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Summary
We introduce the constrained best mixed arm identification (CBMAI) problem under un-

known reward and costs wherein there are K arms, each of which is associated with a reward
and multiple cost attributes. These are random, and come from distributions with unknown
means. The best mixed arm is a probability distribution over a subset of the K arms that max-
imizes the expected reward while satisfying the expected cost constraints. We are specifically
interested in a pure exploration problem under a fixed sampling budget with the goal of identi-
fying the support of the best mixed arm. We propose a novel, parameter-free algorithm, called
the Score Function-based Successive Reject (SFSR) algorithm, that combines the classical suc-
cessive reject framework with a novel rejection criteria using a score function based on linear
programming theory. We establish a performance guarantee for our algorithm by providing a
theoretical upper bound on the probability of mis-identification of the support of the best mixed
arm and show that it decays exponentially in the budget N and some constants that characterize
the hardness of the problem instance. We also develop an information-theoretic lower bound
on the error probability that shows that these constants appropriately characterize the problem
difficulty. We validate this empirically on a number of problem instances.

Contribution(s)
1. This paper provides a novel, parameter-free algorithm that identifies the optimal support of

the best mixed arm for a constrained best arm identification problem with a fixed sampling
budget. We establish a performance guarantee for our algorithm in the form of an exponen-
tially decaying, instance-dependent error upper bound.
Context: Prior work has considered the best arm identification problem with known costs
and/or with only deterministic arms allowed. However, we consider unknown costs and
allow randomized (i.e., mixed) arms since deterministic arms may be suboptimal, or simply
not meet all the constraints.
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Abstract

We introduce the constrained best mixed arm identification (CBMAI) problem under
unknown reward and costs, wherein there are K arms, each of which is associated with
a reward and multiple cost attributes. These are random, and come from distributions
with unknown means. The best mixed arm is a probability distribution over a subset
of the K arms that maximizes the expected reward while satisfying the expected cost
constraints. We are specifically interested in a pure exploration problem under a fixed
sampling budget with the goal of identifying the support of the best mixed arm. We
propose a novel, parameter-free algorithm, called the Score Function-based Successive
Reject (SFSR) algorithm, that combines the classical successive reject framework with a
novel rejection criteria using a score function based on linear programming theory. We
establish a performance guarantee for our algorithm by providing a theoretical upper
bound on the probability of mis-identification of the support of the best mixed arm and
show that it decays exponentially in the budget N and some constants that characterize
the hardness of the problem instance. We also develop an information-theoretic lower
bound on the error probability that shows that these constants appropriately characterize
the problem difficulty. We validate this empirically on a number of problem instances.

1 Introduction

Bandit models are prototypical models of online learning, exploration, and decision making (Lat-
timore & Szepesvári, 2020). For example, recommender systems for online shopping and video
streaming often use learning algorithms to make recommendations that maximize click-through-
rates. Online learning can be formulated as a regret minimization problem, which leads to algo-
rithms that trade exploration with exploitation (Lai & Robbins, 1985), where the regret of a learning
algorithm is defined with respect to a policy optimizing a single (reward) objective. A number of
Bayesian and non-Bayesian algorithms (Lattimore & Szepesvári, 2020) have been proposed for this
setting (Auer et al., 2002; Russo & Van Roy, 2014). Alternatively, online learning can be formulated
as a pure exploration problem, also referred to as the best arm identification problem (Audibert &
Bubeck, 2010; Garivier & Kaufmann, 2016), wherein adaptive data collection can be performed to
identify the optimal arm without considering the rewards/performance during learning.

Many online learning problems involve multiple objectives that cannot be aggregated into a sin-
gle objective function. Such problems are better formulated in terms of maximizing one objective
while constraining the others. In the recent literature, progress has been made on constrained bandit
models, as well as online reinforcement learning with constraints. In such exploration vs. exploita-
tion settings, novel algorithms have emerged that can surprisingly minimize regret while ensuring
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bounded constraint violation (Kalagarla et al., 2023). However, some practical settings are more
suitable for a pure exploration problem rather than a regret minimization problem. Constrained on-
line learning within a pure exploration problem formulation, and specifically, the constrained best
arm identification problem is largely unsolved.

In this paper, we introduce the constrained best mixed arm identification (CBMAI) problem, wherein
there are K arms, each of which is associated with a reward and multiple cost attributes. These are
random, and come from distributions with unknown means. The best mixed arm is a probability
distribution over a subset of the K arms that maximizes the expected reward while satisfying the
expected cost constraints. We are specifically interested in a pure exploration problem with the goal
of identifying the support of the best mixed arm, i.e., identifying the subset of arms with non-zero
probability in the best mixed arm. Since the true expected costs are unknown in our setting, the
exact shape of the constraint polytope is not known in advance. Thus, there are uncountably many
candidates for the best mixed arm. However, the support of the best mixed arm is still one of finitely
many (albeit exponentially many) possibilities. Given a fixed sampling budget N , we can sample
the arms in any way and then use the gathered data (rewards/costs) to declare which arms are in the
support of the best mixed arm.

We provide a novel, parameter-free algorithm, called the Score Function-based Successive Reject
(SFSR) Algorithm, that identifies the optimal support for the CBMAI problem under the fixed-
budget setting. The algorithm combines the successful Successive Reject algorithm (Audibert &
Bubeck, 2010) with a novel rejection criteria using a score function based on linear programming
theory. Using different score functions results in an algorithm with different flavors, and we present
two choices for them. We establish a performance guarantee of the proposed algorithm in the form
of an instance-dependent error upper bound, which decays exponentially in N with an exponent
characterized by a certain measure of hardness of the instance. We also present a lower bound on
the error probability for a broad class of algorithms which helps validate how good our upper bound
is. We provide empirical results to show that our proposed algorithm significantly outperforms
baselines on typical instances.

2 Related Literature

We review related literature on best arm identification and constrained learning problems which is
somewhat distinct from the vast literature on multi-arm bandits (Lattimore & Szepesvári, 2020).

Best Arm Identification. The literature on (unconstrained) best arm identification can be di-
vided into two categories: (1) The fixed confidence setting (Kaufmann & Kalyanakrishnan, 2013;
Jamieson et al., 2014; Garivier & Kaufmann, 2016; Russo, 2016; Qin et al., 2017), where the aim is
to identify the best arm with a specified error probability δ using the smallest number of samples.
Two major algorithm design philosophies in this setting are Top-2 algorithms (Russo, 2016) and
Track-and-Stop (Kaufmann & Kalyanakrishnan, 2013). (2) The fixed budget setting (Audibert &
Bubeck, 2010; Karnin et al., 2013; Carpentier & Locatelli, 2016; Yang & Tan, 2022; Barrier et al.,
2023; Wang et al., 2024), where the aim is to minimize the identification error probability given a
sampling budget N . Round-based elimination algorithms are the dominant algorithm philosophy in
this setting.

