
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

PROOFBRIDGE: AUTO-FORMALIZATION OF NATURAL
LANGUAGE PROOFS IN LEAN VIA JOINT EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Translating human-written mathematical theorems and proofs from natural lan-
guage (NL) into formal languages (FLs) like Lean 4 has long been a significant
challenge for AI. Most state-of-the-art methods either focus on theorem-only NL-
to-FL auto-formalization or on FL proof synthesis from FL theorems. In practice,
auto-formalization of both theorem and proof still requires human intervention, as
seen in AlphaProof’s silver-medal performance at the 2024 IMO, where problem
statements were manually translated before automated proof synthesis.
We present PROOFBRIDGE, a unified framework for automatically translating
entire NL theorems and proofs into Lean 4. At its core is a joint embedding
model that aligns NL and FL (NL-FL) theorem-proof pairs in a shared seman-
tic space, enabling cross-modal retrieval of semantically relevant FL examples to
guide translation. Our training ensures that NL-FL theorems (and their proofs)
are mapped close together in this space if and only if the NL-FL pairs are se-
mantically equivalent. PROOFBRIDGE integrates retrieval-augmented fine-tuning
with iterative proof repair, leveraging Lean’s type checker and semantic equiv-
alence feedback to ensure both syntactic correctness and semantic fidelity. Ex-
periments show substantial improvements in proof auto-formalization over strong
baselines (including GPT-5, Gemini-2.5, Kimina-Prover, DeepSeek-Prover), with
our retrieval-augmented approach yielding significant gains in semantic correct-
ness (SC, via proving bi-directional equivalence) and type correctness (TC, via
type-checking theorem+proof) across pass@k metrics on MINIF2F-TEST-PF, a
dataset we curated. In particular, PROOFBRIDGE improves cross-modal retrieval
quality by up to 3.28× Recall@1 over all-MiniLM-L6-v2, and achieves +31.14%
SC and +1.64% TC (pass@32) compared to the baseline Kimina-Prover-RL-1.7B.

1 INTRODUCTION

In mathematics, ensuring the correctness of proofs is a crucial yet inherently difficult task. Tradi-
tionally, mathematicians rely on the peer-review process for proof verification, yet as proofs grow
increasingly complex, even careful human scrutiny can overlook subtle errors. For instance, in 1989,
Kapranov and Voevodsky published a proof connecting ∞-groupoids and homotopy types, which
was later disproven by Carlos Simpson in 1998; more recently, while formalizing his 2023 pa-
per (Tao, 2023) on the Maclaurin-type inequality, Terence Tao discovered a non-trivial bug. To mit-
igate challenges of verifying complex proofs, proof assistants and formal mathematical languages
like Coq (Barras et al., 1999), Isabelle (Nipkow et al., 2002), HOL Light (Harrison, 2009), Meta-
math (Megill & Wheeler, 2019), Lean 4 (Moura & Ullrich, 2021), and Peano (Poesia & Goodman,
2023) have been developed, offering a way to create computer-verifiable formal proofs. Such formal
language (FL) proofs, defined by strict syntax and symbolic logic, enable reliable automated veri-
fication guarantees that resolve the inherent ambiguity of natural language (NL) proofs. However,
constructing FL proofs is time-intensive and demands both deep mathematical expertise and detailed
knowledge of the language and its libraries, making the process challenging even for experienced
mathematicians and limiting the wider adoption of such theorem provers and FL proofs.

To simplify the task of writing proofs in FL, two key research directions have emerged: auto-
formalization and automated formal proof synthesis (AFPS). Auto-formalization targets NL-to-FL
translation, but most prior works (Wang et al., 2025; Wu et al., 2025; Jiang et al., 2024; Gao et al.,
2024b) focus only on formalizing theorems (statements), not proofs. In contrast, automated for-
mal proof synthesis (Ren et al., 2025; Wang et al., 2025) aims to generate FL proofs given an FL
theorem. Proof auto-formalization is relatively less explored, with Draft-Sketch-Prove (Jiang et al.,
2022) for Isabelle and FormL4 (Lu et al., 2024) for Lean serving as notable examples. In practice,

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

With 𝒗𝐍𝐋
(𝐣) = 𝒇 𝐌𝐍𝐋

(𝐣) ∈ 	ℝ𝒅 and 𝒗𝐅𝐋
(𝐣) = 𝒈 𝐌𝐅𝐋

(𝐣) ∈ 	ℝ𝒅, goal:

• sim 𝒗𝐍𝐋
(𝐣) ,𝒗𝐅𝐋

(𝐣) is high (+ve pair).

• sim 𝒗𝐍𝐋
(𝐣) ,𝒗𝐅𝐋

(𝐤) and sim 𝒗𝐍𝐋
(𝐤),𝒗𝐅𝐋

(𝐣) 	are low for 𝐣 ≠ 𝐤 (-ve pairs).

𝐌𝐍𝐋
(𝐣) = 𝐓𝐍𝐋

(𝐣),𝐏𝐍𝐋
(𝐣)

(NL theorem-proof pair)
import Mathlib
import Aesop
set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat
theorem mathd_algebra_478 (b h v : ℝ)
(h₀ : 0 < b ∧ 0 < h ∧ 0 < v)
(h₁ : v = 1 / 3 * (b * h))
(h₂ : b = 30) (h₃ : h = 13 / 2) :
v = 65 := by
have hv : v = (1 / 3 : ℝ) * (30 * (13 / 2)) := by
simpa [h₂, h₃] using h₁

have hcalc : (1 / 3 : ℝ) * (30 * (13 / 2)) = 65 := by
norm_num

exact hv.trans hcalc

𝐌𝐅𝐋
(𝐣) = 𝐓𝐅𝐋

(𝐣),𝐏𝐅𝐋
(𝐣)

(Lean theorem-proof pair)

###Problem
The volume of a cone is given by the formula $V =
\\frac{1}{3}Bh$, where B is the area of the base and
h is the height. The area of the base of a cone is 30
square units, and its height is 6.5 units. What is the
number of cubic units in its volume? Show that it is
65.

###Solution
We are given that $B = 30$ and $h = 6.5$ and asked to
find $\\frac{1}{3}Bh$. We find that \\[\\frac{1}{3}Bh
= \\frac{1}{3}(30)(6.5) = (10)(6.5) = 65.\\]

NL Encoder (𝒇)

FL Encoder (𝒈)

Joint Embedding Shared Semantic
Space

NL/FL
Contrastive Loss (𝓛)

Instance 𝐣 Instance 𝐤

###Problem
Can we prove that for any positive integer r, there
exists a Fibonacci number F_t such that F_t is
divisible by r?.

###Solution
Let r be a positive integer. We want to show that
there exists a natural number t such that r divides
the t-th Fibonacci number, F_t.

We choose $t = 0$. Now, we must verify that r divides
F_0. By the definition of Fibonacci numbers, $F_0 =
0$. So, the condition we need to satisfy is $r \mid 0$.

Since r is a natural number, we know that $0 = r
\cdot 0$. By the definition of divisibility, this means
that r divides 0. Therefore, for any positive
integer r, we have found a t (namely, $t=0$) such
that r divides F_t.

import Mathlib

theorem number_theory_7074 (r : ℕ) (hr :
r > 0) : ∃ t, r ∣ (Nat.fib t) := by
exact ⟨0, by simp⟩

𝒗𝐅𝐋
(𝐣)

𝒗𝐍𝐋
(𝐣)

𝒗𝐅𝐋
(𝐤)

𝒗𝐍𝐋
(𝐤)

𝐌𝐍𝐋
(𝐤) = 𝐓𝐍𝐋

(𝐤),𝐏𝐍𝐋
(𝐤)

(NL theorem-proof pair)

𝐌𝐅𝐋
(𝐤) = 𝐓𝐅𝐋

(𝐤),𝐏𝐅𝐋
(𝐤)

(Lean theorem-proof pair)

(a) Joint embedding of NL and FL (Lean) theorems and proofs into shared semantic space

PROOFBRIDGE
LLM 𝐌" 𝐅𝐋

(Generated theorem-proof
pair in Lean)

SFTTrainer

Cross-
Entropy

Loss

𝐌𝐍𝐋
	 = 𝐓𝐍𝐋	 ,𝐏𝐍𝐋	

(NL theorem-proof pair)

Large Database
of Lean theorem-

proof pairs

FL Encoder (𝒈)

FL Encoder (𝒈)

FL Encoder	(𝒈)

NL Encoder (𝒇)

NL/FL Cross-Modal Retrieval

Shared Semantic
Space

𝒗𝐍𝐋
⋮

𝒗𝐅𝐋
(𝟏)

𝒗𝐅𝐋
(𝟐)

⋮
𝒗𝐅𝐋
(|𝓓|)

𝒗𝐍𝐋

Top-K relevant
Lean theorem-proof

pairs, with score

⋮
𝐌𝐅𝐋
(𝐫𝐞𝐥_𝟏),										 𝐌𝐅𝐋

	

(Gold-standard theorem-
proof pair in Lean)

𝐌𝐅𝐋
(𝟏)

𝐌𝐅𝐋
(𝟐)

⋮

𝐌𝐅𝐋
(|𝓓|)

𝐌𝐅𝐋
(𝐫𝐞𝐥_𝐊),										

(b) Retrieval-augmented Supervised Fine-Tuning (SFT) of PROOFBRIDGE with NL/FL cross-modal retrieval

𝐌𝐍𝐋
	 = 𝐓𝐍𝐋

	 ,𝐏𝐍𝐋	
(NL theorem-proof pair)

NL/FL
Cross-Modal

Retrieval

PROOFBRIDGE
LLM 𝐌# 𝐅𝐋

(Generated theorem-proof pair in Lean)

type-check 𝐌" 𝐅𝐋 ?

Feedback from Syntactic and Semantic
Verification

Repair
Loop

theorem 𝐌𝐍𝐋
	 ≡

theorem 𝐌" 𝐅𝐋 ?

Top-K relevant
Lean theorem-proof

pairs, with score

⋮
𝐌𝐅𝐋
(𝐫𝐞𝐥_𝟏),										

𝐌𝐅𝐋
(𝐫𝐞𝐥_𝐊),										

(c) Inference phase of retrieval-augmented proof auto-formalization with iterative repair

Figure 1: Pipeline of PROOFBRIDGE for proof auto-formalization. We first train a joint embed-
ding model for NL and FL via contrastive learning, enabling cross-modal retrieval of semantically
related FL theorem-proof pairs for a given NL input. An LLM is then fine-tuned on NL-to-Lean
translations, conditioned on retrieved proofs and relevance scores. At inference, the system retrieves
related Lean proofs and applies an iterative repair loop to the generated FL theorem-proof pair.

formalizing an entire NL proof requires first performing theorem-only auto-formalization to trans-
late the NL theorem into FL, followed by AFPS to generate the FL proof from the FL theorem. Al-
phaProof (Deepmind, 2024), which achieved silver-medal standard in the 2024 International Mathe-
matical Olympiad, followed this two-step process: problems were first manually translated into for-
mal mathematical language, then formal proofs were synthesized. Thus, in practice, pipelines still
require manual formalization of the theorem before proof synthesis, even though SoTA theorem-only
auto-formalization and AFPS tools exist. This illustrates the broader challenge that current systems
often rely on human intervention to ensure semantic correctness of proof auto-formalization.
Contemporary LLMs face several challenges that limit their effectiveness for proof auto-
formalization in Lean 4. First, large-scale datasets pairing NL theorems with Lean 4 proofs are
scarce. Most existing resources (Goedel-Pset-v1 (Lin et al., 2025), Herald statements (Gao et al.,
2024b), Lean Workbook (Ying et al., 2024), MMA (Jiang et al., 2024)) cover only theorems, while
those with proofs (Herald proofs, Lean Workbook proofs (Lin et al., 2025), and FormL4 (Lu et al.,
2024)) are much smaller and do not align with the popular miniF2F (Zheng et al., 2021) benchmark
in the same Lean 4 version. Lean versions are not backward compatible, so cross-version evalua-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

tion often fails. Second, most fine-tuned LLMs for Lean 4 target either theorem auto-formalization
or proof synthesis. Proof auto-formalization is harder, as it requires both translating the NL theo-
rem and constructing the corresponding FL proof. Third, Lean 4 has an effectively infinite action
space (Poesia & Goodman, 2023), with proofs using complex tactics that reuse prior theorems or
introduce new variables. Prior work generates FL directly from NL, ignoring semantic relations like
shared tactics and DAG dependencies, causing LLMs to often violate Lean 4’s strict syntactic and
semantic constraints and produce hallucinated or invalid proofs (Jha et al., 2025; Jana, 2024; Ugare
et al., 2024). Fourth, automated evaluation is a major bottleneck. Lean’s type-checker verifies the
FL proof but cannot ensure semantic equivalence. Existing methods often type-check only the the-
orem (leaving proofs incomplete using placeholders like sorry) or rely on proxies such as BLEU,
which are unreliable (Jiang et al., 2024; Lu et al., 2024; Wu et al., 2022; Ying et al., 2024).

