
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A NOVEL KERNEL SPARSE CODING METHOD WITH A
TWO-STAGE ACCELERATION STRATEGY

Anonymous authors
Paper under double-blind review

ABSTRACT

Sparse coding aims to exploit the latent linear structure of the input data, trans-
forming dense data into sparse data, thereby improving data processing efficiency.
However, many real-word signals cannot be expressed linearly, rendering the tra-
ditional sparse coding algorithms ineffective. One potential solution is to expand
the dimensions of data. In this paper, we verify that the feature mapping of Radial
Basis Function (RBF) kernel contains infinite dimensional information, and it does
not significantly increase the computational complexity. Based on this, we pro-
pose to explore the l1-norm regularization sparse coding method with RBF kernel,
and provides a solution with convergence guarantees by leveraging the principle
of coordinate descent. Additionally, to accelerate the optimization process, we in-
troduce a novel two-stage acceleration strategy, based on theoretical analysis and
empirical observations. Experimental results demonstrate that the two-stage ac-
celeration strategy can reduce processing time by up to 90%. Furthermore, when
the data size is compressed to about 2% of its original scale, the NMAE metric of
the proposed method reaches as low as 0.0824 to 0.2195, achieving a significant
improvement of up to 47% compared to traditional linear sparse coding methods
and 36% compared to other kernel sparse coding techniques.

1 INTRODUCTION

Sparse coding, known for its efficiency in transforming data into a sparse and interpretable format,
posits that data in the input space possesses inherent features (Pati et al., 1993; Bao et al., 2014; Lee
et al., 2006; Kim, 2014). Within mathematical models, these intrinsic features are typically modeled
as a set of basic atoms or dictionary atoms. As illustrated in Fig. 1, these atoms can be concatenated

A
to

m
 1

A
to

m
 2

A
to

m
 3

A
to

m
 4

A
to

m
 5

A
to

m
 6

A
to

m
 7

A
to

m
 8

Weight 1

Weight 2

Weight 3

Weight 4

Weight 5

Weight 6

Weight 7

Weight 8

= ×

In
p

u
t

Nonzero element Zero element

   

Figure 1: Sparse coding.

into a dictionary matrix X. Once the input data y can be expressed as
a linear combination of a few dictionary atoms (e.g., Atom 2 and Atom
6), it can be encoded as sparse weights data w, where the majority of
weights (e.g., wj for j = 1, 3, 4, 5, 7, 8) are zeros and only a few weights
(e.g., w2, w6) are nonzeros. Owing to the unique advantages of sparse
data, sparse coding have the potential capability to handle the issues of
data compression (Ramabadran & Sinha, 1994; Watkins et al., 2018; Li
et al., 2016; Wang et al., 2016), efficient computation (Schütze et al.,
2016; Chalk et al., 2018; Bengio et al., 2009; Schütze et al., 2016), fea-
ture analysis (Yutani et al., 2022; Shi et al., 2021; Tong et al., 2019),
denoising (Liu et al., 2019; Wang et al., 2020; Lu et al., 2015).

Within the aforementioned sparse coding framework, the input data y can be sparsely encoded into
w because it can be linearly reconstructed by a combination of several dictionary atoms. It is worth
noting that the dictionary atoms are typically learned directly from the input space, leveraging the
fundamental assumption that the input data possesses inherent linear structures. However, (Yang
et al., 2016) has shown that many practical signals do not possess this characteristic, limiting the
effectiveness of traditional linear sparse coding methods in such scenarios. Therefore, seeking meth-
ods to effectively address the sparse coding of complex data is a highly meaningful topic.

Motivations. Recent studies show that a transformation of low-dimensional data into a higher-
dimensional space, may enable data that is inherently nonlinearly separable in its original form to
become linearly distinguishable within the expanded feature space (Schölkopf et al., 1997). For
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Figure 2: Transforming lin-
early inseparable data into
linearly separable data.

example, as shown in Fig. 2(a), there is no straight line that can sep-
arate the green data points from the red data points. However, if we
map each two dimensional data point (x, y) into a three dimensional
data point (x, y, xy), as shown in Fig. 2(b), there will be numerous
planes that can separate the green data points from the red data points.
Inspired by this, increasing the dimensionality of input data may offer
promising prospects for sparse coding problems involving data with
complex internal structures.

While increasing the dimensionality of input data can enhance its discriminability, facilitating sparse
coding analysis, it also inevitably introduce problems, including indeterminate forms and scales of
data dimensionality enhancement, and high computational complexity. It is known that kernel trick
provides an effective way to expand data dimensions with reducing computational complexity, and
there are various categories of kernel functions (Gao et al., 2010). To select a good kernel function,
we must be aware that the richer the dimensional information contained in the feature map, the better
the performance of the corresponding kernel function. Therefore, this article delves into the specific
form of feature mapping corresponding to the Radial Basis Function (RBF) kernel and analyzes its
potential to demonstrate great performance. Ultimately, we solidify our decision to employ the RBF
kernel-based approach as a means to tackle the challenge of enhancing sparse coding efficiency.

Contributions. The main contributions of this work include:
•We verify that the feature mapping of the Radial Basis Function (RBF) kernel contains infinite di-
mensional information, and it does not significantly increase the computational complexity. Based
on this, we explore the l1-norm regularized sparse coding method with RBF kernel, and provides a
solution with convergence guarantees by leveraging the principle of coordinate descent.
• To reduce the computational complexity of the standard kernel sparse coding method based on
coordinate descent, a novel two-stage acceleration strategy is introduced. This strategy focuses on
updating the initially predicted nonzero weight factors, and effectively predicts zero weight factors
to skip the computation of the corresponding intermediate variables.
• Our experiments demonstrate that the proposed two-stage acceleration strategy significantly re-
duces processing time by up to 90%. Additionally, our method outperforms both traditional linear
sparse coding and other kernel sparse coding methods. Specifically, when the data size is com-
pressed to about 2% of its original scale, the NMAE metric of the proposed method reaches as low
as 0.0824 to 0.2195, achieving a significant improvement of up to 47% compared to traditional linear
sparse coding methods and 36% compared to other kernel sparse coding techniques.

2 PRELIMINARY AND KERNEL TRICK

Problem: In practice, the effective implementation of sparse coding relies on a dictionary matrix
X = [x1, · · · , xp] ∈ Rn×p that preserves the potential features of the input space, which should be
learned in advance from the dense historical data Y ∈ Rn×m as:

min
X,W

1

2
∥Y − XW∥2F + λ

m∑
j=1

∥wj∥1, (1)

where W ∈ Rp×m is the sparse coding matrix, with the majority of elements being zero, and only
a minority of elements being nonzero. wj is the jth column of W. The first term for (1) is the
approximation error, and the second term with penalty parameter λ is used to force the columns of
matrix W to be sparse.

