Under review as a conference paper at ICLR 2026

PROOFBRIDGE: AUTO-FORMALIZATION OF NATURAL
LLANGUAGE PROOFS IN LEAN VIA JOINT EMBEDDINGS

Anonymous authors
Paper under double-blind review

ABSTRACT

Translating human-written mathematical theorems and proofs from natural lan-
guage (NL) into formal languages (FLs) like Lean 4 has long been a significant
challenge for AIl. Most state-of-the-art methods address this separately, first trans-
lating theorems and then generating proofs, creating a fundamental disconnect vis-
a-vis true proof auto-formalization. This two-step process and its limitations were
evident even in AlphaProof’s silver-medal performance at the 2024 IMO, where
problem statements needed manual translation before automated proof synthesis.

We present PROOFBRIDGE, a unified framework for automatically translating
entire NL theorems and proofs into Lean 4. At its core is a joint embedding
model that aligns NL and FL. (NL-FL) theorem-proof pairs in a shared seman-
tic space, enabling cross-modal retrieval of semantically relevant FL examples to
guide translation. Our training ensures that NL-FL theorems (and their proofs)
are mapped close together in this space if and only if the NL-FL pairs are se-
mantically equivalent. PROOFBRIDGE integrates retrieval-augmented fine-tuning
with iterative proof repair, leveraging Lean’s type checker and semantic equiv-
alence feedback to ensure both syntactic correctness and semantic fidelity. Ex-
periments show substantial improvements in proof auto-formalization over strong
baselines (including GPT-5, Gemini-2.5, Kimina-Prover, DeepSeek-Prover), with
our retrieval-augmented approach yielding significant gains in semantic correct-
ness (SC, via proving bi-directional equivalence) and type correctness (TC, via
type-checking theorem+proof) across pass@k metrics on MINIF2F-TEST-PF, a
dataset we curated. In particular, PROOFBRIDGE improves cross-modal retrieval
quality by up to 3.28 x Recall@1 over all-MiniLM-L6-v2, and achieves +31.14%
SC and +1.64% TC (pass@32) compared to the baseline Kimina-Prover-RL-1.7B.

1 INTRODUCTION

In mathematics, ensuring the correctness of proofs is a crucial yet inherently difficult task. Tradi-
tionally, mathematicians rely on the peer-review process for proof verification, yet as proofs grow
increasingly complex, even careful human scrutiny can overlook subtle errors. For instance, in 1989,
Kapranov and Voevodsky published a proof connecting co-groupoids and homotopy types, which
was later disproven by Carlos Simpson in 1998; more recently, while formalizing his 2023 pa-
per (Taol|2023) on the Maclaurin-type inequality, Terence Tao discovered a non-trivial bug. To mit-
igate challenges of verifying complex proofs, proof assistants and formal mathematical languages
like Coq (Barras et al.| [1999), Isabelle (Nipkow et al., 2002)), HOL Light (Harrisonl [2009), Meta-
math (Megill & Wheeler, 2019), Lean 4 (Moura & Ullrich} [2021), and Peano (Poesia & Goodman)
2023)) have been developed, offering a way to create computer-verifiable formal proofs. Such formal
language (FL) proofs, defined by strict syntax and symbolic logic, enable reliable automated veri-
fication guarantees that resolve the inherent ambiguity of natural language (NL) proofs. However,
constructing FL proofs is time-intensive and demands both deep mathematical expertise and detailed
knowledge of the language and its libraries, making the process challenging even for experienced
mathematicians and limiting the wider adoption of such theorem provers and FL proofs.

To simplify the task of writing proofs in FL, two key research directions have emerged: auto-
formalization and automated formal proof synthesis. Auto-formalization targets NL-to-FL trans-
lation, but most prior works (Wang et al., 2025} |Wu et al.| [2025} Jiang et al., [2024} |Gao et al., [2024)

Under review as a conference paper at ICLR 2026

- NL/FL o
! Contrastive Loss (£) !
. U 1
------- \ i
I | R] B D — i !
D _ (p® p0) ;
My, = (T”"'P""? 9 NLEncoder (f) ! o)
(NL theorem-proof pair) v ! o
My = (13 Par) — o o
(NL theorem-proof pair) > FLEncoder (g) 1 Vﬁ{o
D o Shared Semantic
_______ 4ding
S AT I T Joint ENDe Space
exact 0, by simp)
0 — (@ pO) &) _ 00 500 " " " "
Mp, = (TeyPr) Mg, = (T Per) wit v} = £(M$) € R?and v = g (M) € RY, goat:
(Lean theorem-proof pair) (Lean theorem-proof pair) =
4N A ° sim(vm_,vgz) is high (+ve pair).
Instance j Instance k o sim(uﬂ,)_,vg{)) and sim(uﬁ,‘?,v?ﬂ) are low for j # k (-ve pairs).

(a) Joint embedding of NL and FL (Lean) theorems and proofs into shared semantic space

[NLIFL Cross-Modal Retrieval | o
- M > FLEncoder (g)
===) [FLEncoder (9) 00
= : 0 . My,
] 8 SFTTrainer (Gold-standard theorem-
—==) MUPD—— | FL Encoder () e | proof pailr in Lean)
Large Database (@] @ 1
of Lean theorem- Y Cross-
proof pairs Shared Semantic L T°";1K relevant . @ I €mmmm—mm Entropy
NL Encodt Space ean theorem-proof =
| noder (f) pairs, with score Loss
1
| PROOFBRIDGE W
FL
My, = (Typ,Pa) LLM > (Generated theorem-proof
(NL theorem-proof pair) pair in Lean)

(b) Retrieval-augmented Supervised Fine-Tuning (SFT) of PROOFBRIDGE with NL/FL cross-modal retrieval

A Feedback from Syntactic and Semantic
ael) gig)l (1 (mmm—mm———— Verification
NLIFL (U XY < - ,
Cross-Modal : <>
H@ ol

Retrieval (MG, 8 a)

Top-K relevant
Lean theorem-proof

o3
‘. .

B8] | W (LN Gerini
yporchock(Mgy)? | eoem(Mw) =

pairs, with score Repair . theorem '(IVIFL)?
PROOFBRIDGE Loop i _ i
My, = Ty, Pyt um — M,

(NL theorem-proof pair) (Generated theorem-proof pair in Lean)

(c) Inference phase of retrieval-augmented proof auto-formalization with iterative repair

Figure 1: Pipeline of PROOFBRIDGE for proof auto-formalization. We first train a joint embed-
ding model for NL and FL via contrastive learning, enabling cross-modal retrieval of semantically
related FL theorem-proof pairs for a given NL input. An LLM is then fine-tuned on NL-to-Lean
translations, conditioned on retrieved proofs and relevance scores. At inference, the system retrieves
related Lean proofs and applies an iterative repair loop to the generated FL theorem-proof pair.

focus only on formalizing theorems (statements), not proofs. In contrast, automated formal proof
synthesis (Ren et al., |2025; [Wang et al.| [2025) aims to generate FL proofs given an FL theorem.
Proof auto-formalization is relatively less explored, with Draft-Sketch-Prove (Jiang et al., 2022) for
Isabelle and FormL4 (Lu et al.| [2024) for Lean serving as notable examples. In practice, formal-
izing an entire NL proof requires first performing theorem auto-formalization to translate the NL
theorem into FL, followed by automated formal proof synthesis to generate the FL proof from the
FL theorem. AlphaProof (Deepmind, 2024)), which achieved silver-medal standard in the 2024 In-
ternational Mathematical Olympiad, followed this two-step process: problems were first manually
translated into formal mathematical language, then formal proofs were synthesized. This highlights
the disconnect in formalizing NL proofs with current methods.

