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Summary
We introduce the constrained best mixed arm identification (CBMAI) problem wherein

there are K arms, each of which is associated with a reward and multiple cost attributes. These
are random, and come from distributions with unknown means. The best mixed arm is a
probability distribution over a subset of the K arms that maximizes the expected reward while
satisfying the expected cost constraints. We are specifically interested in a pure exploration
problem under a fixed sampling budget with the goal of identifying the support of the best
mixed arm. We propose a novel, parameter-free algorithm, called the Score Function-based
Successive Reject (SFSR) algorithm, that combines the classical successive reject framework
with a novel rejection criteria using a score function based on linear programming theory. We
establish a performance guarantee for our algorithm by providing a theoretical upper bound
on the probability of mis-identification of the support of the best mixed arm and show that
it decays exponentially in the budget N and some constants that characterize the hardness
of the problem instance. We also develop an information-theoretic lower bound on the error
probability that shows that these constants appropriately characterize the problem difficulty.
We validate this empirically on a number of problem instances.

Contribution(s)
1. This paper provides a novel, parameter-free algorithm that identifies the optimal support of

the best mixed arm for a constrained best arm identification problem with a fixed sampling
budget. We establish a performance guarantee for our algorithm in the form of an exponen-
tially decaying, instance-dependent error upper bound.
Context: Prior work has considered the best arm identification problem with known costs
and/or with only deterministic arms allowed. However, we consider unknown costs and
allow randomized (i.e. mixed) arms since deterministic arms may be suboptimal, or simply
not meet all the constraints.
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Abstract

We introduce the constrained best mixed arm identification (CBMAI) problem wherein1
there are K arms, each of which is associated with a reward and multiple cost attributes.2
These are random, and come from distributions with unknown means. The best mixed3
arm is a probability distribution over a subset of the K arms that maximizes the expected4
reward while satisfying the expected cost constraints. We are specifically interested in a5
pure exploration problem under a fixed sampling budget with the goal of identifying the6
support of the best mixed arm. We propose a novel, parameter-free algorithm, called the7
Score Function-based Successive Reject (SFSR) algorithm, that combines the classical8
successive reject framework with a novel rejection criteria using a score function based9
on linear programming theory. We establish a performance guarantee for our algorithm10
by providing a theoretical upper bound on the probability of mis-identification of the11
support of the best mixed arm and show that it decays exponentially in the budget N and12
some constants that characterize the hardness of the problem instance. We also develop13
an information-theoretic lower bound on the error probability that shows that these con-14
stants appropriately characterize the problem difficulty. We validate this empirically on15
a number of problem instances.16

1 Introduction17

Bandit models are prototypical models of online learning, exploration, and decision making (Lat-18
timore & Szepesvári, 2020). For example, recommender systems for online shopping and video19
streaming often use learning algorithms to make recommendations that maximize click-through-20
rates. Online learning can be formulated as a regret minimization problem, which leads to algo-21
rithms that trade exploration with exploitation (Lai & Robbins, 1985), where the regret of a learning22
algorithm is defined with respect to a policy optimizing a single (reward) objective. A number of23
Bayesian and non-Bayesian algorithms (Lattimore & Szepesvári, 2020) have been proposed for this24
setting (Auer et al., 2002; Russo & Van Roy, 2014). Alternatively, online learning can be formulated25
as a pure exploration problem, also referred to as the best arm identification problem (Audibert &26
Bubeck, 2010; Garivier & Kaufmann, 2016), wherein adaptive data collection can be performed to27
identify the optimal arm without considering the rewards/performance during learning.28

Many online learning problems involve multiple objectives that cannot be aggregated into a sin-29
gle objective function. Such problems are better formulated in terms of maximizing one objective30
while constraining the others. In the recent literature, progress has been made on constrained bandit31
models, as well as online reinforcement learning with constraints. In such exploration vs. exploita-32
tion settings, novel algorithms have emerged that can surprisingly minimize regret while ensuring33
bounded constraint violation (Kalagarla et al., 2023). However, some practical settings are more34
suitable for a pure exploration problem rather than a regret minimization problem. Constrained on-35
line learning within a pure exploration problem formulation, and specifically, the constrained best36
arm identification problem is largely unsolved.37
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In this paper, we introduce the constrained best mixed arm identification (CBMAI) problem, wherein38
there are K arms, each of which is associated with a reward and multiple cost attributes. These are39
random, and come from distributions with unknown means. The best mixed arm is a probability40
distribution over a subset of the K arms that maximizes the expected reward while satisfying the41
expected cost constraints. We are specifically interested in a pure exploration problem with the goal42
of identifying the support of the best mixed arm, i.e., identifying the subset of arms with non-zero43
probability in the best mixed arm. Since the true expected costs are unknown in our setting, the44
exact shape of the constraint polytope is not known in advance. Thus, there are uncountably many45
candidates for the best mixed arm. However, the support of the best mixed arm is still one of finitely46
many (albeit exponentially many) possibilities. Given a fixed sampling budget N , we can sample47
the arms in any way and then use the gathered data (rewards/costs) to declare which arms are in the48
support of the best mixed arm.49

We provide a novel, parameter-free algorithm, called the Score Function-based Successive Reject50
(SFSR) Algorithm, that identifies the optimal support for the CBMAI problem under the fixed-51
budget setting. The algorithm combines the successful Successive Reject algorithm (Audibert &52
Bubeck, 2010) with a novel rejection criteria using a score function based on linear programming53
theory. Using different score functions results in an algorithm with different flavors, and we present54
two choices for them. We establish a performance guarantee of the proposed algorithm in the form55
of an instance-dependent error upper bound, which decays exponentially in N with an exponent56
characterized by a certain measure of hardness of the instance. We also present a lower bound on57
the error probability for a broad class of algorithms which helps validate how good our upper bound58
is. We provide empirical results to show that our proposed algorithm significantly outperforms59
baselines on typical instances.60

2 Related Literature61

We review related literature on best arm identification and constrained learning problems which is62
somewhat distinct from the vast literature on multi-arm bandits (Lattimore & Szepesvári, 2020).63

Best Arm Identification. The literature on (unconstrained) best arm identification can be di-64
vided into two categories: (1) The fixed confidence setting (Kaufmann & Kalyanakrishnan, 2013;65
Jamieson et al., 2014; Garivier & Kaufmann, 2016; Russo, 2016; Qin et al., 2017), where the aim is66
to identify the best arm with a specified error probability δ using the smallest number of samples.67
Two major algorithm design philosophies in this setting are Top-2 algorithms (Russo, 2016) and68
Track-and-Stop (Kaufmann & Kalyanakrishnan, 2013). (2) The fixed budget setting (Audibert &69
Bubeck, 2010; Karnin et al., 2013; Carpentier & Locatelli, 2016; Yang & Tan, 2022; Barrier et al.,70
2023; Wang et al., 2024), where the aim is to minimize the identification error probability given a71
sampling budget N . Round-based elimination algorithms are the dominant algorithm philosophy in72
this setting.73