Essentially, optimization problem (1) focuses on identifying a dictionary matrix X within the original
data space, enabling the transformation of Y into a sparse matrix W, based on the assumption that
each column in Y can be expressed as a linear combination of a few atoms in X. Since W contains
significantly less amount of data than Y, it can be seen as a sparse form of input data Y. However,
when the input data Y does not have enough inherent linear structure, achieving a sparse
linear approximation of Y with high precision proves challenging.

For simplicity, we abbreviate “Number of Nonzero Elements” as “NNZE” in this paper. As shown
in Example 1, the input data Y contains 10 data points uniformly and randomly sampled from
the unit sphere. Assuming the dictionary matrix has 6 atoms, performing sparse coding and dic-
tionary learning on Y in the original input space, with the constraint that the approximation error

2
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AEoriginal = 1
2∥Y − XW∥2F < 0.1, yields the dictionary matrix X and the sparse matrix W.

In this case, W includes 40 nonzero elements (i.e., NNZE(W)=40), which exceeds the amount of
data in the original Y (NNZE(Y)=30). Therefore, W cannot be considered as a sparse form of Y.

Elevating Data Dimensions: Inspired by the example in Fig. 2, elevating the dimensionality of
data may potentially enhance the effectiveness of sparse coding. In Example 1, we directly ex-
tend each yi = [y1i, y2i, y3i]

T vertically to ỹi = [y1i, y2i, y3i, y
2
1i, y

2
2i, y

2
3i, y1iy2i, y1iy3i, y2iy3i]

T ,
for i = 1, 2, · · · , 10, forming a high-dimensional data matrix Ỹ. Given that the dictionary
matrix is composed of 6 atoms, conducting sparse coding and dictionary learning on Ỹ in the
high-dimensional feature space, with the constraint that the approximation error AEoriginal =
1
2∥Y − X̂W̃∥2F < 0.1, yields the dictionary matrix X̃ and the sparse matrix W̃. Note that, just as Ỹ
is a vertical expansion of Y, X̃ is a vertical expansion of X̂. In this case, there are only 19 nonzero
elements in W̃ (i.e., NNZE(W̃)=19), which is less than that of the original data Y (NNZE(Y)=30).
Consequently, W̃ can be regarded as a sparse representation of Y. That is, expanding dimensions
can indeed result in a more efficient sparse representation of the original data.

Indeed, there are numerous nonlinear mapping methods that can be utilized to enhance the dimen-
sionality of data. For instance, similar to the approach in Example 1 where all second-order terms
of the original data are introduced, we could also incorporate all third-order terms, all fourth-order
terms, and so on. Additionally, we could introduce a combination of all second-order and third-order
terms, or selectively introduce parts of second-order and third-order terms, and so forth. In essence,
the ways to increase dimensionality are virtually limitless, and it is impractical to verify each method
individually to determine which best meets practical needs. Therefore, the specific form and scale
of data dimensionality enhancement that can enhance the efficiency of sparse coding remains
a thought-provoking issue.

Theoretically, the more nonlinear terms that are incorporated, the more likely it is to enhance the
efficiency of sparse coding. However, as the dimensionality of the data increases, the computa-
tional complexity inevitably rises as well. As shown in Example 1, the computational complexity
of sparsely coding Y into X and W is O(180). After expanding Y into Ỹ, the computational com-
plexity of sparsely coding Ỹ into X̃ and W̃ increases to O(540). If the scale of Y is too large or if
the data expansion method is too complex, the corresponding computational load may become pro-
hibitive. Therefore, overcoming the computational complexity introduced by data dimensionality
expansion remains a significant challenge.

Advantages of RBF Kernel in Elevating Data Dimensions: In response to the aforementioned
challenges of “indeterminate forms and scales, and high computational complexity of data dimen-
sionality enhancement”, in this section, we validate that the Radial Basis Function (RBF) kernel
possesses excellent properties that give it distinct advantages in elevating data dimensions.

For any a,b ∈ Rn, their RBF kernel κ(a,b) = exp(− 1
2σ2 ∥a− b∥22) can be decomposed as

κ(a,b) = exp

(
− 1

2σ2

(
∥a∥22 + ∥b∥22

))
exp

(
aTb

σ2

)
= ϕ(a)Tϕ(b) (2)

where σ is the RBF kernel hyper-parameter, ϕ(z) =
[√

ϱ
σ2qq1!···qn! (z

q1
1 · · · zqnn )

]∞
|q|=0

is an infinite

order polynomial map for z = a or b, |q| = q1 + · · ·+ qn, and ϱ = exp
(
− 1

2σ2

(
∥a∥22 + ∥b∥22

))
.
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Notably, on the one hand, ϕ(z) includes all integer-order terms of the original data z, including
infinite order. That is to say, ϕ(z) contains all forms of data expansion, and the scale of the
expanded data is infinite. On the other hand, the inner product of two expanded data points ϕ(a)
and ϕ(b) can be directly calculated through kernel function κ(a,b) with computation complexity
of O(n), instead of ϕ(a)Tϕ(b) with computation complexity of∞. That is to say, in the calculation
process, as long as the inner product of extended data points is formed, the problem of com-
putational complexity resulting from dimensionality increase can be avoided via kernel tricks.
Precisely because of these great properties, the RBF kernel is expected to exhibit excellent perfor-
mance in expanding data dimensions. Consequently, our endeavor in this paper revolves around
leveraging the feature mapping ϕ, inherent to the RBF kernel, to expand data dimensions, ultimately
enhanceing the performance of sparse coding.

3 KERNEL SPARSE CODING DICTIONARY LEARNING

Based on the discussion above, in order to achieve a more efficient sparse coding scheme for the
input data Y, we impose the feature mapping in (2) to the historical data Y and the dictionary matrix
X, formulating the following Kernel Sparse Coding Dictionary Learning (KSCDL) problem:

min
X,W

1

2
∥ϕ(Y)− ϕ(X)W∥2F + λ

m∑
j=1

∥wj∥1. (3)

It is noteworthy that, although the KSCDL in (3) is an extension of (1), the solution of (3) can not
be obtained by extending the solution of (1). For an in-depth discussion, please refer to A.3.

Solution Overview: To solve KSCDL (3), we decompose the KSCDL problem into a Kernel Sparse
Coding (KSC) subproblem and a Kernel Dictionary Learning (KDL) subproblem:
• KSC: The KSC subproblem of (3) can be interpreted as finding the weight matrix W, while
keeping the dictionary matrix X fixed, through

W = argmin
W

1

2

m∑
j=1

[
∥ϕ(yj)− ϕ(X)wj∥22 + λ∥wj∥1

]
. (4)

Convergence
KSC KDL

Yes

Data Y Sparse weight W Dictionary X
No

Dictionary X

Figure 3: Flowchart of KSCDL.

• KDL: The KDL subproblem of (3) involves
solving the dictionary matrix X, with the sparse
coding matrix W fixed, through

X = argmin
X

1

2
∥ϕ(Y)− ϕ(X)W∥2F . (5)

Moving forward, based on the block coordinate descent method, we alternately and iteratively solve
these two sub-problems as shown in Fig. 3. Upon convergence of the algorithm, we output and save
the dictionary matrix X.

