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Abstract

Deep generative models have emerged as a popular machine learning-based ap-
proach for inverse design problems in the life sciences. However, these problems
often require sampling new designs that satisfy multiple properties of interest in ad-
dition to learning the data distribution. This multi-objective optimization becomes
more challenging when properties are independent or orthogonal to each other.
In this work, we propose a Pareto-compositional energy-based model (pcEBM),
a framework that uses multiple gradient descent for sampling new designs that
adhere to various constraints in optimizing distinct properties. We demonstrate
its ability to learn non-convex Pareto fronts and generate sequences that simulta-
neously satisfy multiple desired properties across a series of real-world antibody
design tasks.

1 Introduction

Generative models have shown promise across various applications in the life sciences for generating
chemically- and physically-plausible designs and in accelerating the process of scientific discovery.
Part of this trend of adoption can be owed to the convincing examples created by generative adversarial
networks (GANs) [13], variational autoencoders (VAEs) [23], energy-based models (EBMs) [8] and,
more recently, diffusion models [35; 32; 5]. However, there are far fewer success stories in real-world
industry applications [6; 15]. Some reasons include an overrepresenation of image datasets; a lack of
evaluation protocols and metrics for synthetic data [37; 33]; challenges around controllable generation
and training — for exmaple GANs; and challenges in generating samples that are different from
have been seen during training [22; 2; 38]. Taken together, these serve to limit the applicability of
generative modeling for real-world use cases.

Our work is motivated by this and, in particular, the need to accelerate the development and discovery
of new molecules, namely therapeutic antibodies. Though several generative models have already
been proposed for these purposes [10; 12; 31], generating new samples without guidance or control
does not guarantee downstream success of the proposed molecules. In practice, each molecule has to
satisfy multiple properties. For therapeutic antibodies, this could include properties such as binding
affinity, polyreactivity, and viscosity [1; 20; 39]. Failure to account for these and other properties
can lead to serious complications later on during scale-up, manufacturing, and clinical trials and
the optimization of straightforward objectives does not necessarily translate into progress in the
laboratory [28].
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Figure 1: Example output of the proposed Pareto-optimal energy-based sampler (pcEBM) compared
to a naive multi-objective sampling (cEBM). The green marker denotes the starting sequence; each
point in the plot corresponds to a modified design of that starting point, aiming at improving affinity
and nonspecificity (BV-ELISA or BV score). pcEBM introduces samples along a Pareto front, with
candidates minimizing both objectives simultaneously, while candidates generated by the cEBM
minimize only one objective.

Motivated by this challenge, we propose a new EBM for antibody design that simultaneously takes
into account multiple properties that an antibody has to satisfy. The adherence to multiple properties is
a challenge in itself, as it often involves optimizing multiple conflicting objectives. In antibodies, for
instance, optimization of binding affinity alone may come at the expense of developability properties,
parameters that govern the likelihood of success of a molecule during manufacturing and quality
control .

In general, in optimizing multiple conflicting properties, it is often impossible to find a single sample
that satisfies all of the objectives simultaneously [21]. We argue that, instead, one should aim to
propose a set of diverse data points from the Pareto front [3] that correspond to different choices
for various objective functions. Doing so enables a global perspective the optimal trade-off between
objectives and can select a molecule according to their preference. To achieve Pareto optimality, we
rely on recent advances in multi-objective optimization (MOO)[34; 27] as well as on compositional
sampling with EBMs [8] to build a Pareto-optimal compositional EBM (pcEBM). Figure 1 exemplifies
both why we need pcEBM and what we achieve with it when optimizing a design of an initial antibody
sequence.

We first present the the necessary background on multi-objective optimization in subsection 2.1 and
related work on compositional sampling with EBM in subsection 2.2 leading to pcEBM described in
subsection 2.3. In section 3 we include empirical evaluation and discussion, before concluding in
section 4.

2 Background and method

Problem setup. Antibodies are composed of two chains of amino acids (AA), which can be repre-
sented as sequences of characters. Each AA comes from an alphabet of 20 characters corresponding ,
typically of combined length L ∼ 250. We will denote the sequences as x = (x1, . . . , xL), where
xl ∈ {1, . . . , 20} corresponds to the AA type at position l. For each of those sequences, we measure
m properties, such that fi : RL → R for all i ∈ 1, . . . ,m.

Our goal is to generate new sequences x∗ with preferred values for each of the m properties. Since
we cannot fully satisfy all of the properties/objectives simultaneously (they may be conflicting with
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each other), we are interested in finding samples which can not be further improved simultaneously
for all the objectives, yielding the notion of Pareto optimality [4].

