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Abstract

Large-scale vision models have become integral
in many applications due to their unprecedented
performance and versatility across downstream
tasks. However, the robustness of these foun-
dation models has primarily been explored for
a single task, namely image classification. The
vulnerability of other common vision tasks, such
as semantic segmentation and depth estimation,
remains largely unknown. We present a com-
prehensive empirical evaluation of the adversar-
ial robustness of self-supervised vision encoders
across multiple downstream tasks. Our attacks op-
erate in the encoder embedding space and at the
downstream task output level. In both cases, cur-
rent state-of-the-art adversarial fine-tuning tech-
niques tested only for classification significantly
degrade clean and robust performance on other
tasks. Since the purpose of a foundation model
is to cater to multiple applications at once, our
findings reveal the need to enhance encoder ro-
bustness more broadly. Our code is available at
github.com/layer6ai-labs/ssl-robustness.

1. Introduction
Foundation models trained through self-supervised learning
(SSL) have become the backbone of many applications due
to their versatility; one foundation model can be adapted to
many downstream tasks with a small amount of data and
training (or fine-tuning). Foundation models in the vision
domain have even outperformed dedicated models on sev-
eral tasks (Caron et al., 2021; He et al., 2022; Oquab et al.,
2024). Despite their broad utility, the adversarial robustness
of these models has only been explored for classification
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Figure 1: Adversarial Attacks for SSL. An SSL encoder is
applied to downstream tasks through adaptors. Adversarial attacks
can attack the downstream labels, or the embedding space directly.

tasks with linear probing (Naseer et al., 2020; Jiang et al.,
2020; Fan et al., 2021; Zhang et al., 2022; Luo et al., 2023)
while other common downstream tasks, such as semantic
segmentation (Long et al., 2015) and depth estimation (Go-
dard et al., 2019), remain unexplored. Recently, Li et al.
(2023) showed that non-robust features extracted from ad-
versarial examples for supervised models (and useful for
classification) become largely useless when transferred to
self-supervised learning paradigms. They advocated for
a cross-paradigm examination of robustness, yet focused
their analysis solely on classification. A major outstanding
question is whether adversarial robustness transfers across
downstream tasks.

We present an in-depth empirical evaluation of the adversar-
ial robustness of self-supervised vision encoders (Chen and
He, 2021; Caron et al., 2021) for downstream tasks beyond
classification. We use attacks that operate in the encoder’s
embedding space (EmbedAttack ) and those that leverage
direct access to the downstream task outputs (PGDAttacks),
e.g., PGD for classification (Madry et al., 2018) or SegPGD
for semantic segmentation (Gu et al., 2022). Our main obser-
vation is that the state-of-the-art adversarial full fine-tuning
of encoders (Zhang et al., 2022): (1) substantially lowers
clean performance, (2) increases robustness only against
the EmbedAttack , and (3) remains ineffective in improving
robustness against the task-specific PGDAttacks. We ob-
serve only a slight improvement against the PGDAttacks for
classification when the adversarial fine-tuning dataset and
downstream dataset come from the same distribution. This
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indicates a need to rethink what it means for a foundation
model to be robust. Finally, we offer potential approaches
to bolster the cross-task robustness of SSL encoders.

2. Background and Related Work
Self-Supervised Learning. SSL aims to extract a represen-
tation of data which is useful for downstream tasks specified
at test-time (Balestriero et al., 2023). In many frameworks,
an input x is first modified by two semantic-preserving
augmentations yielding x1 and x2, which are subsequently
passed to an encoder f . The training objective aligns the out-
put representations by minimizing a distance metric d (e.g.,
Euclidean distance) as L(f, x) = d(f(x1), f(x2)) (Chen
et al., 2020). Once trained, the encoder’s representations
are then used for various downstream tasks, such as clas-
sification, semantic segmentation, or depth estimation by
fine-tuning adaptor networks. In this work, we focus on a
state-of-the-art SSL framework, DINO (Caron et al., 2021).
DINO utilizes two encoder networks, the teacher ft, and
student fs. The student network is optimized to minimize
the cross-entropy between fs(x1) and the soft labels ft(x2),
as a form of knowledge distillation (Hinton et al., 2015).
To prevent collapse, the gradients are only passed through
fs. Parameters of ft are updated using the moving average
of the student’s parameters. DINOv2 (Oquab et al., 2024)
improves over DINO in terms of scale and efficiency of
training, rather than proposing a new SSL method. Oquab
et al. (2024) showed substantial improvements on dense
(pixel-wise) downstream tasks like semantic segmentation
and depth estimation compared to DINO encoders.

