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Abstract

Medical Visual Question Answering (Med-001
VQA) provides language responses to image-002
based medical inquiries, facilitating more ac-003
curate diagnoses. However, existing MedVQA004
methods lack interpretability and transparency.005
To address this, we introduce a semi-automated006
annotation process and create new benchmark007
datasets, R-RAD and R-SLAKE, incorporat-008
ing multimodal language models and human009
annotations. Additionally, we develop a frame-010
work, MedThink, to fine-tune lightweight gen-011
erative models with medical decision-making012
rationales. This framework employs three dis-013
tinct strategies to generate decision outcomes014
and corresponding rationales, effectively show-015
casing the medical decision-making process016
during reasoning. MedThink achieves 83.5%017
accuracy on R-RAD and 86.3% on R-SLAKE,018
outperforming current baselines. Datasets and019
code will be released.020

1 Introduction021

The Medical Visual Question Answering (Med-022

VQA) task uses images to answer medical queries,023

aiding diagnosis, and reducing misdiagnosis risk024

(Hasan et al., 2018; Liu et al., 2023b; Zhan et al.,025

2020). However, existing MedVQA faces two chal-026

lenges. First, datasets lack the decision-making027

process between questions and answers, hinder-028

ing model interpretability (Lau et al., 2018; Liu029

et al., 2021b; Lu et al., 2022; Liu et al., 2023c;030

Lai et al., 2024a). However, manual rationale031

annotation for decision-making process is time-032

consuming and requires in-depth understanding of033

medical knowledge (Litjens et al., 2017; Liu et al.,034

2023a). Second, models need to resolve MedVQA035

tasks quickly, accurately, and interpretably. Current036

methods use retrieval, contrastive, or classification037

objectives (Nguyen et al., 2019; Zhang et al., 2022;038

Liu et al., 2021a; Eslami et al., 2023). Multimodal039

large language models (MLLMs) handle text and040

image inputs but are impractical due to high costs041

and latency (Nori et al., 2023; Lai et al., 2024b; 042

OpenAI, 2023; Team et al., 2023). 043

In this paper, we introduce new benchmark 044

datasets and novel solutions for MedVQA. We de- 045

sign a semi-automated annotation method leverag- 046

ing the powerful inference capabilities of MLLMs, 047

creating the R-RAD and R-SLAKE datasets with 048

Medical Decision-Making Rationales. Besides, we 049

develop our framework, MedThink, to fine-tune 050

T5-base generative models (Raffel et al., 2020), to 051

output decision outcomes and rationales, propos- 052

ing three generative modes: "Explanation", "Rea- 053

soning", and "Two-Stage Reasoning". MedThink 054

show 83.5% accuracy on R-RAD and 86.3% on 055

R-SLAKE, improving over PubMedCLIP (Eslami 056

et al., 2023) by 4.0% and 3.8%. Ablations on differ- 057

ent large language models (LLMs), such as GPT-4 058

(Achiam et al., 2023) and Gemini (Team et al., 059

2023), further validate MedThink. Our contribu- 060

tions are as follows: 061

• We develop a semi-automated process for anno- 062

tating MedVQA data with decision-making ratio- 063

nale. To the best of our knowledge, the R-RAD and 064

R-SLAKE datasets represent the first multimodal 065

MedVQA benchmark datasets that encompass ra- 066

tionales for answers. 067

• We propose a lightweight framework with three 068

answering strategies, enabling faster and more ac- 069

curate MedVQA with enhanced interpretability. 070

• We conduct extensive experiments and ablations 071

that demonstrate the usefulness of the R-RAD and 072

R-SLAKE datasets and superiority of our method. 073

2 Methodology 074

2.1 Dataset Collection 075

We establish two datasets, R-RAD and R-SLAKE, 076

based on VQA-RAD (Lau et al., 2018) and SLAKE 077

(Liu et al., 2021b). VQA-RAD, from MedPix®, 078

contains 315 images and 3,515 questions, split into 079

closed-end" and open-end" categories. We fol- 080

low the official dataset split for evaluation. The 081
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Figure 1: Overview of MedThink. (a) Data annotation. (b) Model architecture. (c) Reasoning strategies.