Regret-focused Learning in Constrained Problems. There has been a lot of recent literature on74
designing algorithms to achieve small reward and/or constraint violation regret in constrained multi-75
armed bandits (Amani et al., 2019; Moradipari et al., 2021; Liu et al., 2021b; Zhou & Ji, 2022;76
Pacchiano et al., 2024) and constrained MDPs (Liu et al., 2021a; Bura et al., 2022; Kalagarla et al.,77
2023). In these settings, it is necessary to balance exploration and exploitation. In contrast, we are78
interested in efficiently using the learning budget for pure exploration.79

Constrained Best Arm Identification. Recently, there has been considerable interest in best arm80
identification in a constrained setting. In Lindner et al. (2022); Camilleri et al. (2022); Wang et al.81
(2022); Faizal & Nair (2022); Shang et al. (2023), the authors considered the best deterministic82
arm identification problem from a finite set of arms in either fixed-confidence or fixed-budget set-83
tings. In contrast, our work focuses on finding the best mixed arm since deterministic arms may84
be suboptimal, or simply not meet the constraints. There are very few works on best mixed arm85
identification: The CBMAI problem under the fixed-confidence setting when the costs are known86
was considered in Carlsson et al. (2023). In contrast, we assume that the costs are unknown. Naka-87
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mura & Sugiyama (2024) considered a fixed-budget best knapsack identification problem assuming88
that the best solution belongs to a known finite set and there’s an offline oracle for finding the best89
knapsack under constraints given an input reward function. We do not assume access to such an90
oracle due to the costs being unknown in our setting. A fixed-budget optimal support identification91
problem with the same constraints imposed on both the exploration process and the final solution92
was considered in Li et al. (2023). In contrast, we do not impose any constraints on the exploration93
process. Furthermore, the theoretical error bounds therein are unfortunately not correct since the94
strong concentration results for optimal solutions of randomly perturbed linear programs in their95
Lemmas B.1 and C.2, which are a critical part of the theoretical analysis, are erroneous. Kone et al.96
(2023) considered the problem of Pareto front identification for arms with multiple attributes. There97
have also been numerous works on constrained Bayesian Optimization (Gardner et al., 2014; Gel-98
bart et al., 2014; Letham et al., 2019; Eriksson & Poloczek, 2021) where the primary focus is on99
empirical performance instead of theoretical guarantees.100

3 Preliminaries101

Notation. For a positive integer M , [M ] := {1, 2, · · · ,M}. For a vector v ∈ RM and I ⊂ [M ],102
vI denotes the sub-vector of v formed by indices in I. For a matrix A with M columns and I ⊂ [M ],103
AI denotes the sub-matrix of A formed by columns indexed by I. N (µ, σ2) denotes a Gaussian104
distribution with mean µ and variance σ2. ∥ · ∥2 represents the Euclidean 2-norm.105

Problem Statement. We introduce the constrained best mixed arm identification (CBMAI) prob-106
lem in the context of a bandit model: There are K arms, indexed by [K] = {1, 2, · · · ,K}, each107
associated with a reward function Ra and L cost functions Cl,a, a ∈ [K], l ∈ [L]. In this setting,108
since any deterministic arm may be suboptimal, or fail to meet the constraints, we would like to109
determine a mixed arm p∗, i.e., a probability distribution over the arms (in the probability simplex110
PK := {p ∈ RK

+ : 1T p = 1}) such that it achieves the following111

max
p∈PK

{RT p : Cp ≤ c̄}, (1)

where R = (R1, · · · , RK)T , (C)l,a = Cl,a and the vector c̄ ∈ RL. This is a linear program, and112
therefore an optimal solution of (1) can be obtained at an extreme point of the constraint polytope113
(Luenberger et al., 1984). Thus, when the costs are known, the best mixed arm will lie in a known114
finite set (Carlsson et al., 2023; Nakamura & Sugiyama, 2024) since the constraint polytope has a115
finite number of vertices.116

However, our motivation comes from the bandit setting, and typically both the rewards R and costs117
C for each arm are random, and come from an unknown distribution. In that case, there can be118
uncountably many candidates for the best mixed arm making identifying the exact best mixed arm119
virtually impossible. Thus, we focus on the optimal support identification, i.e., identifying the arms120
that have non-zero probability in the best mixed arm. We denote such a set of arms by I∗ (we will121
define it precisely later). We will consider that when the learning agent chooses arm a, it receives122
a reward Ra ∼ N (ra, σ

2
r), and also incurs costs Cl,a ∼ N (cl,a, σ

2
c ), l = 1, 2, · · · , L. The random123

rewards and costs are assumed mutually independent. We will assume that for the first K0 arms, the124
mean reward (ra)a∈[K0] and mean costs (cl,a)a∈[K0],l∈[L] are unknown. The means of the reward125
and costs of an arm in the (possibly empty) subset {K0 + 1, · · · ,K} is assumed to be known. Note126
that the traditional setting of all arms being unknown simply corresponds to the case where K0 = K.127
The variances are not needed to be known by the algorithms we design, but assuming them known128
will simplify our analysis. Thus, we would like to solve the following LP problem that optimizes129
the expected reward subject to constraints on expected costs130

max
p∈PK

{rT p : cp ≤ c̄}, (LP)

where the components of r = (ra)a∈[K] and c = (cl,a)l∈[L],a∈[K] corresponding to the first K0131
arms are unknown and must be learnt.132
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To that end, we need samples of reward and costs for various arms. We consider a fixed-budget133
setting, i.e., we can only obtain at most N such samples. We assume an underlying probability134
space (Ω,F ,P), and would like to design a learning agent ϕ that minimizes the misidentification135
probability Pr,c(X ϕ ̸= I∗), i.e. the probability of misidentifying the optimal support I∗, where X ϕ136
is the subset of arms output by the algorithm. Note that we use a strict criteria: we only consider137
the identification to be correct if the output support is exactly the set of arms in the optimal support.138

Remark 1. We make a few observations. (i) Our algorithm does not need the Gaussian distributions139
assumption. Furthermore, our main result (Theorem 1) can be adapted to sub-Gaussian reward and140
cost distributions (through replacing the use of Gaussian concentration inequalities in the proof with141
sub-Gaussian ones). However, assuming Gaussian distributions allows us to focus on presenting142
key ideas while avoiding unnecessary technical details. (ii) The reasoning for explicitly formulating143
known arms in our setting is as follows: First, for best deterministic arm identification problem with144
both unknown and known arms, constrained or not, one can always run any algorithm on the subset145
of unknown arms, obtain the best arm in this subset, and compare it with the best known arm, making146
the formulation of known arms a bit of a distraction. However, this is not the case for constrained147
best mixed arm identification, as the addition of a known arm could introduce new unknown arms148
into the optimal mixed arm. (iii) If the optimal support is known, one can easily finetune the mixing149
probabilities with online data and quickly converge to the best mixed arm without the need to explore150
arms outside of the support. However, finding the optimal support can be a challenging problem due151
to its combinatorial nature.152