Adversarial Robustness in SSL. In this work, we focus
on the state-of-the-art Decoupled Adversarial Contrastive
Learning (DeACL) framework by (Zhang et al., 2022) to
obtain robust SSL encoders. For an overview on other meth-
ods for robust SSL and a thorough discussion on the advan-
tages of DeACL, see Appendix B.1. DeACL fine-tunes
existing encoders for increased robustness using knowl-
edge transfer from a pre-trained encoder to a robust one.
The objectives for the distillation are to: (1) match the dis-
tilled encoder representations to those of the pre-trained
encoder (high cosine similarity), and (2) bring the distilled
encoder’s representations of adversarial examples (i.e., ex-
amples generated with the pre-trained encoder that maxi-
mize the distance to their original samples) close to their
clean counterparts. By decoupling the encoder pre-training
from increasing its robustness, DeACL provides high com-
putational efficiency in comparison to prior methods and
obtains state-of-the-art robust performance.

Downstream Tasks. To evaluate the quality of representa-
tions learned by SSL methods, we consider three common
downstream tasks. (1) Linear Classification assesses the
quality of the learned representations by training a down-

stream classifier and measuring classification performance.
(2) Semantic Segmentation is a common computer vision
task that categorizes every pixel in an image into a class
or object. While downstream-agnostic adversarial exam-
ples against SSL encoders can be used to fool segmentation
models, Gu et al. (2022) show with SegPGD that tailoring
the attack to the segmentation task is even more effective.
SegPGD aims at manipulating all pixel classifications of
an image by introducing a weighted loss term between cor-
rectly classified and misclassified pixels. (3) Depth Esti-
mation is another prevalent computer vision task aimed
at estimating distances of objects in an image relative to
the camera location, where each pixel is assigned a depth
value. Targeted adversarial attacks against depth estimation
can lead to strong deviations between actual and predicted
depth (Wong et al., 2020). At the same time, they can also be
leveraged for depth estimation-specific adversarial training
to improve robustness (Cheng et al., 2022).

3. Attack and Defense Methods
We propose a framework to assess the robustness of founda-
tion models at both the embedding level and for downstream
tasks, as described in Section 2. The goal of benchmarking
the robustness of foundation models across diverse down-
stream tasks restricts our possible selection of encoder mod-
els. Specifically, the encoder must generate representations
that are applicable to a variety of tasks beyond classification.
In our preliminary experiments, we evaluated the perfor-
mance of SimCLR (Chen et al., 2020), SimSiam (Chen
and He, 2021), and DINO encoders. We observed that the
representations produced by SimCLR and SimSiam were in-
sufficient to achieve high-quality downstream segmentation
or depth estimation. For that reason, we use the founda-
tion models DINO and DINOv2 as examples, and train a
linear adaptor for each downstream task. For the embed-
ding attack, we target the model at the representation layer.
For downstream attacks, we evaluate three different tasks:
classification, semantic segmentation, and depth estimation.
Each attack is detailed in the following sections.

3.1. Embedding-level Attack

The EmbedAttack operates directly on the underlying en-
coder’s embeddings (Kim et al., 2020; Jiang et al., 2020;
Fan et al., 2021; Luo et al., 2023). The objective behind
the approach is to make imperceptibly small modifications
to an input image such that the resulting representation
from the SSL encoder is changed substantially. More con-
cretely, for a clean input image x, we find its adversarial
perturbation xadv = x + δ such that ∥δ∥∞ < ε, where ε
is the maximum allowed input distortion measured in the
ℓ∞-norm. Given an encoder f , the objective is to find xadv
such that the ℓ2 distance between the representations from
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the original f(x) and adversarial images f(xadv) is maxi-
mized: argmaxxadv

∥f(x) − f(xadv)∥2. For sparse down-
stream tasks (classification) we target the CLS token em-
bedding, while for dense tasks (semantic segmentation and
depth estimation) we target patch embeddings. We leverage
the projected gradient descent (PGD ) attack (Madry et al.,
2018) with the objective defined in representation space to
find adversarial examples xadv. We set the maximum pertur-
bation to ε = 8/255, start with xadv initialized from x with
uniform noise added (defined as U(−ε, ε)), and perform
20 steps of PGD with step size 2/255. To ensure that the
distance from the original image x is within the ε-ball, we
clip the perturbation to [−ϵ, ϵ] at every step of PGD .