SLAKE dataset, from ChestX-ray8 (Wang et al.,082

2017), CHAOS Challenge (Kavur et al., 2021), and083

Medical Segmentation Decathlon (MSD) (Simp-084

son et al., 2019), contains 642 medical images and085

around 14,000 questions. We use only the “En-086

glish" component and follow the original split. The087

datasets we used are rigorously desensitized.088

After cleaning and annotation, R-RAD has 3,515089

questions and 314 images, and R-SLAKE has090

5,980 questions and 546 images. Both datasets091

include open-ended and closed-ended questions,092

with statistics in Table 3 in the Appendix.093

2.2 Dataset Cleaning and Annotation094

We integrate GPT-4V (OpenAI, 2023) into SLAKE095

and VQA-RAD data cleaning and annotation to096

streamline workflows. GPT-4V identifies errors for097

expert review. After cleaning, GPT-4V generates098

medical decision-making rationales (Figure 1 (a)),099

enhancing model reasoning without revealing an-100

swers. Fixed prompts guide GPT-4V, with domain101

experts validating and regenerating rationales as102

needed. If unsuccessful after three attempts, an103

expert creates it manually. We select physicians104

with clinical experience as domain experts to en-105

sure the professional and accurate annotation of106

data. Recognizing the diversity of opinions among107

physicians, we establish review criteria to guide108

our annotation process: a) The rationale generated109

by GPT-4V must enable experts to deduce the cor-110

rect answer to the question. b) The rationale should111

be free of common sense and medical errors, and112

directly related to the question.113

2.3 Dataset Analysis 114

We segment the rationales into words, excluding 115

common stop words. The word cloud (Figure 3) 116

highlights terms like “brain", “chest", “lung", “lo- 117

cated", “transverse", and “density", reflecting med- 118

ical knowledge and enhancing AI performance in 119

MedVQA. The rationale length distribution (Fig- 120

ure 4) ranges from 60-110 words for organ-related 121

questions, indicating balanced annotations. 122

2.4 Dataset Annotation Reliability 123

We validate R-RAD/R-SLAKE annotations 124

through expert verification of GPT-4 rationales 125

(Figure 1(a)) and test their reliability. Using an 126

answer stage (Two-Stage Reasoning strategy in 127

Figure 1(c)) with GPT4 rationale, we achieve 128

over 99% test set accuracy, which confirms the 129

reliability and validity of annotations. 130

2.5 Problem Formulation 131

Formulation. In this paper, we denote the medical 132

dataset as D = {(Im, Tm, Am, Rm)}Mm=1, where 133

M is the number of samples. The goal of the Med- 134

VQA is to develop a function f(·) that generates 135

textual answers to medical questions: 136

{A,R} = f(I, T ), (1) 137

Here, I denotes the medical image (X-ray, CT, 138

or MRI). T is the natural language question about 139

I . The model output f(·), {A,R}, includes: A 140

(the predicted answer to T ), and R (the medical 141

decision-making rationale), explaining A by detail- 142

ing the model’s processing of I and T . 143

Loss Function. Given the input X = {I, T}, the 144

model f is trained to maximize the likelihood of 145
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Table 1: Accuracy (%) Comparison on Closed-End
Questions in R-RAD and R-SLAKE. Gray and red back-
grounds highlight established methods and MedThink.

Methods R-RAD R-SLAKE
MFB (Yu et al., 2017) 74.3 75.0

SAN (Yang et al., 2016) 69.5 79.1
BAN (Kim et al., 2018) 72.1 79.1

MEVF+SAN (Nguyen et al., 2019) 73.9 78.4
MEVF+BAN (Nguyen et al., 2019) 77.2 79.8