Solution for KSC: For each column of W and Y (abbreviated as w and y, respectively), the objective
function in (4) can be equivalent rewritten as:

min
w

1

2
∥ϕ(y)− ϕ(X)w∥22 + λ∥w∥1, (6)

Based on the kernel trick, we have ∥ϕ(y) − ϕ(X)w∥22 = κyy − 2κyXw + wTκXXw. In which
κyy = κ(y, y) = ϕ(y)Tϕ(y), κyX = κ(y,X) = ϕ(y)Tϕ(X) = [κ(y, x1), · · · , κ(y, xp)], and κXX =
ϕ(X)Tϕ(X) with [κ(X,X)]ij = κ(xi, xj). Then problem (6) is equivalent to

min
w

−κyXw +
1

2
wTκXXw + λ∥w∥1. (7)

Denote the objective function of problem (7) as J, if wi > 0, the derivative of J with respect to wi

can be obtained as ∂J
∂wi

= −κyxi +
∑p

j=1 κijwj + λ, where κyxi = κ(y, xi) and κij = κ(xi, xj).
Let ∂J

∂wi
= 0, one gets−κyxi +

∑p
j ̸=i κijwj +κiiwi+λ = 0. That is wi = κyxi −

∑p
j ̸=i κijwj −λ,

since κii = 1. For convenience, we denote zi = κyxi −
∑p

j ̸=i κijwj . To avoid confusion, we refer
to one complete iteration of the coordinate descent algorithm as a round, which starts from updating

4
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w1 and continues until wp has been updated. The variables updated in the kth round will be marked
with a superscript (k), then

z
(k)
i = κyxi −

p∑
j ̸=i

κijw
[i,k]
j , where w

[i,k]
j =

{
w

(k)
j , if j < i;

w
(k−1)
j , if j > i.

(8)

By analogy, it’s not difficult to summarize that

w
(k)
i = softλ(z

(k)
i ) =


z
(k)
i − λ, if z

(k)
i > λ;

z
(k)
i + λ, if z

(k)
i < −λ;

0, if |z(k)i | ≤ λ.

(9)

Solution for KDL: Based on the kernel trick, the objective function in (5) can be rewritten as

∥ϕ(Y)− ϕ(X)W(k)∥2F = Trace
[
κYY − 2κYXW(k) + (W(k))TκXXW(k)

]
. (10)

where κYY = κ(Y,Y) = ϕ(Y)Tϕ(Y), κYX = κ(Y,X) = ϕ(Y)Tϕ(X). There is no closed form
solution for dictionary matrix X due to the kernel matrices, we update X via the gradient descent
method. The gradient of the objective function w.r.t. matrix X can be calculated asGX = 1

σ2 (XΓ1−
YQ1 +XQ2 −XΓ2). Here Q1 = (W(k))T ⊙ κYX, Γ1 = diag(1TnQ1), Q2 = W(k)(W(k))T ⊙ κXX,
Γ2 = diag(1Tr Q2). We update X as

X(k) ← X(k−1) − µGX, (11)

where µ is the optimization stepsize. As outlined in Fig.3, the organization details of the KSCDL
algorithm and the theoretical guarantee of its convergence are provided in A.2.

4 FAST KERNEL SPARSE CODING

The KSC subproblem is solved basing on the coordinate descent principle, which guarantees con-
vergence. However, the updating iterative process of the weight vector is slow.

�1
 � = ���1 − 
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Figure 4: Standard updating process for
sparse weight vector w.

Computational complexity analysis. In Fig. 4, we pro-
vide a illustration of the update process for sparse weight
vector w during the kth round of iteration. It can be ob-
served that the calculation of the intermediate variable
z
(k)
i = κyxi −

∑p
j ̸=i κijw

[i,k]
j , for each sparse weight fac-

tor w(k)
i , has a complexity of O(p), and there are p such

weight factors (i.e., w(k)
i , i = 1, 2, · · · , p) in each weight

vector w. Therefore, the computational complexity for
each iteration of w is O(p2), making the update process
relatively sluggish. In the following, we will approach
from two aspects: theoretical analysis and experimental
observation, to accelerate the KSC process in two stages.

4.1 ACCELERATION STRATEGY I: SAFELY SKIPPING UPDATES FOR ZERO ELEMENTS

Theoretical Analysis: Equation (9) shows that w(k)
i is essentially a soft threshold function of z(k)i

with the threshold λ. It is particularly important to note that if |z(k)i | ≤ λ holds, we can directly
obtain w(k)

i = 0. In other words, there may be a scenario in which w(k)
i does not require an update

calculation and can be set to 0 directly. In order to anticipate the relationship between z(k)i and λ,
we intend to explore the upper and lower bounds of z(k)i . For this purpose, we recompute z(k)i as:

z
(k)
i = z

(k−1)
i − κi:∆w(k)

(i) , (12)

where κi: = [κi1, κi2, · · · , κip], ∆w(k)
(i) = [∆w

(k)
1 , · · · ,∆w(k)

i−1, 0,∆w
(k−1)
i+1 , · · · ,∆w(k−1)

p ]T and

∆w
(k)
l = w

(k)
l − w(k−1)

l for each l = 1, · · · , p. Combining with the Cauchy-Schwarz inequality
(Steele, 2004), it can be obtained from (12) that

z
(k)
i ≤ z

(k)
i ≤ z

(k)
i (13)
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Figure 5: Acceleration Strategy I.
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Figure 6: Complete update process of w based
on Acceleration Strategy I.

where
z
(k)
i = z

(k−1)
i + ∥κi:∥2∥∆w(k)

(i) ∥2, and z
(k)
i = z

(k−1)
i − ∥κi:∥2∥∆w(k)

(i) ∥2. (14)

Obviously, based on z(k)i , the computational complexity of z(k)i is O(1). Naturally, we have

• If z(k)i > λ or z(k)i < −λ, then w(k)
i ̸= 0, meaning wi needs to undergo an update calculation.

• If −λ ≤ z(k)i ≤ z(k)i ≤ λ, then w(k)
i = 0, indicating that the update for wi can be avoided.

The second scenario mentioned above indicates that there are indeed situations where it is not nec-
essary to compute z(k)i , and only the calculations of z(k)i and z

(k)
i are needed to determine that

w
(k)
i = 0, which can effectively reduce computational complexity.

In fact, z(k−1)
i can be directly obtained from the (i − 1)th round and ∥κi:∥2 can be precomputed

before iterations. In addition, based on the definition of ∆w(k)
(i) in equation (12), we can get

∥∆w(k)

(i) ∥2 =
√

∥∆w(k)

(i−1)∥22 − (∆w
(k−1)
i )2 + (∆w

(k)
i−1)

2. (15)

That is, once we obtain ∥∆w(k)
(i−1)∥2, the computational complexity of ∥∆w(k)

(i) ∥2 can be ig-

nored. Therefore, for the kth round, the total computational complexity of z(k)i and z(k)i , for all
i ∈ {1, · · · , p}, primarily arises from ∥∆w(k)

(1)∥
2
2. Further more, we have

∥∆w(k)

(1)∥2 =
√

∥∆w(k−1)

(p) ∥22 − (∆w
(k−1)
1 )2 + (∆w

(k−1)
p )2. (16)

That is, once we obtain ∥∆w(k−1)
(p) ∥2, the computational complexity of ∥∆w(k)

(1)∥2 can be ignored.