3.2. Downstream Attacks

Classification. For the standard classification tasks, we use
the PGD attack (Madry et al., 2018) with settings similar to
those above: ε = 8/255, 20 steps with step size 2/255, and
initialization from randomly perturbed images. The target
is to maximize cross-entropy loss for the perturbed images.

Semantic Segmentation. To attack semantic segmentation
we leverage the SegPGD attack (Gu et al., 2022) which
calculates a weighted average of the loss over correctly and
incorrectly classified pixels,

L(fseg(x
t
adv), y) =

1− λt

HW

∑
j∈PT

Lj +
λt

HW

∑
k∈PF

Lk. (1)

Here Lj represents the cross-entropy loss, λt is a hyperpa-
rameter, H and W denote the height and width of the image,
while PT and PF are the sets of correctly and incorrectly
classified pixels respectively. PGD is used to find adversar-
ial examples with this loss, and we use similar settings as
mentioned previously. The weight λt starts from zero and
increases linearly each iteration. The main insight behind
the SegPGD attack is to fool correctly classified pixels in the
first attack iterations and then treat the correct and incorrect
pixel classifications roughly equally in the later iterations.
As a result, the SegPGD attack can achieve similar attack
effectiveness as PGD but with substantially fewer iterations.

Depth Estimation. Similarly to semantic segmentation, we
compute the average loss per pixel and then apply a PGD
attack targeting this loss, referred to as DepthPGD . The loss
terms used for depth estimation and its attack are akin to
those in Oquab et al. (2024), incorporating the multi-scale
gradient matching loss (Li and Snavely, 2018) and pixel-
wise depth loss (Farooq Bhat et al., 2021). For more details,
refer to Appendix C.

3.3. DeACL Defense

We combat the above attacks using the state-of-the-art
method of obtaining robust encoders, DeACL (Zhang et al.,

2022). We select DeACL for several compelling reasons.
Firstly, unlike many other methods aimed at enhancing ro-
bustness, it does not rely on any specific downstream task
and instead improves robustness at the representation layer
in a self supervised manner. Besides, it is a state-of-the-art
method with superior robustness compared to other tech-
niques. Lastly, the proposed adversarial fine-tuning ap-
proach is significantly more computationally efficient com-
pared to training models from scratch using traditional adver-
sarial training methods. These advantages make DeACL fea-
sible and practical, particularly given the substantial compu-
tational resources required to train state-of-the-art encoder
models. We start from a pretrained encoder f and create
its robust version fR using fine-tuning with the following
objective:

L(fR, f) = d(fR(x), f(x)) + γd(fR(xadv), fR(x)). (2)

Here we set d as the standard cosine similarity, and x as the
input image. Equation (2) aims to preserve representation
quality, and improve robustness against adversarial exam-
ples. γ = 2 is a parameter used to balance the impact of
each goal on the final objective function.

4. Empirical Evaluation
4.1. Setup

We present the results for encoders trained using the DINO
and DINOv2 SSL frameworks, utilizing ViT (Dosovitskiy
et al., 2020) backbones. The underlying encoders are either
Standard, i.e., provided by the SSL frameworks, or DeACL,
further fine-tuned to enhance robustness. We present the
hyperparameters that we use to train the linear layers for
the various of downstream tasks. These hyperparameters
are uniform across encoders and datasets, and vary only
between different types of tasks, i.e., classification, seman-
tic segmentation, and depth estimation. Full insights are
presented in Appendix C.

Classification. We use a learning rate of 0.5, batch size
16, and train the linear classifiers for 5 epochs using the
Adam (Kingma and Ba, 2015) optimizer. As a train-time
augmentation we use random horizontal flips.