Definition 2.1 (Pareto Optimality [4; 27]) For x1, x2 ∈ Rd, we say that x1 is dominated by x2 iff
fi(x2) ≤ fi(x1),∀i ∈ [m]. A point x∗ is called globally Pareto optimal on Rd iff it is not dominated
by any other x′ ∈ Rd. A point x∗ is called locally Pareto optimal iff there exists an open neighborhood
N (x∗) of x∗, such that x∗ is not dominated by any x ∈ N (x∗). The collection of globally (resp.
locally) Pareto optimal points are called the global (resp. local) Pareto set. The collection of function
values F (x∗) = (f1(x

∗), f2(x
∗), . . . , fm(x∗)) of all the Pareto points x∗ is called the Pareto front.

2.1 Multi-objective optimization

A simple approach to solving MOO is linear scalarization [21] based on a preference vector λ =
[λ1, . . . , λm] from the probability simplex on [m], i.e., S = {λ :

∑m
i=1 λi = 1, λi ≥ 0, i ∈ [m]}.

Each λ ∈ S leads to a weighted objective function fλ(x) =
∑m

i=1 λifi(x) and its minimizer
x∗
λ = argminxfλ(x). As we evaluate on λ from a grid of S, we hope that the corresponding x∗

λ
approximates the Pareto front. The solutions obtained by linear scalarization lie in the convex
envelope of the Pareto front, which renders the approach plausible for situations where the Pareto
front is convex [27].

An alternative approach for non-convex Pareto fronts is multiple gradient descent (MGD) [7],
which iteratively updates variable x along a direction that ensures that all objectives are decreased
simultaneously and guides the optimization towards a Pareto improvement. Denote the gradient of
the i-th objective as ∇xfi(x). With gradient descent, we update the variable xk ← xk−1 − ηg(x),
where g(x) is a vector to be determined and η is a small step size. From a 1st-order Taylor expansion,
we can deduce that ⟨∇xfi(x), g⟩ ≈ −(fi(xk)− fi(x

k−1))/η which represents the decreasing rate of
fi when we update x along direction g(x). In MGD, g is chosen to maximize the slowest decreasing
rate among all the objectives, that is:

g(x) ∝ argmax
g∈Rd

{min
i∈[m]
⟨g,∇xfi(x)⟩ subject to ∥g∥2 ≤ 1} (1)

By doing so, g(x) is pushed to have positive inner products with all∇xfi(x). If the latter is impossible,
{∇xfi(x)}mi=1 will contain conflicting directions and we will get g(x) = 0 which terminates the
procedure. By using Lagrangian duality, Désidéri [7] has shown that the above objective has the
optimal value g(x) ≈

∑m
i=1 λ

∗
i∇xfi(x) where {λi∇xfi(x)}i=1m is the solution of

min
λi

∥
m∑
i=1

λi∇xfi(x)∥2 subject to
m∑
i=1

λi = 1 and λi ≥ 0 for all i ∈ [m].

The above convex optimisation problem has a closed form solution when m = 2 and a fast algorithm
for m > 2 [34; 19]. By construction, when the step size is small, MGD decreases monotonically all
objectives simultaneously and will terminate at a local Pareto point.

2.2 Compositional energy-based models

Although EBMs have been around for many years [25; 24], recent interest in generative modeling has
led to a resurgence of interest [8; 9]. EBMs learn to represent data by approximating an unnormalized
probability distribution across data. They do so by learning an energy function Eθ(x) parameterized
by a neural network that maps each input x to a scalar real value interpreted as the energy and
approximating the data distribution by the Boltzmann distribution under unit temperature:

pθ(x) ∝ e−Eθ(x).

Training an EBM on a given data distribution is usually done by contrastive divergence [16]. Besides
predicting the un-normalized data likelihood, EBMs can be used to sample new data points x from
pθ (during both training and generation). Sampling is typically performed by some Markov-Chain
Monte-Carlo (MCMC) procedure. We consider the common case of Langevin Diffusion (LD) where
the samples are initialized from refinement/uniform random noise followed by iterative refinement:

x = xk−1 − η

2
∇xEθ(x

k−1) + ωk, ω ∼ N (0, σ2), (2)
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with k being the sampling step and η the step size.

