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ABSTRACT

Sparse coding aims to exploit the latent linear structure of the input data, trans-
forming dense data into sparse data, thereby improving data processing efficiency.
However, many real-word signals cannot be expressed linearly, rendering the tra-
ditional sparse coding algorithms ineffective. One potential solution is to expand
the dimensions of data. In this paper, we verify that the feature mapping of Radial
Basis Function (RBF) kernel contains infinite dimensional information, and it does
not significantly increase the computational complexity. Based on this, we pro-
pose to explore the /1 -norm regularization sparse coding method with RBF kernel,
and provides a solution with convergence guarantees by leveraging the principle
of coordinate descent. Additionally, to accelerate the optimization process, we in-
troduce a novel two-stage acceleration strategy, based on theoretical analysis and
empirical observations. Experimental results demonstrate that the two-stage ac-
celeration strategy can reduce processing time by up to 90%. Furthermore, when
the data size is compressed to about 2% of its original scale, the NMAE metric of
the proposed method reaches as low as 0.0824 to 0.2195, achieving a significant
improvement of up to 47% compared to traditional linear sparse coding methods
and 36% compared to other kernel sparse coding techniques.

1 INTRODUCTION

Sparse coding, known for its efficiency in transforming data into a sparse and interpretable format,
posits that data in the input space possesses inherent features (Pati et al.,| 1993} |Bao et al.||2014; |Lee
et al., 2006; [Kiml |2014). Within mathematical models, these intrinsic features are typically modeled
as a set of basic atoms or dictionary atoms. As illustrated in Fig. |1} these atoms can be concatenated
into a dictionary matrix X. Once the input data y can be expressed as

a linear combination of a few dictionary atoms (e.g., Atom 2 and Atom Nonzerocement. || zero lement

6), it can be encoded as sparse weights data w, where the majority of = 3:3333:%3

weights (e.g., w; for j = 1,3,4,5,7,8) are zeros and only a few weights 1 "7 weigh 1
(e.g., wa, wg) are nonzeros. Owing to the unique advantages of sparse -
data, sparse coding have the potential capability to handle the issues of _ o W
data compression (Ramabadran & Sinhal 1994} [Watkins et al., 2018 |L1 - ZN”;“‘:
et al |2016; Wang et al. 2016)), efficient computation (Schiitze et al., weiht7
2016; [Chalk et al., 2018; [Bengio et al., [2009; |Schiitze et al.,[2016), fea- vy o wo

ture analysis (Yutani et al., 2022} |Shi et al.l |2021; [Tong et al., |2019),

denoising (Liu et al, POT9; Wang et al., 2020; Lu ot al, POT5). Figure 1: Sparse coding.

Within the aforementioned sparse coding framework, the input data y can be sparsely encoded into
w because it can be linearly reconstructed by a combination of several dictionary atoms. It is worth
noting that the dictionary atoms are typically learned directly from the input space, leveraging the
fundamental assumption that the input data possesses inherent linear structures. However, (Yang
et al., [2016) has shown that many practical signals do not possess this characteristic, limiting the
effectiveness of traditional linear sparse coding methods in such scenarios. Therefore, seeking meth-
ods to effectively address the sparse coding of complex data is a highly meaningful topic.

Motivations. Recent studies show that a transformation of low-dimensional data into a higher-
dimensional space, may enable data that is inherently nonlinearly separable in its original form to
become linearly distinguishable within the expanded feature space (Scholkopt et al. [1997). For
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example, as shown in Fig. [J[(a), there is no straight line that can sep- o
arate the green data points from the red data points. However, if we - R = S
map each two dimensional data point (z, y) into a three dimensional

data point (z,y, zy), as shown in Fig. b), there will be numerous
planes that can separate the green data points from the red data points. o
Inspired by this, increasing the dimensionality of input data may offer Figure 2: Transforming lin-
promising prospects for sparse coding problems involving data with ~€arly inseparable data into
complex internal structures. linearly separable data.

(3,1,3)/4

While increasing the dimensionality of input data can enhance its discriminability, facilitating sparse
coding analysis, it also inevitably introduce problems, including indeterminate forms and scales of
data dimensionality enhancement, and high computational complexity. It is known that kernel trick
provides an effective way to expand data dimensions with reducing computational complexity, and
there are various categories of kernel functions (Gao et al.,|2010). To select a good kernel function,
we must be aware that the richer the dimensional information contained in the feature map, the better
the performance of the corresponding kernel function. Therefore, this article delves into the specific
form of feature mapping corresponding to the Radial Basis Function (RBF) kernel and analyzes its
potential to demonstrate great performance. Ultimately, we solidify our decision to employ the RBF
kernel-based approach as a means to tackle the challenge of enhancing sparse coding efficiency.

Contributions. The main contributions of this work include:

e We verify that the feature mapping of the Radial Basis Function (RBF) kernel contains infinite di-
mensional information, and it does not significantly increase the computational complexity. Based
on this, we explore the /1-norm regularized sparse coding method with RBF kernel, and provides a
solution with convergence guarantees by leveraging the principle of coordinate descent.

e To reduce the computational complexity of the standard kernel sparse coding method based on
coordinate descent, a novel two-stage acceleration strategy is introduced. This strategy focuses on
updating the initially predicted nonzero weight factors, and effectively predicts zero weight factors
to skip the computation of the corresponding intermediate variables.

e Our experiments demonstrate that the proposed two-stage acceleration strategy significantly re-
duces processing time by up to 90%. Additionally, our method outperforms both traditional linear
sparse coding and other kernel sparse coding methods. Specifically, when the data size is com-
pressed to about 2% of its original scale, the NMAE metric of the proposed method reaches as low
as 0.0824 t0 0.2195, achieving a significant improvement of up to 47% compared to traditional linear
sparse coding methods and 36% compared to other kernel sparse coding techniques.

2 PRELIMINARY AND KERNEL TRICK

Problem: In practice, the effective implementation of sparse coding relies on a dictionary matrix
X = [x1, - ,Xp] € R™ P that preserves the potential features of the input space, which should be
learned in advance from the dense historical data Y € R™*"" as:

1 2 -
I)?,{’IVI EHY — XW||= + )\Z lw;ll1, @™

Jj=1

where W € RPX™ ig the sparse coding matrix, with the majority of elements being zero, and only
a minority of elements being nonzero. w; is the jth column of W. The first term for (I)) is the
approximation error, and the second term with penalty parameter ) is used to force the columns of
matrix W to be sparse.

Essentially, optimization problem (1) focuses on identifying a dictionary matrix X within the original
data space, enabling the transformation of Y into a sparse matrix W, based on the assumption that
each column in Y can be expressed as a linear combination of a few atoms in X. Since W contains
significantly less amount of data than Y, it can be seen as a sparse form of input data Y. However,
when the input data Y does not have enough inherent linear structure, achieving a sparse
linear approximation of Y with high precision proves challenging.