Regret-focused Learning in Constrained Problems. There has been a lot of recent literature on
designing algorithms to achieve small reward and/or constraint violation regret in constrained multi-
armed bandits (Amani et al., 2019; Moradipari et al., 2021; Liu et al., 2021b; Zhou & Ji, 2022;
Pacchiano et al., 2024) and constrained MDPs (Liu et al., 2021a; Bura et al., 2022; Kalagarla et al.,
2023). In these settings, it is necessary to balance exploration and exploitation. In contrast, we are
interested in efficiently using the learning budget for pure exploration.

Constrained Best Arm Identification. Recently, there has been considerable interest in best arm
identification in a constrained setting. In Lindner et al. (2022); Camilleri et al. (2022); Wang et al.
(2022); Faizal & Nair (2022); Shang et al. (2023), the authors considered the best deterministic



Pure Exploration for Constrained Best Mixed Arm Identification

arm identification problem from a finite set of arms in either fixed-confidence or fixed-budget set-
tings. In contrast, our work focuses on finding the best mixed arm since deterministic arms may
be suboptimal, or simply not meet the constraints. There are very few works on best mixed arm
identification: The CBMAI problem under the fixed-confidence setting when the costs are known
was considered in Carlsson et al. (2023). In contrast, we assume that the costs are unknown. Naka-
mura & Sugiyama (2024) considered a fixed-budget best knapsack identification problem assuming
that the best solution belongs to a known finite set and there’s an offline oracle for finding the best
knapsack under constraints given an input reward function. We do not assume access to such an
oracle due to the costs being unknown in our setting. A fixed-budget optimal support identification
problem with the same constraints imposed on both the exploration process and the final solution
was considered in Li et al. (2023). In contrast, we do not impose any constraints on the exploration
process. Furthermore, the theoretical error bounds therein are unfortunately not correct since the
strong concentration results for optimal solutions of randomly perturbed linear programs in their
Lemmas B.1 and C.2, which are a critical part of the theoretical analysis, are erroneous. Kone et al.
(2023) considered the problem of Pareto front identification for arms with multiple attributes. There
have also been numerous works on constrained Bayesian Optimization (Gardner et al., 2014; Gel-
bart et al., 2014; Letham et al., 2019; Eriksson & Poloczek, 2021) where the primary focus is on
empirical performance instead of theoretical guarantees.

3 Preliminaries

Notation. For a positive integer M , [M ] := {1, 2, · · · ,M}. For a vector v ∈ RM and I ⊂ [M ],
vI denotes the sub-vector of v formed by indices in I. For a matrix A with M columns and I ⊂ [M ],
AI denotes the sub-matrix of A formed by columns indexed by I. N (µ, σ2) denotes a Gaussian
distribution with mean µ and variance σ2. ∥ · ∥2 represents the Euclidean 2-norm.

Problem Statement. We introduce the constrained best mixed arm identification (CBMAI) prob-
lem in the context of a bandit model: There are K arms, indexed by [K] = {1, 2, · · · ,K}, each
associated with a reward function Ra and L cost functions Cl,a, a ∈ [K], l ∈ [L]. In this setting,
since any deterministic arm may be suboptimal, or fail to meet the constraints, we would like to
determine a mixed arm p∗, i.e., a probability distribution over the arms (in the probability simplex
PK := {p ∈ RK

+ : 1T p = 1}) such that it achieves the following

max
p∈PK

{RT p : Cp ≤ c̄}, (1)

where R = (R1, · · · , RK)T , (C)l,a = Cl,a and the vector c̄ ∈ RL. This is a linear program, and
therefore an optimal solution of (1) can be obtained at an extreme point of the constraint polytope
(Luenberger et al., 1984). Thus, when the costs are known, the best mixed arm will lie in a known
finite set (Carlsson et al., 2023; Nakamura & Sugiyama, 2024) since the constraint polytope has a
finite number of vertices.

However, our motivation comes from the bandit setting, and typically both the rewards R and costs
C for each arm are random, and come from an unknown distribution. In that case, there can be
uncountably many candidates for the best mixed arm making identifying the exact best mixed arm
virtually impossible. Thus, we focus on the optimal support identification, i.e., identifying the arms
that have non-zero probability in the best mixed arm. We denote such a set of arms by I∗ (we will
define it precisely later). We will consider that when the learning agent chooses arm a, it receives
a reward Ra ∼ N (ra, σ

2
r), and also incurs costs Cl,a ∼ N (cl,a, σ

2
c ), l = 1, 2, · · · , L. The random

rewards and costs are assumed mutually independent. We will assume that for the first K0 arms, the
mean reward (ra)a∈[K0] and mean costs (cl,a)a∈[K0],l∈[L] are unknown. The means of the reward
and costs of an arm in the (possibly empty) subset {K0 + 1, · · · ,K} is assumed to be known. Note
that the traditional setting of all arms being unknown simply corresponds to the case where K0 = K.
The variances are not needed to be known by the algorithms we design, but assuming them known
will simplify our analysis. Thus, we would like to solve the following LP problem that optimizes
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the expected reward subject to constraints on expected costs

max
p∈PK

{rT p : cp ≤ c̄}, (LP)

where the components of r = (ra)a∈[K] and c = (cl,a)l∈[L],a∈[K] corresponding to the first K0

arms are unknown and must be learnt.

To that end, we need samples of reward and costs for various arms. We consider a fixed-budget
setting, i.e., we can only obtain at most N such samples. We assume an underlying probability space
(Ω,F ,P), where Ω is the sample space, F is the event space, and P is a probability measure, and
would like to design a learning agent ϕ that minimizes the misidentification probability Pr,c(X ϕ ̸=
I∗), i.e., the probability of misidentifying the optimal support I∗, where X ϕ is the subset of arms
output by the algorithm. Note that we use a strict criteria: we only consider the identification to be
correct if the output support is exactly the set of arms in the optimal support.
Remark 1. We make a few observations. (i) Our algorithm does not need the Gaussian distributions
assumption. Furthermore, our main result (Theorem 1) can be adapted to sub-Gaussian reward and
cost distributions (through replacing the use of Gaussian concentration inequalities in the proof with
sub-Gaussian ones). However, assuming Gaussian distributions allows us to focus on presenting
key ideas while avoiding unnecessary technical details. (ii) The reasoning for explicitly formulating
known arms in our setting is as follows: First, for best deterministic arm identification problem with
both unknown and known arms, constrained or not, one can always run any algorithm on the subset
of unknown arms, obtain the best arm in this subset, and compare it with the best known arm, making
the formulation of known arms a bit of a distraction. However, this is not the case for constrained
best mixed arm identification, as the addition of a known arm could introduce new unknown arms
into the optimal mixed arm. (iii) If the optimal support is known, one can easily finetune the mixing
probabilities with online data and quickly converge to the best mixed arm without the need to explore
arms outside of the support. However, finding the optimal support can be a challenging problem due
to its combinatorial nature.