4 The Score Function-based Successive Reject (SFSR) Algorithm153

We first derive our main algorithm, the Score Function-based Successive Reject (SFSR) algorithm,154
that uses a novel elimination rule we designed based on the intersection value (IV) score. We155
will later show that substituting this score function with another results in a different flavor of the156
algorithm that can also have good empirical performance.157

Consider the standard form of (LP) where we add the slack vector s ∈ RL
+:158

max
p∈RK

+ ,s∈RL
+

{rT p : cp+ s = c̄,1T p = 1}. (2)

Let 0m (resp. 1m) denote the all-0 vector (resp. all-one vector) of length m. Let IL×L denote the159
L-by-L identity matrix. Set160

x =

(
p
s

)
, µ =

(
r
0L

)
, (3)

A =

(
c IL×L

1T
K 0T

L

)
, b =

(
c̄
1

)
, (4)

then (2) can be simply written as161

max{µTx : Ax = b,x ≥ 0} (SFLP)

An optimal solution of the linear program in (SFLP) can be obtained at a basic feasible solution162
(BFS) (Luenberger et al., 1984) of (A,b) which is determined by a basis I∗ ⊂ [K + L].163

Definition 1 (BFS). Let A be an M ×R matrix and b ∈ RM . A subset I of [R] is said to be a basis164
of A, if |I| = M . A non-negative vector x∗ ∈ RN

+ is said to be a basic feasible solution (BFS)165
of (A,b) corresponding to the basis I, if (i) x∗

i = 0 for i ̸∈ I; (ii) the square sub-matrix AI is166
invertible; and (iii) x∗

I = A−1
I b ≥ 0. In this case, I is called a feasible basis of (A,b).167

For the ease of describing the algorithm, we will refer to the slack variable sl corresponding to the168
l-th constraint as “arm K + l.” With this convention, arms K + 1 to K + L can be thought of as169
“virtual arms” corresponding to slack variables. The proposed algorithm starts with the set of all170
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Figure 1: Intersection value scores for a 5-arm, 1-constraint instance

arms [K + L] and successively rejects one arm in each round. The algorithm returns when either it171
believes the problem is infeasible, or when there are only L+ 1 arms remaining.172

The choice of which arm to eliminate at each round is determined by a score function (like an index173
in bandit learning algorithms) for each arm computed from the empirical estimates of their rewards174
and costs: Let X ⊂ [K + L] to the subset of remaining arms, Let µ̂X ∈ RX be the empirical mean175
vector defined by176

µ̂X = (µ̂a)a∈X , µ̂a =

{
r̂a a ≤ K0

µa otherwise
. (5)

Let the empirical constraint sub-matrix ÂX ∈ R[L+1]×X be defined by177

ÂX = (Âl,a)l∈[L+1],a∈X ,

Âl,a =

{
ĉl,a l ≤ L, a ≤ K0

Al,a otherwise
.

(6)

The intersection value (IV) score function for arm a ∈ X is then defined as178

f IV
a (r̂, ĉ) = max{µ̂T

X x̃ : x̃ is a BFS of (ÂX ,b)

corresponding to some basis J containing a}
(7)

with the convention that the maximum over an empty set is −∞. In Figure 1, we provide a visual179
presentation of the intersection value scores for the case L = 1. The example also explains the name180
intersection value, as it represents the intersections of line segments (for L > 1, simplices) with the181
cost boundary (for L > 1, faces of the constraint polytope).182

The SFSR algorithm will only pull unknown arms a ∈ [K0]. The number of times Tk to pull each183
remaining unknown arm in round k is defined as follows: Set n0 := 0, and for k ∈ [K − 1],184

nk :=

⌈
1

Ψ(K0, L)

N −K0

K + 1− k

⌉
, Tk := nk − nk−1, (8)

where Ψ(K0, L) :=
∑K0

j=1
1

max(2,j−L) . The SFSR algorithm is formally presented in Algorithm 1.185
Remark 2. To use Algorithm 1 to estimate the best mixed arm (i.e., the support and the associated186
probabilities), one can simply construct the empirical constraint sub-matrix ÂX according to (6)187
and compute x̂∗

X = Â−1
X b. Note that x̂∗

X may include slack variables as well.188

Note that at the beginning of round k, the set X of remaining arms contains some true arms and may189
contain some virtual arms (corresponding to the slack variables). Whether a true or a virtual arm190
will be eliminated in round k depends on the random realizations of the rewards and costs. Thus,191
unlike the classical Successive Reject algorithm Audibert & Bubeck (2010), the number of true arms192
remaining after each round in our algorithm is a random variable. While the total number of (true)193
arm pulls by our algorithm is random, we can show that we will always meet the pulling budget N .194
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Algorithm 1: Score Function-based Successive Reject (SFSR)
Input: Means of reward and costs of known arms (ra)a∈(K0,K], (cl,a)a∈(K0,K],l∈[L]; Cost

bound (c̄l)l∈[L]; Pulling budget N
Output: Support of the best mixed arm and slack variables (or the symbol ∅ representing

infeasibility)

Compute (Tk)
K−1
k=1 with (8);

Set X = [K + L];
for k = 1 to K − 1 do

Pull each arm a ∈ X ∩ [K0] for Tk times;
Update empirical means of reward r̂a and costs (ĉl,a)Ll=1 for arms in X ∩ [K0];
Compute the score ρ̂ka = f IV

a (r̂, ĉ) for each a ∈ X through (5)(6)(7) ;
if maxa∈X ρ̂ka = −∞ then

return ∅;
Eliminate the arm with the lowest score from X (with arbitrary tie-breaking);

return X ;

Proposition 1. Under Algorithm 1, the number of total arm pulls never exceeds N .195

The proof can be found in the Supplementary Materials Section D.196

Using a different score function. Instead of the intersection value score function f IV, we can197
also use another function fL, called the Lagrangian function, that comes from linear programming198
duality theory. The Lagrangian score function is defined as follows: Let µ̂X and ÂX follow the199
definitions in (5)(6). Let λ̂∗ ∈ RL+1 be an optimal solution to the empirical dual linear program200
(EDLP) minλ∈RL+1{bTλ : ÂT

Xλ ≥ µ̂X }. We define201

fL
a (r̂, ĉ) =

{(
µ̂X − ÂT

X λ̂∗
)
a

EDLP is bounded

−∞ otherwise
(9)