The above sampling procedure can be easily extended to produce samples from the composition of
pθ with other distributions of interest. Along this direction, Du et al. [9] considered the problem
of sampling from m composed distributions, each modeling a different propertiey fi, an approach
referred to as compositional EBM (cEBM). Du et al. proposed multiple variations for executing
different logical operations over properties of interest, such as conjunction, negation, and disjunction.
In the following, we focus on conjunction, which corresponds to combining individual EBMs as a
product of experts:

p(x|f1 ∧ f2 ∧ · · · ∧ fm) =
∏
i

p(x|fi) ∝ e−
∑

i E(x|fi).

We also note that cEBM utilized the following sampling procedure:

x = xk−1 − η

2
∇x

∑
i

Eθ(x
k−1|fi) + ωk, ω ∼ N (0, σ2), (3)

which amounts to applying LD w.r.t. E(x) =
∑

i E(x|fi).

2.3 Pareto compositional sampling

Inspired by previous work on multi-objective optimization [7; 27] discussed in subsection 2.1, we
here propose pcEBM, a method that samples from the Pareto front of m Boltzmann distributions of
interest. Our approach entails utilizing multiple gradient descent to select a locally optimal direction
that optimizes the slowest decreasing rate among all the objectives of the compositional EBMs:

xk ← xk−1 − η argmax
g∈Rd

{min
i∈[m]
⟨g,∇xfi(x

k−1)⟩ subject to ∥g∥2 ≤ 1}+
√
2αω, (4)

where α is a positive constant and the internal optimization problem is the same utilized in MGD and
the external sampler is performing Langevin diffusion.

Figure 2: Pareto fronts and estimated hy-
per volume for all baselines with η = 0.01
and k = 400. The axes show the energy
of EBMs that were separately trained on data
with good affinity and BV scores, respectively,
with smaller energies being more desirable.

Suppose that we are generating a new sequence x,
either by starting from random noise or by improv-
ing an existing one. At each step k, if xk−1 is far
from the Pareto front and the gradients ∇xfi(x

k−1)
have non-negligible norm, Equation 4 will drive xk−1

closer to the Pareto front. On the other hand, when
x∗ is close to the Pareto front and the gradients have
nearly vanished, the noise dominates and xk−1 per-
forms Brownian motion. As will be demonstrated
experimentally, the addition of noise ω helps pcEBM
to explore more efficiently the Pareto as compared to
MGD, whereas the locally optimal determination of
the optimization direction renders the optimization
more effective than cEBM.

3 Empirical evaluation

In the following, we compare the Pareto compo-
sitional EBM pcEBM with three baselines: multi-
ple gradient descent (MGD) [7], a compositional
EBM (cEBM) [9], and a linearly scaled cEBM (ls-
cEBM) [21].

Experimental setup. We wish to generate plausible antibody sequences according to three key
properties: (i) similarity to known human antibodies from the public database of observed antibod-
ies [29] (Ab-like), (ii) binding affinity to antigens of interest (Aff ), and (iii) an experimental measure
of nonspecificity — phenomena which can affect the dosing regimen, safety, and overall therapeutic
profile of an antibody — which we refer to as the BV score [17] 1. We use datasets from both

1An enzyme-linked immunosorbent assay (ELISA) of non-specific binding to baculovirus particles [17].
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public and proprietary sources to train three separate EBMs, each pertaining to a property of interest.
Though alternative choices are also possible, we instantiate all models as sequence-based convolution
networks [11]. More details on the architecture can be found in the Appendix. We use the same
models for sampling new sequences with each of the baselines. The differences in implementation
are as follows: MGD does not add any noise, cEBM uses Lanvegin dynamics but has uniform weights
for all properties; ls-cEBM differs from cEBM in that it includes domain-informed weights; and
finally pcEBM learns the optimal weights for each property per sequence. Each baseline relies on
two main hyper-parameters, namely the step size η and the number of steps k.

To compare different approaches in terms of their ability to satisfy multiple properties, we adopt the
Hyper-Volume (HV) metric from the multi-objective optimization literature [14] computed over the
energy scores of each property model. In all experiments, we aim for minimizing the energy scores
per property. Additionally, as a proxy for how well the sampled sequences capture the properties of
interest we compute the minimal edit distance of each sampled sequence to the ones seen during the
training of each property EBM (edist) [30]. More details about the computation of these metrics can
be found in the Appendix.

Results and discussion. Our experiments are designed to provide answers to the following research
questions:
• Q.1 Can we use EBMs to generate valid/reasonable, multi-property compliant antibody sequences?
• Q.2 Does sampling with Langevin Dynamics propose more Pareto optimal sequences?
• Q.3 Does pcEBM have an advantage over cEBM?
• Q.4 Starting from a seed sequence, can we improve a property of interest using (p)cEBM?

