateaus early,
and PDE-Refiner shows erratic worst-case correlation horizons. Taken together, RecurrFNO consis-
tently outperforms alternatives while using fewer parameters.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Model Params Training
Memory

Training
Epochs

Training
GFLOPs

MSE ×10−2

Density
MSE ×10−2

Pressure
MSE ×10−2

Velocity

FNO 0.5B 38 GB 100 1× 107 9.60 ± 0.03 9.59 ± 0.03 9.55 ± 0.03
FNO 1.0B 57 GB 100 2× 107 7.83 ± 0.02 7.79 ± 0.02 7.82 ± 0.03
FNO 1.6B 73 GB 100 3× 107 7.61 ± 0.01 7.59 ± 0.02 7.62 ± 0.03
RecurrFNO 0.8B 64 GB 82 3× 107 7.57 ± 0.04 7.51 ± 0.01 7.53 ± 0.03

RecurrFNO 0.8B 64 GB 100 5× 107 7.37 ± 0.03 7.33 ± 0.01 7.36 ± 0.03

Table 1: Comparison between FNO and RecurrFNO on 3D Compressible Navier-Stokes Equations.

Model Params MSE ×10−2

Steps 0:3
MSE ×10−2

Steps 0:6
MSE ×10−2

Steps 0:12
ViT 130M 2.91 12.41 43.16
RecurrViT 75M 0.68 2.62 16.39

Table 2: Comparison between ViT and Recur-
rViT on Active Matter.

Model Resolution Params MSE ×10−2

Original Work
MSE ×10−2

Our Work

UPT 323 164M 2.35 2.31
RecurrUPT 323 92M N/A 2.19

Table 3: Comparison between UPT and Recur-
rUPT on ShapeNet-Car.

4.4 EXPERIMENT: HIGH-DIMENSIONAL SIMULATIONS AND TRANSFORMER VARIANTS

Many real-world scientific simulations involve high-dimensional problems where memory-intensive
approaches like ADCM and PDE-Refiner become computationally prohibitive. Additionally, the
generalizability of RecurrSim across different architectural primitives and problem domains remains
to be demonstrated. We address these challenges through three targeted experiments: (1) evaluat-
ing memory efficiency on high-dimensional 3D compressible Navier-Stokes equations (262k grid
points) where traditional deep networks face memory constraints, (2) demonstrating architectural
flexibility by adapting Kohl et al. (2023)’s vision transformers for active matter simulations (Ohana
et al., 2025), and (3) validating the framework’s drop-in compatibility by recreating UPT’s (Alkin
et al., 2024) ShapeCar-Net experiments, only adapting their approximator module by decreasing
the depth and wrapping it in a recurrent-block—this significantly lowers the number of trainable
parameters.

Results. RecurrSim variants consistently achieve superior accuracy with dramatically reduced
computational requirements across all domains (Table 1, Table 2, Table 3). On 3D compressible
Navier-Stokes equations, RecurrFNO with K̄ = 8 outperforms all FNO baselines, including a 1.6B
parameter model, while requiring less memory (64GB vs 73GB). When training epochs are matched
(K̄ = 16), RecurrFNO achieves MSE improvements on density, pressure, and velocity compared
to the strongest FNO baseline. On Active Matter, RecurrViT with 75M parameters (58% of ViT’s
130M) reduces error accumulation by 77% at 3 timesteps and maintains 62% lower error at 12
timesteps. On ShapeNet-Car, RecurrUPT with 92M parameters (56% of UPT’s 164M) achieves
better performance to the original work, demonstrating perfect drop-in compatibility. These results
establish that RecurrSim provides a universal framework for test-time accuracy-cost control: users
can deploy a single trained model across diverse computational budgets simply by adjusting the
number of recurrent iterations.

5 CONCLUSIONS AND FUTURE WORK

We introduce the Recurrent-Depth Simulator (RecurrSim), an architecture-agnostic framework en-
abling explicit test-time control over accuracy-cost trade-offs in neural simulators. By adjusting
the number of recurrent iterations K at inference, users can deploy a single trained model across
diverse computational budgets—from fast exploratory runs to high-accuracy critical simulations.
RecurrSim demonstrates physically faithful behavior across fluid dynamics benchmarks and con-
sistently outperforms existing adaptive methods (FNO-DEQ, ACDM, PDE-Refiner) while using
fewer parameters. On high-dimensional problems, RecurrFNO with 0.8B parameters outperforms
1.6B FNO baselines using 13.5% less memory, while RecurrViT and RecurrUPT show similar ad-
vantages across transformer architectures. This plug-and-play framework fundamentally improves
neural simulator utility and opens new research directions in adaptive scientific computing.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Benedikt Alkin, Andreas Fürst, Simon Schmid, Lukas Gruber, Markus Holzleitner, and Johannes
Brandstetter. Universal physics transformers: A framework for efficiently scaling neural opera-
tors. Advances in Neural Information Processing Systems, 2024.

Jacob Austin, Daniel D Johnson, Jonathan Ho, Daniel Tarlow, and Rianne Van Den Berg. Structured
denoising diffusion models in discrete state-spaces. Advances in neural information processing
systems, 34:17981–17993, 2021.

Shaojie Bai, J Zico Kolter, and Vladlen Koltun. Deep equilibrium models. Advances in neural
information processing systems, 32, 2019.

Shaojie Bai, Vladlen Koltun, and J Zico Kolter. Multiscale deep equilibrium models. Advances in
neural information processing systems, 33:5238–5250, 2020.

Maurits Bleeker, Matthias Dorfer, Tobias Kronlachner, Reinhard Sonnleitner, Benedikt Alkin, and
Johannes Brandstetter. Neuralcfd: Deep learning on high-fidelity automotive aerodynamics sim-
ulations. arXiv preprint arXiv:2502.09692, 2025.

Cristian Bodnar, Wessel P Bruinsma, Ana Lucic, Megan Stanley, Johannes Brandstetter, Patrick
Garvan, Maik Riechert, Jonathan Weyn, Haiyu Dong, Anna Vaughan, et al. Aurora: A foundation
model of the atmosphere. arXiv preprint arXiv:2405.13063, 2024.

Johannes Brandstetter, Daniel Worrall, and Max Welling. Message passing neural pde solvers. arXiv
preprint arXiv:2202.03376, 2022.

Nanxin Chen, Yu Zhang, Heiga Zen, Ron J Weiss, Mohammad Norouzi, and William Chan. Wave-
grad: Estimating gradients for waveform generation. arXiv preprint arXiv:2009.00713, 2020.