Semantic segmentation. We follow the setup from the DI-
NOv2 framework, and use a learning rate of 0.0001, batch
size 16, weight decay 0.001, and train for 50 epochs using
the AdamW (Loshchilov and Hutter, 2018) optimizer. For
training as well as evaluation on non-uniformly sized im-
ages (e.g., PASCAL VOC 2012) we utilize sliding window
inference, i.e., we divide the image into parts of uniform
size, compute logits for all of the parts, and then combine
them into one final logit map. Overlap between the parts is
handled by averaging the logits in the overlap regions. We
use random cropping, and random horizontal and vertical
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flips as training-time augmentations.

Depth estimation. Since DINOv2 has achieved state-of-
the-art performance in depth estimation, we adopt their
settings. For training, we use their combination of gradient
matching loss and pixel-wise depth loss. For the remaining
hyperparameters, we use a learning rate of 0.0001, batch
size 128, weight decay 0.01, and train for 20 epochs using
AdamW. All hyperparameters are listed in Appendix C.1.

4.2. Results

Classification. We follow the widely used linear evaluation
protocol (Chen et al., 2020; Chen and He, 2021), where
a linear classifier is trained on top of the frozen base SSL
encoder, and test accuracy is used as a proxy for repre-
sentation quality. We compare the classification accuracy
after linear probing for the standard vision benchmarks: CI-
FAR10 (Krizhevsky et al., 2009), CIFAR100 (Krizhevsky
et al., 2009), and STL10 (Coates et al., 2011). The evalua-
tion is presented in Table 1. Contrary to the results shown
by Zhang et al. (2022), we observe no improvement in ro-
bustness against tailored PGD attacks (right column) for the
encoder fine-tuned using DeACL, with the only exception
being on the STL10 dataset. We argue that the discrep-
ancy in our results and ones reported by Zhang et al. (2022)
stems from the underlying training sets of the fine-tuned
encoder. Zhang et al. (2022) utilized encoders trained on
CIFAR10, then fine-tuned and evaluated them on CIFAR10
as well. In contrast, we focus on ImageNet-trained encoders,
use ImageNet for fine-tuning, and evaluate them on various
datasets including CIFAR10. We assume that the discrep-
ancy between training, fine-tuning, and evaluation sets leads
directly to the inefficacy of DeACL in obtaining robust
encoders against stronger adversarial attacks than EmbedAt-
tack , like PGD . This idea is supported by the improved
adversarial accuracy against PGD attacks on STL10 with
the fine-tuned encoder, as it is a subset of ImageNet. We
observe an increase (above random guessing) in accuracy
compared to the standard encoder (see second last and the
last row of Table 1, rightmost column), from 0 to 0.23.

Semantic segmentation. Similarly to classification, a sin-
gle linear layer is trained on patch embeddings, to obtain
a low-resolution logit map. Next, we interpolate the logits
to obtain a logit map of a resolution matching the size of
x. The minimized objective is a pixel-wise cross-entropy
loss. We evaluate encoders on ADE20k (Zhou et al., 2017;
2019), CityScapes (Cordts et al., 2016), and PASCAL VOC
2012 (Everingham et al., 2010), and report mean Intersec-
tion over Union (mIoU↑) scores in Table 2. EmbedAttack
proves to be a potent downstream task-agnostic method
of obtaining adversarial examples for the segmentation
task, achieving mIoU of 0 for all clean encoders across all

Dataset SSL Encoder Clean EmbedAttack PGD
Framework Type Accuracy↑ Accuracy↑ Accuracy↑

CIFAR10 DINO v2 ViT-S/14 Standard 0.94 0.01 0.00
CIFAR10 DINO v2 ViT-B/14 Standard 0.98 0.04 0.00
CIFAR10 DINO v1 ViT-B/16 Standard 0.94 0.01 0.00
CIFAR10 DINO v1 ViT-B/16 DeACL 0.91 0.73 0.02

CIFAR100 DINO v2 ViT-S/14 Standard 0.82 0.00 0.00
CIFAR100 DINO v2 ViT-B/14 Standard 0.86 0.00 0.00
CIFAR100 DINO v1 ViT-B/16 Standard 0.76 0.00 0.00
CIFAR100 DINO v1 ViT-B/16 DeACL 0.72 0.55 0.03