By analogy, for any i ∈ {1, · · · , p} and integer k ≥ 1, the computational complexity of ∥∆w(k)
(i) ∥2

primarily stems from ∥∆w(1)
(1)∥2, which is determined by the initialization rule of the algorithm. It

can be 0 if we initialize ∆w as a zero vector, or it can be O(p) if we initialize ∆w as a nonzero
vector. From this perspective, using the upper and lower bounds z(k)i and z(k)i to anticipate zero
elements in w holds the promise of reducing computational complexity.

Acceleration Strategy Design: Based on the above theoretical analysis, we propose to utilize z(k)i

and z(k)i to accelerate the update of zero elements in the weight vector w. As shown in Fig. 5, before
calculating the intermediate variable z(k)i for w(k)

i , we first calculate the the upper and lower bounds
of z(k)i and use them to predict whether w(k)

i is zero. If it is, we directly skip the update of z(k)i ; if
not, we calculate z(k)i and thereby update w(k)

i . It is worth noting that this acceleration strategy is
not restricted to the case using RBF kernels, as w is calculated from κyX and κXX, which are
not constrained by any specific kernel function.

4.2 ACCELERATION STRATEGY II: PRIORITIZING UPDATES FOR INITIALLY PREDICTED
NONZERO ELEMENTS

Experimental Observation: Based on Acceleration Strategy I, if we update the elements of the
weight vector w following the process shown in Fig. 6, and track the positions of nonzero elements
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Figure 7: Changes for R(k) during the iteration process.

in w, we will find that the positions of nonzero elements appear to be relatively stable. In other
words, the nonzero elements in vector w(k+1) occupy positions that are closely analogous to
those in vector w(k). To better describe this phenomenon, we define several new metrics to track
the changes in the positions of nonzero elements throughout the iterative process:
• I(k): the index set of nonzero elements in w(k).
• |I(k)|: the number of nonzero elements in w(k).
• I(k) ∩ I(k+1): the index set of elements that are nonzero in w(k) and also nonzero in w(k+1).
• R(k) = |I(k) ∩ I(k+1)|

/
|I(k)|: the ratio of the number of elements that are nonzero in w(k) and

remain nonzero in w(k+1), to the number of nonzero elements in w(k).

Fig. 7 illustrates the variation process of the metric R(k) on four real-word datasets, from which we
can see that, in each iteration of the loop, over 60% of the nonzero elements maintain their positions.
We call this feature relative stability of nonzero element positions.

Given that the positions of nonzero elements exhibit relative stability, this indicates that in the
process of adjacent continuous multiple rounds of iterations, only a subset of nonzero elements with
fixed positions are being updated. For example, as shown in Fig. 6, in the first round of iteration,
only wi and wj are predicted as nonzero elements, while all other elements are zero. And in the
first k rounds of iteration, only wi and wj necessitate updates. This situation renders the prediction
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Figure 8: Overview of the two-stage ac-
celeration strategy.

of the remaining zero elements somewhat unnecessary.
Although the computational complexity of prediction be-
havior is not high, the more rounds required to update
these nonzero elements, the more computing resources
are wasted, especially for large-scale networks.

Acceleration Strategy Design: To alleviate the situation
above, we proposed to focus on updating the nonzero
weights filtered out by z

(k)
i and z

(k)
i until convergence

initially, as shown in Stage 1 in Fig. 8. The complete
organization of FKSC algorithm and its computational complexity analysis are detailed in A.4.

5 EXPERIMENT

Overall, our experimentation encompasses an initial Kernel Sparse Coding Dictionary Learning
(KSCDL) training phase and a subsequent Fast Kernel Sparse Coding (FKSC) testing phase. The
specific details of the experimental setup, including the dataset, comparison algorithms, and evalu-
ation metrics, can be found in A.5. Within the initial KSCDL training phase, we replace KSC with
FKSC, verifying the convergence of the KSCDL method and analyzing the impact of various hyper-
parameters on the KSCDL objective value in A.6. Moving on to the subsequent FKSC testing phase,
we proceed to validate the effectiveness of the acceleration strategy within FKSC, and compare its
performance in the context of data compression (the specific implementation steps are outlined in
A.7) with other existing algorithms. The corresponding results are shown in the following.

Effectiveness of Acceleration Strategy: The effectiveness of the acceleration strategy is mani-
fested in two aspects: accuracy and processing time. In the following, we verify that the proposed
FKSC method can accelerate processing time while ensuring there is no additional loss of accuracy.

Given the limited scale of real datasets, which may hinder the effectiveness of our acceleration
strategy, thus, we integrate synthetic data, gradually increasing the data scale, to verify the scalability
performance of the proposed algorithm. Specifically, we generate synthetic data, denoted as Syn600,
Syn800, Syn1000, Syn1200 and Syn1400 respectively, following the generation method of Syn360
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in A.5. The data sizes used for training in them are 600× 1200, 800× 1600, 1000× 2000, 1200×
2400, 1400 × 2800, and the data sizes for testing are 600 × 600, 800 × 800, 1000 × 1000, 1200 ×
1200, 1400 × 1400, with the dictionary matrix configured as a square and hyperparameters set to
λ = 0.01 and σ = 20 uniformly.
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Figure 9: FKSC’s scalability experiments. For each column
in sparse weight matrix W: (a) the average processing time;
(b) the average number of updates for (8).

The experimental results are shown
in Table 1 and Fig. 9, from which we
can observe that
• The two-stage accelerated strategy
in FKSC does not exert significantly
detrimental effect on accuracy. As
shown in Table 1, the objective values
remain consistent between FKSC and
KSC across the evaluated datasets.
• The FKSC method can significantly
reduce processing time. Fig. 9 (a)
shows that FKSC has effectively im-
proved the efficiency of KSC, achiev-
ing a remarkable reduction in pro-
cessing time by up to 90%, for each
column in sparse weight matrix W. This improvement is attributed to FKSC’s strategy of calculat-
ing the upper and lower bounds of intermediate variables, thereby substantially circumventing their
updates, as illustrated in Fig. 9 (b).
• As the data size increases, the acceleration effect of FKSC becomes increasingly evident. As
shown in Fig. 9 (a), the processing time for both KSC and FKSC increases in tandem with the
expansion of data scale. Notably, the KSC method experiences a swift surge in processing time,
contrasted by a more gradual increment for the FKSC method. As a result, the gap in processing
time between KSC and FKSC becomes increasingly pronounced as the data scale increases.