Key Insight. In this paper, we address the task of proof auto-formalization, focusing on Lean 4 as
the FL, via a combination of a joint embedding model, an LLM, and Lean for verification. It takes
as input an NL theorem-proof pair and produces the corresponding FL theorem-proof pair in Lean 4.
The key insight behind our approach is to treat proof auto-formalization as learning from demon-
strations: the LLM is guided not only by the NL proof but also by FL proofs retrieved using an
NL/FL joint embedding model that leverages contrastive learning and encodes linear DAG traver-
sals of Lean proofs. Rather than relying on randomly chosen few-shot examples, these retrieved
proofs capture far richer reusable formalization patterns (tactic choices, DAG structures), providing
grounded signals that guide generation toward Lean-verifiable proofs, as illustrated in Figure 1.

Contributions:
The PROOFBRIDGE Auto-formalization Method and Tool: We present PROOFBRIDGE, an
LLM-based, retrieval-augmented proof auto-formalization framework. At its core is an NL/FL joint
embedding model that maps semantically equivalent NL and FL theorem-proof pairs to nearby points
in a shared space, enabling effective cross-modal retrieval of related FL proofs. We then fine-tune the
SoTA LLM Kimina-Prover-RL-1.7B (Wang et al., 2025) to perform NL-to-Lean 4 proof translation,
conditioned on the retrieved FL proofs and their relevance scores. During inference, generation is
refined with an iterative verifier-guided repair loop combining Lean type-checking with LLM-based
bi-directional equivalence proving to ensure syntactic correctness and semantic fidelity. (Section 4)
NUMINAMATH-LEAN-PF Dataset: We curate NUMINAMATH-LEAN-PF, a large-scale dataset
of 38.9k NL↔Lean 4 theorem-proof pairs, specialized for proof auto-formalization. Each Lean
theorem-proof pair is type-checked and paired with an NL counterpart. Additionally, we release
MINIF2F-TEST-PF, a Lean v4.15.0 version of miniF2F-Test with 244 instances tailored for proof
auto-formalization, enabling a consistent pipeline in the same Lean version. (Section 5.1)
Extensive Experimental Evaluation: Compared to the baseline encoder all-MiniLM-L6-v2,
PROOFBRIDGE’s cross-modal NL→FL retrieval achieves 3.28× higher Recall Rate@K at K=1
and 2.74× MRR, with top-K retrieved embeddings 23% closer and non-retrieved 104% farther. We
evaluate PROOFBRIDGE against 13 SoTA LLMs, including foundation models (Gemini-2.5, GPT-
5-mini) and automated proof synthesis LLMs (DeepSeek-Prover, STP, Leanabell-Prover, Kimina-
Prover), using verifier-grounded metrics: type correctness (TC) and semantic correctness (SC, a new
metric based on Lean bidirectional equivalence proofs). Built on Kimina-Prover-RL-1.7B, PROOF-
BRIDGE achieves +31.14% SC and +1.64% TC (pass@32) on MINIF2F-TEST-PF. (Section 5)

2 RELATED WORK

Our work lies at the intersection of three key AI-for-Math research areas: automated formal proof
synthesis, auto-formalization, and retrieval-augmented learning for mathematical reasoning. We
focus on the most relevant approaches and highlight differences from our unified framework.

Auto-Formalization. Auto-formalization translates NL mathematics into FL, but most existing
work focuses on theorem formalization rather than proofs. Theorem-only approaches include
Herald-translator (Gao et al., 2024b), which extracts FL theorems from Mathlib4 and trains on
informal counterparts, and Kimina-Autoformalizer (Wang et al., 2025), which fine-tunes models
with expert iteration. These excel at translating theorems but cannot handle proofs. Proof auto-
formalization has received limited attention. Draft-Sketch-Prove (Jiang et al., 2022) converts NL
proofs into formal sketches in Isabelle with open conjectures, then fills gaps using predefined tactics
and tools like Sledgehammer (Paulsson & Blanchette, 2012). FormL4 (Lu et al., 2024) trains on
GPT-4 informalized Mathlib proofs with process-supervised step-level Lean compilation feedback.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Key Differences: Our approach is the first to jointly learn representations for NL and FL theorem-
proof pairs, enabling cross-modal retrieval to guide formalization. Unlike prior work on isolated
proof generation, we leverage semantic relationships of NL and FL proofs for contextual guidance.

Automated Formal Proof Synthesis. Automated formal proof synthesis (AFPS) takes FL theo-
rems as input and generates FL proofs. Current approaches fall into two categories: next-tactic
prediction and whole-proof generation. Next-Tactic Prediction (NTP) methods train models to
predict single proof steps from current proof states. Representative systems include GPT-f (Polu &
Sutskever, 2020) for Metamath, LIsa (Jiang et al., 2021) for Isabelle, and PACT (Han et al., 2022) for
Lean. These use tree search over proof states, prioritizing tactics by cumulative probability. While
NTP ensures stepwise correctness via interactive theorem-prover verification, it suffers from long-
horizon dependencies and computational overhead from such repeated interactions. Whole-Proof
Generation (WPG) methods generate complete FL proofs in single passes, offering computational
efficiency but risking cascading errors. Recent advances include DeepSeek-Prover-v1 (Xin et al.,
2024a), which combines SFT with expert iteration, and TheoremLlama (Wang et al., 2024b), which
improves in-context learning through curriculum-based training. DeepSeek-Prover-v2 (Ren et al.,
2025) integrates NL reasoning with formal proof generation, while Kimina-Prover (Wang et al.,
2025) applies reinforcement learning with compilation-based rewards (Jana et al., 2024).
Key Differences: Unlike AFPS approaches that assume FL theorems as input, our work addresses
the more challenging task of generating theorem-proof pairs in FL from an NL input.

Retrieval-Augmented Learning for Mathematics. Recent work has explored retrieval-
augmented approaches for mathematical reasoning, though not specifically for auto-formalization.
TLAPS (Zhou, 2025) retrieves verified proofs to assist proof generation, COPRA (Thakur et al.,
2023) selects relevant lemmas to guide proof search, and REAL-Prover (Shen et al., 2025) re-
trieves Mathlib theorems for next-tactic prediction. These methods rely on plain-text encoding.
LeanSearch (Gao et al., 2024a), HERALD (Gao et al., 2024b), and RAutoformalizer (Liu et al.,
2025) also use plain text encoders for FL theorem retrieval; however, as shown in Section 5.5, this
does not extend to the more demanding task of FL theorem+proof pair retrieval.
Key Differences: Our joint embedding enables NL/FL cross-modal retrieval of theorem+proof pairs
and encodes the DAG structure of Lean proofs, unlike plain-text encoders. Capturing proof-structure
semantics is essential for proof auto-formalization and is not addressed by existing tool-chains.

Positioning our contributions. PROOFBRIDGE makes several novel contributions relative to exist-
ing approaches: (a) Unified Proof Auto-Formalization: We address complete translation (theorem
+ proof) rather than treating theorem formalization and proof synthesis separately. (b) Joint Se-
mantic Embedding: Our contrastive learning framework for aligning NL and FL proofs is novel,
enabling effective cross-modal retrieval. (c) Retrieval-Augmented Translation: We are the first
to apply retrieval-augmented fine-tuning and generation to auto-formalization, leveraging seman-
tic relationships between FL proofs to guide translation. (d) Rigorous Evaluation: We introduce
systematic metrics for proof auto-formalization, including type correctness via bi-directional equiv-
alence rather than proxy measures. This combination of joint embedding, retrieval augmentation,
and unified translation distinguishes our approach from prior work.

3 PRELIMINARIES: TACTIC-STYLE PROOFS IN LEAN

Lean (Moura & Ullrich, 2021) is a functional programming language and interactive theorem prover
that is based on the propositions-as-types principle, where proving a proposition is equivalent to
constructing a term of the corresponding type. Rather than building these terms manually, users
write proofs in a tactic language, which provides high-level steps to guide term construction. Lean 4
(henceforth Lean) represents tactic-style proofs as directed acyclic graphs (DAGs) of proof states
and tactics, automatically generating the corresponding proof term in the background. The kernel
then verifies the term, ensuring correctness by enforcing the axiomatic foundations of Lean’s logic,
the Calculus of Inductive Constructions. This combination of a formal system and a small, trusted
kernel provides strong confidence in the validity of proofs. In the DAG (Figure 2) of a Lean proof:

• Each proof state Si ≡ [G1, · · · , Gn] consists of a sequence of zero or more open goals. Initial
state S0 has one goal, the theorem TFL ≡ pr ⊢ cn itself. Leaf-level states have no open goal.

• Each open goal Gi ≡ pr i ⊢ cni of a proof state represents a proposition cni that needs to be
proven, given a set of premises pri.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

• Each tactic taci represents a proof step. It is a high-level command (rooted in metaprogramming)
applied to an open goal Gi, producing a new proof state. If the resulting proof state has no open
goal, it directly resolves the current goal. A parent goal is resolved once all subgoals are resolved.

G1

tac0

tac1

Final State(s):
No more open
goals

(backward proving)

Proof: 𝑃𝐹𝐿 ≡ (tac0, tac1, …,tacn-1)

Gk

G0

tacn

…

tacm-1

tacn-1

tacp-1

tacq-1

…

…

…

…

…

…
…

≈
≈

Initial State:
The theorem
𝑇𝐹𝐿 ≡ 𝑝𝑟 ⊢ 𝑐𝑛

… …

∅

∅

∅

∅

…

Figure 2: Tactic-style Proof. A Lean
proof represented as a DAG of tactics.

Tactic-style proof synthesis in Lean follows a sequential de-
cision process. Lean provides an interactive REPL (Lean-
prover, 2025) that applies tactics step by step to manipulate
proof states. An FL proof is a sequence of tactics, and at
each step, the REPL updates the proof state if the tactic is
valid or returns an error identifying the faulty one. Each
tactic advances the proof by breaking the current goal into
simpler subgoals, similar to the ‘suffices to show’ construct.

Proof Auto-formalization as a Learning Problem. Given
an NL theorem–proof pair MNL = ⟨TNL, PNL⟩, the goal is
to learn a function f : MNL 7→ MFL that produces a cor-
responding Lean theorem–proof pair MFL = ⟨TFL, PFL⟩.
Here, TFL ≡ pr ⊢ cn denotes the formal theorem, and
PFL ≡ (tac0, . . . ,tacn−1) is the proof as a sequence of
tactics. The generated pair must satisfy:

(a) Type correctness: MFL = ⟨TFL, PFL⟩ passes Lean type-checking, ensuring that PFL proves TFL
with no open goals in the DAG.

(b) Semantic correctness: FL theorem is semantically equivalent to the NL one, i.e., TFL ≡ TNL.

4 OUR APPROACH AND TOOL ARCHITECTURE

4.1 JOINT EMBEDDING OF NL AND LEAN PROOFS FOR CROSS-MODAL RETRIEVAL

A core component of our framework is the joint embedding model, which learns to represent
NL theorem–proof pairs and their FL (Lean) counterparts in a shared semantic space. The goal
is to align these modalities so that cross-modal retrieval between NL and FL becomes possible.
Formally, given an NL theorem-proof pair MNL and a large database of FL theorem-proof pairs
D =

{
M

(i)
FL = ⟨T (i)

FL , P
(i)
FL ⟩
}

, the model retrieves subset R(MNL,D) ⊆ D of size K ≪ |D|, that
serve as in-context demonstrations to guide downstream auto-formalization.