4 The Score Function-based Successive Reject (SFSR) Algorithm

We first derive our main algorithm, the Score Function-based Successive Reject (SFSR) algorithm,
that uses a novel elimination rule we designed based on the intersection value (IV) score. We
will later show that substituting this score function with another results in a different flavor of the
algorithm that can also have good empirical performance.

Consider the standard form of (LP) where we add the slack vector s ∈ RL
+:

max
p∈RK

+ ,s∈RL
+

{rT p : cp+ s = c̄,1T p = 1}. (2)

Let 0m (resp. 1m) denote the all-0 vector (resp. all-one vector) of length m. Let IL×L denote the
L-by-L identity matrix. Set

x =

(
p
s

)
, µ =

(
r
0L

)
, (3)

A =

(
c IL×L

1T
K 0T

L

)
, b =

(
c̄
1

)
, (4)

then (2) can be simply written as

max{µTx : Ax = b,x ≥ 0} (SFLP)

An optimal solution of the linear program in (SFLP) can be obtained at a basic feasible solution
(BFS) (Luenberger et al., 1984) of (A,b) which is determined by a basis I∗ ⊂ [K + L].
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Figure 1: Intersection value scores for a 5-arm, 1-constraint instance

Definition 1 (BFS). Let A be an M ×R matrix and b ∈ RM . A subset I of [R] is said to be a basis
of A, if |I| = M . A non-negative vector x∗ ∈ RN

+ is said to be a basic feasible solution (BFS)
of (A,b) corresponding to the basis I, if (i) x∗

i = 0 for i ̸∈ I; (ii) the square sub-matrix AI is
invertible; and (iii) x∗

I = A−1
I b ≥ 0. In this case, I is called a feasible basis of (A,b).

For the ease of describing the algorithm, we will refer to the slack variable sl corresponding to the
l-th constraint as “arm K + l.” With this convention, arms K + 1 to K + L can be thought of as
“virtual arms” corresponding to slack variables. The proposed algorithm starts with the set of all
arms [K + L] and successively rejects one arm in each round. The algorithm returns when either it
believes the problem is infeasible, or when there are only L+ 1 arms remaining.

The choice of which arm to eliminate at each round is determined by a score function (like an index
in bandit learning algorithms) for each arm computed from the empirical estimates of their rewards
and costs: Let X ⊂ [K + L] to the subset of remaining arms, Let µ̂X ∈ RX be the empirical mean
vector defined by

µ̂X = (µ̂a)a∈X , µ̂a =

{
r̂a a ≤ K0

µa otherwise
, (5)

where r̂a is the empirical mean reward of arm a.

Let the empirical constraint sub-matrix ÂX ∈ R[L+1]×X be defined by

ÂX = (Âl,a)l∈[L+1],a∈X ,

Âl,a =

{
ĉl,a l ≤ L, a ≤ K0

Al,a otherwise
.

(6)

The intersection value (IV) score function for arm a ∈ X is then defined as

f IV
a (r̂, ĉ) = max{µ̂T

X x̃ : x̃ is a BFS of (ÂX ,b)

corresponding to some basis J containing a}
(7)

with the convention that the maximum over an empty set is −∞. In Figure 1, we provide a visual
presentation of the intersection value scores for the case L = 1. The example also explains the name
intersection value, as it represents the intersections of line segments (for L > 1, simplices) with the
cost boundary (for L > 1, faces of the constraint polytope).

The SFSR algorithm will only pull unknown arms a ∈ [K0]. The number of times Tk to pull each
remaining unknown arm in round k is defined as follows: Set n0 := 0, and for k ∈ [K − 1],

nk :=

⌈
1

Ψ(K0, L)

N −K0

K + 1− k

⌉
, Tk := nk − nk−1, (8)

where Ψ(K0, L) :=
∑K0

j=1
1

max(2,j−L) . The SFSR algorithm is formally presented in Algorithm 1.
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Algorithm 1: Score Function-based Successive Reject (SFSR)
Input: Means of reward and costs of known arms (ra)a∈(K0,K], (cl,a)a∈(K0,K],l∈[L]; Cost

bound (c̄l)l∈[L]; Pulling budget N
Output: Support of the best mixed arm and slack variables (or the symbol ∅ representing

infeasibility)

Compute (Tk)
K−1
k=1 with (8);

Set X = [K + L];
for k = 1 to K − 1 do

Pull each arm a ∈ X ∩ [K0] for Tk times;
Update empirical means of reward r̂a and costs (ĉl,a)Ll=1 for arms in X ∩ [K0];
Compute the score ρ̂ka = f IV

a (r̂, ĉ) for each a ∈ X through (5)(6)(7) ;
if maxa∈X ρ̂ka = −∞ then

return ∅;
Eliminate the arm with the lowest score from X (with arbitrary tie-breaking);

return X ;

Remark 2. To use Algorithm 1 to estimate the best mixed arm (i.e., the support and the associated
probabilities), one can simply construct the empirical constraint sub-matrix ÂX according to (6)
and compute x̂∗

X = Â−1
X b. Note that x̂∗

X may include slack variables as well.

Note that at the beginning of round k, the set X of remaining arms contains some true arms and may
contain some virtual arms (corresponding to the slack variables). Whether a true or a virtual arm
will be eliminated in round k depends on the random realizations of the rewards and costs. Thus,
unlike the classical Successive Reject algorithm Audibert & Bubeck (2010), the number of true arms
remaining after each round in our algorithm is a random variable. While the total number of (true)
arm pulls by our algorithm is random, we can show that we will always meet the pulling budget N .

Proposition 1. Under Algorithm 1, the number of total arm pulls never exceeds N .

The proof can be found in the Supplementary Materials Section D.

Using a different score function. Instead of the intersection value score function f IV, we can
also use another function fL, called the Lagrangian function, that comes from linear programming
duality theory. The Lagrangian score function is defined as follows: Let µ̂X and ÂX follow the
definitions in (5)(6). Let λ̂∗ ∈ RL+1 be an optimal solution to the empirical dual linear program
(EDLP) minλ∈RL+1{bTλ : ÂT

Xλ ≥ µ̂X }. We define

fL
a (r̂, ĉ) =

{(
µ̂X − ÂT

X λ̂∗
)
a

EDLP is bounded

−∞ otherwise
(9)

This yields another flavor of the SFSR algorithm that we call SFSR-L. In Appendix H, we will see
that the SFSR-L algorithm on some problem instances can perform better than the SFSR algorithm.