Table 1: The objective values for KSC and FKSC
PM2.5 Traffic Harvard Syn360 PlanetLab Syn600 Syn800 Syn1000 Syn1200 Syn1400

KSC 0.2761 0.1378 0.3877 1.8439 0.8328 1.6057 2.1432 2.6820 3.2092 3.7574
FKSC 0.2761 0.1378 0.3877 1.8439 0.8328 1.6057 2.1432 2.6820 3.2092 3.7574

Compression Performance: Given that FKSC effectively converts dense data into sparse data com-
prising merely a few non-zero elements, we delve into its application within the realm of data com-
pression. The intricate implementation details are comprehensively presented in A.7.

The Compression Ratio (CR) is determined by FKSC, which hinges critically on the sparse penalty
parameter λ. Specifically, as stated in (9), the larger the value of λ, the greater the interval [−λ, λ]
becomes. Consequently, more intermediate variables zi(i = 1, 2, · · · , p) fall within this interval,
leading to a higher number of zero weights. As a result, w becomes sparser, and the compression
ratio increases. However, there is a trade-off as an excessively large λ can render w overly sparse,
potentially compromising the accuracy of data reconstruction.

Motivated by the experiments detailed in A.6, we take σ = 10, 4, 11, 17 and 10 for PM2.5, Traffic,
Harvard, Syn360 and PlanetLab respectively, and confine the penalty parameter λwithin the interval
[0.001, 0.1] to ensure that the sparse weight matrix W is not too sparse to recover the original data
Y. In Table 2, we detail the compression performance parameters of various algorithms across five
datasets at four distinct compression ratios (CRs), with the optimal and sub-optimal performance
parameters highlighted in bold. From which, several key observations emerge:
• Superiority of FKSC over CD: With the exception of the PM2.5 dataset at CR = 26.0293, the
FKSC method consistently outperforms CD in all three performance metrics. Notably, in the Traffic
data at CR = 57.3321, i.e., the data size is compressed to 1.75% of the original scale, the NMAE,
NMAE, NECR metrics of FKSC reach 0.1764, 0.1259, 6057 respectively, achieving a remarkable
21% relative improvement in NRMSE, 47% in NMAE, and an astonishing three times increase in
NECR. This underscores the significant enhancement in sparse coding performance brought about
by the incorporation of kernel trick.
• Competitive performance of FKSC compared to KSC: It is evident that these restoration perfor-
mance parameters of FKSC closely align with those of KSC across five datasets at four different
CRs. This indicates that the two-stage acceleration strategy in FKSC exhibits virtually no adverse
impact on data compression.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 2: Compression performance of FKSC and other comparison methods.
Traffic CR=30.5866 CR=40.3351 CR=50.1481 CR=57.3321

NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR
CD 0.1902 0.1569 2967 0.2012 0.1708 2285 0.2077 0.1781 2238 0.2135 0.1857 1900

FKSC 0.1723 0.1242 6077 0.1742 0.1250 5980 0.1760 0.1251 6184 0.1764 0.1259 6057
KSC 0.1723 0.1242 6075 0.1742 0.1250 5982 0.1760 0.1251 6183 0.1764 0.1259 6057

KFMC 0.2026 0.1611 4007 0.2018 0.1596 4240 0.1986 0.1525 4600 0.2092 0.1619 4189
KSR-L21 0.1760 0.1290 5989 0.1857 0.1339 6233 0.2048 0.1444 5476 0.2476 0.1761 4402

LPM 0.2799 0.2323 2589 0.2815 0.2342 2430 0.2709 0.2253 2534 0.2797 0.2320 2665

PM2.5 CR=26.0293 CR=32.1060 CR=41.9058 CR=51.1438
NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR

CD 0.2581 0.2078 2168 0.2877 0.2373 1689 0.3075 0.2565 1377 0.3282 0.2769 1303
FKSC 0.2519 0.2060 2122 0.2575 0.2122 2025 0.2625 0.2153 2077 0.2665 0.2195 2057
KSC 0.2519 0.2060 2122 0.2575 0.2122 2023 0.2625 0.2153 2078 0.2665 0.2195 2057

KFMC 0.2643 0.2248 1601 0.2656 0.2285 1567 0.2861 0.2447 1612 0.2711 0.2304 1728
KSR-L21 0.2803 0.2358 1576 0.4054 0.3152 1249 0.3110 0.2634 1523 0.3539 0.2867 1426

LPM 0.3781 0.3421 910 0.3471 0.3127 1044 0.3308 0.2923 1255 0.3135 0.2759 1352

Harvard CR=40.3763 CR=54.1633 CR=63.2912 CR=74.4482
NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR

CD 0.2083 0.1774 3924 0.2181 0.1915 3187 0.2365 0.2173 2884 0.2435 0.2261 2737
FKSC 0.2028 0.1654 4971 0.2057 0.1675 4481 0.2106 0.1760 3868 0.2130 0.1786 3836
KSC 0.2028 0.1654 4971 0.2057 0.1675 4481 0.2106 0.1760 3868 0.2130 0.1786 3836

KFMC 0.3119 0.2163 2907 0.2686 0.2282 3298 0.3536 0.3017 3137 0.4250 0.3129 3215
KSR-L21 0.2726 0.2232 2999 0.3028 0.2355 2760 0.3265 0.3046 2599 0.3938 0.2868 2265

LPM 0.3649 0.3552 1950 0.3321 0.3089 2450 0.3334 0.3140 2324 0.3138 0.2892 2541

Syn360 CR=54.1557 CR=81.2641 CR=105.4173 CR=140.4878
NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR

CD 0.1086 0.0880 20548 0.1140 0.0927 19136 0.1195 0.0975 17838 0.1253 0.1031 16500
FKSC 0.1024 0.0824 22255 0.1036 0.0834 22044 0.1043 0.0839 22014 0.1048 0.0843 21711
KSC 0.1024 0.0824 22255 0.1036 0.0834 22044 0.1043 0.0839 22014 0.1048 0.0843 21711

KFMC 0.1401 0.1130 16127 0.1539 0.1232 14794 0.1541 0.1244 14642 0.1398 0.1134 15768
KSR-L21 0.1121 0.0905 19931 0.1171 0.0941 19327 0.1076 0.0856 21947 0.1093 0.0874 21342

LPM 0.2460 0.2030 8578 0.2528 0.2098 8082 0.2557 0.2127 8109 0.2571 0.2161 7515

PlanetLab CR=49.2513 CR=60.4177 CR=68.2878 CR=81.5557
NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR NRMSE NMAE NECR

CD 0.2360 0.1597 31726 0.3221 0.2411 19466 0.2599 0.1881 23786 0.3360 0.2543 18120
FKSC 0.2236 0.1469 36608 0.2308 0.1575 32540 0.2216 0.1472 35106 0.2281 0.1560 32599
KSC 0.2236 0.1469 36606 0.2308 0.1575 32540 0.2216 0.1472 35098 0.2281 0.1560 32597

KFMC 0.2369 0.1666 32553 0.2311 0.1557 36053 0.2417 0.1670 33887 0.2380 0.1633 34773
KSR-L21 0.2397 0.1633 35040 0.2365 0.1600 35159 0.2768 0.1869 33715 0.2456 0.1643 34437