For simplicity, we abbreviate “Number of Nonzero Elements” as “NNZE” in this paper. As shown
in Example 1, the input data Y contains 10 data points uniformly and randomly sampled from
the unit sphere. Assuming the dictionary matrix has 6 atoms, performing sparse coding and dic-
tionary learning on Y in the original input space, with the constraint that the approximation error
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Example 1: Comparison of SCDL in different data spaces

SCDL in the original space: 0619 0.1807  0.5859  0.1647 0.7811 —0.0860
02520 0.9209 —0.4397  0.9562 05918  0.4591

01058 0.3454 0.6807 —0.018% 01991  0.8841

NNZE(Y) = 30
6192 09285
6102 002 } scoL

0(180) ’

—USK03 03126 0T4TS 00807 03752 067 08181 0379
Y= | —01677 06755 —0.5517 04611 07826 0.7287 —0.8019  0.9212 ~
01041 06679 05701 0.8525 02382 02807 0.5057 —0.0854 0.5360 0.1602

0 03530 0.4045 0 —0.2138 0.4454 —0.8144
0 05106 05227 0 0.4501 0.2930 —0.0189
0 0 0 0.696T —0.4760 0.0938 —0.0053
685 0 01304 00270 —-0.1993 02872 0 o
00450 0.1008 0 0 01461 01704 0 0 01320 —0.1709

- .
{ i = [Y1o Y20 Y30 ¥io Yau Vi Vivao Vivso vaysi] i = 12,10 02278 o.1460 0 090 0 00194 0007 01236 03347 00217

NNZE(W) = 40 > NNZE(Y)

. L ) om0 0834 09010 05000 01801 04730
L SCDL in the high-dimensional feature space: ‘{ 0.4828 601 w

07523 0.3101  0.02114

[ —0.0506 0.5891 —0.9616  0.5009 0. TEEL 03700

s
g
secops

0.0024
—00241 0.4132 02596
—0.0443 01740 00472 0. 1202

0(540)

[ -DOS03 08126 0.T4TS 0087 0.5T52 06247 08181 —08T05 0.0 0028 ]
—0.1677 0.6755 —0.5517  0.4611 0. 7287 —0.8019  0.9212 0.5738 —0.3354
01041 0.66° 0.8828 0. 2807 0.5057 —0.0854 0.5360 —0.1602
0.8618
01125

0.9610
0.0281

0.0080 0. 3902 01012 0.1440
0.2126
0.0108 72 07794

01644 0.2111 3 —0.0413 0.45
—0.1021 02088 02768 —0.0792 01370 0.
—0.0175 04511 —0.2043  0.4071 01864 0.20:

V= .
0.0073
51 —0.3196
600  0.0324 0.3310
4055 —0.0786 0.3076  0.0537

0 04728 0 0 09402 0.9384 o 0 0.4206 0
_ | osom o 2 0 o 0 00511 0 0 09478 | \NZE(W) = 19 < NNZE(Y)

0 0 076 0 0 0 0.9078 0
0 0.0081 02012 0 0 0.m24 0 0 0.4267 0
0 0 0 0 0.0105 0 0 0.9500 0 0

0.0618 0.4899 0 09407 0 0 0 0 0.1078 0
W

AEoriginal = %HY — XW||2 < 0.1, yields the dictionary matrix X and the sparse matrix W.
In this case, W includes 40 nonzero elements (i.c., NNZE(W)=40), which exceeds the amount of
data in the original Y (NNZE(Y)=30). Therefore, W cannot be considered as a sparse form of Y.

Elevating Data Dimensions: Inspired by the example in Fig. [2 elevating the dimensionality of
data may potentially enhance the effectiveness of sparse coding. In Example 1, we directly ex-
tend each y; = [y1i,y2i, ysi] " vertically 0 ¥; = [y1s, yi, Ysi, Yis: Y31, Yae: Yri¥zir Yri¥ai, Y2iysil s
for ¢ = 1,2,---,10, forming a high-dimensional data matrix Y. Given that the dictionary
matrix is composed of 6 atoms, conducting sparse coding and dictionary learning on Y in the
high-dimensional feature space, with the constraint that the approximation error AEy iginai =

%HY — )A((’VV||2F < 0.1, yields the dictionary matrix X and the sparse matrix W. Note that, justas'Y

is a vertical expansion of Y, g is a vertical expansion of X. In this case, there are only 19 nonzero
elements in W (i.e., NNZE(W)=19), which is less than that of the original data Y (NNZE(Y)=30).

Consequently, W can be regarded as a sparse representation of Y. That is, expanding dimensions
can indeed result in a more efficient sparse representation of the original data.

Indeed, there are numerous nonlinear mapping methods that can be utilized to enhance the dimen-
sionality of data. For instance, similar to the approach in Example 1 where all second-order terms
of the original data are introduced, we could also incorporate all third-order terms, all fourth-order
terms, and so on. Additionally, we could introduce a combination of all second-order and third-order
terms, or selectively introduce parts of second-order and third-order terms, and so forth. In essence,
the ways to increase dimensionality are virtually limitless, and it is impractical to verify each method
individually to determine which best meets practical needs. Therefore, the specific form and scale
of data dimensionality enhancement that can enhance the efficiency of sparse coding remains
a thought-provoking issue.

Theoretically, the more nonlinear terms that are incorporated, the more likely it is to enhance the
efficiency of sparse coding. However, as the dimensionality of the data increases, the computa-
tional complexity inevitably rises as well. As shown in Example 1, the computational complexity
of sparsely coding Y into X and W is O(180). After expanding Y into Y, the computational com-
plexity of sparsely coding Y into X and W increases to O(540). If the scale of Y is too large or if
the data expansion method is too complex, the corresponding computational load may become pro-
hibitive. Therefore, overcoming the computational complexity introduced by data dimensionality
expansion remains a significant challenge.

Advantages of RBF Kernel in Elevating Data Dimensions: In response to the aforementioned
challenges of “indeterminate forms and scales, and high computational complexity of data dimen-
sionality enhancement”, in this section, we validate that the Radial Basis Function (RBF) kernel
possesses excellent properties that give it distinct advantages in elevating data dimensions.

For any a,b € R", their RBF kernel x(a, b) = exp(—5+z||a — b||3) can be decomposed as

1 2 2 aTb T
k(a,b) = exp by (llallz + IIb]12) ) exp ponl #(a)” ¢(b) ()
where o is the RBF kernel hyper-parameter, ¢(z) = [ =Ty mem ] G R z?{l)} is an infinite
o lal=
order polynomial map forz = aorb, |[q| = ¢ + -+ + ¢n, and 0 = exp (—5 (||a||2 +b13))-
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Notably, on the one hand, ¢(z) includes all integer-order terms of the original data z, including
infinite order. That is to say, ¢(z) contains all forms of data expansion, and the scale of the
expanded data is infinite. On the other hand, the inner product of two expanded data points ¢(a)
and ¢(b) can be directly calculated through kernel function (a, b) with computation complexity
of O(n), instead of ¢(a)” ¢(b) with computation complexity of co. That is to say, in the calculation
process, as long as the inner product of extended data points is formed, the problem of com-
putational complexity resulting from dimensionality increase can be avoided via kernel tricks.
Precisely because of these great properties, the RBF kernel is expected to exhibit excellent perfor-
mance in expanding data dimensions. Consequently, our endeavor in this paper revolves around
leveraging the feature mapping ¢, inherent to the RBF kernel, to expand data dimensions, ultimately
enhanceing the performance of sparse coding.