During training the joint embedding model, we start with NL-FL pairs
(
M

(i)
NL ,M

(i)
FL

)
, which are

encoded into vectors using two modality-specific encoders. Each encoder is initialized with a pre-
trained model, and a subset of parameters is subsequently fine-tuned. Given M

(i)
NL , the NL encoder f

produces an embedding v
(i)
NL = f(M

(i)
NL , θf∥ϕf) ∈ Rd, and given M

(i)
FL , the FL encoder g produces

v
(i)
FL = g(M

(i)
FL , θg∥ϕg) ∈ Rd, where θ denotes frozen parameters, ϕ denotes trainable parameters,

and d is the dimension of the shared semantic space. The details of each encoder are as follows:

• NL encoder f(M
(i)
NL , θf∥ϕf): To encode M

(i)
NL , we use all-MiniLM-L6-v2 (Reimers &

Gurevych, 2020), a lightweight model (22.7M parameters) that effectively captures semantic sim-
ilarity in NL. It encodes M (i)

NL into 384-dimensional embeddings, thereby projected into the joint
embedding space of dimension d = 512 via a linear layer included in the trainable set ϕf.

• FL encoder g(M
(i)
FL , θg∥ϕg): Given M

(i)
FL = ⟨T (i)

FL , P
(i)
FL ⟩, we first extract the linearized DAG

traversal of tactics from P
(i)
FL using Lean REPL (Leanprover, 2025). This traversal is represented

as an ordered sequence of proof-state transformations induced by successive tactic applications:
S0

tac0−−−→ S1
tac1−−−→ · · · tacH−1−−−−−→ SH , where S0 ≡ T

(i)
FL , each Sh ≡ [G1, . . . , Gl] denotes a

proof state consisting of zero or more open goals, and tach−1 is the tactic applied at step h.
This sequence captures the entire proof as an ordered series of state transformations. To create
embeddings for the full proof, we first encode each state Sh using LeanDojo’s ByT5 proof-state
encoder (Yang et al., 2023) (218M parameters), producing embeddings of size 1,472 per state.
We then obtain a single embedding for the entire proof via mean-pooling, which is subsequently
projected into a shared semantic space of dimension d = 512 using a linear layer included in the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

trainable parameters ϕg. The intuition behind this approach is to ensure that semantically similar
proofs (those with similar DAG structures of proof-states and tactics) produce similar embeddings.

Contrastive Learning. To enable cross-modal retrieval between NL and FL representations, it is
essential to align the two modalities in the embedding space. Specifically, for each positive pair(
M

(i)
NL ,M

(i)
FL

)
, we aim for their embeddings

(
v
(i)
NL, v

(i)
FL

)
to exhibit high cosine similarity, while em-

beddings of mismatched pairs are pushed apart. Denoting ℓ2-normalization by v̂ = v/∥v∥2 and
defining the cosine similarity between two embeddings u and w as [û, ŵ], we adopt the following
symmetric contrastive loss for a mini-batch B =

{(
M

(i)
NL ,M

(i)
FL

)}n
i=1

of NL-FL pairs:

L(B) = − 1

2n

n∑
i=1

[
log

(
exp
([
v̂
(i)
NL, v̂

(i)
FL

]
/τ
)∑n

j=1 exp
([
v̂
(i)
NL, v̂

(j)
FL

]
/τ
))+ log

(
exp
([
v̂
(i)
FL , v̂

(i)
NL

]
/τ
)∑n

j=1 exp
([
v̂
(i)
FL , v̂

(j)
NL

]
/τ
))] (1)

where τ > 0 is a temperature hyperparameter. This loss encourages each NL embedding to be
closest to its corresponding FL embedding, and vice versa, using other in-batch embeddings as
negatives. The negatives are sampled randomly for each mini-batch.

NL/FL Cross-Modal Retrieval. We precompute the normalized embeddings
{
v̂
(i)
NL

}|D|
i=1

and{
v̂
(j)
FL

}|D|
j=1

for all NL and FL theorem–proof pairs respectively in our database D, which enables
efficient cross-modal retrieval. Given a query theorem–proof pair in either source modality (NL or
FL), we encode it into the shared semantic space (yielding q̂NL or q̂FL) and compute cosine similar-
ities with all items in the target modality, producing the set

{[
q̂NL, v̂

(j)
FL

]}|D|
j=1

or
{[

q̂FL, v̂
(i)
NL

]}|D|
i=1

,
depending on the retrieval direction. The top-K nearest neighbors from these sets are then selected
as demonstrations, reflecting similar proof structures, patterns, and mathematical domains.

4.2 RETRIEVAL-AUGMENTED FINE-TUNING FOR PROOF AUTO-FORMALIZATION

We fine-tune an LLM to translate NL theorem-proof pairs into FL (Lean), conditioned on retrieved
FL demonstrations that provide rich contextual knowledge. For each training instance, we construct
a prompt containing (a) input NL theorem-proof pair MNL and (b) top-K retrieved FL theorem-
proof pairs: R(MNL,D) = {M (k)

FL }Kk=1 with relevance scores {r(k)}Kk=1. The retrieved examples
demonstrate how similar mathematical concepts and proof strategies are formalized in Lean. We
include relevance scores to help the model weight the importance of each retrieved example.

Training Objective. We fine-tune Kimina-Prover-RL-1.7B (Wang et al., 2025) using supervised
learning on our NUMINAMATH-LEAN-PF dataset (details in Section 5.1). The model is trained to
generate an FL theorem-proof pair M̃FL given the input context. This retrieval-augmented approach
allows the LLM to learn from similar formalization patterns rather than generating formal theorems
in isolation. As illustrated in Figure 1b, we use the standard auto-regressive language modeling loss:

LCE = − 1

|T |

|T |∑
t=1

logPθ (τt | τ<t, C) (2)

where T = M̃FL is the generated formalization tokenized as sequence (τ1, . . . , τ|T |), C represents
the input context (NL theorem-proof + retrieved FL examples), and θ are the LLM parameters. This
corresponds to the cross-entropy loss between M̃FL and the gold-standard formalization MFL.

4.3 ITERATIVE PROOF REPAIR WITH VERIFIER FEEDBACK

During inference, we perform retrieval-augmented proof auto-formalization with the fine-tuned
LLM (Figure 1c). However, LLM being a stochastic model may still generate FL theorem-proof
pair that contain syntactic errors or semantic misalignments with the input NL theorem-proof. To
address, we implement an iterative repair mechanism that combines Lean’s type checker with se-
mantic equivalence verification. For an input NL theorem-proof pair MNL = ⟨TNL, PNL⟩ the LLM
generates an FL counterpart M̃FL = ⟨T̃FL, P̃FL⟩, on which we perform two types of verification:

1. Syntactic Verification: We compile M̃FL using Lean’s type checker. If compilation fails, we
extract the specific error message and location from Lean’s diagnostic output.

2. Semantic Verification: We assess whether the generated theorem T̃FL accurately represents the
original NL theorem TNL using an LLM-based equivalence judge.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Algorithm 1 Iterative Proof Repair
1 Input: NL theorem-proof pair MNL = ⟨TNL, PNL⟩,

Initial FL theorem-proof pair M̃(0)
FL = ⟨T̃ (0)

FL , P̃
(0)
FL ⟩

2 Output: Verified FL theorem-proof pair or FAILURE
3 for i = 0 to Rmax − 1 do
4 syntaxOK← LeanTypeCheck

(
M̃

(i)
FL

)
5 semanticsOK← SemanticEquivalence

(
TNL, T̃

(i)
FL

)
6 if syntaxOK ∧ semanticsOK then return M̃

(i)
FL

7 end if
8 feedback← GenerateFeedback(syntaxOK, semanticsOK)

9 M̃
(i+1)
FL ← LLMRepair(feedback)

10 end for
11 return FAILURE

Repair Process. When either syntactic or se-
mantic verification fails, we initiate an iterative
repair process. The procedure terminates once
both checks succeed or the maximum number
of repair attempts (Rmax = 5) is reached. This
bounded, iterative strategy improves the relia-
bility of proof auto-formalization by catching
and correcting common errors while maintain-
ing computational efficiency. The overall pro-
cess is described in Algorithm 1.

5 EXPERIMENTAL EVALUATION

5.1 DATASETS AND PREPARATION: NUMINAMATH-LEAN-PF AND MINIF2F-TEST-PF

For training, we construct NUMINAMATH-LEAN-PF from NuminaMath-LEAN (Wang et al., 2025),
containing 104,155 competition-level problems in algebra, geometry, number theory, combinatorics,
and calculus. Each instance pairs an NL theorem TNL with a human-written Lean v4.15.0 the-
orem TFL; 38,951 include FL proofs PFL (30% human-written, rest by KiminaProver), forming
{TNL, ⟨TFL, PFL⟩}. Next, we prepare NUMINAMATH-LEAN-PF via the following steps:
Formal Verification and Repair. Each FL pair is type-checked in Lean (Leanprover, 2025). About
6% (2,337) failed due to syntax, library mismatches, or incomplete proofs. These were automatically
repaired via Gemini-2.5-Pro: error messages and locations are extracted from Lean, used to prompt
the LLM for corrections, and re-verified iteratively up to five times. All errors were successfully
fixed, showing most issues were syntactic rather than mathematical.
NL Proof Generation. NuminaMath-LEAN provides only theorems, so we generate NL proofs in
two stages. First, solution sketch retrieval matches TNL to NuminaMath 1.5 (Li et al., 2024) (896k
problem-solution pairs) via exact string matching, retrieving sketches (median 79 words) for 25,792
instances (66%). Second, FL-to-NL informalization uses Gemini-2.5-Pro to translate verified PFL
into detailed, human-readable NL proofs. Each instance uses PFL, ⟨TFL, TNL⟩, and sketches when
available, producing 38,951 NL–FL theorem–proof pairs {⟨TNL, PNL⟩, ⟨TFL, PFL⟩}.

For validation, we curate MINIF2F-TEST-PF by combining two versions of miniF2F-test (Zheng
et al., 2021), a widely-used auto-formalization benchmark. It contains 244 Olympiad-level problems
from the AIME, AMC, IMO, and undergraduate courses in algebra, number theory, and inequalities.
We use the Lean v4.15.0 version (NuminaMath, 2025) and add missing NL proofs from Yang (2025).

5.2 EVALUATION METRICS

Metrics for NL/FL Cross-Modal Retrieval. We evaluate cross-modal alignment of our joint em-
bedding model in two directions. NL → FL measures retrieval of FL theorem-proof pairs given an
NL input, which is relevant for proof auto-formalization, while FL → NL assesses the reverse.
For a test pair

(
MNL,MFL

)
, a retrieval in the NL → FL direction is deemed successful if the

model retrieves the FL counterpart MFL given MNL, and unsuccessful otherwise; the FL → NL
direction is evaluated analogously. We assess retrieval performance using five metrics. (i) Recall
Rate @ K measures the percentage of queries for which the query’s cross-modal counterpart ap-
pears among the top-K retrieved results. We report K = 1, 5, 10, 20, 50. (ii) Mean Reciprocal
Rank (MRR) is the average reciprocal rank of the retrieved cross-modal counterpart for each query,
MRR = 1

N

∑N
q=1

1
rankq

, indicating how highly it is ranked. (iii) Cosine Similarity of Top-K
Retrieved measures the cosine similarity between the query embedding and those of the top-K re-
trieved instances. For each query, we sort these scores in ascending order and record three statistics:
median (M), 25th percentile (Q1), and 75th percentile (Q3), and report their average over the test set.
(iv) Cosine Similarity of Non-Retrieved applies the same procedure to all non-retrieved instances
and reports the median (M), 25th percentile (Q1), and 75th percentile (Q3) averaged over the test set.
(v) mean Median Gap (mMG) measures the difference between the median (M) cosine similarity of
top-K retrieved and that of non-retrieved instances, averaged over K = 1, 5, 10, 20, 50.

Metrics for Proof Auto-Formalization. Given MNL = ⟨TNL, PNL⟩, an auto-formalizer LLM/tool
generates an FL version M̃FL = ⟨T̃FL, P̃FL⟩. We evaluate performance using two metrics: (i) Type
Correctness (TC) measures whether M̃FL is accepted by Lean’s type-checker, i.e., P̃FL proves T̃FL
without using sorry. (ii) Semantic Correctness (SC) is evaluated only for type-correct generations

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

and measures whether T̃FL is definitionally equal 1 to the gold-standard TFL by prompting Gemini-
2.5-Pro up to five times to produce a Lean proof of the bi-directional equivalence T̃FL ↔ TFL using
a restricted set of tactics (rfl, simp, ring, etc.; details in Appendix A.4). Although relying on an
LLM judge, it is based on the Lean proof of equivalence rather than the LLM’s judgment alone. TC
and SC are computed as pass@k, i.e., over the top-k generated candidates, for k = 1, 2, 4, 8, 16, 32.