LPM 0.3563 0.2949 19655 0.3083 0.2402 24854 0.3147 0.2499 23261 0.2999 0.2318 25542

• Advantage of FKSC over other kernel sparse coding methods: In the totality of 20 experimental
setups, FKSC fails to achieve the top performance in only 3 instances, signifying its overwhelming
dominance in most scenarios. For instance, in the Harvard data at CR = 54.1633, i.e., the data size
is compressed to 1.85% of the original scale, the NMAE, NMAE, NECR metrics of FKSC reach
0.2057, 0.1675, 4481 respectively. When KSC is excluded from consideration, KFMC emerges as
the sub-optimal method. Compared to KFMC, FKSC exhibits a substantial 30% relative improve-
ment in NRMSE, 36% in NMAE, and 1.36 times boost in NECR. This may be attributed to the
solution of FKSC, which boasts a convergence guarantee and facilitates the optimization process in
achieving an exceptional stationary point.

6 CONCLUSION

In this paper, we have addressed the limitations of traditional sparse coding algorithms when dealing
with nonlinear real-world signals. By leveraging RBF kernel to implicitly increase the dimensional-
ity of the original data to enhance its separability, our proposed kernel sparse coding method enables
more effective sparse representations and provides a solution with convergence guarantees based on
the principle of coordinate descent. To further optimize the computational efficiency, we introduced
a novel two-stage acceleration strategy. The strategy is theoretically underpinned by the insight that
updates to zero weights can be skipped and empirically supported by the observation that the po-
sitions of nonzero weights are relatively stable. This innovation allows the optimization process to
be significantly accelerated. Experimental results validate the effectiveness of our approach. The
two-stage acceleration strategy demonstrates a remarkable reduction in processing time by up to
90%. Additionally, our method shows superior performance compared to both traditional linear
sparse coding methods and other kernel sparse coding techniques, with significantly lower values of
NMAE when CR is high.
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A APPENDIX

A.1 RELATED WORK

Sparse coding serves as a pivotal branch within deep learning (Yang et al., 2009), endeavoring to
discover a sparse representation of input data in the form of a linear combination of basic atoms. This
pursuit achieves multiple objectives: data compression, enhancement of computational efficiency,
and uncovering salient features of the data, thereby finding widespread applications across diverse
domains.

However, recent studies (Pimentel-Alarcón et al., 2017; Fan et al., 2021; Fan & Udell, 2019) have
indicated that many real-world signals do not possess an inherent linear structure, hence traditional
linear sparse coding methods may fail to be effective (Yang et al., 2016). Consequently, a few
scholars have proposed the use of kernel tricks to implicitly elevate the dimensionality of the input
data, thereby enhancing the applicability of sparse coding methods to complex data. Kernel sparse
coding is an extension of linear sparse coding. Existing research on kernel sparse coding problems
can be roughly divided into two categories based on the form of constraint on the sparse matrix in
their mathematical models: the l0 norm-based approach and the l1 norm-based approach.

The kernel sparse coding problem formulated with the l0 norm is inherently NP-hard and can only
be solved by using heuristic algorithms. For instance, the Kernel Orthogonal Matching Pursuit
(KOMP) (Nguyen et al., 2013) algorithm iteratively selects dictionary atoms that exhibit the highest
correlation with the current residual during the sparse optimization process until a predetermined
sparsity level is achieved. Alternatively, the Linearized Proximal Method (LPM) (Quan et al., 2016)
leverages block coordinate descent, initially obtaining a closed-form solution through the proximal
gradient method, followed by a brute-force selection of the weights with the largest absolute values
to satisfy the sparsity constraint. These heuristic algorithms are collectively noted for their rapid
sparse optimization capabilities. However, they fall short by lacking convergence guarantees,
which means they cannot assure the attainment of the optimal solution and are susceptible to getting
trapped in local optima.

In contrast, the l1 norm offers a convex alternative that is easier to handle mathematically but still
presents challenges due to its non-differentiability. The Kernel Feature-sign Search (KFSS) (Gao
et al., 2013) algorithm addresses this issue by taking an active approach to guessing the signs of
the coefficient weights. This strategic method is based on the observation that the sign of a coef-
ficient is closely related to the correlation between the dictionary atom and the residual. By cor-
rectly guessing the signs, KFSS can simplify the optimization problem and work towards finding
an analytical solution that satisfies the sparsity requirement. The First-Order Smooth Optimization
(FOSO) (Kim, 2014) algorithm tackles the non-differentiability of the l1 norm by approximating
it with smooth functions. This approximation allows the use of conventional gradient-based opti-
mization techniques, which are otherwise inapplicable to non-differentiable problems. The smooth
approximation serves as a surrogate that enables the derivation of an analytical solution while still
promoting sparsity in the solution. Both KFSS and FOSO contribute to the broader field of kernel
sparse coding by providing methods that can yield sparse solutions with convergence guarantees.
However, they face challenges in terms of the scalability of optimization complexity and com-
putational speed. Therefore, this paper aims to explore a new fast kernel sparse coding method
with convergence guarantees.

A.2 KSCDL ALGORITHM

Algorithm 1 KSCDL
Input: Y, κ, λ, tmax

1: Initialize: X ∼ N (0, 1), t = 0
2: repeat
3: t = t+ 1
4: Update sparse coding matrix W(k) through (9)
5: Update dictionary matrix X(k) through (11)
6: until the convergence condition is satisfied or t = tmax

Output: W, X

13
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The convergence condition in Algorithm 1 refers that the relative error RE = ∥X(k) −
X(k−1)∥F /∥X(k−1)∥F < ε for any ε > 0. The following Theorem shows this algorithm converges.

Theorem: Algorithm 1 converges to a stationary point.

Proof. Denote the objective function in (3) asL(X,W). On the one hand, when W is fixed,L(X,W)
is twice differentiable with respect to X, and the gradient GX is Lipschitz continuous with Lipschitz
constants LX, then the Taylor expansion of L(X,W) around X(k−1) is

L(X(k),W) = L(X(k−1),W) + ⟨GX,X(k) − X(k−1)⟩

+
1

2
vec(X(k) − X(k−1))THXvec(X(k) − X(k−1)),

(17)

whereHX is the Hessian matrix of L(X,W) with respect to X. ⟨· , · ⟩ is the trace of the inner product
of matrices, i.e., ⟨A,B⟩ = trace(AT B). Substituting (11) into (17) yields

L(X(k),W) ≤L(X(k−1),W) + ⟨GX,−µGX⟩+
λmax(HX)

2
vec(−µGX)

T vec(−µGX)

≤L(X(k−1),W)− 2µ− µ2LX

2
∥GX∥2F ,

(18)

where λmax(HX) is the maximum eigenvalue of Hessian matrix HX. Clearly,
2µ− µ2LX

2
≥ 0 if

0 ≤ µ ≤ 2

LX
. That is to say, when X is updated according to equation (11), the objective function

L(X,W) is decreasing and bounded below by 0. Hence, the objective functionL(X,W) with respect
to X is convergent.