DeepSeek-AI, Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu,
Qihao Zhu, Shirong Ma, Peiyi Wang, Xiao Bi, Xiaokang Zhang, Xingkai Yu, Yu Wu, Z. F. Wu,
Zhibin Gou, Zhihong Shao, Zhuoshu Li, Ziyi Gao, Aixin Liu, Bing Xue, Bingxuan Wang, Bochao
Wu, Bei Feng, Chengda Lu, Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan,
Damai Dai, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Honghui Ding,
Huajian Xin, Huazuo Gao, Hui Qu, Hui Li, Jianzhong Guo, Jiashi Li, Jiawei Wang, Jingchang
Chen, Jingyang Yuan, Junjie Qiu, Junlong Li, J. L. Cai, Jiaqi Ni, Jian Liang, Jin Chen, Kai
Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai Yu, Lean Wang, Lecong Zhang,
Liang Zhao, Litong Wang, Liyue Zhang, Lei Xu, Leyi Xia, Mingchuan Zhang, Minghua Zhang,
Minghui Tang, Meng Li, Miaojun Wang, Mingming Li, Ning Tian, Panpan Huang, Peng Zhang,
Qiancheng Wang, Qinyu Chen, Qiushi Du, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
R. J. Chen, R. L. Jin, Ruyi Chen, Shanghao Lu, Shangyan Zhou, Shanhuang Chen, Shengfeng
Ye, Shiyu Wang, Shuiping Yu, Shunfeng Zhou, Shuting Pan, S. S. Li, Shuang Zhou, Shaoqing
Wu, Shengfeng Ye, Tao Yun, Tian Pei, Tianyu Sun, T. Wang, Wangding Zeng, Wanjia Zhao, Wen
Liu, Wenfeng Liang, Wenjun Gao, Wenqin Yu, Wentao Zhang, W. L. Xiao, Wei An, Xiaodong
Liu, Xiaohan Wang, Xiaokang Chen, Xiaotao Nie, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu,
Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, X. Q. Li, Xiangyue Jin, Xiaojin Shen, Xi-
aosha Chen, Xiaowen Sun, Xiaoxiang Wang, Xinnan Song, Xinyi Zhou, Xianzu Wang, Xinxia
Shan, Y. K. Li, Y. Q. Wang, Y. X. Wei, Yang Zhang, Yanhong Xu, Yao Li, Yao Zhao, Yaofeng
Sun, Yaohui Wang, Yi Yu, Yichao Zhang, Yifan Shi, Yiliang Xiong, Ying He, Yishi Piao, Yisong
Wang, Yixuan Tan, Yiyang Ma, Yiyuan Liu, Yongqiang Guo, Yuan Ou, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yunfan Xiong, Yuxiang Luo, Yuxiang You, Yuxuan Liu, Yuyang Zhou,
Y. X. Zhu, Yanhong Xu, Yanping Huang, Yaohui Li, Yi Zheng, Yuchen Zhu, Yunxian Ma, Ying
Tang, Yukun Zha, Yuting Yan, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe Fu, Zhean Xu, Zhenda
Xie, Zhengyan Zhang, Zhewen Hao, Zhicheng Ma, Zhigang Yan, Zhiyu Wu, Zihui Gu, Zijia Zhu,
Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Zizheng Pan, Zhen Huang, Zhipeng Xu, Zhongyu
Zhang, and Zhen Zhang. Deepseek-r1: Incentivizing reasoning capability in llms via reinforce-
ment learning, 2025. URL https://arxiv.org/abs/2501.12948.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

10

https://arxiv.org/abs/2501.12948

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Jonas Geiping, Sean McLeish, Neel Jain, John Kirchenbauer, Siddharth Singh, Brian R Bartoldson,
Bhavya Kailkhura, Abhinav Bhatele, and Tom Goldstein. Scaling up test-time compute with
latent reasoning: A recurrent depth approach. arXiv preprint arXiv:2502.05171, 2025.

Zhengyang Geng, Xin-Yu Zhang, Shaojie Bai, Yisen Wang, and Zhouchen Lin. On training implicit
models. Advances in Neural Information Processing Systems, 34:24247–24260, 2021.

Zhengyang Geng, Ashwini Pokle, and J Zico Kolter. One-step diffusion distillation via deep equi-
librium models. Advances in Neural Information Processing Systems, 36:41914–41931, 2023.

Davis Gilton, Gregory Ongie, and Rebecca Willett. Deep equilibrium architectures for inverse
problems in imaging. IEEE Transactions on Computational Imaging, 7:1123–1133, 2021.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in neural information processing systems, 35:26565–26577,
2022.

Georg Kohl, Li-Wei Chen, and Nils Thuerey. Benchmarking autoregressive conditional diffusion
models for turbulent flow simulation. arXiv preprint arXiv:2309.01745, 2023.

Zhifeng Kong, Wei Ping, Jiaji Huang, Kexin Zhao, and Bryan Catanzaro. Diffwave: A versatile
diffusion model for audio synthesis. arXiv preprint arXiv:2009.09761, 2020.

Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential
equations. arXiv preprint arXiv:2010.08895, 2020.

Zongyi Li, Miguel Liu-Schiaffini, Nikola Kovachki, Burigede Liu, Kamyar Azizzadenesheli,
Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Learning dissipative dynam-
ics in chaotic systems. arXiv preprint arXiv:2106.06898, 2021.

Zongyi Li, Daniel Zhengyu Huang, Burigede Liu, and Anima Anandkumar. Fourier neural oper-
ator with learned deformations for pdes on general geometries. Journal of Machine Learning
Research, 24(388):1–26, 2023.

Phillip Lippe, Bas Veeling, Paris Perdikaris, Richard Turner, and Johannes Brandstetter. Pde-refiner:
Achieving accurate long rollouts with neural pde solvers. Advances in Neural Information Pro-
cessing Systems, 36:67398–67433, 2023.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts, 2017. URL
https://arxiv.org/abs/1608.03983.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019. URL https:
//arxiv.org/abs/1711.05101.

Cheng Lu, Yuhao Zhou, Fan Bao, Jianfei Chen, Chongxuan Li, and Jun Zhu. Dpm-solver++: Fast
solver for guided sampling of diffusion probabilistic models. arXiv preprint arXiv:2211.01095,
2022.

Ilay Luz, Meirav Galun, Haggai Maron, Ronen Basri, and Irad Yavneh. Learning algebraic multigrid
using graph neural networks. In Hal Daumé III and Aarti Singh (eds.), Proceedings of the 37th
International Conference on Machine Learning, volume 119 of Proceedings of Machine Learning
Research, pp. 6489–6499. PMLR, 13–18 Jul 2020. URL https://proceedings.mlr.
press/v119/luz20a.html.

Tanya Marwah, Ashwini Pokle, J Zico Kolter, Zachary Lipton, Jianfeng Lu, and Andrej Risteski.
Deep equilibrium based neural operators for steady-state pdes. Advances in Neural Information
Processing Systems, 36:15716–15737, 2023.