This yields another flavor of the SFSR algorithm that we call SFSR-L. In Appendix H, we will see202
that the SFSR-L algorithm on some problem instances can perform better than the SFSR algorithm.203

5 Analysis204

We first introduce the following mild assumption that we will use for our analysis.205

Assumption 1. The linear program (SFLP) has a unique optimal solution x∗ with exactly L + 1206
non-zero coordinates.207

Remark 3. Assumption 1 does not restrict the best mixed arm to be a strict mix of L+1 arms: Note208
that x∗ contains both the mixing probabilities and the slack variables for the constraints. Assumption209
1 requires that if the optimal mixed arm is a mix of m arms, then there need to be exactly L+1−m210
non-binding constraints under this mixed arm.211

The uniqueness of optimal solution is a standard assumption in best arm identification problems (e.g.212
Audibert & Bubeck (2010); Kaufmann et al. (2016); Faizal & Nair (2022)). The further assumption213
on the size of the support is necessary for CBMAI problems since it ensures the stability of the214
optimal solution: Without this assumption, an infinitesimal change of the cost matrix c could result215
in a change of the support of the best mixed arm. In this case, identifying the support of best216
mixed arm beyond a certain probability would be impossible under any budget N , since it requires217
estimating c with infinite precision.218
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Next, given an instance satisfying Assumption 1 we formally define the gaps ∆0, (∆(i))i∈[K+L] that219
characterize the hardness of the instance. These gaps appear in both the upper bound (Theorem 1)220
and lower bound (Theorem 2) on the error probability.221

Let I∗ = supp(x∗) denote the support of the optimal solution (or the optimal basis). For each basis222
set J ⊂ [K + L], |J | = L+ 1, define the basis value gap of J by223

∆2
J = inf

r̃∈RK0 ,c̃∈RL×K0

{
d2σ,r(r, r̃) + d2σ,c(c, c̃) :

Ã−1
I∗ b ≥ 0, Ã−1

J b ≥ 0, µ̃T
J Ã−1

J b ≥ µ̃T
I∗Ã−1

I∗ b
} (10)

where, d2σ,r(r, r̃) := σ−2
r

∑K0

a=1(ra − r̃a)
2, d2σ,c(c, c̃) := σ−2

c

∑L
l=1

∑K0

a=1(cl,a − c̃l,a)
2, and Ã, µ̃224

are defined through (r̃, c̃) in the same way as how Â, µ̂ are defined through (r̂, ĉ) in (5)(6). We225
follow the convention that the infimum of an empty set is +∞. The basis value gap represents226
the minimum distance one needs to move (r, c) to an alternative instance (r̃, c̃) where the expected227
reward under the originally optimal basis I∗ is overtaken by that of another basis J while preserving228
the feasibility of I∗.229

Note that in (10), the infimum can be attained by moving only the rewards and costs associated with230
arms in (J ∪ I∗)∩ [K0]. We write (10) as an infimum over all reward-and-cost vectors for the sake231
of consistency and ease of notations.232

Proposition 2. Under Assumption 1, J ̸= I∗ if and only if ∆2
J > 0.233

We relegate the proof to Supplementary Materials Section E.234

Furthermore, for each a ∈ [K + L], we define the arm value gap of a as235

∆2
a = min{∆2

J : a ∈ J ⊂ [K + L], |J | = L+ 1}. (11)

Following Audibert & Bubeck (2010), let (k) denote the arm (including virtual arms) with the k-th236
smallest ∆a among all arms a ∈ [K + L]. Under Assumption 1, it follows from Proposition 2 that237
0 = ∆(1) = · · · = ∆(L+1) < ∆(L+2) ≤ · · · ≤ ∆(K+L).238

In addition to the above, define the optimal support infeasibility gap as239

∆2
0 = inf

c̃∈RL×K0

{
d2σ,c(c, c̃) : det(ÃI∗) = 0 or Ã−1

I∗ b ̸≥ 0
}

(12)

The fact that ∆2
0 > 0 under Assumption 1 can be established via the continuity and strict positiveness240

of the mappings c̃ 7→ det(ÃI∗) and c̃ 7→ Ã−1
I∗ b at c̃ = c[K0].241

5.1 Upper Bound on the Error Probability of the SFSR Algorithm242

We now provide an upper bound on the mis-identification probability of the SFSR algorithm.243

Theorem 1. Let X SFSR denote the output of Algorithm 1. Then, under Assumption 1, we have244

P(X SFSR ̸= I∗) ≤ OL(K) · exp

(
−Ñ∆2

0

K

)
+OL(K

L+2) · exp

(
− min

2≤i≤K

Ñ∆2
(i+L)

i

)
(13)

where Ñ := N−K0

3(L+1
2 +logK0)

and OL is the standard big-O notation where L is treated as a constant.245

Proof. See Appendix A for the proof.246

Remark 4. Theorem 1 shows that the error is dominated by two components: The quantity ∆0247
describes how close the optimal mixed arm is to infeasibility, while ∆(i+L) describes how close the248
optimal mixed arm is to other candidates for the best mixed arm. This echoes the result of Faizal &249
Nair (2022) for constrained best deterministic arm identification problems.250
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5.2 Lower Bound251

As we stated above, our objective is to design a pure-exploration algorithm ϕ that will minimize the252
mis-identification probability. But how would we know that our upper bound on it is tight, or not?253
To characterize that, we introduce a lower bound with which the upper bound can then be compared.254

To meaningfully derive a lower bound on the performance of any CBMAI algorithm, it is essential255
to specify the class of instances to be considered. (It’s not so difficult to design algorithms that256
achieve uniformly good performance on a small class of instances, since the algorithm only needs257
to distinguish between them.) We consider a class of instances with Gaussian rewards and costs258
such that the variances σ2

c , σ
2
r are fixed and known, so that an instance is parameterized by θ =259

(θa)a∈[K] = (ra, c1,a, · · · , cL,a)a∈[K]. For simplicity, we consider K0 = K, i.e., all arms are260
unknown. We define Θ to be a class of instances θ that either (i) has no feasible solution, or (ii)261
satisfies Assumption 1. For θ ∈ Θ, define Iθ = ∅ if θ is an instance with no feasible solution.262
Otherwise, define Iθ to be the optimal basis for this instance.263

We consider a class of algorithms that satisfy the following consistency requirement.264

Definition 2 (Consistency (Barrier et al., 2023)). Let ϕN be an algorithm for CBMAI with bud-265
get N . A sequence of algorithms (ϕN )∞N=N0

is said to be consistent if for any instance θ ∈ Θ,266
Pθ(X ϕN ̸= Iθ) → 0 as N → +∞.267

The consistency condition means that given sufficient amount of budget, an algorithm can even-268
tually: (i) identify the optimal basis when it is possible to do so, and (ii) output ∅ whenever the269
instance has no feasible solution.270