Contemporary LLMs face several challenges that limit their effectiveness for proof auto-
formalization in Lean 4. First, large-scale datasets pairing NL theorems with Lean 4 proofs are
scarce. Most existing resources (Goedel-Pset-v1 (Lin et al., [2025)), Herald statements (Gao et al.,
2024])), Lean Workbook (Ying et al., 2024), MMA (Jiang et al., [2024)) cover only theorems, while

Under review as a conference paper at ICLR 2026

those with proofs (Herald proofs, Lean Workbook proofs (Lin et al., [2025)), and FormL4 (Lu et al.,
2024]))) are much smaller and do not align with the popular miniF2F (Zheng et al.,|2021) benchmark
in the same Lean 4 version. Lean versions are not backward compatible, so cross-version evalua-
tion often fails. Second, most fine-tuned LLMs for Lean 4 target either theorem auto-formalization
or proof synthesis. Proof auto-formalization is harder, as it requires both translating the NL theo-
rem and constructing the corresponding FL proof. Third, Lean 4 has an effectively infinite action
space (Poesia & Goodman, 2023)), with proofs using complex factics that reuse prior theorems or
introduce new variables. Prior work generates FL directly from NL, ignoring semantic relations like
shared tactics and DAG dependencies, causing LLMs to often violate Lean 4’s strict syntactic and
semantic constraints and produce hallucinated or invalid proofs (Jha et al., [2025}; |Jana, [2024; Ugare
et al, [2024). Fourth, automated evaluation is a major bottleneck. Lean’s type-checker verifies the
FL proof but cannot ensure semantic equivalence. Existing methods often type-check only the the-
orem (leaving proofs incomplete using placeholders like sorry) or rely on proxies such as BLEU,
which are unreliable (Jiang et al., |2024; |Lu et al., [2024} [Wu et al., 2022; [Ying et al.| 2024).

Key Insight. In this paper, we address the task of proof auto-formalization, focusing on Lean 4 as
the FL, via a combination of a joint embedding model, an LLM, and Lean for verification. It takes
as input an NL theorem-proof pair and produces the corresponding FL theorem-proof pair in Lean 4.
The key insight behind our approach is to treat proof auto-formalization as learning from demon-
strations: the LLM is guided not only by the NL proof but also by FL proofs retrieved using an
NL/FL joint embedding model that leverages contrastive learning and encodes linear DAG traver-
sals of Lean proofs. Rather than relying on randomly chosen few-shot examples, these retrieved
proofs capture far richer reusable formalization patterns (tactic choices, DAG structures), providing
grounded signals that guide generation toward Lean-verifiable proofs, as illustrated in Figure

Contributions:

The PROOFBRIDGE Auto-formalization Method and Tool: We present PROOFBRIDGE, an
LLM-based, retrieval-augmented proof auto-formalization framework. At its core is an NL/FL joint
embedding model that maps semantically equivalent NL and FL theorem-proof pairs to nearby points
in a shared space, enabling effective cross-modal retrieval of related FL proofs. We then fine-tune the
SoTA LLM Kimina-Prover-RL-1.7B (Wang et al.,2025) to perform NL-to-Lean 4 proof translation,
conditioned on the retrieved FL proofs and their relevance scores. During inference, generation is
refined with an iterative verifier-guided repair loop combining Lean type-checking with LLM-based
bi-directional equivalence proving to ensure syntactic correctness and semantic fidelity. (Section)

NuminaMath-Lean-PF Dataset: We curate NUMINAMATH-LEAN-PF, a large-scale dataset of
38.9k NL<«+Lean 4 theorem-proof pairs, specialized for proof auto-formalization. Each Lean
theorem-proof pair is type-checked and paired with an NL counterpart. Additionally, we release
MINIF2F-TEST-PF, a Lean v4.15.0 version of miniF2F-Test with 244 instances tailored for proof
auto-formalization, enabling a consistent pipeline in the same Lean version. (Section[5.1)

Extensive Experimental Evaluation: Compared to the SoTA encoder all-MiniLM-L6-v2, PROOF-
BRIDGE’s cross-modal NL—FL retrieval achieves 3.28 x higher Recall Rate@ K at K=1 and 2.74 x
MRR, with top-K retrieved embeddings 23% closer and non-retrieved 104% farther. We evaluate
PROOFBRIDGE against 10 SoTA LLMs, including foundation models (Gemini-2.5, GPT-5-mini)
and automated proof synthesis LLMs (DeepSeek-Prover, STP, Leanabell-Prover, Kimina-Prover),
using verifier-grounded metrics: type correctness (TC) and semantic correctness (SC, a new metric
based on Lean bidirectional equivalence proofs). Built on Kimina-Prover-RL-1.7B, PROOFBRIDGE
achieves +31.14% SC and +1.64% TC (pass@32) on MINIF2F-TEST-PF. (SectionE])

2 RELATED WORK

Our work lies at the intersection of three key Al-for-Math research areas: automated formal proof
synthesis, auto-formalization, and retrieval-augmented learning for mathematical reasoning. We
focus on the most relevant approaches and highlight differences from our unified framework.

Auto-Formalization. Auto-formalization translates NL mathematics into FL, but most existing
work focuses on theorem formalization rather than proofs. Theorem-only approaches include
Herald-translator (Gao et al., 2024), which extracts FL theorems from Mathlib4 and trains on
informal counterparts, and Kimina-Autoformalizer (Wang et al., [2025)), which fine-tunes models
with expert iteration. These excel at translating theorems but cannot handle proofs. Proof auto-

Under review as a conference paper at ICLR 2026

formalization has received limited attention. Draft-Sketch-Prove (Jiang et al., | 2022) converts NL
proofs into formal sketches in Isabelle with open conjectures, then fills gaps using predefined tactics
and tools like Sledgehammer (Paulsson & Blanchettel 2012). FormL4 (Lu et al., [2024) trains on
GPT-4 informalized Mathlib proofs with process-supervised step-level Lean compilation feedback.

Key Differences: Our approach is the first to jointly learn representations for NL and FL theorem-
proof pairs, enabling cross-modal retrieval to guide formalization. Unlike prior work on isolated
proof generation, we leverage semantic relationships of NL and FL proofs for contextual guidance.

Automated Formal Proof Synthesis. Automated formal proof synthesis (AFPS) takes FL theo-
rems as input and generates FL proofs. Current approaches fall into two categories: next-tactic
prediction and whole-proof generation. Next-Tactic Prediction (NTP) methods train models to
predict single proof steps from current proof states. Representative systems include GPT-f (Polu &
Sutskever, 2020) for Metamath, LIsa (Jiang et al., 202 1)) for Isabelle, and PACT (Han et al.,[2022) for
Lean. These use tree search over proof states, prioritizing tactics by cumulative probability. While
NTP ensures stepwise correctness via interactive theorem-prover verification, it suffers from long-
horizon dependencies and computational overhead from such repeated interactions. Whole-Proof
Generation (WPG) methods generate complete FL proofs in single passes, offering computational
efficiency but risking cascading errors. Recent advances include DeepSeek-Prover-v1 (Xin et al.,
2024al), which combines SFT with expert iteration, and TheoremLIlama (Wang et al.l 2024), which
improves in-context learning through curriculum-based training. DeepSeek-Prover-v2 (Ren et al.,
2025) integrates NL reasoning with formal proof generation, while Kimina-Prover (Wang et al.,
2025)) applies reinforcement learning with compilation-based rewards (Jana et al.| [2024).

Key Differences: Unlike AFPS approaches that assume FL theorems as input, our work addresses
the more challenging task of generating theorem-proof pairs in FL from an NL input.

Retrieval-Augmented Learning for Mathematics. Recent work has explored retrieval-
augmented approaches for mathematical reasoning, though not specifically for auto-formalization.
TLAPS (Zhoul 2025) retrieves previously verified proofs to assist with proof generation, while CO-
PRA (Thakur et al}2023)) uses retrieval to select relevant lemmas and guide proof search.

Key Differences: Our joint embedding approach enables cross-modal retrieval between natural lan-
guage and formal theorems, which is essential for proof auto-formalization but not addressed by
existing retrieval-augmented mathematical reasoning systems.