5.3 STATE-OF-THE-ART BASELINES

SoTA for NL/FL Cross-Modal Retrieval. To our knowledge, no existing model jointly embeds
theorems and proofs in NL and FL. Pre-trained encoders alone do not yield embeddings suitable
for meaningful cross-modal retrieval. To illustrate, we evaluate two SoTA Encoders: Qwen3-
Embedding-8B (Zhang et al., 2025b) and E5-Mistral-7B-Instruct (Wang et al., 2024a). Qwen3
allows user-defined output dimensions up to 4096, and we use 512 to match our joint embedding
model, while E5-Mistral (used by LeanSearch-PS (Shen et al., 2025)) has a fixed dimension of 4096.
We also include a Baseline Encoder, all-MiniLM-L6-v2 (Reimers & Gurevych, 2020), used for the
NL encoder in PROOFBRIDGE, producing 384-dim embeddings. All these encoders treat theorem-
proof pairs as plain text, ignoring the DAG structure of FL proofs, which PROOFBRIDGE explicitly
leverages. Retrieval is performed via cosine similarity in the respective embedding spaces.

SoTA Tools for Proof Auto-Formalization. Existing proof auto-formalization tools include
DSP (Jiang et al., 2022) which supports only Isabelle; since we target Lean 4, direct comparison
is not feasible. Another recent tool, FormL4 (Lu et al., 2024), has not released its trained model.
We therefore compare against three categories: foundation models, SoTA automated formal proof
synthesis (AFPS) LLMs, and SoTA theorem auto-formalization LLMs. The four foundation mod-
els we include are GPT-5-mini (OpenAI, 2025) and the Gemini-2.5 (Comanici et al., 2025) variants
Flash-Lite, Flash, and Pro. We evaluate seven AFPS LLMs, all trained to generate full FL proofs
with tactics, the same output space targeted in proof auto-formalization: DeepSeek-Prover-V1.5-
RL (Xin et al., 2024b), STP model Lean 0320 (Dong & Ma, 2025), Goedel-Prover-SFT (Lin et al.,
2025), Leanabell-Prover-V2-KM (Zhang et al., 2025a), and three Kimina-Prover variants (Wang
et al., 2025) (RL-1.7B, Distill-8B, 72B). Lastly, we evaluate two auto-formalization LLMs: Kimina-
Autoformalizer-7B (Wang et al., 2025) and Herald-Translator (Gao et al., 2024b).

5.4 TRAINING AND EVALUATION SETUP

We train our joint embedding model on 90% (35,056 instances) of NUMINAMATH-LEAN-PF and
evaluate it on the remaining 3,895 instances. The split is domain-stratified across all mathematical
areas, ensuring hard negatives in the test set. The train split serves as a database D of FL theorem-
proof pairs. PROOFBRIDGE, built on Kimina-Prover-RL-1.7B, is SFT-tuned for NL-to-FL transla-
tion using

(
MNL,MFL

)
from NUMINAMATH-LEAN-PF, with the joint embedding model retrieving

the top-5 relevant FL proofs from D for retrieval-augmented SFT and inference. Inference-time
iterative proof repair is applied, and the model is evaluated on MINIF2F-TEST-PF. See Appen-
dices A.2–A.3 for implementation and training details, and Appendix A.5 for an example inference.

The SoTA Tools are evaluated in three settings: (a) zero-shot, with no in-context I/O examples; (b)
random few-shot, with five randomly selected in-context examples; and (c) text-based retrieval few-
shot, where the top-5 FL theorem-proof pairs are retrieved from D via Qwen3-Embedding-8B and
paired with their NL counterparts as in-context examples. Further, we evaluate a SoTA Two-Step
setting: a theorem-only auto-formalizer (T1) first translates TNL to T̃FL, and an AFPS LLM (T2)
then generates ⟨T̃FL, P̃FL⟩ from T̃FL, both in zero-shot. For pass@k, we sample the top-k from T1,
select one that is TC and judged equivalent to TNL by Gemini-2.5-Pro (SC is not used as the gold
TFL is withheld until the pipeline finishes), and then generate the top-k proof candidates from T2.

5.5 EXPERIMENTAL RESULTS

NL/FL Cross-Modal Retrieval. Table 1 compares PROOFBRIDGE’s joint embedding model with
the two SoTA Encoders and the Baseline Encoder. Since PROOFBRIDGE is obtained by contrastively
training the NL encoder together with an FL encoder, all improvements are reported relative to the
original NL encoder (the Baseline Encoder). PROOFBRIDGE achieves consistently higher recall
rates across all top-K values: for NL→FL, it yields 3.28× gain for NL→FL and 1.94× for FL→NL

1We admit some propositional equalities in addition to definitional ones, see details in Appendix A.4

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 1: NL/FL Cross-Modal Retrieval Performance. Retrieval performance of SoTA and Base-
line encoders versus PROOFBRIDGE’s joint embedding. (Q1: 25th %tile, M: median, Q3: 75th %tile)

Method Retrieval
Direction

Recall Rate @ K (%) ↑ MRR ↑ Cos. Similarity of top-K Retrieved ↑ Cos. Similarity of NOT Retrieved ↓ Gap ↑
(mMG)K=1 K=5 K=10 K=20 K=50 K=1 K=5 K=10 K=20 K=50 K=1 K=5 K=10 K=20 K=50

Qwen3-Embedding-8B
(SoTA Encoder,

8B params)

NL → FL 46.75 71.96 82.49 87.04 93.34 0.567

Q1:
M:
Q3:

0.74
0.74
0.74

0.67
0.68
0.70

0.62
0.63
0.66

0.60
0.62
0.63

0.57
0.58
0.60

0.317
0.362
0.410

0.317
0.362
0.410

0.317
0.362
0.410

0.317
0.362
0.409

0.317
0.362
0.409 0.29

FL → NL 44.68 68.26 79.79 83.78 87.36 0.506

Q1:
M:
Q3:

0.76
0.76
0.76

0.66
0.67
0.68

0.63
0.63
0.65

0.62
0.63
0.64

0.59
0.60
0.62

0.309
0.362
0.418

0.309
0.362
0.418

0.309
0.362
0.418

0.309
0.362
0.418

0.308
0.362
0.417 0.30

E5-Mistral-7B-Instruct
(SoTA Encoder,

7B params)

NL → FL 35.60 53.22 60.22 67.82 77.18 0.441

Q1:
M:
Q3:

0.86
0.86
0.86

0.83
0.83
0.84

0.82
0.83
0.83

0.82
0.82
0.83

0.81
0.81
0.82

0.711
0.730
0.749

0.711
0.730
0.749

0.711
0.730
0.749

0.711
0.730
0.749

0.710
0.730
0.749 0.10

FL → NL 30.27 41.93 46.41 50.83 57.88 0.359

Q1:
M:
Q3:

0.87
0.87
0.87

0.85
0.85
0.86

0.84
0.85
0.85

0.84
0.84
0.85

0.83
0.83
0.84

0.704
0.735
0.760

0.704
0.735
0.760

0.704
0.735
0.760

0.704
0.735
0.760

0.704
0.734
0.759 0.11

all-MiniLM-L6-v2
(Baseline Encoder,

22.7M params)

NL → FL 16.06 30.93 38.63 47.31 60.95 0.237

Q1:
M:
Q3:

0.60
0.60
0.60

0.52
0.54
0.55

0.50
0.51
0.53

0.47
0.49
0.51

0.44
0.45
0.58

0.147
0.210
0.274

0.147
0.210
0.274

0.147
0.210
0.273

0.147
0.209
0.273

0.146
0.208
0.271 0.31

FL → NL 26.35 45.12 54.28 63.75 75.54 0.355

Q1:
M:
Q3:

0.58
0.58
0.58

0.52
0.53
0.54

0.50
0.51
0.53

0.47
0.49
0.51

0.44
0.46
0.48

0.142
0.208
0.278

0.142
0.208
0.278

0.142
0.208
0.277

0.142
0.207
0.277

0.141
0.206
0.275 0.31

PROOFBRIDGE
(Proposed,

22.7M + 218M + 1M
params)

NL → FL 52.83 79.81 87.06 91.49 95.08 0.650

Q1:
M:
Q3:

0.76
0.76
0.76

0.66
0.68
0.71

0.62
0.64
0.68

0.57
0.60
0.64

0.49
0.52
0.58

-0.134
-0.009
0.123

-0.135
-0.010
0.123

-0.135
-0.010
0.122

-0.135
-0.010
0.121

-0.136
-0.012
0.117 0.65

FL → NL 51.23 78.77 86.18 90.50 94.83 0.635

Q1:
M:
Q3:

0.77
0.77
0.77

0.67
0.69
0.71

0.62
0.64
0.68

0.57
0.60
0.64

0.49
0.52
0.58

-0.135
-0.009
0.124

-0.135
-0.009
0.123

-0.135
-0.009
0.122

-0.135
-0.011
0.121

-0.136
-0.012
0.117 0.65

at K = 1. MRR also improves by 2.74× and 1.79× for NL→FL and FL→NL, respectively. This
indicates that PROOFBRIDGE more frequently retrieves the correct cross-modal counterpart among
the highest-ranked results. For the NL and FL embeddings by PROOFBRIDGE, the median (M) co-
sine similarity of retrieved cross-modal instances averages 0.64 across top-K (K = 1, 5, 10, 20, 50)
in both directions, showing that select cross-modal theorem–proof pairs are tightly clustered. In con-
trast, non-retrieved instances are much farther apart, averaging −0.01. Compared to the Baseline,
retrieved-pair similarities increase by 23%, while non-retrieved similarities decrease by 104%.
PROOFBRIDGE outperforms the SoTA Encoders in recall and MRR, with a much higher mMG
despite being 32× smaller, showing a clearer separation between retrieved and non-retrieved items.
For NL→FL, E5-Mistral-7B-Instruct attains an mMG of 0.10, while Qwen3-Embedding-8B reaches
0.29. We believe these low values arise because: first, these QA-oriented encoders capture coarse
domain-level signals rather than fine-grained mathematical semantics, so most mathematical texts
cluster together; second, as plain-text, non-DAG-aware encoders, they rely on superficial lexical
cues (keywords), but in Lean many proofs share the same tactics, making keyword overlap non-
discriminative. In contrast, PROOFBRIDGE leverages the DAG to distinguish proofs, achieving an
mMG of 0.65. Overall, encoding Lean proofs via linearized DAG traversals and contrastive align-
ment with a DAG-aware FL encoder yield an effective joint embedding space, where equivalent
NL-FL pairs cluster tightly and inequivalent ones remain well separated. This enables reliable re-
trieval of the most relevant FL demonstrations to condition the LLM during auto-formalization.
Proof Auto-Formalization. Table 2 reports the proof auto-formalization performance of 13 SoTA
LLM-based tools. Theorem auto-formalization LLMs achieve 0% TC and SC across all pass@k.
These models are designed to formalize theorem statements only, leaving proofs as sorry. They
lack knowledge of proof DAGs and tactics, making them unsuitable for end-to-end proof auto-
formalization. Among foundation models, Gemini-2.5-Flash-Lite achieves 2.87% SC and 21.31%
TC at pass@32, which increase to 4.10% SC, 18.44% TC for Flash and 8.61% SC, 31.56% TC
for Pro. GPT-5-mini attains 9.02% TC and 34.84% SC at pass@32. They struggle with the strict
syntax and semantics of specialized FLs like Lean, which are underrepresented in their training
data. The SoTA Two-Step achieves 43.44% SC and 59.43% TC, but it is prone to cascading errors:
an incorrect FL theorem from the first model causes the second to produce a semantically incorrect
theorem-proof pair. Among the SoTA AFPS LLMs, Kimina-Prover-72B achieves the strongest zero-
shot performance at pass@32, with 46.31% SC and 79.51% TC. We build PROOFBRIDGE on top of
a smaller variant, Kimina-Prover-RL-1.7B, by retrieving five relevant FL proofs via NL/FL cross-
modal retrieval and using them for retrieval-augmented SFT and inference, along with iterative proof
repair. PROOFBRIDGE surpasses the zero-shot performance of Kimina-Prover-RL-1.7B by +22.54%
SC and +20.49% TC, and its random few-shot performance by +31.14% SC and +1.64% TC.
In Figure 3, we present the pass@32 performance across mathematical domains. Following the
taxonomy by Zheng et al. (2021), the benchmark includes 6 induction/sequence (2.46%), 69 number-
theory (28.28%), 90 algebra (36.89%), and 79 contest problems (32.38%) sourced from AIME,
AMC, and IMO. PROOFBRIDGE performs best on number theory, achieving over 85% SC, while
contest problems remain the most challenging, reaching only about 35% SC.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Table 2: Proof Auto-Formalization Performance. Comparison of LLM-based tools on Semantic
Correctness (SC) and Type Correctness (TC) across pass@k metrics (k ∈ {1, 2, 4, 8, 16, 32}).