It can be shown that the naive Uniform Sampling and Linear Program (USLP) algorithm (i.e., pull271
each arm ⌊N/K⌋ times, compute the empirical means of rewards and costs of all arms, and then272
solve the empirical version of (SFLP)) is a consistent algorithm. We note that the SFSR algorithm273
is a consistent algorithm.274

Theorem 2. For any consistent algorithm πN , under any instance θ satisfying Assumption 1, the275
mis-identification probability satisfies276

lim sup
N→∞

− 1

N
logPθ(X πN ̸= Iθ) ≤ 1

2
min{∆2

0,∆
2
(L+2)}. (14)

Furthermore, for the USLP algorithm, we have277

lim sup
N→∞

− 1

N
logPθ(XUSLPN ̸= Iθ) ≤ 1

2K
min{∆2

0,∆
2
(L+2)}. (15)

The proof can be found in Appendix B.278

For Algorithm 1, Theorem 1 yields that279

lim inf
N→∞

− 1

N
logPθ(X SFSRN ̸= Iθ) ≥

min

{
∆2

0

K ,
∆2

(L+2)

2 ,
∆2

(L+3)

3 , · · · , ∆2
(L+K)

K

}
3
(
L+1
2 + logK

) .
(16)

We can now compare the upper bound for the SFSR algorithm above to the lower bound in (14) and280
observe the presence of several common terms. Note that tight instance-dependent lower bounds for281
fixed budget identification problems are not known even for unconstrained BAI problems (Degenne,282
2023; Qin, 2022). So, while the lower bound we provide in Theorem 2 may not be tight, it does show283
that the gaps ∆0 and (∆(L+i))

K
i=2 are appropriate indicators of the hardness of a CBMAI problem:284

If one of them is very small, then the CBMAI problem is difficult for any consistent algorithm to285
handle. Instance independent min-max lower bound of the type in Carpentier & Locatelli (2016) or286
Yang & Tan (2022) can also be derived but are not very meaningful for this problem since one can287
always construct hard CBMAI instances by translating hard unconstrained BAI problems.288
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6 Empirical Performance289

In this section, we compare the empirical performance of the two flavors of SFSR with the naive290
USLP algorithm. We only presented instances with L = 1 here. Empirical results for instances with291
more than one constraints are included in Supplementary Materials Section H.292

Figure 2: Top: Three 16-arm instances. Arms in the optimal support are labeled with green triangles.
Bottom: Empirical results for three algorithms under varying budgets. 95% confidence intervals are
indicated and tight.

In all of the experiments, we set K0 = K = 16, σr = 1, σc = 0.5, and c̄1 = 1. For each293
combination of instance-algorithm-budget, we conduct 10,000 independent runs to obtain the error294
rate as the proportion of times the algorithm produces the wrong support. In every figure, we added295
(tiny) error bars to represent a 95% confidence interval for the error rate. We implemented the296
experiments in Python and conducted the experiments on an Apple M1 MacBook Air. Each figure297
takes about 15 minutes to generate.298

We first consider three arbitrary instances A1, A2 and A3 in Figure 2, where certain arms are clearly299
sub-optimal while others are not. The instances and their corresponding results are shown in Figure300
2. This includes one instance where the optimal arm is deterministic, and two instances where the301
optimal arm is a strict mix of two arms. The baseline is the Uniform Sampling and Linear Program302
(USLP) algorithm that pulls each arm ⌊N/K⌋ times, computes the empirical means of rewards and303
costs of all arms, and then solves the empirical version of (SFLP)) (there is no other known algorithm304
in the literature or otherwise). The results show that both SFSR and SFSR-L clearly outperform305
USLP, and the two flavors of SFSR have nearly no discernible difference in performance. Further-306
more, we also observe that the error rate decreases exponentially in N . Additional comparison of307
SFSR and SFSR-L is provided in Supplementary Materials Section G.308

7 Conclusions309

In this paper, we introduced the constrained best mixed arm identification (CBMAI) problem. While310
prior work has considered such a constrained problem with deterministic arms, it is well known that311
one can do better allowing for mixed arms. Unfortunately, the mixed arm problem is much more312
challenging due to existence of uncountably many candidate solutions. We have proposed the first313
algorithm for the CBMAI problem, which we are able to show theoretically and empirically has very314
good performance in terms of the error probability decreasing exponentially in N . The problem is of315
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wide interest in many practical settings that often have multiple objectives but with unknown reward316
and cost models.317

Our work provides a basis for further extensions in a number of directions. One could consider318
contextual bandit models, e.g., linear bandit models that have wide applicability in recommendation319
systems. A fixed confidence version of CBMAI problem is also interesting, which has only been320
solved under the known constraints case (Carlsson et al., 2023). This work could also be extended321
to a constrained MDP setting to find the best policy that also obeys average constraints. There is322
probably also scope to design an even better algorithm by combining various score functions.323

A Proof of Theorem 1324

The proof follows the general strategy first introduced in Audibert & Bubeck (2010) for analyzing325
fixed-budget BAI algorithms that reject arms successively. As with Audibert & Bubeck (2010), we326
assume that an infinite reward and cost sequence for each unknown arm a ∈ [K0] is drawn before327
the algorithm started. In this way, the empirical mean reward or cost of arm a after m draws is328
always well-defined.329

Let Xk denote the set of remaining arms after k − 1 arms (including virtual arms) are eliminated.330
Recall that (k) denotes the arm (including virtual arms) with the k-th smallest ∆a among all arms.331
At least one of the arms a ∈ {(K + L− k + 1), · · · , (K + L)} is in Xk. If one of the arms in I∗ is332
eliminated at the end of round k for the first time, it implies that the following event Ek happened:333

I∗ ⊂ Xk, ∃a ∈ {(K + L− k + 1), · · · , (K + L)} ∩ Xk, ρ̂ka ≥ min
i∈I∗

ρ̂ki (17)

where ρ̂ki is the intersection value score for arm i at the end of round k.334

Next, fix k. Let r̂ ∈ RK0 , ĉ ∈ RL×K0 be the empirical means of rewards and costs respectively335
after each unknown arm has been drawn nk times. Let Â ∈ R(L+1)×(K+L) denote the empirical336
version of the A matrix where Al,i = cl,i is replaced by ĉl,i for l ∈ [L], i ∈ [K0].337

If (17) happens, at least one of the following events Ek,0, (Ek,a)a∈{(K+L−k+1),··· ,(K+L)} must hap-338
pen:339

Ek,0 := {det(ÂI∗) = 0, or Â−1
I∗ b ̸≥ 0} (18)

Ek,a := {I∗ ⊂ Xk, a ∈ Xk, Â
−1
I∗ b ≥ 0, ρ̂ka ≥ min

i∈I∗
ρ̂ki } (19)