Positioning our contributions. PROOFBRIDGE makes several novel contributions relative to exist-
ing approaches: (a) Unified Proof Auto-Formalization: We address complete translation (theorem
+ proof) rather than treating theorem formalization and proof synthesis separately. (b) Joint Se-
mantic Embedding: Our contrastive learning framework for aligning NL and FL proofs is novel,
enabling effective cross-modal retrieval. (c) Retrieval-Augmented Translation: We are the first
to apply retrieval-augmented fine-tuning and generation to auto-formalization, leveraging seman-
tic relationships between FL proofs to guide translation. (d) Rigorous Evaluation: We introduce
systematic metrics for proof auto-formalization, including type correctness via bi-directional equiv-
alence rather than proxy measures. This combination of joint embedding, retrieval augmentation,
and unified translation distinguishes our approach from prior work.

3 PRELIMINARIES: TACTIC-STYLE PROOFS IN LEAN

Lean (Moura & Ullrichl 2021) is a functional programming language and interactive theorem prover
that is based on the propositions-as-types principle, where proving a proposition is equivalent to
constructing a term of the corresponding type. Rather than building these terms manually, users
write proofs in a tactic language, which provides high-level steps to guide term construction. Lean 4
(henceforth Lean) represents tactic-style proofs as directed acyclic graphs (DAGs) of proof states
and factics, automatically generating the corresponding proof term in the background. The kernel
then verifies the term, ensuring correctness by enforcing the axiomatic foundations of Lean’s logic,
the Calculus of Inductive Constructions. This combination of a formal system and a small, trusted
kernel provides strong confidence in the validity of proofs. In the DAG (Figure 2) of a Lean proof:

* Each proof state S; = [G1, -, G},] consists of a sequence of zero or more open goals. Initial
state Sy has one goal, the theorem T'r, = pr = cn itself. Leaf-level states have no open goal.

* Each open goal G; = pr, | cn; of a proof state represents a proposition cn; that needs to be
proven, given a set of premises pr;.

Under review as a conference paper at ICLR 2026

* Each tactic tac; represents a proof step. It is a high-level command (rooted in metaprogramming)
applied to an open goal G;, producing a new proof state. If the resulting proof state has no open
goal, it directly resolves the current goal. A parent goal is resolved once all subgoals are resolved.

Tactic-style proof synthesis in Lean follows a sequential de- [Proof: Py, = (tacy, tac,, - tacsy) |
cision process. Lean provides an interactive REPL (Lean-
prover, 2025)) that applies tactics step by step to manipulate
proof states. An FL proof is a sequence of tactics, and at
each step, the REPL updates the proof state if the tactic is
valid or returns an error identifying the faulty one. Each
tactic advances the proof by breaking the current goal into
simpler subgoals, similar to the ‘suffices to show’ construct.

Proof-Autoformalization as a Learning Problem. Given
an NL theorem—proof pair Mn;, = (T\L, PaL), the goal is

to learn a function f: My — Mgy that produces a cor- et .. (backward proving) _ LS S8 el
responding Lean theorem—proof pair Mg, = (Tp, Pe). ™=rrte goals
Here, T;r, = pr F cn denotes the formal theorem, and . .

P = (tacg,...,tacn_1) is the proof as a sequence of Figure 2: Tactic-style Proof. A Lean

tactics. The generated pair must satisfy: proof represented as a DAG of tactics.

(a) Type correctness: Mg, = (T, PrL) passes Lean type-checking, ensuring that Pgy, proves Tgr,
with no open goals in the DAG.
(b) Semantic correctness: FL theorem is semantically equivalent to the NL one, i.e., Tp, = TNL-

4 OUR APPROACH AND TOOL ARCHITECTURE
4.1 JOINT EMBEDDING OF NL AND LEAN PROOFS FOR CROSS-MODAL RETRIEVAL

A core component of our framework is the joint embedding model, which learns to represent
NL theorem—proof pairs and their FL (Lean) counterparts in a shared semantic space. The goal
is to align these modalities so that cross-modal retrieval between NL and FL becomes possible.
Formally, given an NL theorem-proof pair My, and a large database of FL theorem-proof pairs

D= {Méi) = (TF(i),PF(ﬁ))}, the model retrieves subset R(Mnr, D) € D of size K < |D|, that
serve as in-context demonstrations to guide downstream auto-formalization.

During training the joint embedding model, we start with NL-FL pairs (MIEIIL)7 Mlg]l_)) which are
encoded into vectors using two modality-specific encoders. Each encoder is initialized with a pre-

trained model, and a subset of parameters is subsequently fine-tuned. Given MIEfL), the NL encoder f

produces an embedding vgﬁ =f (MISIL), 0¢ll¢s) € R, and given MF(E), the FL encoder g produces

véi) = Q(MF(?7 b4l|0q) € R?, where 6 denotes frozen parameters, ¢ denotes trainable parameters,
and d is the dimension of the shared semantic space. The details of each encoder are as follows:

* NL encoder f(Ml\(Ii), O¢|l¢¢): To encode MIEIZL), we use all-MiniLM-L6-v2 (Reimers &
Gurevychl, [2020), a lightweight model (22.7M parameters) that effectively captures semantic sim-

ilarity in NL. It encodes MIEfL) into 384-dimensional embeddings, thereby projected into the joint
embedding space of dimension d = 512 via a linear layer included in the trainable set ¢.

* FL encoder g(MéIiJ), 0g4||g): Given Mé]z_) = <TF(IZ;), Pé?), we first extract the linearized DAG

traversal of tactics from PF(i) using Lean REPL (Leanprover, [2025)). This traversal is represented
as an ordered sequence of proof-state transformations induced by successive tactic applications:

Sy =20 g, 2 FRCH1, Sy, where Sy = TF(i), each S, = [Gy,...,G)] denotes a
proof state consisting of zero or more open goals, and tacy_; is the tactic applied at step h.
This sequence captures the entire proof as an ordered series of state transformations. To create
embeddings for the full proof, we first encode each state S, using LeanDojo’s By T5 proof-state
encoder (Yang et al.| [2023) (218M parameters), producing embeddings of size 1,472 per state.
We then obtain a single embedding for the entire proof via mean-pooling, which is subsequently
projected into a shared semantic space of dimension d = 512 using a linear layer included in the

Under review as a conference paper at ICLR 2026

trainable parameters ¢,. The intuition behind this approach is to ensure that semantically similar
proofs (those with similar DAG structures of proof-states and tactics) produce similar embeddings.

Contrastive Learning. To enable cross-modal retrieval between NL and FL representations, it is
essential to align the two modalities in the embedding space. Specifically, for each positive pair
(M, M), we aim for their embeddings (v, v{t’) to exhibit high cosine similarity, while em-
beddings of mismatched pairs are pushed apart. Denoting ¢2-normalization by ¥ = v/||v||2 and
defining the cosine similarity between two embeddings « and w as [u, @], we adopt the following

symmetric contrastive loss for a mini-batch B = { (M, NL), M)) }:zl of NL-FL pairs:

L) =53 [bg ((A i)) +log (=ollf i))] m
et Zj:l eXP([UNL» UH.]/T) Zj:l eXP([vFL) UNL] /7)
where 7 > 0 is a temperature hyperparameter. This loss encourages each NL embedding to be

closest to its corresponding FL. embedding, and vice versa, using other in-batch embeddings as
negatives. The negatives are sampled randomly for each mini-batch.

NL/FL Cross-Modal Retrieval. We precompute the normalized embeddings {Al(\;i}l_l and

{A(J) } E |1 for all NL and FL theorem—proof pairs respectively in our database D, which enables

efﬁc1ent cross-modal retrieval. Given a query theorem—proof pair in either source modality (NL or
FL), we encode it into the shared semantic space (yielding gnr, or grr,) and compute cosine similar-

ities with all items in the target modality, producing the set { [gnr., 61(;113] }‘jzll or { [grr, 61(\&] }Bv
depending on the retrieval direction. The top-K nearest neighbors from these sets are then selected

as demonstrations, reflecting similar proof structures, patterns, and mathematical domains.