11

https://arxiv.org/abs/1608.03983
https://arxiv.org/abs/1711.05101
https://arxiv.org/abs/1711.05101
https://proceedings.mlr.press/v119/luz20a.html
https://proceedings.mlr.press/v119/luz20a.html

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Michael McCabe, Bruno Régaldo-Saint Blancard, Liam Holden Parker, Ruben Ohana, Miles
Cranmer, Alberto Bietti, Michael Eickenberg, Siavash Golkar, Geraud Krawezik, Francois
Lanusse, et al. Multiple physics pretraining for physical surrogate models. arXiv preprint
arXiv:2310.02994, 2023.

Nick McGreivy and Ammar Hakim. Weak baselines and reporting biases lead to overoptimism in
machine learning for fluid-related partial differential equations. Nature Machine Intelligence, 6
(10):1256–1269, September 2024. ISSN 2522-5839. doi: 10.1038/s42256-024-00897-5. URL
http://dx.doi.org/10.1038/s42256-024-00897-5.

Alex Nichol, Prafulla Dhariwal, Aditya Ramesh, Pranav Shyam, Pamela Mishkin, Bob McGrew,
Ilya Sutskever, and Mark Chen. Glide: Towards photorealistic image generation and editing with
text-guided diffusion models. arXiv preprint arXiv:2112.10741, 2021.

Shen Nie, Fengqi Zhu, Zebin You, Xiaolu Zhang, Jingyang Ou, Jun Hu, Jun Zhou, Yankai
Lin, Ji-Rong Wen, and Chongxuan Li. Large language diffusion models. arXiv preprint
arXiv:2502.09992, 2025.

Ruben Ohana, Michael McCabe, Lucas Meyer, Rudy Morel, Fruzsina J. Agocs, Miguel Beneitez,
Marsha Berger, Blakesley Burkhart, Keaton Burns, Stuart B. Dalziel, Drummond B. Fielding,
Daniel Fortunato, Jared A. Goldberg, Keiya Hirashima, Yan-Fei Jiang, Rich R. Kerswell, Surya-
narayana Maddu, Jonah Miller, Payel Mukhopadhyay, Stefan S. Nixon, Jeff Shen, Romain Wat-
teaux, Bruno Régaldo-Saint Blancard, François Rozet, Liam H. Parker, Miles Cranmer, and
Shirley Ho. The well: a large-scale collection of diverse physics simulations for machine learning,
2025. URL https://arxiv.org/abs/2412.00568.

Kushagra Pandey, Jaideep Pathak, Yilun Xu, Stephan Mandt, Michael Pritchard, Arash Vahdat,
and Morteza Mardani. Heavy-tailed diffusion models. In The Thirteenth International Confer-
ence on Learning Representations, 2025. URL https://openreview.net/forum?id=
tozlOEN4qp.

Jaideep Pathak, Mustafa Mustafa, Karthik Kashinath, Emmanuel Motheau, Thorsten Kurth, and
Marcus Day. Using machine learning to augment coarse-grid computational fluid dynamics sim-
ulations, 2020. URL https://arxiv.org/abs/2010.00072.

Ashwini Pokle, Zhengyang Geng, and J Zico Kolter. Deep equilibrium approaches to diffusion
models. Advances in Neural Information Processing Systems, 35:37975–37990, 2022.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Do-
minic Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Gen-
cast: Diffusion-based ensemble forecasting for medium-range weather. arXiv preprint
arXiv:2312.15796, 2023.

Ilan Price, Alvaro Sanchez-Gonzalez, Ferran Alet, Tom R Andersson, Andrew El-Kadi, Dominic
Masters, Timo Ewalds, Jacklynn Stott, Shakir Mohamed, Peter Battaglia, et al. Probabilistic
weather forecasting with machine learning. Nature, 637(8044):84–90, 2025.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-
conditional image generation with clip latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: Convolutional networks for biomed-
ical image segmentation. In Medical image computing and computer-assisted intervention–
MICCAI 2015: 18th international conference, Munich, Germany, October 5-9, 2015, proceed-
ings, part III 18, pp. 234–241. Springer, 2015.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David
Fleet, and Mohammad Norouzi. Palette: Image-to-image diffusion models. In ACM SIGGRAPH
2022 conference proceedings, pp. 1–10, 2022a.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily L Denton, Kamyar
Ghasemipour, Raphael Gontijo Lopes, Burcu Karagol Ayan, Tim Salimans, et al. Photorealistic
text-to-image diffusion models with deep language understanding. Advances in neural informa-
tion processing systems, 35:36479–36494, 2022b.

12

http://dx.doi.org/10.1038/s42256-024-00897-5
https://arxiv.org/abs/2412.00568
https://openreview.net/forum?id=tozlOEN4qp
https://openreview.net/forum?id=tozlOEN4qp
https://arxiv.org/abs/2010.00072

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chitwan Saharia, Jonathan Ho, William Chan, Tim Salimans, David J Fleet, and Mohammad
Norouzi. Image super-resolution via iterative refinement. IEEE transactions on pattern anal-
ysis and machine intelligence, 45(4):4713–4726, 2022c.

Arne Schneuing, Charles Harris, Yuanqi Du, Kieran Didi, Arian Jamasb, Ilia Igashov, Weitao Du,
Carla Gomes, Tom L Blundell, Pietro Lio, et al. Structure-based drug design with equivariant
diffusion models. Nature Computational Science, 4(12):899–909, 2024.

Pietro Sittoni and Francesco Tudisco. Subhomogeneous deep equilibrium models. In International
Conference on Machine Learning, pp. 45794–45812. PMLR, 2024.

Jascha Sohl-Dickstein. The boundary of neural network trainability is fractal. arXiv preprint
arXiv:2402.06184, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learn-
ing, pp. 2256–2265. pmlr, 2015.

Ben Stevens and Tim Colonius. Finitenet: A fully convolutional lstm network architecture for time-
dependent partial differential equations, 2020. URL https://arxiv.org/abs/2002.
03014.

Makoto Takamoto, Timothy Praditia, Raphael Leiteritz, Daniel MacKinlay, Francesco Alesiani,
Dirk Pflüger, and Mathias Niepert. Pdebench: An extensive benchmark for scientific machine
learning. Advances in Neural Information Processing Systems, 35:1596–1611, 2022.

Eleuterio F Toro, Michael Spruce, and William Speares. Restoration of the contact surface in the
hll-riemann solver. Shock waves, 4(1):25–34, 1994.

Alasdair Tran, Alexander Mathews, Lexing Xie, and Cheng Soon Ong. Factorized fourier neural
operators. arXiv preprint arXiv:2111.13802, 2021.

Bram Van Leer. Towards the ultimate conservative difference scheme. Journal of computational
physics, 135(2):229–248, 1997.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Ronald J Williams and Jing Peng. An efficient gradient-based algorithm for on-line training of
recurrent network trajectories. Neural computation, 2(4):490–501, 1990.