On event Ek,0, by definition of ∆0 in (12), we have340

ξ0 := σ−2
c

∑
i∈I∗∩[K0]

L∑
l=1

(cl,i − ĉl,i)
2 ≥ ∆2

0 (20)

For each (l, i) ∈ [L] × [K0], the random variables
√
nkσ

−1
c (ĉl,i − cl,i) are i.i.d. standard normal341

random variables. Therefore, nkξ0 is a chi-square random variable with degree m = L · |I∗ ∩ [K0]|342
(written as χ2

m). We have343

P(Ek,0) ≤ P(χ2
m ≥ nk∆

2
0) ≤ 3m/2 exp

(
−nk∆

2
0

3

)
≤ 3L(L+1)/2 exp

(
−nk∆

2
0

3

)
(21)

where in the second inequality we applied Lemma 1 (see Supp. Materials), and in the third inequality344
we used the fact that m ≤ L|I∗| = L(L+ 1).345

Now consider the event Ek,a for some a ∈ {(K + L − k + 1), · · · , (K + L)}. On this event, I∗346
corresponds to a BFS of (ÂXk

,b). Then, by definition of the IV scoring function (7), for all i ∈ I∗,347
we have ρ̂ki ≥ µ̂T

I∗Â
−1
I∗ b. Therefore, on event Ek,a, we have ρ̂ka ≥ µ̂T

I∗Â
−1
I∗ b. Again, by definition348

10



Pure Exploration for Constrained Best Mixed Arm Identification

of the scoring function, this means that there exists a basis J ⊂ [K + L], |J | = L + 1 such that349
a ∈ J and350

Â−1
J b ≥ 0, µ̂T

J Â−1
J b ≥ µ̂T

I∗Â−1
I∗ b. (22)

Therefore, by the definition of ∆a in (11), the above implies that351

ξJ :=
∑

i∈(I∗∪J )∩[K0]

[
σ−2
r (r̂i − ri)

2 + σ−2
c

L∑
l=1

(ĉl,i − cl,i)
2

]
≥ ∆2

a. (23)

The random variables
√
nkσ

−1
r (r̂i − ri), i ∈ [K0] along with the random variables

√
nkσ

−1
c (ĉl,i −352

cl,i), (l, i) ∈ [L]× [K0] are i.i.d. standard normal random variables. Therefore, nkξJ is a chi-square353
random variable with degree mJ = (L+1)·|(J ∪I∗)∩[K0]|. We have mJ ≤ (L+1)(|J |+|I∗|) =354
2(L+ 1)2. Subsequently,355

P(Ek,a) ≤
∑

J :|J |=L+1,a∈J

P(ξJ ≥ ∆2
a) ≤

∑
J :|J |=L+1,a∈J

P(χ2
mJ

≥ nk∆a) (24)

≤
(
K + L− 1

L

)
3(L+1)2 exp

(
−nk∆

2
a

3

)
(Lemma 1, and mJ ≤ 2(L+ 1)2)

Therefore,356

P(Ek) ≤ P(Ek,0) +
∑

a∈{(K+L−k+1),··· ,(K+L)}

P(Ek,a) (25)

≤ 3L(L+1)/2 exp

(
−1

3
nk∆

2
0

)
+ k

(
K + L− 1

L

)
3(L+1)2 exp

(
−1

3
nk∆

2
(K+L+1−k)

)
(26)

Finally, taking union bound and using nk ≥ 1
Ψ(K0,L)

N−K0

K+1−k , we have357

P(X SFSR ̸= I∗) ≤
K−1∑
k=1

P(Ek) (27)

≤
K−1∑
k=1

[
3L(L+1)/2 exp

(
−1

3
nk∆

2
0

)
+ k

(
K + L− 1

L

)
3(L+1)2 exp

(
−1

3
nk∆

2
(K+L+1−k)

)]
(28)

≤ (K − 1)3L(L+1)/2 exp

(
− (N −K0)∆

2
0

3(L/2 + logK0)K

)
(29)

+
K(K + 1)

2

(
K + L− 1

L

)
3(L+1)2 exp

(
− N −K0

3(L/2 + logK0)
min

2≤i≤K

∆2
(L+i)

i

)
(30)

where in the last inequality we used358

nk ≥ N −K0

Ψ(K0, L)

1

K + 1− k
∀k ∈ [K − 1], (31)

Ψ(K0, L) ≤
L+ 1

2
+

∑
2≤j≤K0−L

1

j
≤ L+ 1

2
+

∫ K0

1

1

t
dt =

L+ 1

2
+ logK0 (32)

Remark 5. Notice that we only use the Gaussian reward assumptions in the above proof for obtaining359
the tail bounds on the sum of squares of independent Gaussian random variables (Lemma 1). To360
adapt our approach to sub-Gaussian reward settings, one can simply replace such concentration361
results with similar results on the sum of squares of independent sub-Gaussian random variables by362
using the fact that squares of sub-Gaussian random variables are sub-exponential variables.363
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B Proof of Theorem 2364

Let θ satisfy Assumption 1. Consider an alternative (not necessarily feasible) instance θ′ ∈ Θ with365
Iθ ̸= Iθ′

. By the consistency of πN we have366

q′N := Pθ′(X πN ̸= Iθ)
N→∞−−−−→ 1, and, qN := Pθ(X πN ̸= Iθ)

N→∞−−−−→ 0. (33)

Let Ma,N denote the random number of times arm a is pulled under algorithm πN . Through Lemma367
1 of Kaufmann et al. (2016), we have368

K∑
a=1

Eθ′ [Ma,N ]DKL(θ
′
a, θa) ≥ dKL(q

′
N , qN ) (34)

where DKL(θ
′
a, θa) is the KL divergence between the distributions of reward-cost vectors of arm a369

under instances θ′ and θ. The RHS of (34) satisfies370

dKL(q
′
N , qN ) = q′N log

(
q′N
qN

)
+ (1− q′N ) log

(
1− q′N
1− qN

)
≥ q′N log

(
1

qN

)
− log 2 (35)

where we have used the fact that −z log z − (1− z) log(1− z) ≤ log 2 for z ∈ (0, 1).371

Putting everything together and rearranging the terms, we have372

1

N
log

(
1

qN

)
≤ 1

q′N

(
log 2

N
+

K∑
a=1

Eθ′ [Ma,N ]

N
DKL(θ

′
a, θa)

)
(36)

Taking the limits on both sides, bounding Eθ′ [Ma,N ]
N by 1, we have373

lim sup
N→∞

− 1

N
logPθ(X πN ̸= Iθ) ≤

K∑
a=1

DKL(θ
′
a, θa) (37)

Using the formula for KL divergence between two multivariate Gaussian distributions, we have374

DKL(θ
′
a, θa) =

1

2

[
σ−2
r (r′a − ra)

2 + σ−2
c

L∑
l=1

(c′l,a − cl,a)
2

]
(38)