STL10 DINO v2 ViT-S/14 Standard 0.98 0.06 0.00
STL10 DINO v2 ViT-B/14 Standard 0.99 0.20 0.00
STL10 DINO v1 ViT-B/16 Standard 0.98 0.00 0.00
STL10 DINO v1 ViT-B/16 DeACL 0.97 0.83 0.23

Table 1: Evaluating the robustness of SSL encoders for linear
classification. We observe that EmbedAttack is effective against
all Standard encoders. Robustness against EmbedAttack is im-
proved with DeACL fine-tuning, however, the downstream PGD
attack maintains its effectiveness, with the possible exception of
linear classification on STL10 dataset, a subset of ImageNet.

Dataset SSL Encoder Clean EmbedAttack SegPGD
Framework Type mIoU↑ mIoU↑ mIoU↑

ADE20k DINOv2 ViT-S/14 Standard 0.42 0.01 0.01
ADE20k DINOv2 ViT-B/14 Standard 0.45 0.00 0.01
ADE20k DINOv1 ViT-B/16 Standard 0.27 0.01 0.01
ADE20k DINOv1 ViT-B/16 DeACL 0.24 0.14 0.01

CityScapes DINOv2 ViT-S/14 Standard 0.65 0.02 0.01
CityScapes DINOv2 ViT-B/14 Standard 0.68 0.03 0.00
CityScapes DINOv1 ViT-B/16 Standard 0.45 0.06 0.06
CityScapes DINOv1 ViT-B/16 DeACL 0.36 0.31 0.03

PASCAL VOC 2012 DINOv2 ViT-S/14 Standard 0.83 0.00 0.01
PASCAL VOC 2012 DINOv2 ViT-B/14 Standard 0.83 0.00 0.01
PASCAL VOC 2012 DINOv1 ViT-B/16 Standard 0.56 0.06 0.00
PASCAL VOC 2012 DINOv1 ViT-B/16 DeACL 0.51 0.30 0.02

Table 2: Evaluating the robustness of SSL encoders for seman-
tic segmentation. We note that EmbedAttack succeeds across all
datasets and Standard encoders, achieving mIoU close to 0, per-
forming on par with SegPGD . Fine-tuning with DeACL limits the
effectiveness of EmbedAttack , while SegPGD remains successful.

datasets. Similarly to the linear classification task, we note
that fine-tuning with DeACL improves robustness against
EmbedAttack , however, it fails to achieve significant im-
provements for the downstream attack SegPGD .

SSL Encoder Clean EmbedAttack DepthPGD
Framework Type RMSE↓ RMSE↓ RMSE↓

DINO v2 ViT-S/14 Standard 0.49 1.54 2.60
DINO v2 ViT-B/14 Standard 0.46 1.29 2.74
DINO v1 ViT-B/16 Standard 0.61 1.28 1.79
DINO v1 ViT-B/16 DeACL 0.68 0.92 1.71

Table 3: Evaluating the robustness of SSL encoders for depth
estimation. On the NYU-Depth v2 dataset, we observe that both
types of attacks remain effective against the DeACL defense.

Depth estimation. For depth estimation, following
Oquab et al. (2024), we extract the final layer of the frozen
transformer and concatenate the CLS token with each patch
token. Then we apply bilinear upsampling to the tokens to
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Figure 2: Evolution of robustness on different downstream tasks during DeACL fine-tuning. Figure 2a presents classification
accuracy on clean data for the PGD and EmbedAttack attacks. Figure 2b shows segmentation mIoU on clean data for the SegPGD and
EmbedAttack attacks. In Figure 2c we present depth estiation RMSE on clean data for the DepthPGD and EmbedAttack attacks. Line
colors indicate different datasets and line styles indicate different reported metrics.

enhance the resolution. Finally, we train a linear layer on
top to estimate the depth of each pixel. We evaluate qual-
ity of the depth estimation using the standard Root Mean
Square Error (RMSE) metric on the NYU-Depth-v2 dataset
(Silberman et al., 2012). Our results in the Table 3 show
that the EmbedAttack and DepthPGD attacks significantly
increase the RMSE. The only instance where the RMSE
remains below 1 after an attack is with DeACL fine-tuning
against the EmbedAttack ; however, this fine-tuning fails
to provide a notable improvement in robustness against the
DepthPGD attack, similarly to the classification and seman-
tic segmentation tasks.