Sherry Yang, KwangHwan Cho, Amil Merchant, Pieter Abbeel, Dale Schuurmans, Igor Mor-
datch, and Ekin Dogus Cubuk. Scalable diffusion for materials generation. arXiv preprint
arXiv:2311.09235, 2023.

13

https://arxiv.org/abs/2002.03014
https://arxiv.org/abs/2002.03014

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A HARDWARE DETAILS

For the one-dimensional Burgers, Korteweg-De Vries, and Kuramoto-Sivashinsky equations, we
generated the data using an AMD 7950X processor (16 cores/32 threads). Each example trajectory
in the Burgers equation and Korteweg-De Vries equation datasets took approximately 10 and 20
minutes to generate, respectively. The entire datasets, with 600 examples (500 training examples and
100 testing examples), took approximately 6000 and 12000 minutes to generate, respectively. Each
training example in the Kuramoto-Sivashinsky equation dataset took approximately 15 minutes to
generate. The testing examples were twice as long, and took approximately 30 minutes to generate.
The entire dataset, with 500 training examples and 100 testing examples, took approximately 10500
minutes to generate. All together, the three one-dimensional datasets took approximately 28500
minutes (475 hours) to generate.

All one-dimensional models were trained on a single NVIDIA A100 (40GB) GPU per run, with aver-
age training times ranging from 15-300 minutes per model—smaller models on the Burgers dataset
took 15 minutes, whereas larger models trained on Korteweg-De Vries or Kuramoto-Sivashinsky
datasets, which contained 10 times longer trajectories, took closer to 300 minutes. We trained ap-
proximately 1000 models for exploratory experiments (e.g., tuning hyperparameters, evaluating al-
ternative architectures) and final experiments, and estimate a total of 1000 NVIDIA A100 (40GB)
GPU hours.

The three-dimensional models were much larger. Under our experimental setup, only the smallest
Fourier Neural Operator with two layers managed to fit on a single NVIDIA A100 (40GB) GPU.
This model did not perform well (approximately 25-30% higher MSE compared to its six layer
variant). So all three-dimensional experiments were trained on a single NVIDIA A100 (80GB)
GPU. On average, each training run took 1200-1500 minutes to complete. We trained approximately
10 models for exploratory experiments and final experiments, and estimate a total of 225 NVIDIA
A100 (80GB) GPU hours.

B DATA DETAILS

For the one-dimensional Burgers and Korteweg-De Vries equations, we set T = 10 and T = 100,
respectively (for both training and testing datasets). For the one-dimensional Kuramoto-Sivashinsky
equation, we set T = 100 for the training dataset and T = 200 for the training dataset. For all
three equations, we set ∆t = 0.2. The spatial domain was set to X = [0, 2π] for the Burgers
equation with ∆x = 2π/8192, X = [0, 128] for the Korteweg-De Vries equation with ∆x =
128/1024, and X = [0, 64] for the Kuramoto-Sivashinsky equation with ∆x = 64/4096. For each
equation, the spatial step ∆x was chosen to be as small as possible while maintaining trajectory
generation under a pre-specified computational budget. All three domains had periodic boundaries.
The initial conditions were sampled from a distribution over the truncated Fourier series with random
coefficients Ak ∼ U(Al, Ar), lk ∼ {la, lb, lc, ld}, and ϕk ∼ (ϕl, ϕr):

u0(x) =

10∑
k=1

Ak sin

(
2πlkx

L
+ ϕk

)
,

where L is the length of the spatial domain. Each trajectory was generated using the method of
lines with the spatial derivatives computed using the pseudo-spectral method. For each equation, we
selected a time-stepping method that balances accuracy and cost: RK23 for the Burgers equation,
RK45 for the Korteweg-De Vries equation, and LSODA for the Kuramoto-Sivashinsky equation.
See Table 4 for details.

Equation Train T Test T ∆t X ∆x {Al, Ar} {la, lb, lc, ld} {ϕl, ϕr} Time-Stepping
Burgers 10 10 0.2 [0, 2π] 2π/8192 {−0.5, 0.5} {3, 4, 5, 6} {0, 2π} RK23
KdV 100 100 0.2 [0, 128] 128/1024 {−0.5, 0.5} {1, 2, 3,−} {0, 2π} RK45
KS 100 200 0.2 [0, 64] 64/4096 {−0.5, 0.5} {1, 2, 3,−} {0, 2π} LSODA

Table 4: Data generation settings.

We construct two additional datasets, short-horizon Korteweg-De Vries and short-horizon
Kuratmoto-Sivashinsky, by considering the first 400 time steps to be part of a warmup phase and
subsequently discarding them. See Table Table 5 for details.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Equation Warm-Up Steps Train T Test T
Short-Horizon KdV 400 20 20
Short-Horizon KS 400 20 120
Long-Horizon KdV 0 100 100
Long-Horizon KS 0 100 200

Table 5: Short-horizon and long-horizon settings.

For each of the one-dimensional equations, we generate 500 training trajectories and 100 testing tra-
jectories. The data was initially generated using double-precision floating-point format (float64)
and then converted into single-precision floating-point formation (float32) for our experiments.

THREE-DIMENSIONAL COMPRESSIBLE NAVIER-STOKES DATASET

We use the three-dimensional compressible Navier-Stokes turbulence dataset provided by Takamoto
et al. (2022). This dataset consists of 600 trajectories, each containing 21 time steps, with 90% of
the trajectories used for training and the remaining 10% reserved for testing. The turbulence initial
condition considers turbulent velocity with uniform mass density and pressure. The initial velocity
is defined as

v(x, t = 0) =

4∑
i=1

Ai sin(ki · x+ ϕi),

where the amplitude coefficients are

Ai =
v̄

|ki|2
,

and the characteristic velocity v̄ = csM is determined by the Mach number M and the speed of
sound

cs =

√
Γp

ρ
.

To reduce compressibility effects, the compressible component of the velocity field is removed us-
ing a Helmholtz decomposition in Fourier space, resulting in a divergence-free velocity field that
preserves turbulent structures while minimizing artificial acoustic modes.

The flow parameters are set to

(η, ζ,M) =
(
10−2, 10−2, 1.0

)
,

where η and ζ are the shear and bulk viscosity coefficients, respectively, and M is the initial Mach
number.

The data are simulated using a second-order accurate HLLC Toro et al. (1994) scheme for the invis-
cid terms, the MUSCL Van Leer (1997) method for spatial reconstruction, and a central difference
scheme for the viscous terms.