Setting LLM/Tool Semantic Correctness (SC) (%) ↑ Type Correctness (TC) (%) ↑
pass@1 pass@2 pass@4 pass@8 pass@16 pass@32 pass@1 pass@2 pass@4 pass@8 pass@16 pass@32

SoTA Tools
(zero-shot)

Kimina-Prover-RL-1.7B 9.02 13.93 22.54 30.33 35.25 40.16 26.23 41.80 56.15 62.70 68.03 75.00
Kimina-Prover-Distill-8B 10.66 18.85 23.77 32.38 37.70 41.80 27.05 43.03 58.20 63.52 72.95 75.82
Kimina-Prover-72B 12.70 21.31 25.00 34.84 38.52 43.03 30.33 45.08 61.07 69.26 75.41 79.51

SoTA Tools
(random
few-shot)

Kimina-Autoformalizer-7B 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Herald-Translator 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gemini-2.5-Flash-Lite 0.00 0.00 0.00 0.00 1.23 2.87 0.82 4.51 9.02 13.93 18.03 21.31
Gemini-2.5-Flash 0.00 0.82 2.05 2.86 3.28 4.10 2.45 4.92 7.38 12.30 15.98 18.44
Gemini-2.5-Pro 1.23 1.23 3.28 4.92 6.97 8.61 9.84 13.52 18.85 23.77 29.10 31.56
GPT-5-mini 0.41 1.23 4.51 6.97 7.38 9.02 4.92 9.43 20.08 28.28 32.38 34.84
DeepSeek-Prover-V1.5-RL 3.69 6.15 8.61 9.02 11.07 12.30 8.20 14.34 19.67 24.18 28.68 35.66
STP model Lean 0320 4.51 6.56 8.20 9.84 11.48 13.11 12.70 18.03 23.36 28.69 33.61 39.34
Goedel-Prover-SFT 4.92 5.33 7.38 8.20 12.70 16.39 13.52 17.21 25.41 31.56 36.88 42.21
Leanabell-Prover-V2-KM 6.97 9.43 10.66 13.52 15.16 18.03 16.80 21.31 27.87 37.30 41.39 50.41
Kimina-Prover-RL-1.7B 6.15 12.30 17.62 22.13 27.46 31.56 26.23 42.21 60.66 74.18 88.11 93.85
Kimina-Prover-Distill-8B 7.38 11.89 16.39 24.18 28.69 32.38 24.59 44.26 61.89 75.00 85.25 89.34
Kimina-Prover-72B 10.25 13.93 18.85 25.00 31.35 37.30 30.74 45.49 62.70 77.87 86.89 91.39

SoTA Tools
(text-based retrieval

few-shot)

Kimina-Prover-RL-1.7B 6.15 12.70 18.85 22.54 28.28 32.78 26.63 43.39 58.68 70.66 86.36 89.75
Kimina-Prover-Distill-8B 8.61 13.52 21.72 28.28 34.02 36.07 28.28 46.28 59.92 71.90 83.47 86.07
Kimina-Prover-72B 12.29 14.34 24.59 29.51 37.70 44.26 31.15 45.08 64.88 75.62 86.78 88.93

SoTA Two-Step Herald-Translator → Kimina-Prover-Distill-8B 14.75 19.26 27.05 33.20 38.52 43.44 30.33 32.79 43.03 48.36 54.10 59.43

Our Tool
PROOFBRIDGE (SFT only) 6.97 13.52 19.26 24.18 29.92 34.84 27.87 45.90 60.66 66.39 72.13 78.69
PROOFBRIDGE (Retrieval-augmt. SFT) 13.11 20.90 27.87 35.66 47.95 55.33 29.92 46.31 60.25 71.31 83.20 89.75
PROOFBRIDGE (Retrieval-augmt. SFT + Repair) 16.39 25.41 29.51 37.70 50.41 62.70 32.79 47.13 64.75 78.69 90.16 95.49

5.6 ABLATION STUDIES

A

A

A

A
B

B

BB

CC

C

C

Contest
Problem

Induction/
Sequence

Algebra Number
Theory

0

20

40

60

80

100 DD

D

D

D
o
m
a
in
-w

is
e
T
es
t
In
st
a
n
ce
s
(%

)

Both type- and semantically-correct (SC)

Type-correct only (TC − SC)

Tools left → right (pass@32 performance):

A. Gemini-2.5-Pro (random few-shot)
B. DeepSeek-Prover-V1.5-RL (random few-shot)
C. Kimina-Prover-72B (text-based retr. few-shot)
D. ProofBridge (Retr-augmt. SFT + Repair)

Figure 3: Category-wise Results.
Proof auto-formalization performance
across mathematical domains.

To assess the effect of in-context examples, Table 2 re-
ports zero-shot, random few-shot, and text-based retrieval
few-shot performance for three Kimina-Prover variants
(72B, Distill-8B, and RL-1.7B). From the pass@32 results,
Kimina-Prover-RL-1.7B achieves 40.16% SC and 75.00%
TC in the zero-shot setting. When random examples are
added, SC drops to 31.56% while TC rises to 93.85%, with
similar trends across variants. This indicates that random
examples improve TC (syntax) but hurt SC by causing the
model to hallucinate semantically misaligned proofs. With
text-based retrieval via Qwen3-Embedding-8B, SC rises to
32.38% but TC declines, likely because QA-based retrieval
favors proofs with similar tactics, reducing tactic diversity.
This highlights the need for retrieving semantically relevant
examples via a DAG-aware encoder, as in PROOFBRIDGE.

To quantify the contribution of each component of PROOF-
BRIDGE, we perform an ablation over three variants. PROOFBRIDGE (SFT), fine-tuned on labeled
NL–FL pairs and evaluated in the few-shot setting with semantically relevant examples via our
joint-embedding model, improves SC by +2.06% but reduces TC by −11.06% relative to Kimina-
Prover-RL-1.7B (text-based retrieval few-shot). Next, in PROOFBRIDGE (Retrieval-augmented
SFT), we fine-tune the LLM with semantically relevant FL proofs included in the input, achiev-
ing +22.55% SC. PROOFBRIDGE (Retrieval-augmented SFT + Repair), adding iterative proof
repair, yields the best results: +29.92% SC and +5.74% TC over the same baseline. Relative to
Kimina-Prover-RL-1.7B (random few-shot), the improvements are +31.14% SC and +1.64% TC.

6 CONCLUSION

We present PROOFBRIDGE, a unified framework for NL-to-Lean proof auto-formalization that
translates both theorems and proofs end-to-end2. At its core is a joint embedding model of NL and
FL that encodes Lean proof DAGs, capturing tactic sequences and dependency structures. It enables
highly effective cross-modal retrieval of semantically relevant FL proofs. These retrieved proofs
act as demonstrations, guiding retrieval-augmented fine-tuning of an LLM. An iterative verifier-
guided repair loop further refines generated proofs by combining Lean type-checking with semantic
equivalence checking to ensure correctness. Evaluated on MINIF2F-TEST-PF, PROOFBRIDGE sig-
nificantly outperforms state-of-the-art LLMs in both semantic correctness (by bi-directional equiva-
lence proving) and type correctness, demonstrating that integrating structured embeddings, retrieval
guidance, and verifier feedback leads to more reliable proof auto-formalization.

2Reproducibility: System details (Appendix A.2), code and datasets provided in the supplementary.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Bruno Barras, Samuel Boutin, Cristina Cornes, Judicaël Courant, Yann Coscoy, David Delahaye,
Daniel de Rauglaudre, Jean-Christophe Filliâtre, Eduardo Giménez, Hugo Herbelin, et al. The
Coq Proof Assistant Reference Manual. INRIA, version, 6(11), 1999.

Kevin Buzzard. Formalising mathematics. Lecture notes from a course at Imperial
College London, 2022. URL https://github.com/ImperialCollegeLondon/
formalising-mathematics.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Google Deepmind. AI achieves Silver-Medal Standard solving International Mathematical
Olympiad Problems, 2024. URL https://deepmind.google/discover/blog/
ai-solves-imo-problems-at-silver-medal-level/. Accessed: Sep, 2025.

Kefan Dong and Tengyu Ma. Beyond Limited Data: Self-play LLM Theorem Provers with Iterative
Conjecturing and Proving. arXiv preprint arXiv:2502.00212, 2025.

Guoxiong Gao, Haocheng Ju, Jiedong Jiang, Zihan Qin, and Bin Dong. A Semantic Search Engine
for Mathlib4. arXiv preprint arXiv:2403.13310, 2024a.

Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong. Herald:
A Natural Language Annotated Lean 4 Dataset. arXiv preprint arXiv:2410.10878, 2024b.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward Ayers, and Stanislas Polu. Proof Artifact Co-
Training for Theorem Proving with Language Models. In International Conference on Learning
Representations, 2022.

John Harrison. HOL Light: An Overview. In International Conference on Theorem Proving in
Higher Order Logics, pp. 60–66. Springer, 2009.

Prithwish Jana. NeuroSymbolic LLM for mathematical reasoning and software engineering. In
Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI),
pp. 8492–8493, 2024.

Prithwish Jana, Piyush Jha, Haoyang Ju, Gautham Kishore, Aryan Mahajan, and Vijay Ganesh.
CoTran: An LLM-based Code Translator using Reinforcement Learning with Feedback from
Compiler and Symbolic Execution. In Proceedings of the 27th European Conference on Artificial
Intelligence (ECAI), pp. 4011–4018, 2024.

Piyush Jha, Prithwish Jana, Pranavkrishna Suresh, Arnav Arora, and Vijay Ganesh. RLSF: Fine-
tuning LLMs via Symbolic Feedback. In Proceedings of the 28th European Conference on Arti-
ficial Intelligence (ECAI), 2025.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, Sketch, and Prove: Guiding Formal Theorem
Provers with Informal Proofs. arXiv preprint arXiv:2210.12283, 2022.

Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multi-language Diversity Benefits Autoformaliza-
tion. Advances in Neural Information Processing Systems, 37:83600–83626, 2024.

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. LISA: Language models of
ISAbelle proofs. In 6th Conference on Artificial Intelligence and Theorem Proving, pp. 378–392,
2021.

Leanprover. leanprover-community/repl: A simple repl for lean 4, 2025. URL https://
github.com/leanprover-community/repl. Accessed: Sep, 2025.

11

https://github.com/ImperialCollegeLondon/formalising-mathematics
https://github.com/ImperialCollegeLondon/formalising-mathematics
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://github.com/leanprover-community/repl
https://github.com/leanprover-community/repl

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu. NuminaMath. [https://huggingface.
co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/
aimo-progress-prize/blob/main/report/numina_dataset.pdf), 2024.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Danqi Chen, Sanjeev Arora, et al. Goedel-Prover: A Frontier Model for Open-Source Automated
Theorem Proving. arXiv preprint arXiv:2502.07640, 2025.

Qi Liu, Xinhao Zheng, Xudong Lu, Qinxiang Cao, and Junchi Yan. Rethinking and Improving
Autoformalization: Towards a Faithful Metric and a Dependency Retrieval-based Approach. In
The Thirteenth International Conference on Learning Representations, 2025.

Jianqiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
Hui Jin, Jipeng Zhang, Haiming Wang, et al. Process-driven Autoformalization in Lean 4. arXiv
preprint arXiv:2406.01940, 2024.

Norman Megill and David A Wheeler. Metamath: A Computer Language for Mathematical Proofs.
Lulu. com, 2019.

Leonardo de Moura and Sebastian Ullrich. The Lean 4 Theorem Prover and Programming Lan-
guage. In Automated Deduction–CADE 28: 28th International Conference on Automated Deduc-
tion, Virtual Event, July 12–15, 2021, Proceedings 28, pp. 625–635. Springer, 2021.

Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer, 2002.

NuminaMath. minif2f test. Hugging Face Dataset, September.23 2025. URL https://
huggingface.co/datasets/AI-MO/minif2f_test. Version 1.0, Apache-2.0 Li-
cense, 244 rows.

OpenAI. Introducing gpt-5, 2025. URL https://openai.com/index/
introducing-gpt-5/. Accessed: 2025-09-23.

Lawrence C Paulsson and Jasmin C Blanchette. Three Years of Experience with Sledgehammer, a
Practical Link Between Automatic and Interactive Theorem Provers. In Proceedings of the 8th
International Workshop on the Implementation of Logics (IWIL-2010), Yogyakarta, Indonesia.
EPiC, volume 2, 2012.