MMBERT (Tiong et al., 2022) 77.9 -
PubMedCLIP (Eslami et al., 2023) 79.5 82.5

w/o R 79.0 82.5
Reasoning 73.9 80.8

Two-Stage Reasoning 80.5 79.1
Explanation 83.5 86.3

predicting the target output Y = {A,R}. The loss146

function, primarily the negative log-likelihood of147

correctly predicting tokens in Y , is:148

L = −
N∑

n=1

log p(Yn|X,Y 1:n−1), (2)149

where N is the number of tokens in Y , and150

p(Yn|X,Y 1:n−1) is the conditional probability of151

predicting the n-th token in Y .152

Model Architecture. The model architecture com-153

prises five components (Figure 1 (b)): TextualEn-154

coder, VisualEncoder, Cross Attention Network,155

Gated Fusion Network, and TextualDecoder.156

The TextualEncoder converts the input question157

T into the textual feature FT ∈ Rn×d, and the158

VisualEncoder transforms the input medical im-159

age I into vision features FI ∈ Rm×d: FT =160

TextualEncoder(T ), FI = VisualEncoder(I),161

where n is the text length, d is the hidden dimen-162

sion, and m is the number of image patches.163

The Cross-Attention Network computes the164

attention-guided visual feature HI
attn ∈ Rn×d:165

H I
attn = Softmax

(
QKT

√
d

)
V, (3)166

where Q, K, and V are derived from FT and FI .167

The Gated Fusion Mechanism combines FT and168

HI
attn, with fusion coefficient λ determined by:169

λ = Sigmoid(WlFT +WvH
I
attn), (4)170

The fused output Ffuse ∈ Rn×d is a weighted171

sum of FT and HI
attn, moderated by λ:172

Ffuse = (1− λ) · FT + λ ·H I
attn, (5)173

where Wl and Wv are model parameters. Finally,174

Ffuse is fed into the TextualDecoder to generate the175

output A,R:176

A,R = TextualDecoder(Ffuse), (6)177

Table 2: Impact of Medical Decision-Making Rationales
on the Accuracy (%) of Gemini Pro for MedVQA on
Closed-End Questions in the R-RAD and R-SLAKE
Datasets.

Strategy R-RAD R-SLAKE
w/o R 73.2 72.8

w/ Reasoning 76.5(+3.3) 77.6(+4.8)
w/ Two-Stage Reasoning 79.4(+6.2) 77.9(+5.1)

w/ Explanation 82.0 (+8.8) 81.3 (+8.5)

Three Generation Strategies. To investigate the 178

impact of the medical decision-making rationale on 179

model performance in MedVQA, we present three 180

generation strategies. These strategies guide the 181

model in generating outputs that reflect different 182

orders of the medical decision-making rationale. 183

The strategies are categorized as “Explanation", 184

“Reasoning" and “Two-Stage Reasoning", as shown 185

in Figure 1 (c). 186

In the “Explanation”, the answer A is generated 187

first, followed by the rationale R. In the “Reason- 188

ing”, R is generated before A. The “Two-Stage 189

Reasoning" uses a phased approach with two inde- 190

pendent models. The first stage uses the medical 191

question T and image I to generate the rationale R. 192

In the second stage, a model with different weights 193

but the same architecture uses R, T , and I to derive 194

the answer A. 195

3 Experiments 196

3.1 Setting 197

In this paper, UnifiedQA (Khashabi et al., 198

2020) serves as TextualEncoder(·) and 199

TextualDecoder(·), while DETR (Carion et al., 200

2020) is VisualEncoder(·). We evaluate “Explana- 201

tion”, “Reasoning”, and “Two-Stage Reasoning” 202

on R-RAD and R-SLAKE datasets, comparing 203

with PubMedCLIP (Eslami et al., 2023), MM- 204

BERT (Tiong et al., 2022), MEVF (Nguyen et al., 205

2019), BAN (Kim et al., 2018), SAN (Yang et al., 206

2016), and MFB (Yu et al., 2017), and assess 207

rationale quality. 208

For MedThink model, the learning rate is set 209

at 5e-4, with 300 epochs for R-SLAKE and 150 210

epochs for R-RAD. “Two-Stage Reasoning” uses 211

phased fine-tuning: first with these parameters, 212

then with a learning rate of 5e-5 for 20 epochs. 213

3.2 Main Results 214

Our performance evaluation is divided into two 215

parts: closed-end and open-end questions. Closed- 216

end questions, structured as multiple-choice with 217

a single definitive answer, are assessed using ac- 218
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curacy, as shown in Table 1. Open-end questions219