3 KERNEL SPARSE CODING DICTIONARY LEARNING

Based on the discussion above, in order to achieve a more efficient sparse coding scheme for the
input data Y, we impose the feature mapping in (2)) to the historical data Y and the dictionary matrix
X, formulating the following Kernel Sparse Coding Dictionary Learning (KSCDL) problem:

m

mmf||¢(> PXOW([ T+ 2D fIw]1. ?3)

X,W 2 °
j=1

It is noteworthy that, although the KSCDL in (3) is an extension of (I), the solution of (3) can not
be obtained by extending the solution of (). For an in-depth discussion, please refer to

Solution Overview: To solve KSCDL (3)), we decompose the KSCDL problem into a Kernel Sparse
Coding (KSC) subproblem and a Kernel Dictionary Learning (KDL) subproblem:

e KSC: The KSC subproblem of (3) can be interpreted as finding the weight matrix W, while
keeping the dictionary matrix X fixed, through

1 m
W = arg min 52 6(y;) — AX)W513 + Allw; 1] - )

e KDL: The KDL subproblem of (3)) involves
solving the dictionary matrix X, with the sparse ey po——— S
coding matrix W fixed, through J

— —
KSC KDL

1 2
X = argmin = |[¢p(Y) — o(X)W|| 7. 5
gauin 3 [6(0) = eX)Wilk- - ) Figure 3: Flowchart of KSCDL.
Moving forward, based on the block coordinate descent method, we alternately and iteratively solve
these two sub-problems as shown in Fig. [3] Upon convergence of the algorithm, we output and save
the dictionary matrix X.

Solution for KSC: For each column of W and Y (abbreviated as w and y, respectively), the objective
function in (@) can be equivalent rewritten as:

1
min —[[¢(y) = ¢(X)wl3 + Allwlpr, ©)

Based on the kernel trick, we have ||¢(y) — ¢(X)W||3 = kyy — 2ryxW + W! ixxw. In which

Ryy = ’i(ya)I) = ¢< )T(vb( ) RyX = K’(Y? X) = ¢(y)T¢(X) = [H(Y7 X1)7 U 7H(Y7 Xp)]’ and RXX =
#(X)T¢(X) with [k(X, X)]i; = k(X;, x;). Then problem (@) is equivalent to

. 1
min —rKyxw + EWTHXXWJF/\HWHL 7

Denote the objective function of problem as J, if w; > 0, the derivative of J with respect to w;
can be obtained as 83 = —hyx, + 25— Kijw; + A, where fyx, = K(y,X;) and ki = K(X;, X;).
Let (%}’i =0, one gets —ﬁyxi + Z;)# Kijwj + Kiw; + X = 0. Thatis w; = kyx, — Zé’# Kijw; — A,
since x;; = 1. For convenience, we denote z; = Kyy, — Zf i KijWj. To avoid confusion, we refer
to one complete iteration of the coordinate descent algorithm as a round, which starts from updating
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wy and continues until w,, has been updated. The variables updated in the kth round will be marked
with a superscript (k), then

(k) _ zp: w0l where wlt* — wi, i< @)

Z; = Ryx; 2~ m]w]- , where wj = w(‘kil) lfj > i
J#i 1 ’

By analogy, it’s not difficult to summarize that

PARED VT SIS ¥
wgk) = softx(zgk)) = zzw + A, if zzw < =N )
0, if |27 < A

Solution for KDL: Based on the kernel trick, the objective function in (5)) can be rewritten as
[6(Y) = SXOW® [ = Trace [ryy — 2ryx W + (W) Ty W], (10)

where kyy = k(Y,Y) = ¢(Y)To(Y), kyx = (Y, X) = ¢(Y)T#(X). There is no closed form
solution for dictionary matrix X due to the kernel matrices, we update X via the gradient descent
method. The gradient of the objective function w.r.t. matrix X can be calculated as Gx = ﬁ (XTI, —

YQ, +XQ, — XT'3). Here Q; = (WH)T 0 kyx, Ty = diag(17Q,), Q; = WH (W7 @ rixx,
'y = diag(11'Q,). We update X as

XF) — xt=D _ax, (11)

where 1 is the optimization stepsize. As outlined in Fig[3] the organization details of the KSCDL
algorithm and the theoretical guarantee of its convergence are provided in[A.2]

4 FAST KERNEL SPARSE CODING

The KSC subproblem is solved basing on the coordinate descent principle, which guarantees con-
vergence. However, the updating iterative process of the weight vector is slow.

Computational complexity analysis. In Fig. @] we pro-
vide a illustration of the update process for sparse weight

. . . 1
vector w during the kth round of iteration. It can be ob- , = ,-  * — | =soft
served that the calculation of the intermediate variable #1

(k) _ P o Tik . 3
2, = Kyx, i lijw; ", for each sparse weight fac

. . 1

tor wgk), has a complexity of O(p), and there are psuch  , = ,- z — 2 =soft
weight factors (i.e., wgk),i =1,2,---,p) in each weight s '
vector w. Therefore, the computational complexity for
each iteration of w is O(p?), making the update process = - (NN soft
relatively sluggish. In the following, we will approach -

from two aspects: theoretical analysis and experimental Figure 4: Standard updating process for
observation, to accelerate the KSC process in two stages.  sparse weight vector w.

4.1 ACCELERATION STRATEGY I: SAFELY SKIPPING UPDATES FOR ZERO ELEMENTS
(k)

%

(k)

Theoretical Analysis: Equation @) shows that w; "’ is essentially a soft threshold function of z;

with the threshold A. It is particularly important to note that if \zz(k)| < X holds, we can directly

(k) (k)

calculation and can be set to O directly. In order to anticipate the relationship between zi(k) and ),
(k) (k)

A i

obtain w,; ’ = 0. In other words, there may be a scenario in which w;"’ does not require an update
we intend to explore the upper and lower bounds of z

Zl(k) _ ng—l)

. For this purpose, we recompute z, ’ as:

— ki AW, (12)

where k;. = [K‘i17 Kigy -+ ,Kfip], AWE?)) — [Awﬁk)y ... ’Awgﬁ)l’ 0, Awl(iil)’ - ’sz()k—l)]T and

Awl(k) = wl(k) — wl(k_l) foreach ! = 1,--- ,p. Combining with the Cauchy-Schwarz inequality
(Steelel [2004), it can be obtained from (12)) that

2" <M <z (13)
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Figure 6: Complete update process of w based
Figure 5: Acceleration Strategy I. on Acceleration Strategy 1.

Where k k—1 k k k—1 k
2 =270 4 ol AWS [12, and 287 = 2570 — s [lo| AW(E) [ (14)

(k)

Obviously, based on z;", the computational complexity of z ) is O(1). Naturally, we have

k)

o If gl(-k) > Aor z ) < —\, then w; 75 0, meaning w; needs to undergo an update calculation.

k)

ST~ ST~

oIf —A<z; (k) < z < A, then w,; "’ = 0, indicating that the update for w; can be avoided.

The second scenario mentioned above indicates that there are indeed situations where it is not nec-
k . “(k k .
essary to compute z; ’, and only the calculations of Zz;”” and 2z, ' are needed to determine that

wgk) = 0, which can effectively reduce computational complexity.

In fact, z(kfl) can be directly obtained from the (¢ — 1)th round and ||%;.||2 can be precomputed
(k )

before iterations. In addition, based on the definition of Aw in equation 1i we can get

JAwi 2 = \/law) 13 - (Awl* )2 4+ (Aw)z. (15)

2, the computational complexity of ||Aw(k)||2 can be ig-
(k)

That is, once we obtain HAW(QM

nored. Therefore, for the kth round, the total computational complexity of z;™” and gz(-k), for all

i€ {1,---,p}, primarily arises from ||AW(1)) ||2. Further more, we have

lAwE 2 = IAwdE D)2 — (Al )2 4+ (Aw D)2, (16)

That is, once we obtain HAWE];)_ 2 |l2, the computational complexity of ||AWEI;)) |l2 can be ignored.