4.2 RETRIEVAL-AUGMENTED FINE-TUNING FOR PROOF AUTO-FORMALIZATION

We fine-tune an LLM to translate NL theorem-proof pairs into FL (Lean), conditioned on retrieved
FL demonstrations that provide rich contextual demonstrations. For each training instance, we
construct a prompt containing (a) input NL theorem-proof pair My and (b) top-K retrieved FL.
theorem-proof pairs: R(Myy, D) = {MF } K| with relevance scores {r(*¥)}X_ . The retrieved ex-
amples demonstrate how similar mathematical concepts and proof strategies are formalized in Lean.
We include relevance scores to help the model weight the importance of each retrieved example.

Training Objective. We fine-tune Kimina-Prover-RL-1.7B (Wang et al., 2025) using supervised
learning on our NUMINAMATH-LEAN-PF dataset. The model is trained to generate an FL theorem-
proof pair Mg given the input context. This retrieval-augmented approach allows the LLM to
learn from similar formalization patterns rather than generating formal theorems in isolation. As
illustrated in Figure we use the standard auto-regressive language modeling loss:

|71

1
Log=—7= > log Py (7 | 7<1,C))
7 £
where T = Mpy is the generated formalization tokenized as sequence (7y, ... ,717)> C represents

the input context (NL theorem-proof + retrieved FL examples), and ¢ are the LLM parameters. This
corresponds to the cross-entropy loss between Mg and the gold-standard formalization Mgy .

4.3 ITERATIVE PROOF REPAIR WITH VERIFIER FEEDBACK

During inference, we perform retrieval-augmented proof auto-formalization with the fine-tuned
LLM (Figure [Ic). However, LLM being a stochastic model may still generate FL theorem-proof
pair that contain syntactic errors or semantic misalignments with the input NL theorem-proof. To
address, we implement an iterative repair mechanism that combines Lean’s type checker with se-
mantic equivalence verification. For an 1nput NL theorem-proof pair My = (InL, Pav) the LLM

generates an FL counterpart MFL = (TFL, PFL> on which we perform two types of verification:

1. Syntactic Verification: We compile MFL using Lean’s type checker. If compilation fails, we
extract the specific error message and location from Lean’s diagnostic output.

Under review as a conference paper at ICLR 2026

2. Semantic Verification: We assess whether the generated theorem T accurately represents the
original NL theorem Ty using an LLM-based equivalence judge.

Repalr Process. When cither syntactic Algorithm 1 Iterative Proof Repair

r semanti rification fail initi
o 'SG a. tic ve . cation fails, we tiate 1 Input: NL theorem-proof pair My = (Tni, PxL),
an iterative repair process. The procedure Initial FL theorem-proof pair 7.*) — (7<), B()
terminates once both checks succeed or 2 Output: Verified FL theorem-proof pair or FAILURE
the maximum number of repair attempts 3 fori =010 Rmax — 1do —
(Rumax = b) is reached. This bounded, it- 4~ nwOK « LeaTypeCheck (Mg 1)
erative strategy improves the reliability of semanticsOK Sema""‘:Equwa]eme(T'l"g“)
proof auto-formalization by catching and I sysaxOK A semanticsOK then return My
correcting common errors while maintain- feedback «— GenerateFeedback (syntaxOK, semanticsOK)
ing computational efficiency. The overall 9 M{*" « LLMRepair(feedback)

process is described in Algorithm [I] :(]) e“td f"rFAILURE
return

00N W

5 EXPERIMENTAL EVALUATION

5.1 DATA PREPARATION: NUMINAMATH-LEAN-PF AND MINIF2F-TEST-PF

For validation, we curate MINIF2F-TEST-PF by combining two versions of miniF2F-test (Zheng
et al., 2021), a widely-used auto-formalization benchmark, using the Lean v4.15.0 version (Nu-
minaMath, |2025) and obtaining missing NL proofs from |Yang (2025). For training, we con-
struct NUMINAMATH-LEAN-PF from NuminaMath-LEAN (Wang et al.| 2025)), containing 104,155
competition-level problems in algebra, geometry, number theory, combinatorics, and calculus. Each
instance pairs an NL theorem Ty, with a human-written Lean v4.15.0 theorem g ; 38,951 include
FL proofs Prr, (30% human-written, rest by KiminaProver), forming {7nr, (TrL, Prr) }- Next, we
prepare NUMINAMATH-LEAN-PF via the following steps.

Formal Verification and Repair. Each FL pair is type-checked in Lean (Leanprover, [2025)). About
6% (2,337) failed due to syntax, library mismatches, or incomplete proofs. These were automatically
repaired via Gemini-2.5-Pro: error messages and locations are extracted from Lean, used to prompt
the LLM for corrections, and re-verified iteratively up to five times. All errors were successfully
fixed, showing most issues were syntactic rather than mathematical.

NL Proof Generation. NuminaMath-LEAN provides only theorems, so we generate NL proofs in
two stages. First, solution sketch retrieval matches Ty, to NuminaMath 1.5 (Li et al.l [2024) (896k
problem-solution pairs) via exact string matching, retrieving sketches (median 79 words) for 25,792
instances (66%). Second, FL-to-NL informalization uses Gemini-2.5-Pro to translate verified FPpp
into detailed, human-readable NL proofs. Each instance uses Per., (Trr, ThL), and sketches when
available, producing 38,951 NL-FL theorem—proof pairs {(Tnr, Pv), (TrL, Pro) }-

5.2 EXPERIMENTAL SETUP, EVALUATION METRICS AND STATE-OF-THE-ARTS

We train our joint embedding model on 90% (35,056 instances) of NUMINAMATH-LEAN-PF and
evaluate it on the remaining 3,895 instances. For subsequent steps, we treat the train split as a
database D of FL theorem-proof pairs. The LLM is SFT-tuned for NL-to-FL translation using
(M, Mp) from NUMINAMATH-LEAN-PF, with the joint embedding model retrieving the top-5
relevant FL pairs from D for each input Myy. The resulting LLM (PROOFBRIDGE) is evaluated on
MINIF2F-TEST-PF for proof auto-formalization, again using D for cross-modal retrieval.

Metrics for NL/FL Cross-Modal Retrieval. We evaluate cross-modal alignment of our joint em-
bedding model in two directions. NL — FL measures retrieval of FL theorem-proof pairs given an
NL input, which is relevant for proof auto-formalization, while FL — NL assesses the reverse.
For a test pair (MNL, MFL), a retrieval in the NL — FL direction is deemed successful if the
model retrieves the FL counterpart Mg, given Myr, and unsuccessful otherwise; the FL. — NL
direction is evaluated analogously. We assess retrieval performance using four metrics. (i) Re-
call Rate @ K measures the percentage of queries for which the query’s cross-modal counterpart
appears among the top-K retrieved results. We report K = 1,5, 10,20, 50. (i) Mean Recipro-
cal Rank (MRR) is the average reciprocal rank of the retrieved cross-modal counterpart for each

query, MRR = % Zévzl ﬁ, indicating how highly it is ranked. (iii) Cosine Similarity of Top- K
Retrieved measures the cosine similarity between the query embedding and those of the top-K re-

Under review as a conference paper at ICLR 2026

trieved instances. For each query, we sort these scores in ascending order and record three statistics:
median (M), 25" percentile (1), and 75™ percentile (93), and report their average over the test set.
(iv) Cosine Similarity of Non-Retrieved applies the same procedure to all non-retrieved instances
and reports the median (M), 25" percentile (Q1), and 75" percentile (Q3) averaged over the test set.