Evolution of Robustness During DeACL Fine-Tuning.
Figure 2 presents the dynamics of model robustness for
different downstream tasks during DeACL fine-tuning. No-
tably, robustness against PGD -based attacks exhibits min-
imal improvement, remaining unchanged during this pro-
cess. The only exception is the improvement in robustness
of linear classification on the STL10 dataset (which is a
subset of ImageNet) observed during the first 20 epochs
of training. We also observe that a relatively short period
of fine-tuning—around 10 epochs—leads to noticeable im-
provements in robustness against EmbedAttack . However,
further fine-tuning iterations show diminishing returns, with
robustness metrics plateauing. Performance on clean data
remains relatively stable throughout fine-tuning after a drop
during the first 10 epochs. The simultaneous increase in ro-
bustness against EmbedAttack and decrease in performance
on clean data observed at the start of the fine-tuning process
confirms the trade-off between clean and adversarial model
performance. The observed dynamics hold true across all
downstream tasks. Our findings indicate that the adversarial
fine-tuning method proposed by Zhang et al. (2022) exerts
its greatest impact during the initial epochs, with little to
no benefit from prolonging training to a larger (e.g. 100)
number of epochs.

5. Discussion and Conclusions
SSL encoders are foundation models leveraged for a myr-
iad of downstream vision tasks in critical domains, like
autonomous driving (Liu et al., 2021) or medical imag-
ing (Jiang et al., 2018). This motivates the necessity of
ensuring the encoders’ robustness. In this work, we argue
that prior work on SSL encoder robustness mainly evaluates
downstream classification tasks while leaving other popular
tasks, such as semantic segmentation or depth estimation
under-explored. Through our experimentation, we show
that encoders are highly vulnerable to adversarial attacks
on multiple downstream tasks, which pose a significant risk.
Our results also highlight that the defenses that were devel-
oped with downstream classification in mind also harm the
downstream performance on classification and other tasks.
This suggests that more fundamental work is required to
make foundational SSL encoders robust and effective for a
wide variety of tasks.

Future directions for improving robustness. We observe
that defenses against adversarial examples in SSL are ef-
fective only for a single attack type, namely EmbedAttack .
However, they remain ineffective for other perturbations,
especially task-specific attacks like PGD , SegPGD , and
DepthPGD . To train SSL models that are simultaneously
robust to multiple perturbation types, a potential solution is
to apply multi-perturbation adversarial training, similar to
the approach used for enhancing robustness in supervised
models against various perturbations (Tramèr and Boneh,
2019), which involved concurrent adversarial training with
first-order ℓ1, ℓ2, and ℓ∞ attacks. Therefore, to enhance the
robustness of SSL encoders, we should not only fine-tune
them on adversarial examples in the embedding space but
also potentially perform robust tuning for each intended
downstream task.
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A. Societal Impact
Prior work on SSL encoder robustness has primarily focused on classification tasks, leading to a false sense of security
among users. Our findings reveal that encoders are also susceptible to attack on other downstream tasks, underscoring the
need for more comprehensive defenses. This paves the way for the development of robust solutions, thereby enhancing the
trustworthiness and reliability of foundational SSL encoders for broader societal applications.

B. Extended Related Work
B.1. Adversarial Robustness in SSL

For supervised tasks, adversarial attacks produce imperceptible changes δ to an input x that result in the model predicting an
incorrect label y (Biggio et al., 2013; Szegedy et al., 2013). To increase robustness, adversarial training (Goodfellow et al.,
2014) incorporates the perturbed data with the correct label into the training data. Since SSL operates without labels, this
approach is not directly applicable. The initial method towards robust SSL proposed by Naseer et al. (2020) introduces a
purifier network to defend against adversarial examples, which attempts to recover the original input from an adversarially
perturbed version before inputting it to the encoder. Robust contrastive learning (RoCL) (Kim et al., 2020) instead aims
to make the encoder itself robust by maximizing the similarity between a random augmentation of a data point and its
instance-wise adversarial perturbation. RoCL translates instance-level robustness to class-level robustness, at the cost of
substantial degradation in clean performance.