Combining the above together and taking infimum over θ′ ∈ Θ, we have375

lim sup
N→∞

− 1

N
logPθ(X πN ̸= Iθ) ≤ 1

2
inf
θ′∈Θ

{
σ−2
r ∥r′ − r∥22 + σ−2

c ∥c′ − c∥22 : Iθ′
̸= Iθ

}
, (39)

Note that Iθ′ ̸= Iθ is true if either (i) Iθ is an infeasible basis under (A′,b); or (ii) Iθ is feasible376
under (A′,b) and there exists a basis set J ≠ Iθ such that (µ′

Iθ )
T (A′

Iθ )
−1b ≤ (µ′

J )T (A′
J )−1b.377

Therefore,378

inf
θ′∈Θ

{
σ−2
r ∥r′ − r∥22 + σ−2

c ∥c′ − c∥22 : Iθ′
̸= Iθ

}
≤ min

{
∆2

0, min
J ̸=Iθ

∆2
J

}
= min{∆2

0,∆
2
(L+2)}

(40)

which concludes the proof of (14). The proof of (15) can be obtained using the same steps as above379
along with the fact that for the USLP algorithm Eθ′ [Ma,N ]

N is bounded by 1
K .380

In (40), there is a small caveat: the gaps ∆0, (∆J )J ̸=Iθ were originally defined as infimums over all381
θ′ ∈ R(L+1)×K while the infimum in the RHS of (39) is taken over Θ, a proper subset of R(L+1)×K .382
However, this is not a problem since Θ is dense in R(L+1)×K (see Supplementary Materials Section383
F for a brief explanation of this fact).384
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Supplementary Materials486

The following content was not necessarily subject to peer review.487
488

C Auxiliary Results489

Lemma 1. Let χ2
m be a chi-squared variable with degree m and t > 0, then P(χ2

m ≥ t) ≤490
3m/2 exp(−t/3).491

Proof. The moment generating function of χ2
m is given by E[exp(ζχ2

m)] = (1 − 2ζ)−m/2 for492
ζ < 1/2. Through Markov Inequality we have493

P(χ2
m ≥ t) ≤ E[exp(ζχ2

m)]e−ζt = (1− 2ζ)−m/2e−ζt (41)

The proof is completed by picking ζ = 1/3.494

D Proof of Proposition 1495

Define nk = nK−1 for k > K − 1. Imagine that in each episode, the algorithm pulls all arms still496
remaining in X (including virtual arms and known arms). Then the total number of arm pulls is497 ∑K+L

k=1 nk.498

If an “arm” i is the k-th rejected arm, then it is pulled exactly nk times. If it is not rejected, then it is499
pulled nK−1 times. Hence to obtain the actual total number of arm pulls, we only need to subtract500
those nk’s corresponding to virtual arms and known arms from the summation. We conclude that501
the total number of arm pulls is at most502

max
J⊂[K+L]

|J |=K−K0+L

(
K+L∑
k=1

nk −
∑
k∈J

nk

)
=

K+L∑
k=K−K0+L+1

nk (42)

≤
K+L∑

k=K−K0+L+1

(
1 +

1

Ψ(K0, L)

N −K0

max(2,K + 1− k)

)
(43)

= K0 + (N −K0) ·
1

Ψ(K0, L)

K0+L−1∑
j=L

1

max(2,K0 − j)
= N (44)

E Proof of Proposition 2503

The “if” part is clear by the definition of I∗. We establish the “only if” part as follows.504

Consider a basis J ̸= I∗. Suppose that ∆2
J = 0. Then, there exists a sequence of reward-505

cost vectors (r̃(n), c̃(n))∞n=1 such that both of the following hold: (i) (r̃(n), c̃(n)) → (r, c); (ii)506

(Ã
(n)
I∗ )−1b ≥ 0, (Ã

(n)
J )−1b ≥ 0, (µ̃

(n)
J )T (Ã

(n)
J )−1b ≥ (µ̃

(n)
I∗ )T (Ã

(n)
I∗ )−1b.507

Set x(n) ∈ RK+L to be the basic feasible solution of (Ã(n),b) corresponding to basis J , i.e. x(n)
J =508

(Ã
(n)
J )−1b and x

(n)
i = 0 for i ̸∈ J . Note that (x(n))∞n=1 is a uniformly bounded sequence of finite509

dimensional vectors. By taking subsequences, without lost of generality, assume that x(n) → x(∞).510
We have511

x(∞) ≥ 0, Ax(∞) = lim
n→∞

(Ã
(n)
J )x(n)

J
= b, (45)

meaning that x(∞) is a feasible solution of (SFLP). By taking the limit of the last inequality in (ii)512
we have513

µTx(∞) = lim
n→∞

(µ̃
(n)
J )T (Ã

(n)
J )−1b ≥ lim sup

n→∞
(µ̃

(n)
I∗ )

T (Ã
(n)
I∗ )

−1b. (46)
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Under Assumption 1, AI∗ is invertible and hence the mapping c̃ → Ã−1
I∗ is continuous at c̃ = c.514

Therefore, through (i) we conclude that lim supn→∞(µ̃
(n)
I∗ )T (Ã

(n)
I∗ )−1b = µT

I∗A
−1
I∗ b, i.e. the515

optimal value of (SFLP). Therefore, (46) means that x(∞) is also an optimal solution of (SFLP),516
which contradicts with the uniqueness assumption. (Let i ∈ I∗\J , we have x

(∞)
i = 0 ̸= x∗

i and517
hence x(∞) ̸= x∗.)518

F Proof of Θ being dense in R(L+1)×K519

If θ′ ∈ R(L+1)×K\Θ (i.e. θ′ is a feasible instance that violates Assumption 1), then it is nec-520
essary that one of the following statements is true: (i) det(A′

I) = 0 for some basis I; or (ii)521
(µ′

I)
T (A′

I)
−1b − (µ′

J )T (A′
J )−1b = 0 for some bases I ̸= J ; or (iii) certain coordinate of522

(A′
I)

−1b is zero for some basis I. In either case, we have h(θ′) = 0 for some non-zero polynomial523
function h : R(L+1)×K 7→ R. Since the set of zeroes of any non-zero polynomial function cannot524
contain any open ball, we conclude that R(L+1)×K\Θ does not contain any open set, i.e. Θ is dense525
in R(L+1)×K .526

G Comparing SFSR and SFSR-L Algorithms527

Figure 3: Top: Three hard 16-arm instances. Arms in the optimal support are labeled with green
triangles. Bottom: Empirical results for three algorithms under varying budgets. 95% confidence
intervals are indicated and tight.