Metrics for Proof Auto-Formalization. Given My, = (Tnr, Pyy), an auto-formalizer LLM/tool
generates an FL version MFL = (TFL, PFL> We evaluate performance using two metrics: (i) Type

Correctness (TC) measures whether MFL is accepted by Lean’s type-checker, i.e., Ppp proves Trp
without using sorry. (i) Semantic Correctness (SC) is evaluated only for type-correct generations

and measures whether T is definitionally equal I to the gold-standard Ty by prompting Gemini

2.5 Pro up to five times to produce a Lean proof of the bi-directional equivalence TFL <> TpL using
a restricted set of tactics (rf1, simp, ring, etc.; details in Appendix [A.3). Although relying on an
LLM judge, it is based on the Lean proof of equivalence rather than the LLM’s judgment alone. TC
and SC are computed as pass @k, i.e., over the top-k generated candidates, for k = 1,2, 4, 8,16, 32.

SoTA for NL/FL Cross-Modal Retrieval. To our knowledge, no existing model jointly embeds
theorems and proofs in NL and FL. Constructing such a shared semantic space is non-trivial, as pre-
trained encoders alone cannot produce embeddings that support meaningful cross-modal retrieval.
To illustrate, we introduce SoTA Encoder as a comparison: it treats both NL and FL theorem—proof
pairs as plain text, encodes them using the SoTA al1-MiniIM-L6-v2 (Reimers & Gurevych,
2020)), and performs retrieval via cosine similarity in this embedding space.

SoTA Tools for Proof Auto-Formalization. Existing proof auto-formalization tools include
DSP (Jiang et al) 2022) which only supports Isabelle while we only support Lean 4, and hence
we cannot compare against it. Another recent tool is FormL4 (Lu et al., [2024)), which unfortunately
has not been released. Hence, we compare against foundation models, SOTA automated FL proof
synthesis (AFPS), and NL-to-FL theorem auto-formalization tools. The four foundation models we
include in our experiments are: GPT-5-mini (OpenAlL[2025) and the Gemini-2.5 variants Flash-Lite,
Flash, and Pro. The AFPS models we include are DeepSeek-Prover-V1.5-RL (Xin et al., 2024b),
STP_model_Lean_0320 (Dong & Ma, [2025)), Goedel-Prover-SFT (Lin et al.,[2025)), and Leanabell-
Prover-V2-KM (Zhang et al., 2025). We focus on AFPS LLMs because they share the same output
space as proof auto-formalization, i.e., full FL proofs with tactics. The SoTA auto-formalization
tools we use in our experiments are Kimina-Autoformalizer-7B (Wang et al., |2025) and Herald-
Translator (Gao et al., 2024); unfortunately, they only auto-formalize theorem statements and not
proofs (i.e., produce sorry for proofs), yielding 0% TC and 0% SC in our setting. All models
are evaluated in the few-shot (three-example) setting, with the exception of Kimina-Prover-RL-
1.7B (Wang et al., [2025)), our base model, which is tested in both few-shot and zero-shot settings.

5.3 EXPERIMENTAL RESULTS AND ABLATION STUDIES

NL/FL Cross-Modal Retrieval. Table |I| compares PROOFBRIDGE’s joint embedding with the
SoTA Encoder, showing that PROOFBRIDGE achieves higher Recall Rates across all top-K val-
ues. For NL—FL, it yields up to a 3.28x gain at pass@1, while for FL—NL the gain is up to
1.94x at pass@1. MRR also improves by 2.74x and 1.79x for NL—FL and FL—NL, respec-
tively. Furthermore, PROOFBRIDGE typically retrieves the correct cross-modal counterpart within
the top-2, with a median rank of 1, confirming that it consistently appears among the top retrieved
results. For the joint embeddings learned by PROOFBRIDGE, the median (M) cosine similarity shows
that select cross-modal theorem-proof pairs are closely embedded, with top-K retrieved instances
(K = 1,5,10,20,50) averaging 0.64 in both NL—FL and FL—NL directions. In contrast, most
non-retrieved instances are placed much farther apart, averaging —0.01. Compared to the SoTA
Encoder, these values are roughly 23% higher for retrieved instances and 104% lower for non-
retrieved ones. This indicates that PROOFBRIDGE keeps unrelated theorem—proof pairs far apart
while embedding the correct cross-modal counterparts close together. Overall, our results show
that combining contrastive learning with extracting and encoding linear DAG traversals of Lean
proofs yields a significantly more effective model for constructing a joint embedding space for NL
and FL theorem—proof pairs. Consequently, semantically equivalent NL-FL pairs appear close in
the joint space, whereas inequivalent pairs remain distant, enabling reliable retrieval of relevant FL.
theorem—proof pairs to condition the LLM for proof auto-formalization.

"We admit some propositional equalities in addition to definitional ones, see details in Appendix

Under review as a conference paper at ICLR 2026

Table 1: NL/FL Cross-Modal Retrieval Performance. Comparison of SoTA Encoder and PROOF-
BRIDGE’s joint embedding across retrieval metrics. (Q1 = 25™M 9tile, M = median, 93 = 75™ %tile)

Retrieval Recall Rate @ K (%) 1

MRR Cos. Similarity of top-K Retrieved T Cos. Similarity of NOT Retrieved |
Direction T

K=1 K=5 K=10 K=20 K=50 K=1 K=5 K=10 K=20 K=50 K=1 K=5 K=10 K=20 K=50

o1: 060 052 050 047 044 0.147 0.147 0.147 0.147 0.146
M: 060 054 051 049 045 | 0210 0210 0210 0209 0.208

all-MiniLM-L6-v2 NL — FL | 16.06 30.93 38.63 47.31 60.95 | 0.237 |@3: 0.60 0.55 0.53 0.51 0.58 | 0274 0274 0273 0273 0271

(SoTAEncoder) ~~ =~ =~ T e T ST oo

Method

M:
FL —NL |26.35 45.12 5428 63.75 7554 | 0355 |@3: 0.58 0.54 0.53 051 048 | 0278 0.278 0277 0277 0275

M:
NL — FL | 52.83 79.81 87.06 91.49 95.08 | 0.650 |03: 0.76 0.71 0.68 0.64 058 | 0.123 0.123 0.122 0.121 0.117

PROOFBRIDGE _ _ - '~ |77 "“7 7O T T | T kT oo o T L o T e U T

FL — NL | 51.23 78.77 86.18 90.50 94.83 | 0.635 |03: 0.77 0.71 0.68 0.64 0.58 | 0.124 0.123 0.122 0.121 0.117

Table 2: Proof Auto-Formalization Performance. Comparison of LLM-based tools on Semantic
Correctness (SC) and Type Correctness (TC) across pass@k metrics (k € {1,2,4, 8,16, 32}).

LLM/Tool Semantic Correctness (SC) (%) 1 Type Correctness (TC) (%) 1
pass@1 pass@2 pass@4 pass@8 pass@16 pass@32 pass@1 pass@2 pass@4 pass@8 pass@16 pass@32