By analogy, for any ¢ € {1,--- ,p} and integer k£ > 1, the computational complexity of ||AWE?)) Il2

primarily stems from |\Aw8§| 2, which is determined by the initialization rule of the algorithm. It
can be 0 if we initialize Aw as a zero vector, or it can be O(p) if we initialize Aw as a nonzero

vector. From this perspective, using the upper and lower bounds ?Ek) and ggk)

elements in w holds the promise of reducing computational complexity.

to anticipate zero

Acceleration Strategy Design: Based on the above theoretical analysis, we propose to utilize Egk)

and z(k)

to accelerate the update of zero elements in the weight vector w. As shown in Fig. [5| before

(k) (k)

for w; ", we first calculate the the upper and lower bounds

(k) -

calculatlng the intermediate variable z;

(k)

and use them to predict whether w; " is zero. If it is, we directly skip the update of z( ), if

not, we calculate z( ) and thereby update wE ). It is worth noting that this acceleration strategy is
not restricted to the case using RBF Kkernels, as w is calculated from xyx and xxx, which are
not constrained by any specific kernel function.

of z;

4.2 ACCELERATION STRATEGY II: PRIORITIZING UPDATES FOR INITIALLY PREDICTED
NONZERO ELEMENTS

Experimental Observation: Based on Acceleration Strategy I, if we update the elements of the
weight vector w following the process shown in Fig. [6] and track the positions of nonzero elements
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Figure 7: Changes for R(*) during the iteration process.

in w, we will find that the positions of nonzero elements appear to be relatively stable. In other
words, the nonzero elements in vector w(**1) occupy positions that are closely analogous to
those in vector w(*). To better describe this phenomenon, we define several new metrics to track
the changes in the positions of nonzero elements throughout the iterative process:

o I(%): the index set of nonzero elements in w(*).

o [I®)|: the number of nonzero elements in w*).

o I7) N T(A+1): the index set of elements that are nonzero in w(*) and also nonzero in w(*+1),

o R = 1) A T*+1)) /|]T*)|: the ratio of the number of elements that are nonzero in w(*) and

remain nonzero in w(*+1) , to the number of nonzero elements in wk),

Fig. illustrates the variation process of the metric R(*) on four real-word datasets, from which we
can see that, in each iteration of the loop, over 60% of the nonzero elements maintain their positions.
We call this feature relative stability of nonzero element positions.

Given that the positions of nonzero elements exhibit relative stability, this indicates that in the
process of adjacent continuous multiple rounds of iterations, only a subset of nonzero elements with
fixed positions are being updated. For example, as shown in Fig. [6] in the first round of iteration,
only w; and w; are predicted as nonzero elements, while all other elements are zero. And in the
first k£ rounds of iteration, only w; and w; necessitate updates. This situation renders the prediction
of the remaining zero elements somewhat unnecessary.

Although the computational complexity of prediction be- v memsews moes etnes 0 pepmens
havior is not high, the more rounds required to update = :
these nonzero elements, the more computing resources &) <& & |
are wasted, especially for large-scale networks. ﬁ(ﬁ)a@ﬁ@@ “

Acceleration Strategy Design: To alleviate the situation <>~ o e
above, we proposed to focus on updating the nonzero .. .. o eoe

weights filtered out by zk) (k)

; ~ and z; until convergence Figure 8: Overview of the two-stage ac-
initially, as shown in Stage 1 in Fig. [8] The complete celeration strategy.
organization of FKSC algorithm and its computational complexity analysis are detailed in[A.4}

5 EXPERIMENT

Overall, our experimentation encompasses an initial Kernel Sparse Coding Dictionary Learning
(KSCDL) training phase and a subsequent Fast Kernel Sparse Coding (FKSC) testing phase. The
specific details of the experimental setup, including the dataset, comparison algorithms, and evalu-
ation metrics, can be found in Within the initial KSCDL training phase, we replace KSC with
FKSC, verifying the convergence of the KSCDL method and analyzing the impact of various hyper-
parameters on the KSCDL objective value in[A.6] Moving on to the subsequent FKSC testing phase,
we proceed to validate the effectiveness of the acceleration strategy within FKSC, and compare its
performance in the context of data compression (the specific implementation steps are outlined in
with other existing algorithms. The corresponding results are shown in the following.

Effectiveness of Acceleration Strategy: The effectiveness of the acceleration strategy is mani-
fested in two aspects: accuracy and processing time. In the following, we verify that the proposed
FKSC method can accelerate processing time while ensuring there is no additional loss of accuracy.

Given the limited scale of real datasets, which may hinder the effectiveness of our acceleration
strategy, thus, we integrate synthetic data, gradually increasing the data scale, to verify the scalability
performance of the proposed algorithm. Specifically, we generate synthetic data, denoted as Syn600,
Syn800, Syn1000, Syn1200 and Syn1400 respectively, following the generation method of Syn360
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in[A.3] The data sizes used for training in them are 600 x 1200, 800 x 1600, 1000 x 2000, 1200 x
2400, 1400 x 2800, and the data sizes for testing are 600 x 600, 800 x 800, 1000 x 1000, 1200 x
1200, 1400 x 1400, with the dictionary matrix configured as a square and hyperparameters set to
A = 0.01 and o = 20 uniformly.

The experimental results are shown
in Table[I]and Fig. 0] from which we 2
can observe that s - B

06T 005 ClFksc 6% FK:C

e The two-stage accelerated strategy 0s
Olllll
05 B /\@\\;Nd 0'5% \Vz‘)lﬁ l

in FKSC does not exert significantly  zo. L
LL[L

detrimental effect on accuracy. As os
shown in Table the objective values 02 Q\ﬂi’@\‘;wj;z@w" l

Number of updates for Eq.(8]
N

remain consistent between FKSC and o 1L
A
0,0

S 0 9,
228 (@S a0 2 D o0, 0, o
AR g\@\ CORSNANNGEN
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e The FKSC method can significantly
reduce processing time. Fig. [9] (a) (a) (b)

shows that FKSC has effectively im-  Figure 9: FKSC’s scalability experiments. For each column
proved the efficiency of KSC, achiev- i sparse weight matrix W: (a) the average processing time;

ing a remarkable reduction in pro- () the average number of updates for (8.
cessing time by up to 90%, for each

column in sparse weight matrix W. This improvement is attributed to FKSC’s strategy of calculat-
ing the upper and lower bounds of intermediate variables, thereby substantially circumventing their
updates, as illustrated in Fig. 0] (b).

e As the data size increases, the acceleration effect of FKSC becomes increasingly evident. As
shown in Fig. [ (a), the processing time for both KSC and FKSC increases in tandem with the
expansion of data scale. Notably, the KSC method experiences a swift surge in processing time,
contrasted by a more gradual increment for the FKSC method. As a result, the gap in processing
time between KSC and FKSC becomes increasingly pronounced as the data scale increases.
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Table 1: The objective values for KSC and FKSC
PM2.5 | Traffic | Harvard | Syn360 | PlanetLab | Syn600 | Syn800 | Syn1000 | Syn1200 | Syn1400
KSC [0.2761 [ 0.1378 | 0.3877 | 1.8439 | 0.8328 1.6057 | 2.1432 | 2.6820 | 3.2092 | 3.7574
FKSC | 0.2761 | 0.1378 | 0.3877 | 1.8439 | 0.8328 1.6057 | 2.1432 | 2.6820 | 3.2092 | 3.7574

Compression Performance: Given that FKSC effectively converts dense data into sparse data com-
prising merely a few non-zero elements, we delve into its application within the realm of data com-
pression. The intricate implementation details are comprehensively presented in

The Compression Ratio (CR) is determined by FKSC, which hinges critically on the sparse penalty
parameter . Specifically, as stated in (9), the larger the value of A, the greater the interval [\, )]
becomes. Consequently, more intermediate variables z;(i = 1,2,--- ,p) fall within this interval,
leading to a higher number of zero weights. As a result, w becomes sparser, and the compression
ratio increases. However, there is a trade-off as an excessively large A can render w overly sparse,
potentially compromising the accuracy of data reconstruction.