Gabriel Poesia and Noah D Goodman. Peano: Learning Formal Mathematical Reasoning. Philo-
sophical Transactions of the Royal Society A, 381(2251):20220044, 2023.

Auguste Poiroux, Gail Weiss, Viktor Kunčak, and Antoine Bosselut. Reliable Evaluation and Bench-
marks for Statement Autoformalization. In Proceedings of the 2025 Conference on Empirical
Methods in Natural Language Processing, pp. 17958–17980, 2025.

Stanislas Polu and Ilya Sutskever. Generative Language Modeling for Automated Theorem Proving.
arXiv preprint arXiv:2009.03393, 2020.

Nils Reimers and Iryna Gurevych. Sentence-Transformers: Multilingual Sentence Embeddings
using BERT and XLNet. https://www.sbert.net/, 2020.

ZZ Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-Prover-v2: Advancing Formal Mathe-
matical Reasoning via Reinforcement Learning for Subgoal Decomposition. arXiv preprint
arXiv:2504.21801, 2025.

Ziju Shen, Naohao Huang, Fanyi Yang, Yutong Wang, Guoxiong Gao, Tianyi Xu, Jiedong Jiang,
Wanyi He, Pu Yang, Mengzhou Sun, et al. REAL-Prover: Retrieval Augmented Lean Prover for
Mathematical Reasoning. arXiv preprint arXiv:2505.20613, 2025.

Terence Tao. A maclaurin type inequality. arXiv preprint arXiv:2310.05328, 2023.

12

[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
https://huggingface.co/datasets/AI-MO/minif2f_test
https://huggingface.co/datasets/AI-MO/minif2f_test
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://www.sbert.net/

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Amitayush Thakur, Yeming Wen, and Swarat Chaudhuri. A Language-Agent Approach to Formal
Theorem-Proving. 2023.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. SynCode:
LLM Generation with Grammar Augmentation. arXiv preprint arXiv:2403.01632, 2024.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-Prover Preview: Towards Large
Formal Reasoning Models with Reinforcement Learning. arXiv preprint arXiv:2504.11354, 2025.

Liang Wang, Nan Yang, Xiaolong Huang, Linjun Yang, Rangan Majumder, and Furu Wei. Improv-
ing Text Embeddings with Large Language Models. In Proceedings of the 62nd Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 11897–11916,
2024a.

Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe Diao, Renjie Pi, and Tong Zhang. Theorem-
Llama: Transforming General-purpose LLMs into Lean4 Experts. In Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 11953–11974, 2024b.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with Large Language Models. Advances in Neural Infor-
mation Processing Systems, 35:32353–32368, 2022.

Yutong Wu, Di Huang, Ruosi Wan, Yue Peng, Shijie Shang, Chenrui Cao, Lei Qi, Rui Zhang, Zidong
Du, Jie Yan, et al. Stepfun-formalizer: Unlocking the autoformalization potential of llms through
knowledge-reasoning fusion. arXiv preprint arXiv:2508.04440, 2025.

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-
Scale Synthetic Data. arXiv preprint arXiv:2405.14333, 2024a.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-v1. 5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024b.

Kaiyu Yang. minif2f-lean4. GitHub repository, 2025. URL https://github.com/
yangky11/miniF2F-lean4.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented
language models. In Neural Information Processing Systems (NeurIPS), 2023.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean Workbook:
A Large-scale Lean Problem Set Formalized from Natural Language Math Problems. Advances
in Neural Information Processing Systems, 37:105848–105863, 2024.

Jingyuan Zhang, Qi Wang, Xingguang Ji, Yahui Liu, Yang Yue, Fuzheng Zhang, Di Zhang, Guorui
Zhou, and Kun Gai. Leanabell-prover: Posttraining scaling in formal reasoning. arXiv preprint
arXiv:2504.06122, 2025a.

Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 Embedding: Advancing Text Embedding and
Reranking Through Foundation Models. arXiv preprint arXiv:2506.05176, 2025b.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. MiniF2F: A Cross-System Benchmark for
Formal Olympiad-level Mathematics. arXiv preprint arXiv:2109.00110, 2021.

Yuhao Zhou. Retrieval-Augmented TLAPS Proof Generation with Large Language Models. arXiv
preprint arXiv:2501.03073, 2025.

13

https://github.com/yangky11/miniF2F-lean4
https://github.com/yangky11/miniF2F-lean4

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs did not play a significant role in either the research ideation or the writing of this paper. Their
use was limited to correcting minor grammatical issues and typographical errors.

A.2 REPRODUCIBILITY

All implementations in this work, including dataset construction, model training, cross-modal re-
trieval, inference, and evaluation, use Python 3.12.10 and Lean v4.15.0. Experiments were con-
ducted on a high-performance AlmaLinux 9.5 (Teal Serval) cluster with a single Intel Xeon Plat-
inum 8480+ CPU (32 cores, 2.0-4.0 GHz), 251 GiB of RAM, and one NVIDIA H100 GPU. Our
full codebase, including scripts for dataset generation, model fine-tuning, and inference across both
GPU- and API-based setups, is shared through a supplementary .zip file. The repository is com-
plete, well-documented, and designed for full reproducibility: it includes instructions for creating a
Python virtual environment, and a comprehensive README outlining library dependencies, dataset
format, and step-by-step instructions to replicate the entire data pipeline and experimental workflow.

A.3 TRAINING AND INFERENCE HYPERPARAMETERS

NL/FL Cross-Modal Retrieval. We train two dense encoders to embed NL and FL
theorem+proof pairs into a shared semantic space. The NL encoder is initialized from
all-MiniLM-L6-v2 (Reimers & Gurevych, 2020), while the FL encoder builds on Lean-
Dojo’s (Yang et al., 2023) ByT5-based proof-state encoder, extended to process a linearized traversal
of the proof DAG. Each encoder is equipped with a projection head that maps representations into a
shared embedding space of dimension d = 512, with a dropout rate of 0.1. During fine-tuning, we
update only the top layers of each encoder to retain their pretrained linguistic and structural priors.
Specifically, we train the last 3 layers of the NL encoder and the last 2 layers of the FL encoder. We
set the maximum token length to 512 for both NL and FL sequences. The model is optimized using
our symmetric contrastive objective (Equation 1) with temperature τ = 0.07, trained using AdamW
with a learning rate of 1× 10−5, weight decay of 0.01, and a batch size of 32. Training is run for 10
epochs with gradient accumulation steps set to 4. We also enable gradient checkpointing to reduce
memory usage during fine-tuning.

Proof Auto-Formalization. PROOFBRIDGE builds on Kimina-Prover-RL-1.7B (Wang et al.,
2025), which we further fine-tune for NL→FL translation using paired data

(
MNL,MFL

)
from

NUMINAMATH-LEAN-PF. During both SFT and inference, our NL/FL cross-modal retrieval model
gets the top-5 most relevant FL proofs from D, which are provided as in-context demonstrations to
guide Lean proof synthesis. We use the HuggingFace Trainer for supervised fine-tuning with the
following settings: a per-device batch size of 8 and BF16 training enabled. Training is run for 5
epochs with a learning rate of 5× 10−6, cosine decay scheduling, and a warmup ratio of 0.05.

For all SoTA baselines in Table 2, we compute pass@k using stochastic decoding. Specifically,
we run LLM inference with a temperature of 0.6 and top-p sampling of 0.95, ensuring sufficient
diversity across generated candidates.

A.4 SEMANTIC EQUIVALENCE OF LEAN THEOREMS

The task of autoformalization is to convert a mathematical theorem and proof from natural language
into a formal language, such as Lean. When evaluating the performance of such systems, we propose
two criteria for evaluation: type correctness and semantic equivalence. Type correctness, which
requires that the generated Lean proof is accepted by the Lean type-checker, is straightforward to
verify and serves as the standard evaluation metric in the field. However, semantic equivalence,
ensuring the FL theorem faithfully represents the meaning of the original NL theorem, presents a far
greater challenge. To the best of our knowledge, semantic equivalence has not been systematically
evaluated in prior work. This section introduces a novel methodology towards addressing this gap.

While directly measuring the semantic alignment between a NL theorem and a Lean theorem is an
unsolved challenge, showing the logical equivalence of two Lean theorems is a tractable task. Our

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

training dataset, NUMINAMATH-LEAN-PF, contains pairs of ⟨TNL, TFL⟩ where most of the TFL
were manually created by experts at Numina. We treat these high-quality TFL theorems as gold-
standard references, assuming they are faithful translations of their TNL counterparts. This allows us
to reduce the intractable problem of verifying a model’s generated theorem T̃FL against the original
TNL to the more tractable task of checking for logical equivalence between T̃FL and the golden
reference TFL, which can be checked in Lean itself.

To be more specific, we enforce this semantic equivalence check by proving the logical biconditional
T̃FL ↔ TFL in Lean. Theorems like T̃FL and TFL are of type Prop in Lean. The following theorem
from Mathlib states that for any two propositions, a logical biconditional between two propositions
is itself logically equivalent to their propositional equality:

theorem propext_iff{a b : Prop} :
a = b ↔ (a ↔ b)

The task thus converts to proving the equality T̃FL = TFL within Lean. This requires clarifying the
specific notion of equality being used, as Lean distinguishes between three primary types: syntactic,
definitional, and propositional Buzzard (2022). Syntactic equality is the strictest form of equality in
Lean, as it only admits expressions that are structurally identical according to their Abstract Syntax
Trees, without any computation or reduction. Definitional equality is a more relaxed form of equality
than syntactic equality, where two expressions are considered equal if they compute or reduce to the
same normal form. Propositional equality is the weakest form of equality, and also the standard
notion of equality used in mathematical theorems. Two terms a, b are propositionally equal in
Lean if you can construct a proof term for the proposition a = b.

For our evaluation, we seek to measure how closely a T̃FL matches the TFL. The strictest criterion,
syntactic equality, is too restrictive given the current state-of-the-art, as it would fail valid theorems
with trivial notational differences. Conversely, full propositional equality can be too permissive; a
proof of equivalence can be arbitrarily complex, making it difficult to automate and decide.

Therefore, we adopt a pragmatic compromise: we check for definitional equality supplemented by
a form of bounded propositional equality. This means we primarily check if T̃FL and TFL reduce to
the same normal form, but we also permit some propositional equality, provided they can be proven
using a collection of tactics so that their proof complexity is bounded.

We then leverage Gemini 2.5 Pro as an automated equivalence checker. The model is prompted
to synthesize a proof for the biconditional theorem (T̃FL ↔ TFL), with instructions limiting it to
a specific subset of available tactics. This restricted set includes three powerful automated tactics,
rfl, simp, and ring, each is designed to discharge a specific class of goals: rfl for definitional
equality, simp for simplification, and ring for polynomial identities.

As definitional equality is our primary target, the equivalence checker first attempts to solve the goal
with the rfl tactic. This single tactic should suffice for the majority of cases. If rfl fails, the
checker then tries simp. This tactic performs additional simplifications by rewriting the goal using
theorems from Mathlib that are tagged for its use. Critically, we use simp without any arguments.
Providing explicit arguments would require a demanding search for the correct lemmas and could
introduce unbounded complexity, violating our goal of a bounded proof search. Furthermore, the
need for simp with arguments could imply that the required rewrite is non-trivial, since the default
simplification set contains most of the trivial facts 3. Since our goal is to ensure a close correspon-
dence between T̃FL and TFL, a proof requiring such a targeted rewrite indicates a semantic distance
that we classify as a mismatch. The ring tactic is a valuable complement to the previous tactics
as it specializes in proving polynomial equalities. The ring tactic operates by reducing arithmetic
expressions to a canonical normal form. This allows it to prove the equivalence of expressions that
are algebraically identical but not definitionally so, such as xˆ2 and x * x, which rfl and default
simp would otherwise fail to solve.

3It is important to note that the default simp set intentionally excludes lemmas like associativity and com-
mutativity, as they can cause the simplifier to loop indefinitely. However, since these lemmas primarily concern
algebraic expressions, they can be handled by the ring tactic.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

The three tactics discussed above cover most of the direct equivalences we aim to check. The re-
maining tactics in our instruction set are designed for a more nuanced case: proving the biconditional
when two theorems differ only in their use of auxiliary variables. We observed that human experts
and language models may make different but equally valid decisions on whether to introduce an
auxiliary variable. We therefore classify such theorems as equivalent. For example, consider the
following:

def Prop1 := (∀ (b h v : R), (0 < b ∧ 0 < h ∧ 0 < v) → (v = 1 / 3 * (b *
h)) → (b = 30) → (h = 13 / 2) → v = 65)

def Prop2 := (∀ {B h : R}, (B = 30) → (h = 6.5) → (1 / 3) * B * h = 65)
example : Prop1 ↔ Prop2 := by
constructor
· intro
simp
ring

· simp
intros
nlinarith

The main difference between the two propositions Prop1 and Prop2 is the presence of the auxiliary
variable v in one. To prove that such theorems are equivalent, one must typically prove the bicon-
ditional by separately proving the implications of both direction. This requires a step-by-step proof
construction, and the tactics above are included in our instruction set.