Each time step is composed by five channels: the three velocity components, pressure, and density,
and each time steps is represented on a 643 grid, resulting in 5× 643 = 5× 262, 144 ≈ 1.31× 106

data points per step. The whole dataset size is 62 GB, indeed, due to memory constraints, training is
performed by loading sub-batches of 32 samples directly from the hard disk where the dataset was
stored. While this approach slows down training, it is necessary given the large dataset size.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

2

3 /2

/2
x

2

3 /2

/2

x

2

3 /2

/2

x

0.0 2.0 4.0 6.0 8.0 10.0
t

2

3 /2

/2

x
-1

0

1

2

-1

0

1

2

-1

0

1

2

-2

-1

0

1

2

Figure 4: Example trajectories from the Burgers dataset. Train and test datasets share the same T .

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

128

96

64

32

x

128

96

64

32

x

128

96

64

32

x

0.0 20.0 40.0 60.0 80.0 100.0
t

128

96

64

32

x

-1

0

1

2

-1

0

1

2

-1

0

1

2

-2

-1

0

1

2

Figure 5: Example trajectories from the Korteweg-de Vries dataset. Train and test datasets share
the same T .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

64

48

32

16

x

64

48

32

16

x

64

48

32

16

x

0.0 40.0 80.0 120.0 160.0 200.0
t

64

48

32

16

x

-1

0

1

2

-1

0

1

2

-1

0

1

2

-2

-1

0

1

2

Figure 6: Example trajectories from the Kuramoto-Sivashinsky testing dataset. The training dataset
has T = 100, whereas the testing dataset has T = 200.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 7: Example of two consecutive time steps from a three-dimensional Navier-Stokes simula-
tion, visualized across different z-slices for all physical fields.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 8: Example of two consecutive time steps from a three-dimensional Navier-Stokes simula-
tion, visualized across different z-slices for all physical fields.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

C TRAINING DETAILS

Data Preparation. To minimize the one-step lossL = ||Ut+1−Gθ(Ut)||22, we require input-output
pairs. Consistent with prior work (Li et al., 2021), we set the prediction step size ∆tp = 0.8 and use
residual prediction (Gθ(Un) ≈ Un+1 − Un) to balance short-term (one-step loss) and long-term
(trajectory) performance. We also spatially downsample to 256 points. We scale each target by
dividing by the maximum value across all trajectories, time steps, and spatial points; we found this
to perform marginally better than normalizing to unit standard deviation.

Neural Simulator Architectures.

Fourier Layer. The Fourier layer transforms the input into the frequency domain using a fast
Fourier transform (FFT), applies a truncated linear transformation to selected Fourier modes, and
then maps the result back to the spatial domain via an inverse FFT. This spectral transformation is
typically combined with a skip connection consisting of a point-wise convolution, a bias term, and
an activation function. Formally, for an input x ∈ Rn, the layer computes:

F(x) = σ(F−1(R · F(x)) +Wx+ b),

where F and F−1 denote the FFT and inverse FFT respectively, R : Rn → Rn′
is a learned linear

transformation in frequency space, W : Rn → Rn′
represents a point-wise convolution, and b is a

bias term.

Several variations of the Fourier layer have been proposed. One such variant (Tran et al., 2021)
modifies the layer by introducing a residual connection and a two-layer feedforward network, while
omitting the point-wise convolution and bias term:

F(x) = x+ σ(W2σ(W1F−1(R · F(x)) + b1) + b2).

In our early experiments, this modification did not yield noticeable improvements. We also explored
simply adding a skip connection without the feedforward block and inserting normalization layers
at various points in the architecture, but these did not result in noticeable improvements.

RecurrFNO The Fourier Neural Operator is made of a point-wise lifting layer, followed by a se-
quence of Fourier layers, and then a point-wise projection. The Recurrent Depth Simulator (Re-
currSim) with Fourier layers can be interpreted in two ways: 1) RecurrFNO wo/ EncDec,
a point-wise lifting layer encoder, followed by a sequence of Fourier layers (that make up the
recurrent-depth block), and then a point-wise projection layer decoder, or 2) RecurrFNO w/
EncDec, where the first Fourier layer is part of the encoder and the last Fourier layer is part of
the decoder. We find that RRecurrFNO w/ EncDec often leads to more consistent and superior
performance.

RecurrSim. The Recurrent Depth Simulator is a highly flexible framework. Each component—
the encoder, recurrent-depth block, and decoder—may be instantiated with any layer(s) depending
on the task. For example, in problems with periodic boundaries and a requirement of parameter
efficiency, where the Fourier Neural Operator would typically shine, Fourier layers can be used.
On the other hand, if the goal is to develop a foundation model for physics on irregular meshes,
where one might use a graph-based encoder, with an attention-based bottleneck, and a graph-based
decoder, the RecurrSim framework can be configured accordingly. With just a few additional lines
of code, RecurrSim enables explicit control over the accuracy-cost trade-off (see Appendix H for
pseudocode).

Fourier- and attention-based layers are well-suited for recurrent-depth blocks due to their ability
to model infinite receptive fields. In contrast, convolutional-based layers have a fixed receptive
field that grow with the depth. For example, a standard convolutional layer in PyTorch with
kernelsize=3, dialation=1, and stride = 1 has a receptive field of size 3. Stacking
two such layers increases he receptive field to 5—capturing the center point and two neighbor-
ing point on each side. More generally, the receptive field after stacking L such layers is given by
L · (kernelsize/2) + 1. To achieve a receptive field of size 64, to effectively model the Burgers
equation, one would need to stack 63 layers. In RecurrSim, where K = 1 could be sampled, 63 lay-
ers would need to be distributed across the encoder, recurrent-depth block, and decoder. To mitigate

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

this, some alternatives can be considered to expand the receptive field more efficiently: increasing
the kernel size, incorporating attention-based layers, or adding downsampling blocks.

FNO-DEQ. Similarly to Marwah et al. (2023), we use Anderson acceleration with a maximum
of 16 iterations. For the backward pass of the DEQ layer, we follow the phantom gradient approach
proposed by Geng et al. (2021), using parameters s = 3 and τ = 0.8. To match the parameter count
of RecurrFNO, we employ a 1D FNO with 8 layers and 120 channels.

ACDM. We follow the original setup from Kohl et al. (2023), using a linear scheduler and training
with a maximum of 50 diffusion steps. For conditioning, we concatenate the snapshot from the
previous time step, i.e., the solution ut when predicting ut+1. To ensure a fair comparison, we
condition only on ut and do not include earlier time steps.