5 Analysis

We first introduce the following mild assumption that we will use for our analysis.

Assumption 1. The linear program (SFLP) has a unique optimal solution x∗ with exactly L + 1
non-zero coordinates.

Remark 3. Assumption 1 does not restrict the best mixed arm to be a strict mix of L+1 arms: Note
that x∗ contains both the mixing probabilities and the slack variables for the constraints. Assumption
1 requires that if the optimal mixed arm is a mix of m arms, then there need to be exactly L+1−m
non-binding constraints under this mixed arm.
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The uniqueness of optimal solution is a standard assumption in best arm identification problems (e.g.
Audibert & Bubeck (2010); Kaufmann et al. (2016); Faizal & Nair (2022)). The further assumption
on the size of the support is necessary for CBMAI problems since it ensures the stability of the
optimal solution: Without this assumption, an infinitesimal change of the cost matrix c could result
in a change of the support of the best mixed arm. In this case, identifying the support of best
mixed arm beyond a certain probability would be impossible under any budget N , since it requires
estimating c with infinite precision.

Next, given an instance satisfying Assumption 1 we formally define the gaps ∆0, (∆(i))i∈[K+L] that
characterize the hardness of the instance. These gaps appear in both the upper bound (Theorem 1)
and lower bound (Theorem 2) on the error probability.

Let I∗ = supp(x∗) denote the support of the optimal solution (or the optimal basis). For each basis
set J ⊂ [K + L], |J | = L+ 1, define the basis value gap of J by

∆2
J = inf

r̃∈RK0 ,c̃∈RL×K0

{
d2σ,r(r, r̃) + d2σ,c(c, c̃) :

Ã−1
I∗ b ≥ 0, Ã−1

J b ≥ 0, µ̃T
J Ã−1

J b ≥ µ̃T
I∗Ã−1

I∗ b
} (10)

where, d2σ,r(r, r̃) := σ−2
r

∑K0

a=1(ra − r̃a)
2, d2σ,c(c, c̃) := σ−2

c

∑L
l=1

∑K0

a=1(cl,a − c̃l,a)
2, and Ã, µ̃

are defined through (r̃, c̃) in the same way as how Â, µ̂ are defined through (r̂, ĉ) in (5)(6). We
follow the convention that the infimum of an empty set is +∞. The basis value gap represents
the minimum distance one needs to move (r, c) to an alternative instance (r̃, c̃) where the expected
reward under the originally optimal basis I∗ is overtaken by that of another basis J while preserving
the feasibility of I∗.

Note that in (10), the infimum can be attained by moving only the rewards and costs associated with
arms in (J ∪ I∗)∩ [K0]. We write (10) as an infimum over all reward-and-cost vectors for the sake
of consistency and ease of notations.

Proposition 2. Under Assumption 1, J ̸= I∗ if and only if ∆2
J > 0.

We relegate the proof to Supplementary Materials Section E.

Furthermore, for each a ∈ [K + L], we define the arm value gap of a as

∆2
a = min{∆2

J : a ∈ J ⊂ [K + L], |J | = L+ 1}. (11)

Following Audibert & Bubeck (2010), let (k) denote the arm (including virtual arms) with the k-th
smallest ∆a among all arms a ∈ [K + L]. Under Assumption 1, it follows from Proposition 2 that
0 = ∆(1) = · · · = ∆(L+1) < ∆(L+2) ≤ · · · ≤ ∆(K+L).

In addition to the above, define the optimal support infeasibility gap as

∆2
0 = inf

c̃∈RL×K0

{
d2σ,c(c, c̃) : det(ÃI∗) = 0 or Ã−1

I∗ b ̸≥ 0
}

(12)

The fact that ∆2
0 > 0 under Assumption 1 can be established via the continuity and strict positiveness

of the mappings c̃ 7→ det(ÃI∗) and c̃ 7→ Ã−1
I∗ b at c̃ = c[K0].

5.1 Upper Bound on the Error Probability of the SFSR Algorithm

We now provide an upper bound on the mis-identification probability of the SFSR algorithm.

Theorem 1. Let X SFSR denote the output of Algorithm 1. Then, under Assumption 1, we have

P(X SFSR ̸= I∗) ≤ OL(K) · exp

(
−Ñ∆2

0

K

)
+OL(K

L+2) · exp

(
− min

2≤i≤K

Ñ∆2
(i+L)

i

)
(13)
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where Ñ := N−K0

3(L+1
2 +logK0)

and OL is the standard big-O notation where L is treated as a constant.

Proof. See Appendix A for the proof.

Remark 4. Theorem 1 shows that the error is dominated by two components: The quantity ∆0

describes how close the optimal mixed arm is to infeasibility, while ∆(i+L) describes how close the
optimal mixed arm is to other candidates for the best mixed arm. This echoes the result of Faizal &
Nair (2022) for constrained best deterministic arm identification problems.

5.2 Lower Bound

As we stated above, our objective is to design a pure-exploration algorithm ϕ that will minimize the
mis-identification probability. But how would we know that our upper bound on it is tight, or not?
To characterize that, we introduce a lower bound with which the upper bound can then be compared.

To meaningfully derive a lower bound on the performance of any CBMAI algorithm, it is essential
to specify the class of instances to be considered. (It’s not so difficult to design algorithms that
achieve uniformly good performance on a small class of instances, since the algorithm only needs
to distinguish between them.) We consider a class of instances with Gaussian rewards and costs
such that the variances σ2

c , σ
2
r are fixed and known, so that an instance is parameterized by θ =

(θa)a∈[K] = (ra, c1,a, · · · , cL,a)a∈[K]. For simplicity, we consider K0 = K, i.e., all arms are
unknown. We define Θ to be a class of instances θ that either (i) has no feasible solution, or (ii)
satisfies Assumption 1. For θ ∈ Θ, define Iθ = ∅ if θ is an instance with no feasible solution.
Otherwise, define Iθ to be the optimal basis for this instance.

We consider a class of algorithms that satisfy the following consistency requirement.

Definition 2 (Consistency (Barrier et al., 2023)). Let ϕN be an algorithm for CBMAI with bud-
get N . A sequence of algorithms (ϕN )∞N=N0

is said to be consistent if for any instance θ ∈ Θ,
Pθ(X ϕN ̸= Iθ) → 0 as N → +∞.

The consistency condition means that given sufficient amount of budget, an algorithm can even-
tually: (i) identify the optimal basis when it is possible to do so, and (ii) output ∅ whenever the
instance has no feasible solution.

It can be shown that the naive Uniform Sampling and Linear Program (USLP) algorithm (i.e., pull
each arm ⌊N/K⌋ times, compute the empirical means of rewards and costs of all arms, and then
solve the empirical version of (SFLP)) is a consistent algorithm. We note that the SFSR algorithm
is a consistent algorithm.