HV(Ab-Like, Aff, BV) HV(Aff, BV) HV(Ab-Like, BV) HV(Ab-Like, Aff)

η = 0.01

MGD 0.04 0.22 0.23 0.29
ls-cEBM 0.00 0.24 0.24 0.23
cEBM 0.00 0.25 0.24 0.25
pcEBM 0.049 0.3 0.29 0.30

η = 1

MGD 0.04 0.25 0.25 0.27
ls-cEBM 0.00 0.25 0.24 0.25
cEBM 0.046 0.29 0.29 0.3
pcEBM 0.041 0.27 0.27 0.29

η = 40

MGD 0.033 0.25 0.25 0.26
ls-cEBM 0.043 0.27 0.26 0.26
cEBM 0.046 0.29 0.29 0.29
pcEBM 0.037 0.27 0.27 0.28

Table 1: Hyper-Volume (HV) across multiple combinations of properties (as measured by energy
score) across different step sizes η. Larger scores indicate bigger improvement. The best results for
are typeset in boldface.

Table 1 and Table 2 address Q.1. We find that EBMs trained on data possessing a single property of
interest propose sequences that are similar to those sharing the same property, but are dissimilar to
the sequences preferred by other objectives. In contrast, sequences generated by a multi-property
EBMs have smaller distances to all properties compared to the single-property EBMs. Amongst the
four considered multi-objective baselines, pcEBM generates sequences with greater hyper-volume
and similarity to the training datasets, whereas MGD is a close second.

We surmise the difference between cEBM and pcEBM is owed to their speed of convergence. We
confirm this in Figure 3 by plotting the energy score at each sampling step for both cEBM and pcEBM
with a step size of η = 0.01. As observed, for the same starting sequence pcEBM converges faster.
This result partially answers Q.3.
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edist(generated, Ab-like) edist(generated, BV) edist(generated, Aff) average edist

single-property EBM

Ab-Like EBM 98.74 (±19.25) 93.84 (±19.05) 103.3 (±17.8) 98.62
Stc EBM 84.68 (±15.78) 69.7 (± 16.42) 88.29 (± 5.72) 121.33
Aff EBM 88.51 (±16.25) 81.4 (±15.6) 86.73 (±6.31) 85.55

η = 40

MGD 83.51 (±16.1) 71.49 (±15.7) 85.84 (±16.3) 80.28
cEBM 92.96 (± 19.03) 86.86 (± 17.99) 97.97 (± 17.28) 92.60
ls-cEBM 92.4 (± 19.3) 87.14 (± 17.94) 97.93 (± 17.25) 92.49
pcEBM 82.24 (±16.16) 71.47 (± 15.82) 85.76 (± 16.34) 79.82

η = 0.01

MGD 91.46 (±16.23) 84.02 (±15.43) 92.91 (±16.48) 89.46
cEBM 219.23 (±4.43) 222.47 (± 4.45) 221.99 (± 4.4) 221.23
ls-cEBM 218.78 (±4.66) 218.13 (±4.58) 218.62 (±4.73) 218.51
pcEBM 89.35 (± 14.64) 79.67 (± 13.99) 89.04 (± 14.37) 86.02

Table 2: Edit distance (mean with standard deviation in brackets) to sequences in the training set with
property of interest. Results in bold are best per columns, smaller is better, considering edist as a
proxy for similarity to real data with the specific property.

Figure 3: Energy scores per property fi at
each step for pcEBM and cEBM; same se-
quence and same step size η = 0.01.

To further test our approach, we calculate HV across
the three properties we aim to account for. Here,
we consider the energy of each property EBM as
proxy for the objective of interest2. The advantage
of pcEBM is noticeable at smaller step sizes (see Ta-
ble 1), while the variance in both edit distance and
hyper-volume for different η is significantly smaller
for pcEBM than others. Figure 2 depicts the Pareto
front for two properties obtained from candidate se-
quences from each baseline. We find that the pcEBM
front is broader than MGD-based approaches, which
agres our supposition that employing LD leads to an
improved coverage of the Pareto front as compared
to pure gradient descent. Further, pcEBM and MGD
fronts are closer to the origin that that obtained by
direct LD, which demonstrates the advantage of the
multi-properly optimization aspect of pcEBM, ad-
dressing Q.2 and Q.3.