Finally, we note that the LLM judge’s role is only to synthesize a biconditional proof under the
bounded tactic set described above; the produced proof is then fully type-checked by the Lean
kernel, so the SC decision ultimately depends on Lean’s verifier (making the metric conservative
rather than prone to false positives).

Comparison with Existing Semantic Correctness Metrics. Prior work has proposed similar se-
mantic correctness metrics, including BEq (Liu et al., 2025; Wu et al., 2025) and its extensions
BEq+ (Poiroux et al., 2025). While the general idea behind our SC metric and BEq is similar, both
aiming to establish bidirectional equivalence in Lean, the sets of allowed tactics differ. Because the
notion of equivalence depends on the permitted tactics, these differences lead to meaningful distinc-
tions between SC and BEq. BEq+ is a reference-based metric inspired by BEq and uses a set of
tactics comparable to SC. However, BEq+ is deterministic and CPU-efficient, while SC relies on an
LLM-based proof synthesizer. This creates a trade-off: the LLM can capture equivalences beyond
the reach of the deterministic procedure, whereas BEq+ provides a reproducible evaluation.
Consider Prop1 and Prop2 above as an example. Prop1 (gold-standard FL theorem from miniF2F-
Test-PF) explicitly introduces an auxiliary variable v to denote volume, whereas Prop2 (produced
by Kimina-Prover-RL-1.7B) omits the auxiliary variable and substitutes the corresponding formula
directly. The tactic set allowed by BEq is not expressive enough to establish equivalence in such
cases, so these theorems would not be recognized as equivalent under BEq. Our SC metric, by
contrast, was specifically designed to handle such variations, reflecting the fact that human experts
may also differ in whether they introduce auxiliary variables. By explicitly handling these variations
and using LLM-generated bidirectional proofs that are type-checked, SC provides an evaluation that
is both more lenient and faithful in assessing the performance of auto-formalization models.

A.5 ILLUSTRATIVE EXAMPLE

We present an example of an NL theorem+proof pair from MINIF2F-TEST-PF and compare the
pass@1 output of proof auto-formalization generated by Kimina-Prover-RL-1.7B in the text-based
retrieval few-shot setting with that produced by PROOFBRIDGE (using Retrieval-augmented SFT
+ Repair). We first show the retrievals of semantically relevant FL theorem+proof pairs from D,
followed by the pass@1 output proof auto-formalization generated by PROOFBRIDGE. In this
example, the output by Kimina-Prover-RL-1.7B is type-correct (TC) but not semantically correct
(SC), i.e., it is not bi-directionally equivalent to the gold-standard Lean proof. In contrast, the output
by PROOFBRIDGE is both TC and SC.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Input NL theorem+proof pair (MINIF2F-TEST-PF)

<informal theorem>
A point (x, y) on the coordinate plane with both coordinates negative is a distance of 6 units from the
x-axis. It is a distance of 15 units from the point (8, 3). It is a distance

√
n from the origin. What is n?

Show that it is 52.
</informal theorem>

<informal proof>
We know that y = −6 from the given information. By the distance formula, we have the equation√

(x− 8)2 + (−6− 3)2 = 15. Solving, we have√
(x− 8)2 + (−6− 3)2 = 15

x2 − 16x+ 64 + 81 = 225

x2 − 16x− 80 = 0

(x− 20)(x+ 4) = 0

Thus, x+ 4 = 0 or x− 20 = 0, so x = −4 or x = 20. x = −4 by the given conditions. Thus, our point
is (−4,−6) and is a distance of

√
(−4)2 + (−6)2 =

√
52 units from the origin. n = 52.

</informal proof>

Gold-standard Lean theorem (MINIF2F-TEST-PF)

import Mathlib
import Aesop
set_option maxHeartbeats 0
open BigOperators Real Nat Topology Rat

theorem mathd_algebra_288 (x y : R) (n : NNReal) (h0 : x < 0 ∧ y < 0) (h1 : abs y = 6)
(h2 : Real.sqrt ((x - 8) ˆ 2 + (y - 3) ˆ 2) = 15)
(h3 : Real.sqrt (x ˆ 2 + y ˆ 2) = Real.sqrt n) : n = 52 := by
sorry

Output Lean theorem+proof pair by Kimina-Prover-RL-1.7B
(text-based retrieval few-shot setting)

import Mathlib

/- A point (x,y) on the coordinate plane with both coordinates negative is a distance of
6 units from the x-axis. It is a distance of 15 units from the point (8,3). It is a
distance \sqrt{n} from the origin. What is n? Show that it is 52.-/

theorem algebra_60927 (n : N) (hn : n ≥ 1) (h : ∃ x y : R, x < 0 ∧ y < 0 ∧ |y| = 6 ∧ √
((x - 8)ˆ2 + (y - 3)ˆ2) = 15 ∧ √(xˆ2 + yˆ2) = √n) : n = 52 := by

rcases h with ⟨x, y, hx, hy, h1, h2, h3⟩
have hy1 : y = -6 := by

cases’ abs_cases y with hy2 hy2
· linarith
· linarith

have h2’ : (x - 8)ˆ2 + (y - 3)ˆ2 = 225 := by
calc

(x - 8)ˆ2 + (y - 3)ˆ2 = (√((x - 8)ˆ2 + (y - 3)ˆ2)) ˆ 2 := by rw [Real.sq_sqrt];

positivity
_ = 15 ˆ 2 := by rw [h2]
_ = (225 : R) := by norm_num

rw [hy1] at h2’
have h2x : (x - 8)ˆ2 = 144 := by nlinarith
have hx1 : x = -4 := by

nlinarith [h2x, hx]
have h3’ : xˆ2 + yˆ2 = (n : R) := by

calc
xˆ2 + yˆ2 = (√(xˆ2 + yˆ2)) ˆ 2 := by rw [Real.sq_sqrt]; positivity

_ = (√n) ˆ 2 := by rw [h3]

_ = (n : R) := by rw [Real.sq_sqrt]; positivity
rw [hx1, hy1] at h3’
have hn1 : (n : R) = 52 := by nlinarith
have hn2 : n = 52 := by
exact_mod_cast hn1

exact_mod_cast hn2

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Note that, although the Lean theorem generated by Kimina-Prover-RL-1.7B is type-correct (TC), it
differs semantically from the gold-standard theorem. The main difference lies in the quantification
of variables. In the gold-standard theorem, the variables x, y, n are universally quantified as explicit
arguments, and all hypotheses are stated as direct assumptions; this asserts that for any triple (x, y, n)
satisfying the geometric constraints, n = 52. In contrast, the Kimina-Prover-RL-1.7B output uni-
versally quantifies n but existentially quantifies x and y within the hypotheses. This more accurately
reflects the intended geometric meaning: for a given n satisfying the distance constraints, there exists
a point (x, y) realizing those constraints, and consequently n = 52. Therefore, while both theorems
are syntactically valid in Lean, they encode slightly different logical statements. This difference pre-
vents an LLM judge from producing a type-checkable proof of bi-directional equivalence between
the two theorems. As a result, the Kimina-Prover-RL-1.7B’s output is not semantically correct (SC).

Comparison between the gold-standard theorem and Kimina-Prover-RL-1.7B’s output

/- Gold-standard theorem -/
theorem mathd_algebra_288 (x y : R) (n : NNReal) (h0 : x < 0 ∧ y < 0) (h1 : abs y = 6)

(h2 : Real.sqrt ((x - 8) ˆ 2 + (y - 3) ˆ 2) = 15)
(h3 : Real.sqrt (x ˆ 2 + y ˆ 2) = Real.sqrt n) : n = 52 := by
sorry

/- Kimina-Prover-RL-1.7B output theorem -/
theorem algebra_60927 (n : N) (hn : n ≥ 1) (h : ∃ x y : R, x < 0 ∧ y < 0 ∧ |y| = 6 ∧ √

((x - 8)ˆ2 + (y - 3)ˆ2) = 15 ∧ √(xˆ2 + yˆ2) = √n) : n = 52 := by

sorry

Below, we present the relevant FL theorem+proof pairs (demonstrations) from D retrieved by
PROOFBRIDGE, along with their relevance scores.

Lean theorem+proof pairs retrieved by PROOFBRIDGE’s NL/FL Cross-Modal Retrieval

Relevant Lean theorem+proof 1, with relevance score 0.786764 out of 1.0
import Mathlib

/- Find the distance between the points $(2,2)$ and $(-1,-1)$. -/
theorem algebra_13734 (p1 p2 : R × R) (hp1 : p1 = (2, 2)) (hp2 : p2 = (-1, -1)) :

Real.sqrt ((p1.1 - p2.1)ˆ2 + (p1.2 - p2.2)ˆ2) = 3 * Real.sqrt 2 := by
rw [hp1, hp2]
norm_num
ring
rw [Real.sqrt_eq_iff_sq_eq] <;> norm_num
ring
norm_num

Relevant Lean theorem+proof 2, with relevance score 0.768226 out of 1.0
import Mathlib
open Real

/- Prove that the angle (in degrees) between the vectors $(2,5)$ and $(-3,7)$ is 45. -/
theorem calculus_17161 :

arccos ((2 * (-3) + 5 * 7) / (sqrt (2 ˆ 2 + 5 ˆ 2) * sqrt ((-3) ˆ 2 + 7 ˆ 2))) * 180
/ π = 45 := by

have h1 : (2 * (-3) + 5 * 7 : R) / (sqrt (2 ˆ 2 + 5 ˆ 2) * sqrt ((-3) ˆ 2 + 7 ˆ 2)) =
Real.sqrt 2 / 2 := by
have h2 : sqrt ((2 : R) ˆ 2 + (5 : R) ˆ 2) = Real.sqrt 29 := by

norm_num [Real.sqrt_eq_iff_sq_eq]

have h3 : sqrt ((-3 : R) ˆ 2 + (7 : R) ˆ 2) = Real.sqrt 58 := by
norm_num [Real.sqrt_eq_iff_sq_eq]

have h4 : (2 * (-3) + 5 * 7 : R) = 29 := by norm_num

rw [h2, h3, h4]

have h5 : Real.sqrt 29 * Real.sqrt 58 = Real.sqrt 2 * (29 : R) := by
calc
Real.sqrt 29 * Real.sqrt 58 = Real.sqrt (29 * 58 : R) := by

rw [← Real.sqrt_mul (by norm_num)]
_ = Real.sqrt ((2 : R) * (29 ˆ 2 : R)) := by norm_num
_ = Real.sqrt (2 : R) * Real.sqrt ((29 : R) ˆ 2 : R) := by
rw [Real.sqrt_mul (by norm_num)]

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

_ = Real.sqrt (2 : R) * (29 : R) := by
rw [Real.sqrt_sq (by norm_num)]

field_simp [h5]
<;> ring_nf <;> norm_num [Real.sq_sqrt]

rw [h1]

have h5 : arccos (Real.sqrt 2 / 2) = Real.pi / 4 := by
have h6 : Real.sqrt 2 / 2 = Real.cos (Real.pi / 4) := by

rw [Real.cos_pi_div_four]
<;> ring_nf <;> norm_num
<;> ring

rw [h6]
have h7 : arccos (Real.cos (Real.pi / 4)) = Real.pi / 4 := by

apply arccos_cos
all_goals linarith [Real.pi_pos]

exact h7

rw [h5]

field_simp [Real.pi_pos]
<;> linarith [Real.pi_gt_three]

Relevant Lean theorem+proof 3, with relevance score 0.765285 out of 1.0
import Mathlib