Theorem 2. For any consistent algorithm πN , under any instance θ satisfying Assumption 1, the
mis-identification probability satisfies

lim sup
N→∞

− 1

N
logPθ(X πN ̸= Iθ) ≤ 1

2
min{∆2

0,∆
2
(L+2)}. (14)

Furthermore, for the USLP algorithm, we have

lim sup
N→∞

− 1

N
logPθ(XUSLPN ̸= Iθ) ≤ 1

2K
min{∆2

0,∆
2
(L+2)}. (15)

The proof can be found in Appendix B.

For Algorithm 1, Theorem 1 yields that

lim inf
N→∞

− 1

N
logPθ(X SFSRN ̸= Iθ) ≥

min

{
∆2

0

K ,
∆2

(L+2)

2 ,
∆2

(L+3)

3 , · · · , ∆2
(L+K)

K

}
3
(
L+1
2 + logK

) .
(16)
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We can now compare the upper bound for the SFSR algorithm above to the lower bound in (14) and
observe the presence of several common terms. Note that tight instance-dependent lower bounds for
fixed budget identification problems are not known even for unconstrained BAI problems (Degenne,
2023; Qin, 2022). So, while the lower bound we provide in Theorem 2 may not be tight, it does show
that the gaps ∆0 and (∆(L+i))

K
i=2 are appropriate indicators of the hardness of a CBMAI problem:

If one of them is very small, then the CBMAI problem is difficult for any consistent algorithm to
handle. Instance independent min-max lower bound of the type in Carpentier & Locatelli (2016) or
Yang & Tan (2022) can also be derived but are not very meaningful for this problem since one can
always construct hard CBMAI instances by translating hard unconstrained BAI problems.

6 Empirical Performance

In this section, we compare the empirical performance of the two flavors of SFSR with the naive
USLP algorithm. We only presented instances with L = 1 here. Empirical results for instances with
more than one constraints are included in Supplementary Materials Section H.

Figure 2: Top: Three 16-arm instances. Arms in the optimal support are labeled with green triangles.
Bottom: Empirical results for three algorithms under varying budgets. 95% confidence intervals are
indicated and tight.

In all of the experiments, we set K0 = K = 16, σr = 1, σc = 0.5, and c̄1 = 1. For each
combination of instance-algorithm-budget, we conduct 10,000 independent runs to obtain the error
rate as the proportion of times the algorithm produces the wrong support. In every figure, we added
(tiny) error bars to represent a 95% confidence interval for the error rate. We implemented the
experiments in Python and conducted the experiments on an Apple M1 MacBook Air. Each figure
takes about 15 minutes to generate.

We first consider three arbitrary instances A1, A2 and A3 in Figure 2, where certain arms are clearly
sub-optimal while others are not. The instances and their corresponding results are shown in Figure
2. This includes one instance where the optimal arm is deterministic, and two instances where the
optimal arm is a strict mix of two arms. The baseline is the Uniform Sampling and Linear Program
(USLP) algorithm that pulls each arm ⌊N/K⌋ times, computes the empirical means of rewards and
costs of all arms, and then solves the empirical version of (SFLP)) (there is no other known algorithm
in the literature or otherwise). The results show that both SFSR and SFSR-L clearly outperform
USLP, and the two flavors of SFSR have nearly no discernible difference in performance. Further-
more, we also observe that the error rate decreases exponentially in N . Additional comparison of
SFSR and SFSR-L is provided in Supplementary Materials Section G.
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7 Conclusions

In this paper, we introduced the constrained best mixed arm identification (CBMAI) problem. While
prior work has considered such a constrained problem with deterministic arms, it is well known that
one can do better allowing for mixed arms. Unfortunately, the mixed arm problem is much more
challenging due to existence of uncountably many candidate solutions. We have proposed the first
algorithm for the CBMAI problem, which we are able to show theoretically and empirically has very
good performance in terms of the error probability decreasing exponentially in N . The problem is of
wide interest in many practical settings that often have multiple objectives but with unknown reward
and cost models.

Our work provides a basis for further extensions in a number of directions. One could consider
contextual bandit models, e.g., linear bandit models that have wide applicability in recommendation
systems. A fixed confidence version of CBMAI problem is also interesting, which has only been
solved under the known constraints case (Carlsson et al., 2023). This work could also be extended
to a constrained MDP setting to find the best policy that also obeys average constraints. There is
probably also scope to design an even better algorithm by combining various score functions.
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A Proof of Theorem 1

The proof follows the general strategy first introduced in Audibert & Bubeck (2010) for analyzing
fixed-budget BAI algorithms that reject arms successively. As with Audibert & Bubeck (2010), we
assume that an infinite reward and cost sequence for each unknown arm a ∈ [K0] is drawn before
the algorithm started. In this way, the empirical mean reward or cost of arm a after m draws is
always well-defined.

Let Xk denote the set of remaining arms after k − 1 arms (including virtual arms) are eliminated.
Recall that (k) denotes the arm (including virtual arms) with the k-th smallest ∆a among all arms.
At least one of the arms a ∈ {(K + L− k + 1), · · · , (K + L)} is in Xk. If one of the arms in I∗ is
eliminated at the end of round k for the first time, it implies that the following event Ek happened:

I∗ ⊂ Xk, ∃a ∈ {(K + L− k + 1), · · · , (K + L)} ∩ Xk, ρ̂ka ≥ min
i∈I∗

ρ̂ki (17)

where ρ̂ki is the intersection value score for arm i at the end of round k.

Next, fix k. Let r̂ ∈ RK0 , ĉ ∈ RL×K0 be the empirical means of rewards and costs respectively
after each unknown arm has been drawn nk times. Let Â ∈ R(L+1)×(K+L) denote the empirical
version of the A matrix where Al,i = cl,i is replaced by ĉl,i for l ∈ [L], i ∈ [K0].

If (17) happens, at least one of the following events Ek,0, (Ek,a)a∈{(K+L−k+1),··· ,(K+L)} must hap-
pen:

Ek,0 := {det(ÂI∗) = 0, or Â−1
I∗ b ̸≥ 0} (18)

Ek,a := {I∗ ⊂ Xk, a ∈ Xk, Â
−1
I∗ b ≥ 0, ρ̂ka ≥ min

i∈I∗
ρ̂ki } (19)

On event Ek,0, by definition of ∆0 in (12), we have

ξ0 := σ−2
c

∑
i∈I∗∩[K0]

L∑
l=1

(cl,i − ĉl,i)
2 ≥ ∆2

0 (20)
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For each (l, i) ∈ [L] × [K0], the random variables
√
nkσ

−1
c (ĉl,i − cl,i) are i.i.d. standard normal

random variables. Therefore, nkξ0 is a chi-square random variable with degree m = L · |I∗ ∩ [K0]|
(written as χ2

m). We have

P(Ek,0) ≤ P(χ2
m ≥ nk∆

2
0) ≤ 3m/2 exp

(
−nk∆

2
0

3

)
≤ 3L(L+1)/2 exp

(
−nk∆

2
0

3

)
(21)

where in the second inequality we applied Lemma 1 (see Supp. Materials), and in the third inequality
we used the fact that m ≤ L|I∗| = L(L+ 1).