Finally, for Q.4 we wish to explore the possibility for improving properties of already existing
antibodies by using the variants of compositional EBMs. We focus our analysis on nonspecificity
(BV) as we have an external SeqCNN classifier that can act as a surrogate pseudo-oracle. We start by
screening the existing sequences to select only those with low BV scores, which we refer to as “seeds”.
We use sequences with poor experimental and predicted BV scores as seed sequences for generation
and then reuse the nonspecificity pseudo-oracle to evaluate the newly proposed designs. Figure 5
shows the BV score improvement achieved by each baseline. We notice that the multi-objective
methods manage to improve the worst BV scores from 0.27 to above 0.9, with MGD and pcEBM
giving a slightly lower average score than cEBM (though all scores are comparably high).

The plots in Figure 4 provide further insight into the nonspecificity optimization process by examining
a low-dimensional embedding of seed and optimized sequences. The embedding is obtained by
using tSNE to project the last layer feature representations of the sequences obtained from the
nonspecificity oracle, onto a 2D space. We color each point (sequence) by their BV score with blue
indicating a good score and red a poor one. On the same plot, we overlay a seed sequence and
its corresponding proposed designs. We see that both cEBM and pcEBM improve the probability

2Though well suited to study the effect of multi-objective sampling, the energy score is biased since cEBM
and ls-cEBM have the advantage of sampling and evaluating with respect to the same model. A fairer comparison
would be using external predictors as surrogates or wet-lab results to objectively evaluate.
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Figure 4: tSNE embeddings of antibody sequences colored based on BV score, with blue sequences
having better scores. The figures show how a sequence with poor BV score of 0.68 (in orange) is
improved by two models. Left - cEBM, Right - pcEBM.

Figure 5: Left - violin plots of the distributions of predicted BV scores for the initial set of sequences
to be improved (seeds), and for the proposed designs from each baseline. Higher BV scores are better.
Right - energy scores of trajectories proposed by pcEBM for a different number of steps. Lower
energy scores are better/preferred for the objectives.

for a good nonspecificity score, and move the seed towards the section of the manifold covered by
datapoints with good scores.

4 Conclusion

We propose a new approach to sampling data points that simultaneously satisfy multiple desired
properties. We do so by integrating multiple gradients within compositional energy based models. In
a series of experiments for generating and improving existing sequences, we validate the performance
of the compositional EBMs as well as their Pareto optimality. The generality and modularity of
pcEBM allow for multiple expansions we are excited to explore: (i) other data types, in particular
graph structures suitable for molecules, (ii) incorporating other sampling frameworks such as Stein
variational gradient descent [26], (iii) incorporating uncertainty estimates, and (iv) Pareto-optimal
training for EBMs, to name a few.
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Appendix

4.1 Additional details on experiments

SeqCNNs For all properties and baselines we use an identical NN architecture, that is one model
per protein chain, consisted of three Conv1D layers with kernel size 9 and padding 1, ReLU non-
linearities and penultimate layer of size 256. All EBMs were trained with contrastive training, Adam
optimizer and early stopping criterion.

Hyperparameters For each multipropery sampling baseline, the following hyper parameter grid
was explored with random search:

• step size - η ∈ {1e−4, 1e−2, 1, 10, 40}
• number of steps - k ∈ {100, 200, 300, 400}
• noise type - ω ∈ {N ,U}.

4.2 Metrics

Hypervolume HV is an indicator for evaluating the quality of sets of solutions in multi objective
optimization. For a given reference point of r = [r1, ..., rm] we have an upper bound of the objectives,
such that supxfi(x) ≤ ri,∀i ∈ [m]. For a given set of solutions X = {xl}nl=1, a hypervolume
indicator HV (X ) is a measure of the region between all fi objectives and r:

HV (X ) = Λ{(q ∈ Rd|∃x ∈ X : q ∈
m∏
i

[fi(x), ri]})

where Λ(·) denotes the Lebesgue measure.

In the context of our experiments, we are interested in minimizing the energy scores per each property,
and we choose a reference point r = (1.0, 1.0, 1.0). We compte HV from each Pareto front to the
reference point with the implementation provided in PyMoo [18].

Edit distance Edit distance is the typical score for quantifying how dissimilar two strings (in
our case, sequences) are to one another, measured by counting the minimum number of operations
required to transform one string into the other. Although different variants exist, here we rely on the
Levenshtein distance which accounts for insertions, deletions and substitutions. In all experiments
we use the python library edist as implemented in [36].
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