Motivated by the experiments detailed in[A.6] we take o = 10,4, 11,17 and 10 for PM2.5, Traffic,
Harvard, Syn360 and PlanetLab respectively, and confine the penalty parameter A within the interval
[0.001, 0.1] to ensure that the sparse weight matrix W is not too sparse to recover the original data
Y. In Table 2] we detail the compression performance parameters of various algorithms across five
datasets at four distinct compression ratios (CRs), with the optimal and sub-optimal performance
parameters highlighted in bold. From which, several key observations emerge:

o Superiority of FKSC over CD: With the exception of the PM2.5 dataset at CR = 26.0293, the
FKSC method consistently outperforms CD in all three performance metrics. Notably, in the Traffic
data at CR = 57.3321, i.e., the data size is compressed to 1.75% of the original scale, the NMAE,
NMAE, NECR metrics of FKSC reach 0.1764, 0.1259, 6057 respectively, achieving a remarkable
21% relative improvement in NRMSE, 47% in NMAE, and an astonishing three times increase in
NECR. This underscores the significant enhancement in sparse coding performance brought about
by the incorporation of kernel trick.

e Competitive performance of FKSC compared to KSC: It is evident that these restoration perfor-
mance parameters of FKSC closely align with those of KSC across five datasets at four different
CRs. This indicates that the two-stage acceleration strategy in FKSC exhibits virtually no adverse
impact on data compression.
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Table 2: Compression performance of FKSC and other comparison methods.

Trattic CR=30.5866 CR=403351 CR=50.1481 CR=573321
NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR
CD 0.1902 | 0.1569 | 2967 02012 | 0.708 | 2285 02077 | 0.1781 | 2238 02135 | 0.1857 | 1900
FKSC 0.1723 | 01242 | 6077 0.1742 | 0.1250 | 5080 0.1760 | 0.1251 | 6184 0.1764 | 0.1259 | 6057
KSC 0.1723 | 0.1242 | 6075 0.1742 | 0.1250 | 5982 0.1760 | 0.1251 | 6183 0.1764 | 0.1259 | 6057
KEMC 02026 | 0.1611 | 4007 02018 | 0.1596 | 4240 0.1986 | 0.1525 | 4600 02092 | 0.1619 | 4189
KSR-Lo; | 0.0760 | 0.1290 | 5989 0.1857 | 0.339 | 6233 02048 | 0.1444 | 5476 02476 | 0.1761 | 4402
LPM 02799 | 02323 | 2589 02815 | 02342 | 2430 02709 | 02253 | 2534 02797 | 02320 | 2665
Sy CR=26.0203 CR=32.1060 CR=41.9058 CR=51.1438
NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR
CD 02581 | 02078 | 2168 02877 | 02373 | 1689 03075 | 02565 | 1377 03282 | 02769 | 1303
FKSC 02519 | 02060 | 2122 02575 | 02122 | 2025 02625 | 02153 | 2077 02665 | 02195 | 2057
KSC 02519 | 02060 | 2122 02575 | 02122 | 2023 02625 | 02153 | 2078 02665 | 02195 | 2057
KEMC 02643 | 02248 | 1601 02656 | 02285 | 1567 02861 | 02447 | 1612 02711 | 02304 | 1728
KSR-Lo; | 02803 | 02358 | 1576 04054 | 03152 | 1249 03110 | 02634 | 1523 03539 | 02867 | 1426
LPM 03781 | 03421 910 03471 | 03127 | 1044 03308 | 02923 | 125 03135 | 02759 | 1352
Harvard CR=40.3763 CR=534.1633 CR=63.2012 CR=74.4482
NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR
CD 02083 | 0.1774 | 3924 02181 | 0.1915 | 3187 02365 | 02173 | 2884 02435 | 02261 | 2737
FKSC 02028 | 0.1654 | 4971 02057 | 0.1675 | 4481 02106 | 0.1760 | 3868 02130 | 0.1786 | 3836
KSC 02028 | 0.1654 | 4971 02057 | 0.1675 | 4481 02106 | 0.1760 | 3868 02130 | 0.1786 | 3836
KFMC 03119 | 02163 | 2907 02686 | 02282 | 3298 03536 | 03017 | 3137 04250 | 03129 | 3215
KSR-Lo; | 02726 | 02232 | 2999 03028 | 02355 | 2760 03265 | 03046 | 2599 03938 | 02868 | 2265
LPM 03649 | 03552 | 1950 03321 | 03089 | 2450 03334 | 03140 | 2324 03138 | 02802 | 2541
Sya360 CR=54.1557 CR=812641 CR=105.4173 CR=140.4878
NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR
CD 0.1086_| 0.0880 | 20548 | 0.1140 | 0.0927 | 19136 | 0.1195 | 00975 | 17838 | 01253 | 0.1031 | 16500
FKSC 0.1024 | 0.0824 | 22255 | 0.1036 | 0.0834 | 22044 | 0.1043 | 0.0839 | 22014 | 0.1045 | 0.0843 | 21711
KSC 0.1024 | 0.0824 | 22255 | 0.1036 | 0.0834 | 22044 | 0.1043 | 0.0839 | 22014 | 0.1048 | 0.0843 | 21711
KFMC 0.1401 | 0.1130 | 16127 | 0.1530 | 0.1232 | 14794 | 0.1541 | 01244 | 14642 | 01398 | 0.1134 | 15768
KSR-Lo; | 0.1121 | 00005 | 19931 | 01171 | 00941 | 19327 | 0.1076 | 00856 | 21947 | 0.1003 | 00874 | 21342
LPM 02460 | 02030 | 8578 02528 | 02008 | 8082 02557 | 02127 | 8109 02571 | 02161 | 7515
PlanetLah CR=49513 CR=604177 CR=63.2878 CR=815557
NRMSE | NMAE | NECR | NRMSE | NMAE | NECR | NRMSE | NMAE | NECR | NRMSE | NMAE | NECR
CD 02360 | 0.1597 | 31726 | 03221 | 02411 | 19466 | 02509 | 0.1881 | 23786 | 03360 | 02543 | 18120
FKSC 02236 | 0.1469 | 36608 | 0.2308 | 0.1575 | 32540 | 0.2216 | 0.1472 | 35106 | 0.2281 | 0.1560 | 32599
KSC 02236 | 0.1469 | 36606 | 02308 | 0.1575 | 32540 | 0.2216 | 0.1472 | 35098 | 0.2281 | 0.1560 | 32597
KEMC 02369 | 0.1666 | 32553 | 02311 | 0.1557 | 36053 | 02417 | 0.1670 | 33887 | 02380 | 0.1633 | 34773
KSR-Lo; | 02397 | 0.1633 | 35040 | 02365 | 0.1600 | 35159 | 02768 | 0.1869 | 33715 | 02456 | 0.1643 | 34437
LPM 03563 | 02949 | 19655 | 03083 | 02402 | 24854 | 03147 | 02499 | 23261 | 02990 | 02318 | 25542