Kimina-Autoformalizer-7B (few-shot) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Herald-translator (few-shot) 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Gemini-2.5-Flash-Lite (few-shot) 0.00 0.00 0.00 0.00 1.23 2.87 0.82 451 9.02 13.93 18.03 21.31
Gemini-2.5-Flash (few-shot) 0.00 0.82 2.05 2.86 3.28 4.10 245 4.92 7.38 1230 15.98 18.44
Gemini Pro (few-shot) 1.23 1.23 328 4.92 6.97 8.61 9.84 13.52 18.85 23.77 29.10 31.56
GPT-5-mini (few-shot) 0.41 1.23 4.51 6.97 7.38 9.02 4.92 9.43 20.08 28.28 32.38 34.84
DeepSeek-Prover-V1.5-RL (few-shot) 3.69 6.15 8.61 9.02 11.07 1230 8.20 14.34 19.67 24.18 28.68 35.66
STP_model_Lean_0320 (few-shot) 451 6.56 8.20 9.84 11.48 13.11 12.70 18.03 23.36 28.69 33.61 39.34
Goedel-Prover-SFT (few-shot) 4.92 533 7.38 8.20 12.70 16.39 13.52 17.21 25.41 31.56 36.88 42.21
Leanabell-Prover-V2-KM (few-shot) 6.97 943 10.66 13.52 15.16 18.03 16.80 21.31 27.87 37.30 41.39 50.41
Kimina-Prover-RL-1.7B (zero-shot) 9.02 13.93 22.54 30.33 35.25 40.16 26.23 41.80 56.15 62.70 68.03 75.00
Kimina-Prover-RL-1.7B (few-shot) 6.15 12.30 17.62 22.13 27.46 31.56 26.23 4221 60.66 74.18 88.11 93.85
PROOFBRIDGE (SFT only) 6.97 13.52 19.26 24.18 29.92 34.84 27.87 45.90 60.66 66.39 72.13 78.69
PROOFBRIDGE (Retrieval-augmt. SFT) 13.11 20.90 27.87 35.66 47.95 55.33 29.92 46.31 60.25 71.31 83.20 89.75
PROOFBRIDGE (Retrieval-augmt. SFT + Repair) 16.39 2541 29.51 37.70 50.41 62.70 32.79 47.13 64.75 78.69 90.16 95.49

Proof Auto-Formalization. As shown in Table |2} theorem auto-formalization models perform
poorly, with 0% correctness across all pass@k. These tools lack knowledge of proof DAGs and
tactics and output only FL theorems, with proofs as sorry. Among foundation models, Gemini-
2.5-Flash-Lite achieves 2.87% SC and 21.31% TC at pass @32, which increase to 4.10% SC, 18.44%
TC for Flash and 8.61% SC, 31.56% TC for Pro. GPT-5-mini attains 9.02% TC and 34.84% SC at
pass@32. Among the SOTA AFPS LLMs, Kimina-Prover-RL-1.7B performs best in the few-shot
setting, achieving 31.56% SC and 93.85% TC at pass@32. In zero-shot, SC rises to 40.16% while
TC drops to 75.00%. This indicates that while random in-context examples can improve TC (syntax)
but degrade SC (semantics), leading the model to hallucinate proofs that do not align with the input
NL. This underscores the importance of providing semantically relevant examples, as implemented
in PROOFBRIDGE. We first evaluate PROOFBRIDGE (SFT), trained solely on labeled NL-FL
theorem-proof pairs and evaluated in the few-shot setting, improving SC by +3.28% but reducing
TC by -15.16% compared to Kimina-Prover-RL-1.7B (few-shot). In PROOFBRIDGE (Retrieval-
augmented SFT), fine-tuned and inferred with five relevant FL proofs retrieved via cross-modal re-
trieval, SC rises by 4+23.77% and TC drops by -4.1% relative to Kimina-Prover-RL-1.7B (few-shot).
Finally, PROOFBRIDGE (Retrieval-augmented SFT + Repair), which incorporates iterative proof
repair, achieves +31.14% SC and +1.64% TC over Kimina-Prover-RL-1.7B (few-shot).

6 CONCLUSION

We present PROOFBRIDGE, a unified framework for NL-to-Lean proof auto-formalization that
translates both theorems and proofs end—to—en(ﬂ At its core is a joint embedding model of NL and
FL that encodes Lean proof DAGs, capturing tactic sequences and dependency structures. It enables
highly effective cross-modal retrieval of semantically relevant FL proofs. These retrieved proofs
act as demonstrations, guiding retrieval-augmented fine-tuning of an LLM. An iterative verifier-
guided repair loop further refines generated proofs by combining Lean type-checking with semantic
equivalence checking to ensure correctness. Evaluated on MINIF2F-TEST-PF, PROOFBRIDGE sig-
nificantly outperforms state-of-the-art LLMs in both semantic correctness (by bi-directional equiva-
lence proving) and type correctness, demonstrating that integrating structured embeddings, retrieval
guidance, and verifier feedback leads to more reliable proof auto-formalization.

*Reproducibility: System details (Appendix , code and datasets provided in the supplementary.

Under review as a conference paper at ICLR 2026

REFERENCES

Bruno Barras, Samuel Boutin, Cristina Cornes, Judica€l Courant, Yann Coscoy, David Delahaye,
Daniel de Rauglaudre, Jean-Christophe Filliatre, Eduardo Giménez, Hugo Herbelin, et al. The
Coq Proof Assistant Reference Manual. INRIA, version, 6(11), 1999.

Kevin Buzzard. Formalising mathematics. Lecture notes from a course at Imperial
College London, 2022. URL https://github.com/ImperialCollegeLondon/
formalising-mathematics.

Google Deepmind. Al achieves Silver-Medal Standard solving International Mathematical
Olympiad Problems, 2024. URL https://deepmind.google/discover/blog/
ai-solves—imo-problems-at-silver-medal-level/. Accessed: Sep, 2025.

Kefan Dong and Tengyu Ma. Beyond Limited Data: Self-play LLM Theorem Provers with Iterative
Conjecturing and Proving. arXiv preprint arXiv:2502.00212, 2025.

Guoxiong Gao, Yutong Wang, Jiedong Jiang, Qi Gao, Zihan Qin, Tianyi Xu, and Bin Dong. Herald:
A Natural Language Annotated Lean 4 Dataset. arXiv preprint arXiv:2410.10878, 2024.

Jesse Michael Han, Jason Rute, Yuhuai Wu, Edward Ayers, and Stanislas Polu. Proof Artifact Co-
Training for Theorem Proving with Language Models. In International Conference on Learning
Representations, 2022.

John Harrison. HOL Light: An Overview. In International Conference on Theorem Proving in
Higher Order Logics, pp. 60—-66. Springer, 2009.

Prithwish Jana. NeuroSymbolic LLM for mathematical reasoning and software engineering. In
Proceedings of the Thirty-Third International Joint Conference on Artificial Intelligence (IJCAI),
pp. 8492-8493, 2024.

Prithwish Jana, Piyush Jha, Haoyang Ju, Gautham Kishore, Aryan Mahajan, and Vijay Ganesh.
CoTran: An LLM-based Code Translator using Reinforcement Learning with Feedback from
Compiler and Symbolic Execution. In Proceedings of the 27th European Conference on Artificial
Intelligence (ECAI), pp. 40114018, 2024.

Piyush Jha, Prithwish Jana, Pranavkrishna Suresh, Arnav Arora, and Vijay Ganesh. RLSF: Rein-
forcement Learning via Symbolic Feedback. In Proceedings of the 28th European Conference on
Artificial Intelligence (ECAI), 2025.

Albert Q Jiang, Sean Welleck, Jin Peng Zhou, Wenda Li, Jiacheng Liu, Mateja Jamnik, Timothée
Lacroix, Yuhuai Wu, and Guillaume Lample. Draft, Sketch, and Prove: Guiding Formal Theorem
Provers with Informal Proofs. arXiv preprint arXiv:2210.12283, 2022.

Albert Q Jiang, Wenda Li, and Mateja Jamnik. Multi-language Diversity Benefits Autoformaliza-
tion. Advances in Neural Information Processing Systems, 37:83600-83626, 2024.

Albert Qiaochu Jiang, Wenda Li, Jesse Michael Han, and Yuhuai Wu. LISA: Language models of
ISAbelle proofs. In 6th Conference on Artificial Intelligence and Theorem Proving, pp. 378-392,
2021.

Leanprover. leanprover-community/repl: A simple repl for lean 4, 2025. URL https://
github.com/leanprover—community/repll Accessed: Sep, 2025.