Now consider the event Ek,a for some a ∈ {(K + L − k + 1), · · · , (K + L)}. On this event, I∗

corresponds to a BFS of (ÂXk
,b). Then, by definition of the IV scoring function (7), for all i ∈ I∗,

we have ρ̂ki ≥ µ̂T
I∗Â

−1
I∗ b. Therefore, on event Ek,a, we have ρ̂ka ≥ µ̂T

I∗Â
−1
I∗ b. Again, by definition

of the scoring function, this means that there exists a basis J ⊂ [K + L], |J | = L + 1 such that
a ∈ J and

Â−1
J b ≥ 0, µ̂T

J Â−1
J b ≥ µ̂T

I∗Â−1
I∗ b. (22)

Therefore, by the definition of ∆a in (11), the above implies that

ξJ :=
∑

i∈(I∗∪J )∩[K0]

[
σ−2
r (r̂i − ri)

2 + σ−2
c

L∑
l=1

(ĉl,i − cl,i)
2

]
≥ ∆2

a. (23)

The random variables
√
nkσ

−1
r (r̂i − ri), i ∈ [K0] along with the random variables

√
nkσ

−1
c (ĉl,i −

cl,i), (l, i) ∈ [L]× [K0] are i.i.d. standard normal random variables. Therefore, nkξJ is a chi-square
random variable with degree mJ = (L+1)·|(J ∪I∗)∩[K0]|. We have mJ ≤ (L+1)(|J |+|I∗|) =
2(L+ 1)2. Subsequently,

P(Ek,a) ≤
∑

J :|J |=L+1,a∈J

P(ξJ ≥ ∆2
a) ≤

∑
J :|J |=L+1,a∈J

P(χ2
mJ

≥ nk∆a) (24)

≤
(
K + L− 1

L

)
3(L+1)2 exp

(
−nk∆

2
a

3

)
(Lemma 1, and mJ ≤ 2(L+ 1)2)

Therefore,

P(Ek) ≤ P(Ek,0) +
∑

a∈{(K+L−k+1),··· ,(K+L)}

P(Ek,a) (25)

≤ 3L(L+1)/2 exp

(
−1

3
nk∆

2
0

)
+ k

(
K + L− 1

L

)
3(L+1)2 exp

(
−1

3
nk∆

2
(K+L+1−k)

)
(26)

Finally, taking union bound and using nk ≥ 1
Ψ(K0,L)

N−K0

K+1−k , we have

P(X SFSR ̸= I∗) ≤
K−1∑
k=1

P(Ek) (27)

≤
K−1∑
k=1

[
3L(L+1)/2 exp

(
−1

3
nk∆

2
0

)
+ k

(
K + L− 1

L

)
3(L+1)2 exp

(
−1

3
nk∆

2
(K+L+1−k)

)]
(28)

≤ (K − 1)3L(L+1)/2 exp

(
− (N −K0)∆

2
0

3(L/2 + logK0)K

)
(29)

+
K(K + 1)

2

(
K + L− 1

L

)
3(L+1)2 exp

(
− N −K0

3(L/2 + logK0)
min

2≤i≤K

∆2
(L+i)

i

)
(30)
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where in the last inequality we used

nk ≥ N −K0

Ψ(K0, L)

1

K + 1− k
∀k ∈ [K − 1], (31)

Ψ(K0, L) ≤
L+ 1

2
+

∑
2≤j≤K0−L

1

j
≤ L+ 1

2
+

∫ K0

1

1

t
dt =

L+ 1

2
+ logK0 (32)

Remark 5. Notice that we only use the Gaussian reward assumptions in the above proof for obtaining
the tail bounds on the sum of squares of independent Gaussian random variables (Lemma 1). To
adapt our approach to sub-Gaussian reward settings, one can simply replace such concentration
results with similar results on the sum of squares of independent sub-Gaussian random variables by
using the fact that squares of sub-Gaussian random variables are sub-exponential variables.

B Proof of Theorem 2

Let θ satisfy Assumption 1. Consider an alternative (not necessarily feasible) instance θ′ ∈ Θ with
Iθ ̸= Iθ′

. By the consistency of πN we have

q′N := Pθ′(X πN ̸= Iθ)
N→∞−−−−→ 1, and, qN := Pθ(X πN ̸= Iθ)

N→∞−−−−→ 0. (33)

Let Ma,N denote the random number of times arm a is pulled under algorithm πN . Through Lemma
1 of Kaufmann et al. (2016), we have

K∑
a=1

Eθ′ [Ma,N ]DKL(θ
′
a, θa) ≥ dKL(q

′
N , qN ) (34)

where DKL(θ
′
a, θa) is the KL divergence between the distributions of reward-cost vectors of arm a

under instances θ′ and θ. The RHS of (34) satisfies

dKL(q
′
N , qN ) = q′N log

(
q′N
qN

)
+ (1− q′N ) log

(
1− q′N
1− qN

)
≥ q′N log

(
1

qN

)
− log 2 (35)

where we have used the fact that −z log z − (1− z) log(1− z) ≤ log 2 for z ∈ (0, 1).

Putting everything together and rearranging the terms, we have

1

N
log

(
1

qN

)
≤ 1

q′N

(
log 2

N
+

K∑
a=1

Eθ′ [Ma,N ]

N
DKL(θ

′
a, θa)

)
(36)

Taking the limits on both sides, bounding Eθ′ [Ma,N ]
N by 1, we have

lim sup
N→∞

− 1

N
logPθ(X πN ̸= Iθ) ≤

K∑
a=1

DKL(θ
′
a, θa) (37)

Using the formula for KL divergence between two multivariate Gaussian distributions, we have

DKL(θ
′
a, θa) =

1

2

[
σ−2
r (r′a − ra)

2 + σ−2
c

L∑
l=1

(c′l,a − cl,a)
2

]
(38)

Combining the above together and taking infimum over θ′ ∈ Θ, we have

lim sup
N→∞

− 1

N
logPθ(X πN ̸= Iθ) ≤ 1

2
inf
θ′∈Θ

{
σ−2
r ∥r′ − r∥22 + σ−2

c ∥c′ − c∥22 : Iθ′
̸= Iθ

}
, (39)
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Note that Iθ′ ̸= Iθ is true if either (i) Iθ is an infeasible basis under (A′,b) (in this case, by
definition of ∆0, there exists such θ′ whose distance from θ is smaller than ∆0 + ϵ for any small ϵ);
or (ii) Iθ is feasible under (A′,b) and there exists a basis set J ̸= Iθ such that (µ′

Iθ )
T (A′

Iθ )
−1b ≤

(µ′
J )T (A′

J )−1b (in this case, by definition of ∆J , there exists such θ′ whose distance from θ is
smaller than ∆J + ϵ for any small ϵ). Therefore,

inf
θ′∈Θ

{
σ−2
r ∥r′ − r∥22 + σ−2

c ∥c′ − c∥22 : Iθ′
̸= Iθ

}
≤ min

{
∆2

0, min
J ̸=Iθ

∆2
J

}
= min{∆2

0,∆
2
(L+2)},

(40)

which concludes the proof of (14). The proof of (15) can be obtained using the same steps as above
along with the fact that for the USLP algorithm Eθ′ [Ma,N ]

N is bounded by 1
K .