Ho and Nvasconcelos (2020) propose adversarial examples specifically designed to challenge contrastive learning methods.
Using these adversarial examples, they develop a novel adversarial training algorithm for self-supervised learning, which
they call Contrastive Learning with Adversarial Examples (CLAE). Compared to standard contrastive learning, CLAE
creates more difficult positive pairs by using adversarial examples. Additionally, by optimizing over all images in a batch,
CLAE produces more challenging negative pairs through adversarial training. In essence, CLAE strengthens contrastive
learning models by exposing them to tailored adversarial attacks during training.

Jiang et al. (2020) introduce adversarial contrastive learning (ACL) to improve robustness-aware self-supervised pre-
training by learning representations that are consistent under both data augmentations and adversarial perturbations. They
extend SimCLR (Chen et al., 2020) to learn robust representations by maximizing feature consistency between differently
augmented views. Fan et al. (2021) build on top of ACL and propose AdvCL, which leverages labels in addition to
instance-level robustness to further boost robust performance. Luo et al. (2023) propose Dynamic Adversarial Contrastive
Learning (DYNACL) as an extension that uses pseudo-labels directly generated by the pre-trained encoder. All these
methods require retraining the large SSL encoders from scratch to improve robustness which is highly impractical and
computationally expensive. To solve the problem, (Zhang et al., 2022) propose a two-stage framework called Decoupled
Adversarial Contrastive Learning (DeACL) which fine-tunes existing encoders for increased robustness. Therefore,
the knowledge of a pre-trained encoder is distilled to a robust one. The objective for the distillation are to: (1) match the
distilled encoder representations to those of the pre-trained encoder, and (2) bring the distilled encoder’s representations of
adversarial examples close to their clean counterparts. Closeness is defined by cosine similarity, and adversarial examples
are just those examples generated on the original trained encoder to maximize the distance to the original samples. A
compelling aspect is that the decoupling approach of DeACL is not limited to contrastive learning - the original encoder
could potentially leverage other self-supervised learning (SSL) methods. Only the distillation loss may need adaptation for
SSL frameworks like MAE (He et al., 2022), where cosine similarity may not be optimal. Through this approach, DeACL
sets a new state-of-the-art by effectively and efficiently improving encoder robustness. This is achieved by decoupling the
SSL pre-training stage from the adversarial fine-tuning stage. The flexibility of DeACL leaves room for exploring different
SSL methods in the first pre-training stage. Given the many advantages of DeACL demonstrated thus far, we focus our
evaluation on this approach.
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C. Hyperparameters
C.1. Further Insights on Depth Estimation

The multi-scale gradient matching loss (Li and Snavely, 2018) encourages smoother transitions in depth predictions and
penalizes differences in log-depth gradients across multiple scales:

Lgrad =
1

n

∑
k

∑
i

|∇xR
k
i |+ |∇yR

k
i |. (3)

The loss is computed at multiple scales where Rk
i represents the value of the log-depth difference at position i and scale k.

∇x and ∇y denote the gradients in the x and y directions, respectively.

The pixel-wise depth loss (Farooq Bhat et al., 2021) measures the difference between the predicted and ground truth depth
values in a scale-invariant manner:

Lpixel = α

√√√√ 1

T

∑
i

g2i −
ρ

T 2

(∑
i

gi

)
. (4)

Where gi = log d̃i − log di, with d̃i representing the predicted depth and di the ground truth depth. The parameters α and ρ
are set to 1 and 0.85 in our experiments.

The final loss we use is 1
2Lgrad + Lpixel.

C.2. DeACL fine-tuning

In this section, we describe the hyperparameters we adopt to perform the adversarial fine-tuning proposed by (Zhang et al.,
2022) on DINOv1 with ViT B/16 backbone. We use a learning rate of 0.05 with a cosine scheduler and 10 epochs of warmup.
We fine-tuned the model for 100 epochs with a SGD optimizer (momentum 0.9) and batch size of 128. The adversarial
perturbation budget ε was set to 4/255. We did not use weight decay. We employed random crops, and random horizontal
and vertical flips as training-time augmentations.
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