Jia Li, Edward Beeching, Lewis Tunstall, Ben Lipkin, Roman Soletskyi, Shengyi Costa Huang,
Kashif Rasul, Longhui Yu, Albert Jiang, Ziju Shen, Zihan Qin, Bin Dong, Li Zhou, Yann
Fleureau, Guillaume Lample, and Stanislas Polu. NuminaMath. |[https://huggingface.
co/AI-MO/NuminaMath—-1.5] (https://github.com/project—numina/
aimo-progress—-prize/blob/main/report/numina_dataset .pdf), 2024.

Yong Lin, Shange Tang, Bohan Lyu, Jiayun Wu, Hongzhou Lin, Kaiyu Yang, Jia Li, Mengzhou Xia,
Dangi Chen, Sanjeev Arora, et al. Goedel-Prover: A Frontier Model for Open-Source Automated
Theorem Proving. arXiv preprint arXiv:2502.07640, 2025.

10

https://github.com/ImperialCollegeLondon/formalising-mathematics
https://github.com/ImperialCollegeLondon/formalising-mathematics
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://deepmind.google/discover/blog/ai-solves-imo-problems-at-silver-medal-level/
https://github.com/leanprover-community/repl
https://github.com/leanprover-community/repl
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)
[https://huggingface.co/AI-MO/NuminaMath-1.5](https://github.com/project-numina/aimo-progress-prize/blob/main/report/numina_dataset.pdf)

Under review as a conference paper at ICLR 2026

Jiangiao Lu, Yingjia Wan, Zhengying Liu, Yinya Huang, Jing Xiong, Chengwu Liu, Jianhao Shen,
Hui Jin, Jipeng Zhang, Haiming Wang, et al. Process-driven Autoformalization in Lean 4. arXiv
preprint arXiv:2406.01940, 2024.

Norman Megill and David A Wheeler. Metamath: A Computer Language for Mathematical Proofs.
Lulu. com, 2019.

Leonardo de Moura and Sebastian Ullrich. The Lean 4 Theorem Prover and Programming Lan-
guage. In Automated Deduction-CADE 28: 28th International Conference on Automated Deduc-
tion, Virtual Event, July 12—15, 2021, Proceedings 28, pp. 625-635. Springer, 2021.

Tobias Nipkow, Markus Wenzel, and Lawrence C Paulson. Isabelle/HOL: A Proof Assistant for
Higher-order Logic. Springer, 2002.

NuminaMath. minif2f_test. Hugging Face Dataset, September.23 2025. URL https://
huggingface.co/datasets/AI-MO/minif2f test. Version 1.0, Apache-2.0 Li-
cense, 244 rows.

OpenAl Introducing gpt-5, 2025. URL https://openai.com/index/
introducing—gpt—-5/. Accessed: 2025-09-23.

Lawrence C Paulsson and Jasmin C Blanchette. Three Years of Experience with Sledgehammer, a
Practical Link Between Automatic and Interactive Theorem Provers. In Proceedings of the Sth
International Workshop on the Implementation of Logics (IWIL-2010), Yogyakarta, Indonesia.
EPiC, volume 2, 2012.

Gabriel Poesia and Noah D Goodman. Peano: Learning Formal Mathematical Reasoning. Philo-
sophical Transactions of the Royal Society A, 381(2251):20220044, 2023.

Stanislas Polu and Ilya Sutskever. Generative Language Modeling for Automated Theorem Proving.
arXiv preprint arXiv:2009.03393, 2020.

Nils Reimers and Iryna Gurevych. Sentence-Transformers: Multilingual Sentence Embeddings
using BERT and XLNet. https://www.sbert .net /| 2020.

77 Ren, Zhihong Shao, Junxiao Song, Huajian Xin, Haocheng Wang, Wanjia Zhao, Liyue Zhang,
Zhe Fu, Qihao Zhu, Dejian Yang, et al. Deepseek-Prover-v2: Advancing Formal Mathe-
matical Reasoning via Reinforcement Learning for Subgoal Decomposition. arXiv preprint
arXiv:2504.21801, 2025.

Terence Tao. A maclaurin type inequality. arXiv preprint arXiv:2310.05328, 2023.

Amitayush Thakur, Yeming Wen, and Swarat Chaudhuri. A Language-Agent Approach to Formal
Theorem-Proving. 2023.

Shubham Ugare, Tarun Suresh, Hangoo Kang, Sasa Misailovic, and Gagandeep Singh. SynCode:
LLM Generation with Grammar Augmentation. arXiv preprint arXiv:2403.01632, 2024.

Haiming Wang, Mert Unsal, Xiaohan Lin, Mantas Baksys, Junqgi Liu, Marco Dos Santos, Flood
Sung, Marina Vinyes, Zhenzhe Ying, Zekai Zhu, et al. Kimina-Prover Preview: Towards Large
Formal Reasoning Models with Reinforcement Learning. arXiv preprint arXiv:2504.11354,2025.

Ruida Wang, Jipeng Zhang, Yizhen Jia, Rui Pan, Shizhe Diao, Renjie Pi, and Tong Zhang. Theorem-
Llama: Transforming General-purpose LLMs into Lean4 Experts. In Conference on Empirical
Methods in Natural Language Processing (EMNLP), pp. 11953-11974, 2024.

Yuhuai Wu, Albert Qiaochu Jiang, Wenda Li, Markus Rabe, Charles Staats, Mateja Jamnik, and
Christian Szegedy. Autoformalization with Large Language Models. Advances in Neural Infor-
mation Processing Systems, 35:32353-32368, 2022.

Yutong Wu, Di Huang, Ruosi Wan, Yue Peng, Shijie Shang, Chenrui Cao, Lei Qi, Rui Zhang, Zidong

Du, Jie Yan, et al. Stepfun-formalizer: Unlocking the autoformalization potential of llms through
knowledge-reasoning fusion. arXiv preprint arXiv:2508.04440, 2025.

11

https://huggingface.co/datasets/AI-MO/minif2f_test
https://huggingface.co/datasets/AI-MO/minif2f_test
https://openai.com/index/introducing-gpt-5/
https://openai.com/index/introducing-gpt-5/
https://www.sbert.net/

Under review as a conference paper at ICLR 2026

Huajian Xin, Daya Guo, Zhihong Shao, Zhizhou Ren, Qihao Zhu, Bo Liu, Chong Ruan, Wenda Li,
and Xiaodan Liang. DeepSeek-Prover: Advancing Theorem Proving in LLMs through Large-
Scale Synthetic Data. arXiv preprint arXiv:2405.14333, 2024a.

Huajian Xin, ZZ Ren, Junxiao Song, Zhihong Shao, Wanjia Zhao, Haocheng Wang, Bo Liu, Liyue
Zhang, Xuan Lu, Qiushi Du, et al. Deepseek-prover-vl. 5: Harnessing proof assistant feedback
for reinforcement learning and monte-carlo tree search. arXiv preprint arXiv:2408.08152, 2024b.

Kaiyu Yang. minif2f-lean4. GitHub repository, 2025. URL https://github.com/
vangkyll/miniF2F-leand.

Kaiyu Yang, Aidan Swope, Alex Gu, Rahul Chalamala, Peiyang Song, Shixing Yu, Saad Godil,
Ryan Prenger, and Anima Anandkumar. LeanDojo: Theorem proving with retrieval-augmented
language models. In Neural Information Processing Systems (NeurIPS), 2023.

Huaiyuan Ying, Zijian Wu, Yihan Geng, Jiayu Wang, Dahua Lin, and Kai Chen. Lean Workbook:
A Large-scale Lean Problem Set Formalized from Natural Language Math Problems. Advances
in Neural Information Processing Systems, 37:105848-105863, 2024.

Jingyuan Zhang, Qi Wang, Xingguang Ji, Yahui Liu, Yang Yue, Fuzheng Zhang, Di Zhang, Guorui
Zhou, and Kun Gai. Leanabell-prover: Posttraining scaling in formal reasoning. arXiv preprint
arXiv:2504.06122, 2025.