/- Show that the sum of $\sqrt{3xˆ2 + 2x + 1}$ and $\sqrt{3xˆ2 - 4x + 2}$ is at least $
\sqrt{51}/3$ for all real x. -/

theorem inequalities_201318 (x : R) :
Real.sqrt (3 * xˆ2 + 2 * x + 1) + Real.sqrt (3 * xˆ2 - 4 * x + 2) ≥
Real.sqrt 51 / 3 := by

set y := Real.sqrt (3 * xˆ2 + 2 * x + 1)
set z := Real.sqrt (3 * xˆ2 - 4 * x + 2)
have hy2 : yˆ2 = 3 * xˆ2 + 2 * x + 1 := by

rw [Real.sq_sqrt]
nlinarith [sq_nonneg (x + 1 / 3)]

have hz2 : zˆ2 = 3 * xˆ2 - 4 * x + 2 := by
rw [Real.sq_sqrt]
nlinarith [sq_nonneg (x - 2 / 3)]

have hy4_pos : 0 ≤ (3 * xˆ2 + 2 * x + 1 : R) := by
nlinarith [sq_nonneg (x * 3 + 1)]

have hz4_pos : 0 ≤ (3 * xˆ2 - 4 * x + 2 : R) := by
nlinarith [sq_nonneg (x * 3 - 2)]

have h11 : (Real.sqrt 51 / 3) ˆ 2 = (51 / 9 : R) := by
calc

(Real.sqrt 51 / 3) ˆ 2 = (Real.sqrt 51) ˆ 2 / 9 := by ring
_ = (51 / 9 : R) := by
rw [Real.sq_sqrt (by norm_num)]
<;> ring

have h50 : (y + z) ˆ 2 ≥ (Real.sqrt 51 / 3) ˆ 2 := by
nlinarith [sq_nonneg (y - z), sq_nonneg (x - 2 / 3), sq_nonneg (x + 1 / 3),

h11, Real.sqrt_nonneg 51, Real.sq_sqrt (show 0 ≤ (51 : R) by norm_num),
mul_nonneg (Real.sqrt_nonneg (3 * xˆ2 + 2 * x + 1)) (Real.sqrt_nonneg (3 * xˆ2 - 4 *
x + 2)),
sq_nonneg (y ˆ 2 - z ˆ 2), sq_nonneg (y * z - Real.sqrt ((3 * xˆ2 + 2 * x + 1) * (3

* xˆ2 - 4 * x + 2)))
]

have h51 : (y + z) ≥ 0 := by positivity
have h54 : (Real.sqrt 51 / 3) ≥ 0 := by positivity
have h52 : (y + z) ≥ (Real.sqrt 51 / 3) := by

have h15 : (y + z) ˆ 2 ≥ (Real.sqrt 51 / 3) ˆ 2 := h50
have h16 : (Real.sqrt 51 / 3) ≥ 0 := h54
have h17 : (y + z) - (Real.sqrt 51 / 3) ≥ 0 := by

nlinarith [sq_nonneg ((y + z) - (Real.sqrt 51 / 3)),
sq_nonneg ((y + z) + (Real.sqrt 51 / 3)),
Real.sqrt_pos.mpr (show (0 : R) < 51 by linarith : (51 : R) > 0)
]

linarith
linarith

Relevant Lean theorem+proof 4, with relevance score 0.764932 out of 1.0
import Mathlib
open Real Set
open scoped BigOperators

/- Given that $\sqrt{(x-3)ˆ2 + (y+4)ˆ2} + \sqrt{(x+5)ˆ2 + (y-8)ˆ2} = 20$, prove that the
distance between $(-5,8)$ and $(3,-4)$ is $4\sqrt{13}$. -/

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

theorem algebra_10804 {x y : R} (h : sqrt ((x - 3)ˆ2 + (y + 4)ˆ2) + sqrt ((x + 5)ˆ2 + (y
- 8)ˆ2) = 20) :
sqrt ((-5 - 3)ˆ2 + (8 - (-4))ˆ2) = 4 * sqrt 13 := by

have h1 : sqrt ((-5 - 3)ˆ2 + (8 - (-4))ˆ2) = sqrt 208 := by
norm_num

rw [h1]
have h2 : sqrt 208 = 4 * sqrt 13 := by

rw [Real.sqrt_eq_iff_sq_eq] <;> norm_num
<;> ring_nf <;> norm_num

rw [h2]
all_goals norm_num

Relevant Lean theorem+proof 5, with relevance score 0.755091 out of 1.0
import Mathlib

/- Show that the square root of $(-3)ˆ2$ is 3, that 3 is non-negative, and that 3
squared equals (-3) squared. -/

theorem algebra_8272 : Real.sqrt ((-3)ˆ2) = 3 ∧ 0 ≤ 3 ∧ 3ˆ2 = (-3)ˆ2 := by
have h1 : Real.sqrt ((-3 : R) ˆ 2) = 3 := by

rw [Real.sqrt_sq_eq_abs]
norm_num

constructor
· exact h1
constructor
· norm_num
· norm_num

The proof auto-formalization generated by PROOFBRIDGE is as follows:

Output Lean theorem+proof pair by PROOFBRIDGE (Retrieval-augmented SFT + Repair)

import Mathlib

/- A point (x,y) on the coordinate plane with both coordinates negative is a distance of
6 units from the x-axis. It is a distance of 15 units from the point (8,3). It is a
distance \sqrt{n} from the origin. What is n? Show that it is 52.-/

theorem algebra_53819 (x y : R) (hx : x < 0) (hy : y < 0) (h1 : abs y = 6) (h2 :
Real.sqrt ((x - 8) ˆ 2 + (y - 3) ˆ 2) = 15) :
Real.sqrt (x ˆ 2 + y ˆ 2) = Real.sqrt 52 := by

have hy6 : y = -6 := by
cases eq_or_eq_neg_of_abs_eq h1 with
| inl h =>

linarith
| inr h =>

linarith
have h3 : (x - 8) ˆ 2 + (y - 3) ˆ 2 = 225 := by
calc

(x - 8) ˆ 2 + (y - 3) ˆ 2 = (Real.sqrt ((x - 8) ˆ 2 + (y - 3) ˆ 2)) ˆ 2 := by
rw [Real.sq_sqrt]
positivity

_ = 15 ˆ 2 := by
rw [h2]

_ = 225 := by
norm_num

rw [hy6] at h3
have h4 : (x - 8) ˆ 2 = 144 := by

nlinarith
have h5 : x - 8 = 12 ∨ x - 8 = -12 := by
have h6 : (x - 8) ˆ 2 - 144 = 0 := by linarith
have h7 : (x - 8 - 12) * (x - 8 + 12) = 0 := by

nlinarith
cases (mul_eq_zero.mp h7) with
| inl h8 =>

left
linarith

| inr h9 =>
right
linarith

cases h5 with
| inl h6 =>
have hx20 : x = 20 := by linarith
linarith

| inr h6 =>
have hx4 : x = -4 := by linarith

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

have h7 : x ˆ 2 + y ˆ 2 = 52 := by
rw [hx4, hy6]
norm_num

have h8 : Real.sqrt (x ˆ 2 + y ˆ 2) = Real.sqrt 52 := by
rw [h7]

exact h8

The Lean theorem generated by PROOFBRIDGE and the gold-standard theorem are semantically
equivalent. Both correctly capture the intended geometric scenario: the point with negative co-
ordinates satisfying the given distance constraints is at a distance of

√
52 from the origin. Using

our set of restricted tactics, the LLM judge is able to generate a type-checkable proof establishing
the bi-directional equivalence between the two theorems. Therefore, the PROOFBRIDGE output is
semantically correct (SC).

Comparison between the gold-standard theorem and PROOFBRIDGE’s output

/- Gold-standard theorem -/
theorem mathd_algebra_288 (x y : R) (n : NNReal) (h0 : x < 0 ∧ y < 0) (h1 : abs y = 6)

(h2 : Real.sqrt ((x - 8) ˆ 2 + (y - 3) ˆ 2) = 15)
(h3 : Real.sqrt (x ˆ 2 + y ˆ 2) = Real.sqrt n) : n = 52 := by
sorry

/- ProofBridge output theorem -/
theorem algebra_53819 (x y : R) (hx : x < 0) (hy : y < 0) (h1 : abs y = 6) (h2 :

Real.sqrt ((x - 8) ˆ 2 + (y - 3) ˆ 2) = 15) :
Real.sqrt (x ˆ 2 + y ˆ 2) = Real.sqrt 52 := by

sorry

Lean proof of bi-directional equivalence between PROOFBRIDGE’s output theorem and
the gold-standard

import Mathlib.Analysis.SpecialFunctions.Sqrt
import Mathlib.Data.NNReal.Basic
open BigOperators Real Nat Topology Rat

-- We define the two statements as propositions to prove their equivalence.

def mathd_algebra_288_stmt :=
∀ (x y : R) (n : NNReal) (h0 : x < 0 ∧ y < 0) (h1 : abs y = 6)
(h2 : Real.sqrt ((x - 8) ˆ 2 + (y - 3) ˆ 2) = 15)
(h3 : Real.sqrt (x ˆ 2 + y ˆ 2) = Real.sqrt n), n = 52

def algebra_53819_stmt :=
∀ (x y : R) (hx : x < 0) (hy : y < 0) (h1 : abs y = 6)
(h2 : Real.sqrt ((x - 8) ˆ 2 + (y - 3) ˆ 2) = 15),
Real.sqrt (x ˆ 2 + y ˆ 2) = Real.sqrt 52

-- Proof of bidirectional equivalence
theorem equivalence : mathd_algebra_288_stmt ↔ algebra_53819_stmt := by
constructor
-- Proof that mathd_algebra_288_stmt implies algebra_53819_stmt
· intro h_mathd_stmt
intro x y hx hy h1 h2
-- To use h_mathd_stmt, we need to provide a value for ‘n‘ and a proof for ‘h3‘.
-- Let’s define ‘n‘ as the value of ‘xˆ2 + yˆ2‘.
-- First, we need to show ‘xˆ2 + yˆ2‘ is non-negative to create an ‘NNReal‘.
have h_nonneg : 0 ≤ x ˆ 2 + y ˆ 2 := by positivity
let n : NNReal := ⟨x ˆ 2 + y ˆ 2, h_nonneg⟩
-- The hypothesis ‘h3‘ now holds by definition of ‘n‘.
have h3 : Real.sqrt (x ˆ 2 + y ˆ 2) = Real.sqrt n := by

simp [n, NNReal.coe_mk]
-- The hypothesis ‘h0‘ is equivalent to ‘hx‘ and ‘hy‘.
have h0 : x < 0 ∧ y < 0 := ⟨hx, hy⟩
-- Now we can apply the first statement.
have n_eq_52 : n = 52 := h_mathd_stmt x y n h0 h1 h2 h3
-- Our goal is ‘Real.sqrt (x ˆ 2 + y ˆ 2) = Real.sqrt 52‘.
-- We can rewrite ‘h3‘ using ‘n_eq_52‘ to achieve the goal.
rwa [n_eq_52] at h3

-- Proof that algebra_53819_stmt implies mathd_algebra_288_stmt
· intro h_algebra_stmt
intro x y n h0 h1 h2 h3
-- The hypotheses of the second statement are all available.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

have h_sqrt_val : Real.sqrt (x ˆ 2 + y ˆ 2) = Real.sqrt 52 :=
h_algebra_stmt x y h0.left h0.right h1 h2

-- We are given ‘h3‘: ‘Real.sqrt (x ˆ 2 + y ˆ 2) = Real.sqrt n‘.
-- By transitivity, ‘Real.sqrt n = Real.sqrt 52‘.
have sqrt_n_eq_sqrt_52 : Real.sqrt n = Real.sqrt 52 := by

rw [← h3, h_sqrt_val]
-- Since ‘Real.sqrt‘ is injective on non-negative numbers, ‘n‘ must equal ‘52‘.
-- We get the equality on ‘R‘ first.
have n_val_eq_52 : (n : R) = 52 :=

(Real.sqrt_inj n.property (by norm_num)).mp sqrt_n_eq_sqrt_52
-- Then we lift this equality to ‘NNReal‘.
exact NNReal.eq n_val_eq_52

22

	Introduction
	Related Work
	Preliminaries: Tactic-style Proofs in Lean
	Our Approach and Tool Architecture
	Joint Embedding of NL and Lean Proofs for Cross-Modal Retrieval
	Retrieval-Augmented Fine-Tuning for Proof Auto-Formalization
	Iterative Proof Repair with Verifier Feedback

	Experimental Evaluation
	Datasets and Preparation: NuminaMath-Lean-PF and miniF2F-Test-PF
	Evaluation Metrics
	State-of-the-Art Baselines
	Training and Evaluation Setup
	Experimental Results
	Ablation Studies

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Reproducibility
	Training and Inference Hyperparameters
	Semantic Equivalence of Lean theorems
	Illustrative Example