allow for a range of answers, making precise match-220

ing difficult. Thus, we use text generation metrics221

such as Rouge and BLEU to evaluate performance,222

as exhibited in Table 4 in the Appendix.223

For closed-end questions, the performance of224

“Explanation" outperforms the “Reasoning" and225

“Two-Stage Reasoning", achieving 83.5% accuracy226

on R-RAD and 86.3% on R-SLAKE, surpassing227

the state-of-the-art PubMedCLIP model by 4.0%228

and 3.8%. Besides, we evaluate MLLMs on the R-229

RAD and R-SLAKE datasets, presenting zero-shot230

and fine-tuning results in Table 6 in the Appendix.231

It can be obseved that MedThink remains competi-232

tive with fine-tuned MLLMs.233

To observe the role of medical decision-making234

rationales in MedVQA, Figure 2 shows examples235

using the "Explanation". For instance, when asked236

“Are the small bubbles of air seen abnormal?", the237

model without rationales responds incorrectly. In238

contrast, MedThink with the “Explanation" method239

correctly answers and explains, “The small bubbles240

appear very dark or black on the CT scan" and adds,241

“there are multiple areas of radiolucency, consistent242

with small bubbles of air". This highlights the243

supportive role of rationales in guiding the model244

to answer MedVQA questions accurately.245

3.3 Generalizability Across Diverse Datasets246

To evaluate generalizability, additional tests are247

conducted using other datasets, VQAMed-2019248

and PathVQA. Table 5 in the Appendix shows that249

incorporating rationales improve accuracy by 4.6%250

and 1.2%.251

3.4 Rationale Quality Assessment252

We compare “Explanation", “Reasoning", and253

“Two-Stage Reasoning" strategies for closed-end254

questions on R-RAD and R-SLAKE datasets, with255

“w/o R" as a control excluding medical decision-256

making rationales. Table 1 shows accuracy changes257

on R-RAD by 4.5%, -5.1%, and 1.5%, and on R-258

SLAKE by 3.8%, -1.7%, and -3.4%, respectively.259

Employing Gemini Pro, we evaluate the assis-260

tance of medical decision-making rationales. Ini-261

tially, Gemini Pro’s input includes only medical262

queries and image. Subsequently, rationales gen-263

erated by our strategies are incorporated to assist264

Gemini Pro. Following the self-consistency proto-265

col (Wang et al., 2022), where Gemini Pro answers266

each question five times, Table 2 shows initial ac-267

curacies of 73.2% on R-RAD and 72.8% on R-268

SLAKE. The “Explanation" improves accuracy by269

Figure 2: Illustration of enhancing MedVQA with
decision-making rationales. The figure shows “Expla-
nation" aiding diagnostics. Yellow highlights medical
knowledge, blue image details, and red anatomical fea-
tures in red box, aligning rationale with visual evidence.

8.8% on R-RAD and 8.5% on R-SLAKE. 270

3.5 Zero-shot Capability 271

We evaluate the model’s zero-shot capability on 272

the VQA-Med-2019 dataset. Pretrained with “Ex- 273

planation" on R-RAD, MedThink achieves 62.34% 274

accuracy on the closed-end set, close to the highest 275

reported accuracy of 62.40%. Our focus, however, 276

is on integrating medical decision-making rationale 277

into the MedVQA and developing a comprehensive 278

data production and model training system. 279

3.6 Ablation Study 280

To validate the impact of MLLMs selection and ex- 281

pert annotation, we design three variations for anno- 282

tating closed-end questions in the R-RAD dataset: 283

Gemini Pro without expert input, GPT-4V without 284

expert input, and GPT-4V with expert input. Re- 285

sults in Figure 5 in the Appendix show GPT-4V 286

enhances MedVQA performance over Gemini Pro, 287

aligning with prior research (Qi et al., 2023; Fu 288

et al., 2023). 289

Expert annotations improve data quality. Ta- 290

ble 1 shows the baseline (w/o R) at 79.0% accu- 291

racy. Models with rationales varied: “Gemini Pro" 292

reached 79.4%, “GPT-4V w/o Expert" 76.5%, and 293

“GPT-4V w/ Expert" 73.9%. Longer rationales may 294

cause hallucinations, shifting focus from the an- 295

swer to the rationale (Lu et al., 2022). 296

4 Conclusion 297

In this paper, we present a generative model-based 298

framework MedThink for MedVQA and construct 299

the R-RAD and R-SLAKE datasets with intermedi- 300

ate reasoning steps to address black-box decision- 301

making. Experimental results show MedThink clar- 302

ifies the medical decision-making process and sig- 303

nificantly enhances performance. Future research 304

will further explore generative models tailored for 305

clinical settings and better evaluate MedVQA mod- 306

els’ performance in open-ended scenarios. 307
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Limitations308