While both flavors of SFSR can achieve good performance on an average instance, in Figure 3, we528
see that in certain carefully constructed hard instances (H1-H3) while one of the two flavors, SFSR529
or SFSR-L performs well, the other does not (the guarantee in any case is probabilistic). In fact,530
the H3 instance in Figure 3 shows that it is hard enough that SFSR-L struggles to perform much531
better than the USLP algorithm. Below, we provide a detailed explanation on why SFSR-L fails on532
instance H2.533

Consider a CBMAI instance with K arms and one type of cost. The mean reward and cost are534
shown as in the left of Figure 4: Arm 1 has low reward and low cost, arm 2 has high reward and535
near feasible cost, and arm 3 to K all have the same mean reward and cost: The cost is feasible but536
close to cost bound c̄, and the reward is chosen such that the best mixed arm is formed by a mixture537
of arm 1 and 2. The (negative) Lagrangian reward fL

a (r̂, ĉ) of an arm a ∈ [K] can be visualized in538
Figure 4 as the vertical distance between arm a to the “frontier” (i.e. the extended line formed by539
cost-reward vectors of two arms in the empirical optimal support).540
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Figure 4: Illustration of SFSR-L in a 1-constraint instance. Left: True mean reward and cost. Right:
Empirical means after the first episode. Despite that the empirical means do not deviate from the
the true mean by too much, arm 1 (a member of the optimal support) ends up having the lowest
empirical Lagrangian reward, and is eliminated as a result.

Now, consider the end of episode 1 of SFSR-L, and the empirical means of rewards and costs are541
shown as on the right of Figure 4. Now, arm 2 and some arm 3 ≤ j ≤ K forms the empirical frontier.542
The empirical dual optimal solution (symbolized by the slope of the frontier) is very different from543
the true dual optimizer. More importantly, the empirical Lagrangian reward of arm 1 is now the544
lowest among all arms, and arm 1 is rejected by the SFSR-L algorithm in round 1 as a result. Note545
the identification error happens despite the fact that the arm 1 did not underperform (i.e. r̂1 <546
r1, ĉ1 > c1) its mean.547

While in elimination style algorithms there’s always the possibility of erroneously rejecting optimal548
arms, we note that the type of event as shown on the right of Figure 4 is not unlikely: We only549
require one of the K − 2 arms to slightly outperform its true mean for arm 1 to be eliminated. In550
comparison, in unconstrained BAI problems, for the optimal arm (arm 1) to be rejected in episode 1551
in an elimination-style algorithm (Audibert & Bubeck, 2010; Karnin et al., 2013), it requires all of552
the other arms (including the worst arm) to empirically outperform arm 1.553

H Additional Empirical Results554

In addition to the experiments in Section 6, we also applied the three algorithms (SFSR, SFSR-L,555
and USLP) to 6 instances with L = 2 constraints. We set K = K0 = 24, σr = 1, σc = 0.5 and556
c̄1 = c̄2 = 1.0. In all of the three instances, we set the costs of the 24 arms to be the 24 combinations557
of c1,i ∈ {0.4, 0.6, 0.8, 1.0, 1.2, 1.4} and c2,i ∈ {0.7, 0.9, 1.1, 1.3}. Then, to define the rewards for558
each instance, we first pick a noise vector (Wi)

24
i=1 (which we will describe later) independently for559

each instance. In instance D1, we set ri = 1.0 − Wi. In instance D2, we set ri = c1,i − Wi. In560
instance D3, we set ri = c1,i + c2,i − Wi. We run the randomizations for a few times until the561
optimal support of each instance Dj has exactly j arms. Finally, we increment the reward of each562
arm in the optimal support by 0.02 to ensure that the optimal support is unique and the instance is563
not overly difficult for any CBMAI algorithm.564

We consider two ways of choosing the random vector (Wi)
24
i=1: (i) a random permutation of565

{0.0, 0.02, · · · , 0.46}. (ii) i.i.d. uniform random choices from {0.0, 0.02, · · · , 0.28}. For the former566
choice, we will refer to the instance as DjP . For the latter, we will use DjI . The specific instances567
we used are reported in Table 1.568

For each combination of instance-algorithm-budget, we run the simulation for 5000 times indepen-569
dently and obtain the error rate as the proportion of times the algorithm output the wrong support.570
The results are provided in Figure 5. Each figure takes about 2 hours on an Apple M1 MacBook Air.571

We can see that the SFSR-L algorithm on these two constraints instances either has the same per-572
formance as the SFSR algorithm or does a bit better in terms of having a lower error rate.573
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Figure 5: Simulation results for 6 instances with L = 2 under varying budget. 95% confidence
intervals are indicated and tight.

Table 1: Description of the mean rewards and costs of instances. The rewards of arms in the optimal
support is shown in bold. Top Row (from left to right): D1P,D2P,D3P . Bottom Row (from left
to right): D1I,D2I,D3I .

c1\c2 0.7 0.9 1.1 1.3

0.4 0.88 0.80 0.82 0.66

0.6 0.72 1.02 0.70 0.54

0.8 0.92 0.74 0.94 0.84

1.0 0.76 0.60 0.56 0.86

1.2 0.98 0.64 0.68 0.78

1.4 0.62 0.96 0.90 0.58

c1\c2 0.7 0.9 1.1 1.3

0.4 0.08 0.28 −0.02 0.22

0.6 0.20 0.46 0.54 0.40

0.8 0.42 0.52 0.80 0.34

1.0 0.92 0.78 0.96 0.70

1.2 0.94 0.76 1.10 0.86

1.4 1.42 1.16 1.04 1.24

c1\c2 0.7 0.9 1.1 1.3

0.4 1.04 1.22 1.28 1.26

0.6 0.98 1.22 1.60 1.54

0.8 1.26 1.40 1.88 1.84

1.0 1.72 1.76 1.64 1.92

1.2 1.78 1.70 1.96 2.08

1.4 1.94 2.30 2.32 2.50

c1\c2 0.7 0.9 1.1 1.3

0.4 0.84 1.02 0.74 0.76

0.6 0.84 0.88 0.96 0.90

0.8 0.90 0.98 0.92 0.80

1.0 0.98 0.98 0.90 0.74

1.2 0.94 0.90 0.88 0.72

1.4 0.78 0.82 0.88 0.84

c1\c2 0.7 0.9 1.1 1.3

0.4 0.40 0.18 0.28 0.14

0.6 0.44 0.54 0.40 0.32

0.8 0.56 0.52 0.68 0.64

1.0 0.84 0.80 0.82 0.74

1.2 0.94 1.18 1.02 1.12

1.4 1.42 1.16 1.24 1.24

c1\c2 0.7 0.9 1.1 1.3

0.4 0.92 1.12 1.32 1.42

0.6 1.14 1.42 1.62 1.68

0.8 1.30 1.70 1.68 2.06

1.0 1.46 1.82 2.02 2.04

1.2 1.84 2.02 2.12 2.24

1.4 2.06 2.28 2.32 2.58
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