PDE-Refiner We use the same scheduler proposed by Lippe et al. (2023), with σ2
min = 2·10−7 and

K = 10. Following a similar approach to Kohl et al. (2023), we implement the following algorithm
from scratch:

Algorithm 3 PDE-Refiner: Training and Inference Procedures
1: procedure TRAINSTEP(ut, uprev)
2: k ← random integer in [0, num steps]
3: if k = 0 then
4: pred← NeuralOperator(zeros like(ut), uprev, k)
5: target← ut

6: else
7: noise std← min noise stdk/num steps

8: noise← randn like(ut)
9: ut,noised ← ut + noise · noise std

10: pred← NeuralOperator(ut,noised, uprev, k)
11: target← noise
12: end if
13: loss← MSE(pred, target)
14: return loss
15: end procedure

16: procedure PREDICTNEXTSOLUTION 1(uprev)
17: ut̂ ← NeuralOperator(zeros like(uprev), uprev, 0)
18: for k = 1 to num steps do
19: noise std← min noise stdk/num steps

20: noise← randn like(ut)
21: ut̂,noised ← ut̂ + noise · noise std
22: pred← NeuralOperator(ut̂,noised, uprev, k)
23: ut̂ ← ut̂,noised − pred · noise std
24: end for
25: return ut̂
26: end procedure

Algorithm 3 is taken from Lippe et al. (2023), and the number of inference num steps is fixed at
test time. To adapt the original algorithm, we investigated two variations: Algorithm 4 and 5. When
K̄ = num steps, both methods recover the original procedure proposed in Lippe et al. (2023).

The first variation, Algorithm 4, adjusts the noise scheduler based on the number of inference steps.
However, this strategy only performs well when the number of steps matches the training setup. To
address this limitation, we introduce Algorithm 5, which retains the noise scheduler from training
while allowing the number of inference steps to vary. This consistency in noise levels enhances
stability and performance by preserving the distribution the network was trained on.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Algorithm 4 Predict Next Solution 1
procedure PREDICTNEXTSOLUTION(uprev)

ut̂ ← NeuralOperator(zeros like(uprev), uprev, 0)
for k = 1 to K do

noise std← min noise stdk/K

noise← randn like(ut)
ut̂,noised ← ut̂ + noise · noise std
pred← NeuralOperator(ut̂,noised, uprev, k)
ut̂ ← ut̂,noised − pred · noise std

end for
return ut̂

end procedure

Algorithm 5 Predict Next Solution 2
1: procedure PREDICTNEXTSOLUTION(uprev)
2: ut̂ ← NeuralOperator(zeros like(uprev), uprev, 0)
3: for k = 1 to K do
4: noise std← min noise stdk/num steps

5: noise← randn like(ut)
6: ut̂,noised ← ut̂ + noise · noise std
7: pred← NeuralOperator(ut̂,noised, uprev, k)
8: ut̂ ← ut̂,noised − pred · noise std
9: end for

10: return ut̂
11: end procedure

Optimzation. All optimization hyperparameters are listed in Table 6 and remain fixed across all
experiments, except where explicitly stated. We train each model for 100 epochs using the AdamW
optimizer (Loshchilov & Hutter, 2019), starting with a learning rate of 3× 10−4 and a weight decay
of 1×10−5. A cosine annealing schedule is applied to gradually reduce the learning rate to 3×10−6

(Loshchilov & Hutter, 2017). In early experiments, we observed that using a higher initial learning
rate (e.g., 1×10−3) led to less consistent performance, though it occasionally improved performance
(Sohl-Dickstein, 2024).

Hyperparameter Value
Epochs 100
Batch Size 256 2

Optimizer AdamW
Starting Learning Rate 3× 10−4

Weight Decay 1× 10−5

Scheduler Cosine Annealing
Ending Learning Rate 3× 10−6

Table 6: Optimization hyperparameters used in all experiments.

2For the three-dimensional experiments, we use a batch size of 32, and perform gradient accumulation to
have an effective batch size of 256.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

D BACKPROPAGATION WINDOW

During training, the recurrent-depth block is repeated K times in the forward pass, after which gra-
dients are propagated backward through the same computation. If K is large, which could happen
because K is drawn from a long-tailed distribution, the backward pass must retain every interme-
diate activation, quickly exhausting GPU memory. To cap the memory usage, we use truncated
backpropagation-through-time with a fixed backpropagation window B: gradients are backpropa-
gated through at most the last B steps, and earlier steps are treated as constants. This bounds memory
at O(B) independent of K. In this experiment, we study it truncated backpropagation-through-time
is viable and the effect of different backpropagation windows.

Experimental Setup. We conduct experiments on three datasets: Burgers, long-horizon KdV, and
long-horizon KS. We train a recurrent depth simulator with a point-wise lifting layer, a recurrent-
depth block with a single Fourier layer, and a point-wise projection layer with∼ 1M parameters. We
set K̄ = 32, and the backpropagation window is swept over B ∈ {1, 2, 4, 16, 32}. With B = 1 the
compute for the forward pass is equivalent to a Fourier layer with 33 layers, but the backward pass
stores only a single activation; with B = 32 the backward pass stores every activation whenever
K ≤ 32 and the last 32 when K > 32. This would be infeasible for higher-dimensional problems.

Results. We report the trajectory errors in Table 7. Across all equation B = 1 performs worst and
moving from B = 1 to B = 2 yields the largest gain, and improvements largely saturate by B = 4.
Beyond B = 4, larger windows offer only marginal benefit while reinstating a substantial memory
cost. Note that although trajectory error is not the preferred metric for KS, the same saturation is
evident. Based on these results, and to balance accuracy and memory, we set B = 4 in all main
experiments.

Backpropagation Window B Burgers Korteweg-De Vries Kuramoto-Sivashinsky
1 0.0849 0.1046 1.6341
2 0.0315 0.0522 1.4097
4 0.0199 0.0317 1.3972
16 0.0181 0.0302 1.3960
32 0.0178 0.0298 1.3910

Table 7: Impact of the back-propagation window B on trajectory error. Accuracy improves sharply
up to B = 4 and then plateaus.

E DISTRIBUTION PARAMETER K̄

The distribution parameter K̄ controls the expected number of recurrent steps during training. Set-
ting K̄ too low shortens training time but may leave the model under-exposed to large K values
during inference; setting it too high increases training time. In this experiment, we wish to identify
the optimal K̄.

Experimental Setup. We conduct experiments on three datasets: Burgers, long-horizon KdV, and
long-horizon KS. We train a recurrent depth simulator with a point-wise lifting layer, a recurrent-
depth block with a single Fourier layer, and a point-wise projection layer with ∼ 1M parameters.
The backpropagation window is fixed at B = 4, and K̄ is swept over {1, 2, 4, 8, 16, 32, 64, 128}.
Doubling K̄ roughly doubles the forward cost, yet backward memory remains capped by B; for in-
stances, K̄ = 8 matches the forward FLOPS of an 8-layer FNO but the truncated-backpropagation-
through-time keeps the backward pass FLOPs as cheap as a 4-layer FNO. After training, each model
is evaluated at all values K ∈ [1, 2K̄] and we report the lowest trajectory error achieved.