e Advantage of FKSC over other kernel sparse coding methods: In the totality of 20 experimental
setups, FKSC fails to achieve the top performance in only 3 instances, signifying its overwhelming
dominance in most scenarios. For instance, in the Harvard data at CR = 54.1633, i.e., the data size
is compressed to 1.85% of the original scale, the NMAE, NMAE, NECR metrics of FKSC reach
0.2057, 0.1675, 4481 respectively. When KSC is excluded from consideration, KFMC emerges as
the sub-optimal method. Compared to KFMC, FKSC exhibits a substantial 30% relative improve-
ment in NRMSE, 36% in NMAE, and 1.36 times boost in NECR. This may be attributed to the
solution of FKSC, which boasts a convergence guarantee and facilitates the optimization process in
achieving an exceptional stationary point.

6 CONCLUSION

In this paper, we have addressed the limitations of traditional sparse coding algorithms when dealing
with nonlinear real-world signals. By leveraging RBF kernel to implicitly increase the dimensional-
ity of the original data to enhance its separability, our proposed kernel sparse coding method enables
more effective sparse representations and provides a solution with convergence guarantees based on
the principle of coordinate descent. To further optimize the computational efficiency, we introduced
a novel two-stage acceleration strategy. The strategy is theoretically underpinned by the insight that
updates to zero weights can be skipped and empirically supported by the observation that the po-
sitions of nonzero weights are relatively stable. This innovation allows the optimization process to
be significantly accelerated. Experimental results validate the effectiveness of our approach. The
two-stage acceleration strategy demonstrates a remarkable reduction in processing time by up to
90%. Additionally, our method shows superior performance compared to both traditional linear
sparse coding methods and other kernel sparse coding techniques, with significantly lower values of
NMAE when CR is high.
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A APPENDIX

A.1 RELATED WORK

Sparse coding serves as a pivotal branch within deep learning (Yang et al., 2009), endeavoring to
discover a sparse representation of input data in the form of a linear combination of basic atoms. This
pursuit achieves multiple objectives: data compression, enhancement of computational efficiency,
and uncovering salient features of the data, thereby finding widespread applications across diverse
domains.

However, recent studies (Pimentel-Alarcon et al., 2017; [Fan et al., 2021; [Fan & Udelll, [2019) have
indicated that many real-world signals do not possess an inherent linear structure, hence traditional
linear sparse coding methods may fail to be effective (Yang et al., 2016). Consequently, a few
scholars have proposed the use of kernel tricks to implicitly elevate the dimensionality of the input
data, thereby enhancing the applicability of sparse coding methods to complex data. Kernel sparse
coding is an extension of linear sparse coding. Existing research on kernel sparse coding problems
can be roughly divided into two categories based on the form of constraint on the sparse matrix in
their mathematical models: the [y norm-based approach and the /; norm-based approach.

The kernel sparse coding problem formulated with the [y norm is inherently NP-hard and can only
be solved by using heuristic algorithms. For instance, the Kernel Orthogonal Matching Pursuit
(KOMP) (Nguyen et al., [2013) algorithm iteratively selects dictionary atoms that exhibit the highest
correlation with the current residual during the sparse optimization process until a predetermined
sparsity level is achieved. Alternatively, the Linearized Proximal Method (LPM) (Quan et al., 2016)
leverages block coordinate descent, initially obtaining a closed-form solution through the proximal
gradient method, followed by a brute-force selection of the weights with the largest absolute values
to satisfy the sparsity constraint. These heuristic algorithms are collectively noted for their rapid
sparse optimization capabilities. However, they fall short by lacking convergence guarantees,
which means they cannot assure the attainment of the optimal solution and are susceptible to getting
trapped in local optima.

In contrast, the [; norm offers a convex alternative that is easier to handle mathematically but still
presents challenges due to its non-differentiability. The Kernel Feature-sign Search (KFSS) (Gao
et al.| | 2013) algorithm addresses this issue by taking an active approach to guessing the signs of
the coefficient weights. This strategic method is based on the observation that the sign of a coef-
ficient is closely related to the correlation between the dictionary atom and the residual. By cor-
rectly guessing the signs, KFSS can simplify the optimization problem and work towards finding
an analytical solution that satisfies the sparsity requirement. The First-Order Smooth Optimization
(FOSO) (Kim), 2014)) algorithm tackles the non-differentiability of the /; norm by approximating
it with smooth functions. This approximation allows the use of conventional gradient-based opti-
mization techniques, which are otherwise inapplicable to non-differentiable problems. The smooth
approximation serves as a surrogate that enables the derivation of an analytical solution while still
promoting sparsity in the solution. Both KFSS and FOSO contribute to the broader field of kernel
sparse coding by providing methods that can yield sparse solutions with convergence guarantees.
However, they face challenges in terms of the scalability of optimization complexity and com-
putational speed. Therefore, this paper aims to explore a new fast kernel sparse coding method
with convergence guarantees.

A.2 KSCDL ALGORITHM

Algorithm 1 KSCDL

Input: Y, K, A, tmax

1: Initialize: X ~ N (0,1),t =0

2: repeat

3 t=t+1

4:  Update sparse coding matrix W through @)

5:  Update dictionary matrix X through

6: until the convergence condition is satisfied or t = ¢p,qz
Output: W, X

13
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The convergence condition in Algorithm |[1| refers that the relative error RE = HX(k) -
X5 /|X* V|| < & for any & > 0. The following Theorem shows this algorithm converges.

Theorem: Algorithm [I]converges to a stationary point.

Proof. Denote the objective function in (3) as £(X, W). On the one hand, when W is fixed, £(X, W)
is twice differentiable with respect to X, and the gradient G is Lipschitz continuous with Lipschitz
constants Lx, then the Taylor expansion of £(X, W) around X*=1) s

E(X(k),W) _ E(X(k_l),W) + <Gx,X(k) _ X(k’—l)>

+ bvee(X®) - XY Hvee(X P - X*7) an

where Hy is the Hessian matrix of £(X, W) with respect to X. (-, -} is the trace of the inner product
of matrices, i.e., (A, B) = trace(A”B). Substituting into (17) yields

£(X® w) <c(X* Y W) 4 (Gx, —puGx) + Amax#(HX)vec(—qu)Tvec(—qu)

o 2L (18)
<Lx®TD, W) - T Gx7
. . . . . 2u — p?Lx .
where A\pax(Hx) is the maximum eigenvalue of Hessian matrix Hx. Clearly, ———— > 0 if

2
0<u< < That is to say, when X is updated according to equation , the objective function

X
L(X, W) is decreasing and bounded below by 0. Hence, the objective function £(X, W) with respect
to X is convergent.