In (40), there is a small caveat: the gaps ∆0, (∆J )J ̸=Iθ were originally defined as infimums over all
θ′ ∈ R(L+1)×K while the infimum in the RHS of (39) is taken over Θ, a proper subset of R(L+1)×K .
However, this is not a problem since Θ is dense in R(L+1)×K (see Supplementary Materials Section
F for a brief explanation of this fact).
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C Auxiliary Results

Lemma 1. Let χ2
m be a chi-squared variable with degree m and t > 0, then P(χ2

m ≥ t) ≤
3m/2 exp(−t/3).

Proof. The moment generating function of χ2
m is given by E[exp(ζχ2

m)] = (1 − 2ζ)−m/2 for
ζ < 1/2. Through Markov Inequality we have

P(χ2
m ≥ t) ≤ E[exp(ζχ2

m)]e−ζt = (1− 2ζ)−m/2e−ζt (41)

The proof is completed by picking ζ = 1/3.

D Proof of Proposition 1

Define nk = nK−1 for k > K − 1. Imagine that in each episode, the algorithm pulls all arms still
remaining in X (including virtual arms and known arms). Then the total number of arm pulls is∑K+L

k=1 nk.

If an “arm” i is the k-th rejected arm, then it is pulled exactly nk times. If it is not rejected, then it is
pulled nK−1 times. Hence to obtain the actual total number of arm pulls, we only need to subtract
those nk’s corresponding to virtual arms and known arms from the summation. We conclude that
the total number of arm pulls is at most

max
J⊂[K+L]

|J |=K−K0+L

(
K+L∑
k=1

nk −
∑
k∈J

nk

)
=

K+L∑
k=K−K0+L+1

nk (42)

≤
K+L∑

k=K−K0+L+1

(
1 +

1

Ψ(K0, L)

N −K0

max(2,K + 1− k)

)
(43)

= K0 + (N −K0) ·
1

Ψ(K0, L)

K0+L−1∑
j=L

1

max(2,K0 − j)
= N (44)

E Proof of Proposition 2

The “if” part is clear by the definition of I∗. We establish the “only if” part as follows.

Consider a basis J ̸= I∗. Suppose that ∆2
J = 0. Then, there exists a sequence of reward-

cost vectors (r̃(n), c̃(n))∞n=1 such that both of the following hold: (i) (r̃(n), c̃(n)) → (r, c); (ii)
(Ã

(n)
I∗ )−1b ≥ 0, (Ã

(n)
J )−1b ≥ 0, (µ̃

(n)
J )T (Ã

(n)
J )−1b ≥ (µ̃

(n)
I∗ )T (Ã

(n)
I∗ )−1b.

Set x(n) ∈ RK+L to be the basic feasible solution of (Ã(n),b) corresponding to basis J , i.e.,
x
(n)
J = (Ã

(n)
J )−1b and x

(n)
i = 0 for i ̸∈ J . Note that (x(n))∞n=1 is a uniformly bounded sequence of

finite dimensional vectors. By taking subsequences, without lost of generality, assume that x(n) →
x(∞). We have

x(∞) ≥ 0, Ax(∞) = lim
n→∞

(Ã(n))x(n) = lim
n→∞

(Ã
(n)
J )x(n)

J
= b, (45)

meaning that x(∞) is a feasible solution of (SFLP). By taking the limit of the last inequality in (ii)
we have

µTx(∞) = lim
n→∞

(µ̃
(n)
J )T (Ã

(n)
J )−1b ≥ lim sup

n→∞
(µ̃

(n)
I∗ )

T (Ã
(n)
I∗ )

−1b. (46)



Pure Exploration for Constrained Best Mixed Arm Identification

Under Assumption 1, AI∗ is invertible and hence the mapping c̃ → Ã−1
I∗ is continuous at c̃ =

c. Therefore, through (i) we conclude that lim supn→∞(µ̃
(n)
I∗ )T (Ã

(n)
I∗ )−1b = µT

I∗A
−1
I∗ b, i.e., the

optimal value of (SFLP). Therefore, (46) means that x(∞) is also an optimal solution of (SFLP),
which contradicts with the uniqueness assumption. (Let i ∈ I∗\J , we have x

(∞)
i = 0 ̸= x∗

i and
hence x(∞) ̸= x∗.)

F Proof of Θ being dense in R(L+1)×K

If θ′ ∈ R(L+1)×K\Θ, i.e., θ′ is a feasible instance that violates Assumption 1, note that,
through standard linear programming theory, there exists at least one optimal BFS of (SFLP).
Moreover, it is necessary that one of the following statements be true: (i) The optimal solu-
tion is non-unique. In this case, there are two BFS achieving the same objective values, i.e.,
(µ′

I)
T (A′

I)
−1b − (µ′

J )T (A′
J )−1b = 0 for some bases I ̸= J . (ii) The optional solution is

unique but does not have L + 1 strictly positive coordinates, i.e., certain coordinate of (A′
I)

−1b is
zero for some basis I.

In either case, we have h(θ′) = 0 for some non-zero polynomial function h : R(L+1)×K 7→ R.
Therefore, we conclude that R(L+1)×K\Θ is a subset of the finite union of zero sets of such poly-
nomials. Since the set of zeroes of any non-zero polynomial function cannot contain any open ball,
we conclude that R(L+1)×K\Θ does not contain any open set, i.e., Θ is dense in R(L+1)×K .

G Comparing SFSR and SFSR-L Algorithms

Figure 3: Top: Three hard 16-arm instances. Arms in the optimal support are labeled with green
triangles. Bottom: Empirical results for three algorithms under varying budgets. 95% confidence
intervals are indicated and tight.