Results. Figure 9-11 plot trajectory error as a function of K̄. Increasing K̄ consistently lowers
the best achievable trajectory error, but we observe diminishing returns beyond K̄ ≈ 32. We also
notice that models trained with larger K̄ underperform with small K values (see Figure 16). In other
words, the additional training compute shifts the accuracy-cost curve to the right and gains appear
only once K is allowed to grow. Based on these results, we set K̄ = 32 in our main experiments as
it captures the bulk of the benefit of high-compute settings while leaving the model competitive in
low-compute settings.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

816 32 64 128
K

1e-02

1e-01

Tr
aj
ec
to
ry
 E
rr
or
 (
L2
)

Figure 9: Choosing the distribution parameter K̄ on the Burgers dataset.

816 32 64 128
K

1e-02

1e-01

Tr
aj
ec
to
ry
 E
rr
or
 (
L2
)

Figure 10: Choosing the distribution parameter K̄ on the KdV dataset.

816 32 64 128
K

1e+00

1e+01

Tr
aj
ec
to
ry
 E
rr
or
 (
L2
)

Figure 11: Choosing the distribution parameter K̄ on the KS dataset.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

F MERGING

At each recurrent step, the recurrent depth simulator must merge the condition vector c with the
latent vector zk. We consider six merging methods of increasing capacity. Add simply sums the
two vectors. Adds introduces two learnable parameters α and β (z′k = αc+βzk). Adde generalizes
this to element-wise vectors α and β (2 × hiddenchannels additional trainable parameters).
Projection concatenates [c, zk] and applies a point-wise linear map (2 × hiddenchannels ×
hiddenchannels additional trainable parameters); ProjectionI uses the same layer but is ini-
tialized with 1s along the diagonals and 0s everywhere else, so that it is equivalent to Adde at
initialization but with increased capacity. Concat feeds the raw concatenation into the first layer
(in the recurrent-depth block), doubling its input channels, and thus, trainable parameters. In this
experiment, our goal is to test these merging methods.

Experimental Setup. All experiments run on the one-dimensional Burgers equation. The base
architecture is fixed—a point-wise lift, a single Fourier layer encoder, a one-layer Fourier recur-
rent block, and a Fourier decoder with point-wise projection—trained with K̄ = 32 and back-
propagation window B = 4. We sweep five parameter budgets {0.2M, 0.5M, 1.0M, 2.0M, 4.0M}
by scaling channel width, and implement each of the six merging methods at every budget. After
training, each model is evaluated at all values K ∈ [1, 2K̄] and we report the lowest trajectory error
achieved.

Results. Table Table 8 reports the lowest trajectory error for every configuration. The three ad-
dition variants perform almost identically and improve monotonically with parameter count. The
Projection variant lags behind, but when initialized with 1s along the diagonals (ProjectionI), it
matches or exceeds the additional family. Concat attains the lowest error overall, but at the price of
∼ 33% extra parameters in the recurrent-block’s first layer; we hypothesis that part of its gain stems
from increased model size rather than a superior merging mechanism.

Parameters Add Adds Adde Projection ProjectionI Concat
∼ 0.2M 0.0234 0.0230 0.0229 0.0240 0.0240 0.0214
∼ 0.5M 0.0176 0.0173 0.0172 0.0223 0.0135 0.0146
∼ 1.0M 0.0129 0.0126 0.0126 0.0169 0.0101 0.0151
∼ 2.0M 0.0116 0.0115 0.0115 0.0094 0.0093 0.0090
∼ 4.0M 0.0100 0.0098 0.0099 0.0110 0.0100 0.0083

Table 8: Trajectory error on Burgers for six merging methods across five parameter budgets. Best
result in each row is bold, second-best italic.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

G MORE EXPERIMENTS

G.1 EXPERIMENT: ACCURACY-COST TRADE-OFF (EXTENDED)

Figure 12: Burgers: Trajectories at K = 4 (orange) and K = 16 (purple).

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Figure 13: Short-Horizon KdV: Trajectories at K = 4 (orange) and K = 16 (purple).

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Figure 14: Long-Horizon KdV: Trajectories at K = 4 (orange) and K = 16 (purple).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

G.2 EXPERIMENT: ALTERNATIVES (EXTENDED)

On the chaotic Kuramoto-Sivashinsky dataset we replace trajectory error with the average and worst-
case correlation horizon metrics. Figure 15 shows the behavior of the four adaptive-compute simu-
lators across 30 correlation thresholds (α = 0.70− 0.99) and all inference depths K ∈ {1, . . . , 16}.
RecurrFNO (first column) shows the desired monotone pattern: both the average and the worst-
cast correlation horizons rise steadily with K. FNO-DEQ delivers flat surfaces—its iterations leave
the horizon essentially unchanged—so it cannot expliot extra compute. ACDM begins with short
horizons, improves up to K ≈ 4, and then flattens; only a narrow band of K values is usable, lim-
iting its test-time flexibility. PDE-Refiner gains up to K ≈ 8 but then oscillates, making it hard to
pick a reliable stopping point. Across both average and worst-case statistics RecurrSim attains the
longest horizons and is the only model whose accuracy scales predictably with additional compute,
confirming its advantage for controllable accuracy-cost trade-offs in chaotic regimes.

RDS FNO-DEQ ACDM PDE-Refiner

Av
er

ag
e

Wo
rs

t-
Ca

se

0

20

40

60

80

100

Ti
me

Figure 15: Kuramoto–Sivashinsky: average (top) and worst-case (bottom) correlation horizons and
threshold α versus inference depth K.

G.3 EXPERIMENT: LARGE-SCALE COMPRESSIBLE NAVIER-STOKES (EXTENDED)

2 4 8 16
Recurrent Steps (K)

10 1

8 × 10 2

9 × 10 2

Tr
aj
ec
to
ry
 E
rr
or
 (
MS
E)

Pressure
Lower training FLOPs
Higher training FLOPs

2 4 8 16
Recurrent Steps (K)

Density
Lower training FLOPs
Higher training FLOPs

2 4 8 16
Recurrent Steps (K)

Velocity
Lower training FLOPs
Higher training FLOPs

Figure 16: Trajectory error (MSE) over the number of recurrent steps K for two RecurrFNO models,
trained with lower and higher FLOPs budgets, respectively.

As shown in fig. 16, the two models present distinct trade-offs. When the number of recurrent steps
during inference exceeds 8, the model trained with a higher FLOPs budget and a higher K̄ yields
significantly lower MSE. In contrast, for fewer than 8 recurrent steps, the model trained with a lower
computational budget performs better.

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

H PSEUDOCODE

1 class Network(Module):
2 def __init__(self):
3 super().__init__()
4 # Encoder Layer
5 self.encoder = Layer()
6

7 # Collect L Intermediate Layers
8 layers = []
9 for _ in range(L):

10 layers.append(Layer())
11

12 # Decoder Layer
13 self.decoder = Layer()
14

15 def forward(self, x):
16 # Apply Encoder
17 z = self.encoder(x)
18

19 ######################
20 ##### Main Block #####
21

22 # Apply L Intermediate Layers
23 for layer in self.layers:
24 z = layer(z)
25

26 ##### Main Block #####
27 ######################
28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55 # Apply Decoder
56 x = self.decoder(z)
57 return x

Listing 1: Pseudocode of a standard neural simulator. The neural simulator contains an encoder or
lifting layer (self.encoder), L intermediate layers of any type (residual layers, Fourier layers,
etc.), and an decoder or projection layer (self.decoder).