On the other hand, when X is fixed, the kernel sparse coding subproblem (@) constitutes a Lasso
problem, with the explicit solution (9) obtained directly through the coordinate descent algorithm.
Thus, similar to Fujiwara et al.[(2016) and following the convergence analysis presented in |T'seng
(2001)), the objective function £(X, W) with respect to W is convergent. O

A.3 DISCUSSION ON EXTENDING THE SOLUTION OF SCDL TO HIGHER-DIMENSIONAL
FEATURE SPACE

Example 2: Extend the solution of SCDL in the original space to high-dimensional feature space

0.1807  0.5859  0.1647 0.7811 —0.0869
209 —0.4397  0.9862 0.5918  0.4591
0.6807 —0.018: 0.8841

~0.9803 0.3126  0.7473 —0.0897 0.5752 0.6247  0.3181
Y= | —0.1677 0.6755 —0.5517  0.4611 0.7826 0.7287 —0.8019
0.1041 0.6679  0.3704  0.8828 0.2382 0.2807  0.5057

~0.9507 0. 0 0.3
0 05
0 o 0
0 0 01304 0.0270
—0.0450 0.1605 0 0.1464 0.1704
0.2278  0.4466 0 0.9900 0 0.0194  0.0075

0
~0.1709
0.3247 —0.0217

~0.9694 0.3052
~0.1617
0.0918

350 —0.0860 0.5676 0.6194  0.32:

0.7197 —0
0.2739

~0.90: ~0.0869

0.9619 0.1807  0.5859  0.1647

Y= | —0.02 —0.2718 —0 3 0.4106
b 4106 209 —0.4397  0.9862 0.59 0.4591 |
0-16: 0:2398  0.7738 888 —0.0730 0.3426 ’ 0.3454  0.6807 —0.0188 0.8841 = g 2 o s Xk Xaead]
~0.2604 0.1198 —0.0917 —0.039 0.2674 —0.2600  0.1877 0.1812 —0.2773 00327 034338 0.0271 0.0076
—~0.1213 0.0690  0.2612 —0.0761 0.0902 0.0987  0.2788 —0.1943 0.0968 —0.1111 ¥ . . .

0.8480  0.19; 0.9725 0.2108

0.0618 0.3074 —0.2024  0.4018 0.1866 0.2045 —0.1962  0.3251 0.2247 —0.0551 00112 01103  0.46 0.0004 o7 | .
0.2424 0.1664 0.1624 ~0.0399 | ~
0.1018 0.0624  0.3988 —0.0031 ~0.0768
0.0267 0.3181 —0.2993 —0.0186 0. 0.4059

In Example 1, the SCDL result of input data Y yields the dictionary matrix X and the sparse matrix
W. In addition, Y is vertically expanded to high-dimensional data Y, and the SCDL result of Y
ylelds the dlctlonary X and the sparse matrix W. In this case, the approximation error AEp;gp1 =
5 LY — XW||2 % = 0.3625. In Example 2, suppose we vertically expand the dictionary X (obtained
from Example 1) to dictionary X in the high-dimensional feature space, we can derive the high-
dimensional approximate data as Y = XW, where W is obtained from Example 1. In this case, the

approximation error in the high-dimensional feature space is AEpign2 = 3[|Y — Y[|% = 4.8904,
which is considerably higher than AFE};4,1. That is to say, when directly extending the results of
SCDL in the original space to a high-dimensional feature space, the data approximation effect is not
as good as performing SCDL directly in the high-dimensional feature space. In other words, the
solutions of (3) should not be obtained by simply extending the solutions of (I). Consequently, it is
necessary to explore novel approaches to solve the KSCDL problem (3).
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A.4 FKSC ALGORITHM

The FKSC method with a two-stage acceleration strategy is described in Algorithm [2| The core
strategies of FKSC includes: Stage 1: Prioritizing updates of initially predicted nonzero elements
(lines [BHTT)); Stage 2: Safely skipping updates for zero elements in w (lines [T4HI6).

Computational complexity analysis. Assuming the FKSC method requires 77 rounds of iterations
in Stage 1 and 7% rounds of iterations in Stage 2, while the KSC method requires 7' rounds of
iterations for the weight vector to converge.

In Stage 1 of FKSC, assuming that in the 1st round of iteration, there are k; elements are predicted
to be nonzero and require 7} iterations to converge. Thus, the total computational complexity of
Stage 1 is O(p + k1pT1), where O(p) represents the total computational complexity of calculating
the bounds in the 1st round of iteration, and O(kpT7) represents the total computational complexity
of the k; predicted nonzero elements over 73 rounds of iteration.

In Stage 2 of FKSC, assuming that the entire weight vector requires 75 iterations to converge, and
on average, k( elements are predicted to be zero in per round of iteration. Therefore, the total com-
putational complexity of Stage 2 is O(pT2(p — ko + 1)), where O(pT5) is the total computational
complexity of calculating the bounds throughout the process, and O((p — kq)pT2) is the total com-
putational complexity of the remaining (p — ko) elements, excluding the predicted ko zero elements,
to undergo 75 rounds of iterations.

Hence, the total computational complexity of the entire FKSC algorithm is O(p(1 + k171 + Ta(p —
ko +1))). If no acceleration strategies are adopted and the standard coordinate descent algorithm is
used for updating iterations directly, then the overall computational complexity would be O (p?(T; +
T5)). Generally speaking, T is not much different from 77 + T, then the two-stage acceleration
strategy has the potential to speed up the processing time of kernel sparse coding.

Algorithm 2 Complete organization of FKSC
Input: X, vy, x,
1: Compute k(y, X), k(X, X)
: Initialize: w(® =0,z =0,Q={1,--- ,p}, Q=10
: for each i € Q2 do
Compute zﬁ’“ and g(-k) by
: end for
: ifggk) > \or zﬁ“ < —Athen
Q=Qu{i}
: end if
: repeat
10:  Update wim through @) for each i € Q
11: until w converges

12: repeat

13:  foreachi € Q2 do

14: Compute zﬁ’” and ggk) by
15: it —\ < 2% <2z% < X then
16: w® =0

17: else

18: Update wEM through (El)

19: end if

20:  end for

21: until w converges

Output: w

A.5 EXPERIMENTAL SETUPS
A.5.1 DATASETS

The datasets mainly utilized encompass four real-world datasets and one synthetic dataset. Ac-
knowledging the dimensional constraints of the real-world datasets, we specifically introduce a syn-
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thetic dataset of an tailored dimension (referred to as ”Syn360”), to ensure a progressive scaling of
dimensions across the datasets, thereby facilitate our comprehensive observation and analysis of the
experimental outcomes.

e PM2.5 (Zheng et al,, [2015) records the air quality data collected by Microsoft Research’s Ur-
ban Computing team for a year (from May 1, 2014 to April 30, 2015) in the Urban Air project.
The dataset covers four major cities in China (Beijing, Tianjin, Guangzhou, and Shenzhen) and 39
adjacent cities within a 300-kilometer radius.

o Traffic (Chen et al., 2018)) encompasses traffic speed observations from 214 anonymous road seg-
ments, primarily comprising urban highways and main thoroughfares, spanning a two-month period
from August 1, 2016, to September 30, 2016. The data is recorded every 10 minutes, originating
from Guangzhou, China.

e Harvard (Ledlie et al., 2007) contains the data of application-level RTT, gathered from interac-
tions among 226 Azureus clients over a span of 72 hours.

e PlanetLab (Zhu et al.,[2017) consists of RTT measurements between 490 nodes in the PlanetLab
network across 18 time slices.

e Syn360 (similar to (Fan et al., [2021)) is a synthetic data with each column generated by y =
(s) = Ps, where s = [s1, 59, 83]7 ~U(—1,1); % € {31, 415} is an order-3 polynomial map-
ping with P € {P',... P'®} C R369%20 _ N(0,1).5 = [1, 51, 52, 53, 57, 5152, 5153, 53, 5253, 53,
S?,S%52,3%837515253, S%,5351,5353,s§,5§51,3§SQ]T € R?9; For each Pi,i =1,---,18, we ran-
domly generate 100 ys.