On the other hand, when X is fixed, the kernel sparse coding subproblem (4) constitutes a Lasso
problem, with the explicit solution (9) obtained directly through the coordinate descent algorithm.
Thus, similar to Fujiwara et al. (2016) and following the convergence analysis presented in Tseng
(2001), the objective function L(X,W) with respect to W is convergent.

A.3 DISCUSSION ON EXTENDING THE SOLUTION OF SCDL TO HIGHER-DIMENSIONAL
FEATURE SPACE

SCDL

Example 2：Extend the solution of SCDL in the original space to high-dimensional feature space

 =  W

  =     ,    ,    ,    
 ,    

 ,    
 ,       ,       ,        

 

 = 1,2, ⋯,6

In Example 1, the SCDL result of input data Y yields the dictionary matrix X and the sparse matrix
W. In addition, Y is vertically expanded to high-dimensional data Ỹ, and the SCDL result of Ỹ
yields the dictionary X̃ and the sparse matrix W̃. In this case, the approximation error AEhigh1 =
1
2∥Ỹ − X̃W̃∥2F = 0.3625. In Example 2, suppose we vertically expand the dictionary X (obtained
from Example 1) to dictionary X in the high-dimensional feature space, we can derive the high-
dimensional approximate data as Y = XW, where W is obtained from Example 1. In this case, the
approximation error in the high-dimensional feature space is AEhigh2 = 1

2∥Ỹ − Y∥2F = 4.8904,
which is considerably higher than AEhigh1. That is to say, when directly extending the results of
SCDL in the original space to a high-dimensional feature space, the data approximation effect is not
as good as performing SCDL directly in the high-dimensional feature space. In other words, the
solutions of (3) should not be obtained by simply extending the solutions of (1). Consequently, it is
necessary to explore novel approaches to solve the KSCDL problem (3).
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A.4 FKSC ALGORITHM

The FKSC method with a two-stage acceleration strategy is described in Algorithm 2. The core
strategies of FKSC includes: Stage 1: Prioritizing updates of initially predicted nonzero elements
(lines 3-11); Stage 2: Safely skipping updates for zero elements in w (lines 14-16).

Computational complexity analysis. Assuming the FKSC method requires T1 rounds of iterations
in Stage 1 and T2 rounds of iterations in Stage 2, while the KSC method requires T rounds of
iterations for the weight vector to converge.

In Stage 1 of FKSC, assuming that in the 1st round of iteration, there are k1 elements are predicted
to be nonzero and require T1 iterations to converge. Thus, the total computational complexity of
Stage 1 is O(p + k1pT1), where O(p) represents the total computational complexity of calculating
the bounds in the 1st round of iteration, andO(k1pT1) represents the total computational complexity
of the k1 predicted nonzero elements over T1 rounds of iteration.

In Stage 2 of FKSC, assuming that the entire weight vector requires T2 iterations to converge, and
on average, k0 elements are predicted to be zero in per round of iteration. Therefore, the total com-
putational complexity of Stage 2 is O(pT2(p − k0 + 1)), where O(pT2) is the total computational
complexity of calculating the bounds throughout the process, and O((p− k0)pT2) is the total com-
putational complexity of the remaining (p−k0) elements, excluding the predicted k0 zero elements,
to undergo T2 rounds of iterations.

Hence, the total computational complexity of the entire FKSC algorithm is O(p(1+ k1T1 + T2(p−
k0 + 1))). If no acceleration strategies are adopted and the standard coordinate descent algorithm is
used for updating iterations directly, then the overall computational complexity would beO(p2(T1+
T2)). Generally speaking, T is not much different from T1 + T2, then the two-stage acceleration
strategy has the potential to speed up the processing time of kernel sparse coding.

Algorithm 2 Complete organization of FKSC
Input: X, y, κ,
1: Compute κ(y,X), κ(X,X)

2: Initialize: w(0) = 0, z(0) = 0, Ω = {1, · · · , p}, Ω̃ = ∅
3: for each i ∈ Ω do
4: Compute z

(k)
i and z

(k)
i by (14)

5: end for
6: if z(k)i > λ or z(k)i < −λ then
7: Ω̃ = Ω̃ ∪ {i}
8: end if
9: repeat

10: Update w
(k)
i through (9) for each i ∈ Ω̃

11: until w converges
12: repeat
13: for each i ∈ Ω do
14: Compute z

(k)
i and z

(k)
i by (14)

15: if −λ ≤ z
(k)
i ≤ z

(k)
i ≤ λ then

16: w
(k)
i = 0

17: else
18: Update w

(k)
i through (9)

19: end if
20: end for
21: until w converges
Output: w

A.5 EXPERIMENTAL SETUPS

A.5.1 DATASETS

The datasets mainly utilized encompass four real-world datasets and one synthetic dataset. Ac-
knowledging the dimensional constraints of the real-world datasets, we specifically introduce a syn-
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thetic dataset of an tailored dimension (referred to as ”Syn360”), to ensure a progressive scaling of
dimensions across the datasets, thereby facilitate our comprehensive observation and analysis of the
experimental outcomes.

• PM2.5 (Zheng et al., 2015) records the air quality data collected by Microsoft Research’s Ur-
ban Computing team for a year (from May 1, 2014 to April 30, 2015) in the Urban Air project.
The dataset covers four major cities in China (Beijing, Tianjin, Guangzhou, and Shenzhen) and 39
adjacent cities within a 300-kilometer radius.

• Traffic (Chen et al., 2018) encompasses traffic speed observations from 214 anonymous road seg-
ments, primarily comprising urban highways and main thoroughfares, spanning a two-month period
from August 1, 2016, to September 30, 2016. The data is recorded every 10 minutes, originating
from Guangzhou, China.

• Harvard (Ledlie et al., 2007) contains the data of application-level RTT, gathered from interac-
tions among 226 Azureus clients over a span of 72 hours.

• PlanetLab (Zhu et al., 2017) consists of RTT measurements between 490 nodes in the PlanetLab
network across 18 time slices.

• Syn360 (similar to (Fan et al., 2021)) is a synthetic data with each column generated by y =
ψ(s) = Ps̃, where s = [s1, s2, s3]

T ∼ U(−1, 1); ψ ∈ {ψ1, · · · , ψ15} is an order-3 polynomial map-
ping with P ∈ {P1, · · · ,P15} ⊂ R360×20 ∼ N (0, 1). s̃ = [1, s1, s2, s3, s

2
1, s1s2, s1s3, s

2
2, s2s3, s

2
3,

s31, s
2
1s2, s

2
1s3, s1s2s3, s

3
2, s

2
2s1, s

2
2s3, s

3
3, s

2
3s1, s

2
3s2]

T ∈ R20; For each Pi, i = 1, · · · , 18, we ran-
domly generate 100 ys.