While both flavors of SFSR can achieve good performance on an average instance, in Figure 3, we
see that in certain carefully constructed hard instances (H1-H3) while one of the two flavors, SFSR
or SFSR-L performs well, the other does not (the guarantee in any case is probabilistic). In fact,
the H3 instance in Figure 3 shows that it is hard enough that SFSR-L struggles to perform much
better than the USLP algorithm. Below, we provide a detailed explanation on why SFSR-L fails on
instance H2.

Consider a CBMAI instance with K arms and one type of cost. The mean reward and cost are
shown as in the left of Figure 4: Arm 1 has low reward and low cost, arm 2 has high reward and
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Figure 4: Illustration of SFSR-L in a 1-constraint instance. Left: True mean reward and cost. Right:
Empirical means after the first episode. Despite that the empirical means do not deviate from the
the true mean by too much, arm 1 (a member of the optimal support) ends up having the lowest
empirical Lagrangian reward, and is eliminated as a result.

near feasible cost, and arm 3 to K all have the same mean reward and cost: The cost is feasible but
close to cost bound c̄, and the reward is chosen such that the best mixed arm is formed by a mixture
of arm 1 and 2. The (negative) Lagrangian reward fL

a (r̂, ĉ) of an arm a ∈ [K] can be visualized in
Figure 4 as the vertical distance between arm a to the “frontier” (i.e., the extended line formed by
cost-reward vectors of two arms in the empirical optimal support).

Now, consider the end of episode 1 of SFSR-L, and the empirical means of rewards and costs are
shown as on the right of Figure 4. Now, arm 2 and some arm 3 ≤ j ≤ K forms the empirical frontier.
The empirical dual optimal solution (symbolized by the slope of the frontier) is very different from
the true dual optimizer. More importantly, the empirical Lagrangian reward of arm 1 is now the
lowest among all arms, and arm 1 is rejected by the SFSR-L algorithm in round 1 as a result.
Note the identification error happens despite the fact that the arm 1 did not underperform (i.e.,
r̂1 < r1, ĉ1 > c1) its mean.

While in elimination style algorithms there’s always the possibility of erroneously rejecting optimal
arms, we note that the type of event as shown on the right of Figure 4 is not unlikely: We only
require one of the K − 2 arms to slightly outperform its true mean for arm 1 to be eliminated. In
comparison, in unconstrained BAI problems, for the optimal arm (arm 1) to be rejected in episode 1
in an elimination-style algorithm (Audibert & Bubeck, 2010; Karnin et al., 2013), it requires all of
the other arms (including the worst arm) to empirically outperform arm 1.

H Additional Empirical Results

In addition to the experiments in Section 6, we also applied the three algorithms (SFSR, SFSR-L,
and USLP) to 6 instances with L = 2 constraints. We set K = K0 = 24, σr = 1, σc = 0.5 and
c̄1 = c̄2 = 1.0. In all of the three instances, we set the costs of the 24 arms to be the 24 combinations
of c1,i ∈ {0.4, 0.6, 0.8, 1.0, 1.2, 1.4} and c2,i ∈ {0.7, 0.9, 1.1, 1.3}. Then, to define the rewards for
each instance, we first pick a noise vector (Wi)

24
i=1 (which we will describe later) independently for

each instance. In instance D1, we set ri = 1.0 − Wi. In instance D2, we set ri = c1,i − Wi. In
instance D3, we set ri = c1,i + c2,i − Wi. We run the randomizations for a few times until the
optimal support of each instance Dj has exactly j arms. Finally, we increment the reward of each
arm in the optimal support by 0.02 to ensure that the optimal support is unique and the instance is
not overly difficult for any CBMAI algorithm.

We consider two ways of choosing the random vector (Wi)
24
i=1: (i) a random permutation of

{0.0, 0.02, · · · , 0.46}. (ii) i.i.d. uniform random choices from {0.0, 0.02, · · · , 0.28}. For the former
choice, we will refer to the instance as DjP . For the latter, we will use DjI . The specific instances
we used are reported in Table 1.
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For each combination of instance-algorithm-budget, we run the simulation for 5000 times indepen-
dently and obtain the error rate as the proportion of times the algorithm output the wrong support.
The results are provided in Figure 5. Each figure takes about 2 hours on an Apple M1 MacBook Air.

We can see that the SFSR-L algorithm on these two constraints instances either has the same per-
formance as the SFSR algorithm or does a bit better in terms of having a lower error rate.

Figure 5: Simulation results for 6 instances with L = 2 under varying budget. 95% confidence
intervals are indicated and tight.

Table 1: Description of the mean rewards and costs of instances. The rewards of arms in the optimal
support is shown in bold. Top Row (from left to right): D1P,D2P,D3P . Bottom Row (from left
to right): D1I,D2I,D3I .

c1\c2 0.7 0.9 1.1 1.3

0.4 0.88 0.80 0.82 0.66

0.6 0.72 1.02 0.70 0.54

0.8 0.92 0.74 0.94 0.84

1.0 0.76 0.60 0.56 0.86

1.2 0.98 0.64 0.68 0.78

1.4 0.62 0.96 0.90 0.58

c1\c2 0.7 0.9 1.1 1.3

0.4 0.08 0.28 −0.02 0.22

0.6 0.20 0.46 0.54 0.40

0.8 0.42 0.52 0.80 0.34

1.0 0.92 0.78 0.96 0.70

1.2 0.94 0.76 1.10 0.86

1.4 1.42 1.16 1.04 1.24

c1\c2 0.7 0.9 1.1 1.3

0.4 1.04 1.22 1.28 1.26

0.6 0.98 1.22 1.60 1.54

0.8 1.26 1.40 1.88 1.84

1.0 1.72 1.76 1.64 1.92

1.2 1.78 1.70 1.96 2.08

1.4 1.94 2.30 2.32 2.50

c1\c2 0.7 0.9 1.1 1.3

0.4 0.84 1.02 0.74 0.76

0.6 0.84 0.88 0.96 0.90

0.8 0.90 0.98 0.92 0.80

1.0 0.98 0.98 0.90 0.74

1.2 0.94 0.90 0.88 0.72

1.4 0.78 0.82 0.88 0.84

c1\c2 0.7 0.9 1.1 1.3

0.4 0.40 0.18 0.28 0.14

0.6 0.44 0.54 0.40 0.32

0.8 0.56 0.52 0.68 0.64

1.0 0.84 0.80 0.82 0.74

1.2 0.94 1.18 1.02 1.12

1.4 1.42 1.16 1.24 1.24

c1\c2 0.7 0.9 1.1 1.3

0.4 0.92 1.12 1.32 1.42

0.6 1.14 1.42 1.62 1.68

0.8 1.30 1.70 1.68 2.06

1.0 1.46 1.82 2.02 2.04

1.2 1.84 2.02 2.12 2.24

1.4 2.06 2.28 2.32 2.58