In Table[3] we present the size of the data selected from each dataset, used for training the dictionary,
and for testing the performance of the proposed FKSC algorithm.

Table 3: The processed data size for training and testing

PM2.5

Traffic

Harvard

Syn360

PlanetLab

Training

174 x 920

214 x 1440

226 x 1130

360 x 1000

490 x 1470

Testing

174 x 184

214 x 288

226 x 226

360 x 500

490 x 490

A.5.2 COMPETITORS

The comparison algorithms for KSC and FKSC include

o CD (Fujiwara et al.| |2016): the coordinate descent algorithm for traditional linear sparse coding
problem, based on /; regularization in the original input space.

e KFMC (Fan & Udell, 2019): the explicit solution approach for kernelized matrix factorization
problems, with the weight matrix regularized by the Frobenius norm.

This method results in a weight matrix that is not strictly sparse, but contains many weight factors
that are very small. In this paper, for each column of the weight matrix, we preserve weight factors
with significant absolute values while setting the others to zero to meet a predetermined sparsity
level, thereby facilitating a comparison with our proposed method.

o KSR-L5 ; (Qian et al., 2023): the explicit solution approach for kernel sparse representation, with
the weight matrix being constrained via Lo ; matrix norm.

Ideally, this method yields a weight matrix that is row-sparse, but the overall sparsity is not high
enough, or in other words, there are not enough zero elements. Therefore, to enable a comparative
analysis with our proposed method, for each column of the weight matrix, we retain only those
weight factors with substantial absolute values in accordance with a preset sparsity level, while
nullifying the others to zero.

o LPM (Quan et al.,2016)): the linearized proximal method, employed for addressing kernel sparse
coding problems with [y regularization, initiates by leveraging the proximal gradient approach to
secure a closed-form solution. Subsequently, it selects and retains the weight factors with the most
significant absolute values, aligning with a predefined sparsity level.
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A.5.3 METRICS

The compression performance of an algorithm is primarily reflected in two aspects: compression
ratio and accuracy. Therefore, we present the following metrics:

e Compression Ratio (CR):
Size of original data

CR

~ Sizeof compressed data’
e Normalized Root Mean Square Error (NRMSE):

NRMSE = Y = Y| /[[Y[|

where Y refers to the approximate data obtained by solving the optimization problem 1| for kernel-
based algorithms include LPM, KSR-L, 1, KFMC, as well as the proposed KSC and FKSC, and

Y = XW for sparse coding algorithms in the original space like CD.
e Normalized Mean Absolute Error (NMAE):

NMAE = lys; — Gl / D Iy,
(i,5) (i.4)

where y;; is the element located at the ith row and jth column of matrix Y.
o Number of Elements Correctly Reconstructed (NECR):
_ o0 e _ ) Ly — Uil < es
NECR = Z Yijo Yij = { 0, Otherwise,
(4,9)
where y;; is the element located at the ith row and jth column of matrix Y and o=1073

In these metrics, higher values of CR and NECR indicate superior compression performance by the
algorithm. Conversely, lower values of NRMSE and NMAE signify a more effective compression
capability.

A.6 EXPERIMENTAL RESULTS

For all experiments, the maximum number of iterations is set to 100, and the algorithm termination
tolerance is set to 1e — 3. For KSCDL, the termination tolerance refers to the relative error REx =
[X®) — XE=D) 5/ XE=1|| 5| while for FKSC, the termination tolerance refers to the relative

error Rl = [W®) — WD /| WD) .

PM2.5 Traffic Harvard Syn360 PlanetLab
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Figure 10: The objective value for different numbers of atoms (i.e., p), with A = 0.001 and 0 = 2.

Convergence Verification: To validate the convergence of the KSCDL method outlined in Algo-

rithm we set A = 0.001 and o = 2. As shown in Fig. [10} the objective values ||¢(Y) — ¢(X)W||%
achieve convergence across the evaluated datasets, even as the number of atoms varies. It is note-
worthy that the objective value for Syn360 is comparatively higher than those of the other datasets.
This discrepancy arises from the less optimal parameter setting of ¢ = 2 for this dataset. Further
experimentation demonstrate that adopting a value of o exceeding 10 leads to significantly enhanced
performance.

In addition, we can also observe that as the number of atoms increases, the convergence speed of
the objective function gradually accelerates. Nonetheless, once the number of atoms surpasses the
number of rows (174,214, 226,360 and 490 for PM2.5, Traffic, Harvard, Syn360 and PlanetLab,
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respectively) in the dictionary matrix, the convergence behavior of the objective value is no longer
sensitive to the number of atoms. Therefore, setting the number of atoms in the dictionary equal to
the number of its rows, that is, configuring the dictionary as a square matrix, is reasonable.

Hyperparameter Analysis: In addition to the number of the dictionary atoms, there are also two
hyperparameters that can influence the outcomes of the KSCDL algorithm: the sparsity penalty
parameter A and the RBF kernel hyperparameter o. With all dictionaries configured as square ma-
trices, Fig. [11|indicates that when A is fixed and o is sufficiently large, the objective value remains
insensitive to variations in o. Conversely, when ¢ is kept constant, the objective function exhibits a
tendency of exponential growth as A increases. To ensure that the objective value of KSCDL remains
within a desirable range, we will restrict the value of A within the interval of [0.001, 0.1], from this
point onward.

PM2.5 Traffic Harvard Syn360 PlanetLab

2
F
2
F

[I(Y) - DX)W||
[I®(Y) - DX)W|
o v & o o

0 0.05 0.1

Figure 11: The influence of different A and o on objective value.

A.7 APPLICATION OF FKSC

FKSC transforms dense input data into a sparse
representation, thereby enabling solutions for
challenges such as data compression, improv-
ing of computational efficiency, feature analy-
sis and denoising. Taking data compression as
an example, Fig. [I2] delineates the application
procedure of FKSC. Initially, a dictionary ma-
trix X, which can reflect the underlying struc-
tural features of the data, is derived from histor-
ical data using the KSCDL algorithm outlined Figure 12: Example for FKSC’s app]ication'

in Algorithm [T} with KSC being replaced by

FKSC. In the subsequent stage, the original data undergoes a three-step compression process (i.e.,
Step1-3) utilizing this dictionary matrix X. Conversely, the compressed data can be approximately
reconstructed into its original form through a three-step decompression procedure (i.e., Step4-6).
The specific implementation details of each step are outlined below:

e Step 1: Encode new data Y into sparse matrix W via the propose FKSC method, leveraging the
dictionary matrix X obtained from the initial stage.

e Step 2: Vectorize the sparse matrix W to facilitate its subsequent compression.

e Step 3: Save the vectorized W in a condensed two-column matrix. Column one lists indices of
non-zero elements, and column two lists their values.

e Step 4: Decode back the small matrix from the storage unit into a sparse column vector.

e Step 5: Fold the sparse column vector back into the sparse matrix W.

e Step 6: Solve the following optimization problem to obtain the approximate data Y:

~ 1 ~
Y = argmin _ | ¢(Y) — ¢(X)W||%. (19)
Y
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