Kunhao Zheng, Jesse Michael Han, and Stanislas Polu. MiniF2F: A Cross-System Benchmark for
Formal Olympiad-level Mathematics. arXiv preprint arXiv:2109.00110, 2021.

Yuhao Zhou. Retrieval-Augmented TLAPS Proof Generation with Large Language Models. arXiv
preprint arXiv:2501.03073, 2025.

12

https://github.com/yangky11/miniF2F-lean4
https://github.com/yangky11/miniF2F-lean4

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

LLMs did not play a significant role in either the research ideation or the writing of this paper. Their
use was limited to correcting minor grammatical issues and typographical errors.

A.2 REPRODUCIBILITY

All implementations in this work, including dataset construction, model training, cross-modal re-
trieval, inference, and evaluation, use Python 3.12.10 and Lean v4.15.0. Experiments were con-
ducted on a high-performance AlmaLinux 9.5 (Teal Serval) cluster with a single Intel Xeon Plat-
inum 8480+ CPU (32 cores, 2.0-4.0 GHz), 251 GiB of RAM, and one NVIDIA H100 GPU. Our
full codebase, including scripts for dataset generation, model fine-tuning, and inference across both
GPU- and API-based setups, is shared through a supplementary .zip file. The repository is com-
plete, well-documented, and designed for full reproducibility: it includes instructions for creating a
Python virtual environment, and a comprehensive README outlining library dependencies, dataset
format, and step-by-step instructions to replicate the entire data pipeline and experimental workflow.

A.3 SEMANTIC EQUIVALENCE OF LEAN THEOREMS

The task of autoformalization is to convert a mathematical theorem and proof from natural language
into a formal language, such as Lean. When evaluating the performance of such systems, we propose
two criteria for evaluation: fype correctness and semantic equivalence. Type correctness, which
requires that the generated Lean proof is accepted by the Lean type-checker, is straightforward to
verify and serves as the standard evaluation metric in the field. However, semantic equivalence,
ensuring the FL theorem faithfully represents the meaning of the original NL theorem, presents a far
greater challenge. To the best of our knowledge, semantic equivalence has not been systematically
evaluated in prior work. This section introduces a novel methodology towards addressing this gap.

While directly measuring the semantic alignment between a NL theorem and a Lean theorem is an
unsolved challenge, showing the logical equivalence of two Lean theorems is a tractable task. Our
training dataset, NUMINAMATH-LEAN-PF, contains pairs of (Inp,ZTr.) where most of the Tgr
were manually created by experts at Numina. We treat these high-quality 7pp theorems as gold-
standard references, assuming they are faithful translations of their T counterparts. This allows us
to reduce the intractable problem of verifying a model’s generated theorem T against the original

Tno to the more tractable task of checking for logical equivalence between Ty and the golden
reference Tg;,, which can be checked in Lean itself.

To be more specific, we enforce this semantic equivalence check by proving the logical biconditional
TpL <+ Tgp in Lean. Theorems like T FL and Tfp are of type Prop in Lean. The following theorem
from Mathlib states that for any two propositions, a logical biconditional between two propositions
is itself logically equivalent to their propositional equality:

theorem propext_iff{a b : Prop}
a=>b < (a & b)

The task thus converts to proving the equality Ty, = T, within Lean. This requires clarifying the
specific notion of equality being used, as Lean distinguishes between three primary types: syntactic,
definitional, and propositional Buzzard (2022)). Syntactic equality is the strictest form of equality in
Lean, as it only admits expressions that are structurally identical according to their Abstract Syntax
Trees, without any computation or reduction. Definitional equality is a more relaxed form of equality
than syntactic equality, where two expressions are considered equal if they compute or reduce to the
same normal form. Propositional equality is the weakest form of equality, and also the standard
notion of equality used in mathematical theorems. Two terms a, b are propositionally equal in
Lean if you can construct a proof term for the proposition a = b.

For our evaluation, we seek to measure how closely a ﬁ:L matches the Tgp. The strictest criterion,
syntactic equality, is too restrictive given the current state-of-the-art, as it would fail valid theorems

13

Under review as a conference paper at ICLR 2026

with trivial notational differences. Conversely, full propositional equality can be too permissive; a
proof of equivalence can be arbitrarily complex, making it difficult to automate and decide.

Therefore, we adopt a pragmatic compromise: we check for definitional equality supplemented by

a form of bounded propositional equality. This means we primarily check if 7x and T reduce to
the same normal form, but we also permit some propositional equality, provided they can be proven
using a collection of tactics so that their proof complexity is bounded.

We then leverage Gemini 2.5 Pro as an automated equivalence checker. The model is prompted

to synthesize a proof for the biconditional theorem (Iy;, <> Tfp), with instructions limiting it to
a specific subset of available tactics. This restricted set includes three powerful automated tactics,
rfl, simp, and ring, each is designed to discharge a specific class of goals: rf1 for definitional
equality, simp for simplification, and ring for polynomial identities.

As definitional equality is our primary target, the equivalence checker first attempts to solve the goal
with the rf1 tactic. This single tactic should suffice for the majority of cases. If rf1 fails, the
checker then tries simp. This tactic performs additional simplifications by rewriting the goal using
theorems from Mathlib that are tagged for its use. Critically, we use simp without any arguments.
Providing explicit arguments would require a demanding search for the correct lemmas and could
introduce unbounded complexity, violating our goal of a bounded proof search. Furthermore, the
need for simp with arguments could imply that the required rewrite is non-trivial, since the default
simplification set contains most of the trivial facts E} Since our goal is to ensure a close correspon-

dence between T and T, a proof requiring such a targeted rewrite indicates a semantic distance
that we classify as a mismatch. The ring tactic is a valuable complement to the previous tactics
as it specializes in proving polynomial equalities. The ring tactic operates by reducing arithmetic
expressions to a canonical normal form. This allows it to prove the equivalence of expressions that
are algebraically identical but not definitionally so, such as x~2 and x » x, which rf1 and default
simp would otherwise fail to solve.

The three tactics discussed above cover most of the direct equivalences we aim to check. The re-
maining tactics in our instruction set are designed for a more nuanced case: proving the biconditional
when two theorems differ only in their use of auxiliary variables. We observed that human experts
and language models may make different but equally valid decisions on whether to introduce an
auxiliary variable. We therefore classify such theorems as equivalent. For example, consider the
following:

def Propl := (VW (b hv : R), (0 <b
h)) — (b = 30) — (h =13 / 2)
def Prop2 := (V {B h : R}, (B = 30)
example : Propl <> Prop2 := by
constructor
- intro
simp
- ring
simp
intros
nlinarith

0 <hAO<vV) =5 (v=11/3 % (b *
v = 65)
(

A
H
— (h =6.5) = (1 / 3) = B x h = 65)

The main difference between the two propositions Propl and Prop2 is the presence of the auxiliary
variable v in one. To prove that such theorems are equivalent, one must typically prove the bicon-
ditional by separately proving the implications of both direction. This requires a step-by-step proof
construction, and the tactics above are included in our instruction set.

31t is important to note that the default simp set intentionally excludes lemmas like associativity and com-
mutativity, as they can cause the simplifier to loop indefinitely. However, since these lemmas primarily concern
algebraic expressions, they can be handled by the ring tactic.

14

	Introduction
	Related Work
	Preliminaries: Tactic-style Proofs in Lean
	Our Approach and Tool Architecture
	Joint Embedding of NL and Lean Proofs for Cross-Modal Retrieval
	Retrieval-Augmented Fine-Tuning for Proof Auto-Formalization
	Iterative Proof Repair with Verifier Feedback

	Experimental Evaluation
	Data Preparation: NuminaMath-Lean-PF and miniF2F-Test-PF
	Experimental Setup, Evaluation Metrics and State-of-the-Arts
	Experimental Results and Ablation Studies

	Conclusion
	Appendix
	The Use of Large Language Models (LLMs)
	Reproducibility
	Semantic Equivalence of Lean theorems