In Table 3, we present the size of the data selected from each dataset, used for training the dictionary,
and for testing the performance of the proposed FKSC algorithm.

Table 3: The processed data size for training and testing
PM2.5 Traffic Harvard Syn360 PlanetLab

Training 174× 920 214× 1440 226× 1130 360× 1000 490× 1470
Testing 174× 184 214× 288 226× 226 360× 500 490× 490

A.5.2 COMPETITORS

The comparison algorithms for KSC and FKSC include

• CD (Fujiwara et al., 2016): the coordinate descent algorithm for traditional linear sparse coding
problem, based on l1 regularization in the original input space.

• KFMC (Fan & Udell, 2019): the explicit solution approach for kernelized matrix factorization
problems, with the weight matrix regularized by the Frobenius norm.

This method results in a weight matrix that is not strictly sparse, but contains many weight factors
that are very small. In this paper, for each column of the weight matrix, we preserve weight factors
with significant absolute values while setting the others to zero to meet a predetermined sparsity
level, thereby facilitating a comparison with our proposed method.

•KSR-L2,1 (Qian et al., 2023): the explicit solution approach for kernel sparse representation, with
the weight matrix being constrained via L2,1 matrix norm.

Ideally, this method yields a weight matrix that is row-sparse, but the overall sparsity is not high
enough, or in other words, there are not enough zero elements. Therefore, to enable a comparative
analysis with our proposed method, for each column of the weight matrix, we retain only those
weight factors with substantial absolute values in accordance with a preset sparsity level, while
nullifying the others to zero.

• LPM (Quan et al., 2016): the linearized proximal method, employed for addressing kernel sparse
coding problems with l0 regularization, initiates by leveraging the proximal gradient approach to
secure a closed-form solution. Subsequently, it selects and retains the weight factors with the most
significant absolute values, aligning with a predefined sparsity level.
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A.5.3 METRICS

The compression performance of an algorithm is primarily reflected in two aspects: compression
ratio and accuracy. Therefore, we present the following metrics:

• Compression Ratio (CR):

CR =
Size of original data

Size of compressed data
.

• Normalized Root Mean Square Error (NRMSE):

NRMSE = ∥Y− Ỹ∥F
/
∥Y∥F ,

where Ỹ refers to the approximate data obtained by solving the optimization problem (19) for kernel-
based algorithms include LPM, KSR-L2,1, KFMC, as well as the proposed KSC and FKSC, and
Ỹ = XW for sparse coding algorithms in the original space like CD.

• Normalized Mean Absolute Error (NMAE):

NMAE =
∑
(i,j)

|yij − ỹij |
/∑

(i,j)

|yij |,

where ỹij is the element located at the ith row and jth column of matrix Ỹ.

• Number of Elements Correctly Reconstructed (NECR):

NECR =
∑
(i,j)

yϱij , yϱij =

{
1, |yij − ỹij | < ϱ;
0, Otherwise,

where ỹij is the element located at the ith row and jth column of matrix Ỹ and ϱ = 10−3.

In these metrics, higher values of CR and NECR indicate superior compression performance by the
algorithm. Conversely, lower values of NRMSE and NMAE signify a more effective compression
capability.

A.6 EXPERIMENTAL RESULTS

For all experiments, the maximum number of iterations is set to 100, and the algorithm termination
tolerance is set to 1e− 3. For KSCDL, the termination tolerance refers to the relative error REX =
∥X(k) − X(k−1)∥F /∥X(k−1)∥F , while for FKSC, the termination tolerance refers to the relative
error REW = ∥W(k) −W(k−1)∥F /∥W(k−1)∥F .
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Figure 10: The objective value for different numbers of atoms (i.e., p), with λ = 0.001 and σ = 2.

Convergence Verification: To validate the convergence of the KSCDL method outlined in Algo-
rithm 1, we set λ = 0.001 and σ = 2. As shown in Fig. 10, the objective values ∥ϕ(Y)−ϕ(X)W∥2F
achieve convergence across the evaluated datasets, even as the number of atoms varies. It is note-
worthy that the objective value for Syn360 is comparatively higher than those of the other datasets.
This discrepancy arises from the less optimal parameter setting of σ = 2 for this dataset. Further
experimentation demonstrate that adopting a value of σ exceeding 10 leads to significantly enhanced
performance.

In addition, we can also observe that as the number of atoms increases, the convergence speed of
the objective function gradually accelerates. Nonetheless, once the number of atoms surpasses the
number of rows (174, 214, 226, 360 and 490 for PM2.5, Traffic, Harvard, Syn360 and PlanetLab,
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respectively) in the dictionary matrix, the convergence behavior of the objective value is no longer
sensitive to the number of atoms. Therefore, setting the number of atoms in the dictionary equal to
the number of its rows, that is, configuring the dictionary as a square matrix, is reasonable.

Hyperparameter Analysis: In addition to the number of the dictionary atoms, there are also two
hyperparameters that can influence the outcomes of the KSCDL algorithm: the sparsity penalty
parameter λ and the RBF kernel hyperparameter σ. With all dictionaries configured as square ma-
trices, Fig. 11 indicates that when λ is fixed and σ is sufficiently large, the objective value remains
insensitive to variations in σ. Conversely, when σ is kept constant, the objective function exhibits a
tendency of exponential growth as λ increases. To ensure that the objective value of KSCDL remains
within a desirable range, we will restrict the value of λ within the interval of [0.001, 0.1], from this
point onward.
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Figure 11: The influence of different λ and σ on objective value.

A.7 APPLICATION OF FKSC
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Figure 12: Example for FKSC’s application.

FKSC transforms dense input data into a sparse
representation, thereby enabling solutions for
challenges such as data compression, improv-
ing of computational efficiency, feature analy-
sis and denoising. Taking data compression as
an example, Fig. 12 delineates the application
procedure of FKSC. Initially, a dictionary ma-
trix X, which can reflect the underlying struc-
tural features of the data, is derived from histor-
ical data using the KSCDL algorithm outlined
in Algorithm 1, with KSC being replaced by
FKSC. In the subsequent stage, the original data undergoes a three-step compression process (i.e.,
Step1-3) utilizing this dictionary matrix X. Conversely, the compressed data can be approximately
reconstructed into its original form through a three-step decompression procedure (i.e., Step4-6).
The specific implementation details of each step are outlined below:
• Step 1: Encode new data Y into sparse matrix W via the propose FKSC method, leveraging the
dictionary matrix X obtained from the initial stage.
• Step 2: Vectorize the sparse matrix W to facilitate its subsequent compression.
• Step 3: Save the vectorized W in a condensed two-column matrix. Column one lists indices of
non-zero elements, and column two lists their values.
• Step 4: Decode back the small matrix from the storage unit into a sparse column vector.
• Step 5: Fold the sparse column vector back into the sparse matrix W.
• Step 6: Solve the following optimization problem to obtain the approximate data Ỹ:

Ỹ = argmin
Ỹ

1

2
∥ϕ(Ỹ)− ϕ(X)W∥2F . (19)
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