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

1 class Network(Module):
2 def __init__(self):
3 super().__init__()
4 # Encoder Layer
5 self.encoder = Layer()
6

7 # Collect L Intermediate Layers
8 layers = []
9 for _ in range(L):

10 layers.append(Layer())
11

12 # Decoder Layer
13 self.decoder = Layer()
14

15 def forward(self, x, K=None):
16 # Apply Encoder
17 c = self.encoder(x)
18

19 ######################
20 ##### Main Block #####
21

22 # Sample Noise \w ‘shape=x.shape’
23 z = sample_noise()
24

25 # During Inference:
26 if not self.training:
27 # Loop K Times
28 for _ in range(K):
29 # Concatenate x and z
30 z = cat([c, z], dim=1)
31 # Apply L Intermediate Layers
32 for layer in self.layers:
33 z = layer(z)
34

35 # During Training:
36 if self.training:
37 # Do Not Use Grad
38 with no_grad():
39 # Sample K (Using K_bar)
40 K = sample_K()
41 # Loop K - B Times
42 for _ in range(K - B):
43 z = cat([c, z], dim=1)
44 for layer in self.layers:
45 z = layer(z)
46 # Loop Remaining B Times
47 for _ in range(B):
48 z = cat([c, z], dim=1)
49 for layer in self.layers:
50 z = layer(z)
51

52 ##### Main Block #####
53 ######################
54

55 # Apply Decoder
56 x = self.decoder(z)
57 return x

Listing 2: Pseudocode of the Recurrent Depth Simulator—fewer than 20 new lines compared to
a standard neural simulator. During inference, we apply the intermediate layers K times. During
training, we apply the intermediate layers K - B times without gradient, and B times with gradient.
Nothing else needs to change.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

I EXTENDED RELATED WORK

Deep Equilibrium Models. Deep Equilibrium Models (DEQs), introduced by Bai et al. (2019),
are implicit, infinite-depth, weight-tied neural networks. A DEQ directly solves for the fixed point
of a nonlinear transformation using any black-box root-finding algorithm and instead of backpropa-
gating through each layer, which can be infeasible due to memory and numerical stability, the DEQ
makes use of the Implicit Function Theorem to compute the gradients at the equilibrium—this ap-
proach has a constant memory requirement regardless of depth. Although the existence of the fixed
point, or convergence to the fixed point, is not guaranteed; on large-scale language modeling tasks,
Bai et al. (2019) demonstrated that DEQs can achieve performance comparable with state-of-the-
art while using significantly less memory. Later, Bai et al. (2020) extended DEQs to large-scale
computer vision tasks, showing similar performance and memory benefits. Subsequent research ex-
plored DEQs for various applications. Pokle et al. (2022) represent the entire sampling process in
denoising diffusion implicit models as a single fixed-point system. Geng et al. (2023) distill diffu-
sion models, directly from initial noise to the final image, into a DEQ. In inverse problems, Gilton
et al. (2021) model a, potentially infinite, iterative reconstruction scheme as a DEQ. For partial dif-
ferential equations, Pokle et al. (2022) propose FNO-DEQ, a DEQ variant with Fourier layers, to
solve steady-state PDEs, showing improvements in accuracy and robustness to noise over baselines
with four times as many parameters.

Denoising Diffusion Models. First introduced by Sohl-Dickstein et al. (2015), diffusion models
are probabilistic models with an iterative forward diffusion process and a learned reverse diffusion
process. The forward process gradually adds noise to data until only noise remains, and the reverse
process gradually removes noise to restore the original data. New samples are generated by sampling
a noise vector and passing it through the reverse process. Ho et al. (2020) presented high-quality
image synthesis results using diffusion models. Dhariwal & Nichol (2021) and Karras et al. (2022)
made further progress leading to state-of-the-art results and widespread adoption. Diffusion mod-
els have been applied to image generation (Nichol et al., 2021; Ramesh et al., 2022; Saharia et al.,
2022b), image inpainting and outpainting (Saharia et al., 2022a), super-resolution (Saharia et al.,
2022c), audio generation (Chen et al., 2020; Kong et al., 2020), text generation (Austin et al., 2021),
including large language (diffusion) models (Nie et al., 2025). In scientific domains, diffusion mod-
els have been applied to medium-range weather forecasting (Price et al., 2023), structure-based drug
design (Schneuing et al., 2024), and stable materials generation (Yang et al., 2023). Kohl et al.
(2023) demonstrated that diffusion models are viable for turbulent flow simulation. Their results
show that diffusion models outperform, in terms of long-term accuracy and stability, more efficient
(and more commonly used) neural simulators. Kohl et al. (2023) also compared against PDE-Refiner
(Lippe et al., 2023), a diffusion-based multi-step refinement process, but found that PDE-Refiner is
highly sensitive to hyperparameters, and in some cases, generated substantially worse results com-
pared to other methods.

J EXTENDED DISCUSSION

To our knowledge, this is the first work to study neural simulators in terms of test-time control of
accuracy-cost trade-offs. Since the performance varies with the chosen number of recurrent steps
K, a scalar metric is no longer adequate; our experiments therefore focus on full accuracy-cost
curve, and correlation-horizon surfaces. Across all tasks, the Recurrent-Depth Simulator provides
a smooth, monotone trade-off, demonstrating that adaptive compute is possible, and we hope these
results stimulate further work along this new axis.

Although the main experiments concentrate on RecurrSim instantiated with Fourier layers—chosen
for their infinite receptive field (see Appendix C)—preliminary tests with convolutional blocks yield
qualitatively similar results. We also use a recurrent-block with a single-layer for clarity: it delivers
the most predictable behavior, however, deeper blocks also showed strong performance. Explor-
ing richer blocks and alternative layer types under this controllable-compute paradigm remains a
promising direction for future research.

33

	Introduction
	Background
	Recurrent-Depth Simulator
	Results
	Equations
	Experiment: Accuracy-Cost Trade-Off
	Experiment: Alternatives
	Experiment: High-Dimensional Simulations and Transformer Variants

	Conclusions and Future Work
	Hardware Details
	Data Details
	Training Details
	Backpropagation Window
	Distribution Parameter
	Merging
	More Experiments
	Experiment: Accuracy-Cost Trade-Off (Extended)
	Experiment: Alternatives (Extended)
	Experiment: Large-Scale Compressible Navier-Stokes (Extended)

	Pseudocode
	Extended Related Work
	Extended Discussion