Data Security and Privacy: While we use open-309

source and desensitized datasets like VQA-RAD310

and SLAKE, there are still concerns about data se-311

curity with external LLMs. Ensuring encryption,312

anonymization, and compliance with privacy stan-313

dards is crucial, especially for private datasets or314

sensitive medical data. Trust and Reliability: Our315

work aims to improve medical decision-making316

accuracy and model interpretability. However, the317

extent to which our method can be trusted remains a318

challenge. The reliability of AI outputs depends on319

the clinician’s expertise, and inexperienced doctors320

might struggle to identify unreliable outputs. This321

issue requires further research and collaboration322

to establish common standards for AI in clinical323

practice.324
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A Appendix552

A.1 Related Work553

1. MedVQA554

VQA represents a cutting-edge, multimodal task at555

the intersection of computer vision and natural lan-556

guage processing, drawing significant attention in557

both domains. MedVQA applies the principles of558

VQA to interpret and respond to complex inquiries559

about medical imagery. A MedVQA system usu-560

ally consists of three key components for feature561

extraction, feature fusion and answer reasoning, re-562

spectively, which aims to generate answers in text563

by processing given medical images.564

Previous MedVQA solutions (Nguyen et al.,565

2019; Al-Sadi et al., 2019; Jung et al., 2020; Do566

et al., 2021; Sharma et al., 2021; Zhang et al., 2022)567

rely on the CNNs, such as those pretrained on Im-568

ageNet like VGGs or ResNets, to extract visual569

features. Meanwhile, the RNNs are employed to570

process textual information. With the development571

of large-scale pretraining, recent works (Liu et al.,572

2023b; van Sonsbeek et al., 2023; Eslami et al.,573

2023) shift towards the transformer-based mod-574

els to enhance feature extraction capabilities for575

both textual and visual modalities. In terms of con-576

tent, these works still treat the MedVQA as the577

Table 3: Details of Datasets: Distribution of Images and
Questions in the R-RAD and R-SLAKE Datasets.

Dataset Images Training set Test set
R-RAD (closed-end) 300 1823 272
R-RAD(open-end) 267 1241 179

R-SLAKE(closed-end) 545 1943 416
R-SLAKE(open-end) 545 2976 645

Figure 3: Word Cloud Representation of High-
Frequency Terms in Medical Decision-Making Ratio-
nales from the R-RAD (left) and R-SLAKE (right)
Datasets.

classification problem. However, this approach is 578

misaligned with the realities of medical practice, 579

where clinicians rarely face scenarios that can be 580

addressed with predefined answer options. 581

This incongruity underscores the necessity for 582

a MedVQA approach that is more adaptive and 583

reflective of the complexities inherent in medical 584

diagnostics and decision-making. In this paper, we 585

redefine MedVQA as the generative task. Within 586

the actual medical environment, when faced with 587

open-ended queries, our proposed MedVQA model 588

can still generate informed responses based on the 589

medical knowledge it learns. 590

2. The Thought Chain 591

Recently, natural language processing (NLP) is sig- 592

nificantly transformed by language models (Raffel 593

et al., 2020; Ouyang et al., 2022; Chowdhery et al., 594

2023). 595

To further enhance the reasoning capabilities of 596

language models, prior works (Cobbe et al., 2021; 597

Wei et al., 2022) incorporate reasoning rationales 598

during training or inference phases, which guide 599

models to generate the final prediction. On the 600

other hand, in the realm of VQA, it is crucial for 601

VQA systems to understand multimodal informa- 602

tion from diverse sources and reason about domain- 603

specific questions. To achieve this goal, several 604

works (Lu et al., 2022; Zhang et al., 2023) propose 605

multimodal reasoning methods for VQA. These 606
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Table 4: Performance of Our strategies on Open-End Questions in the R-RAD and R-SLAKE Datasets.

Dataset Strategy Rouge-1 Rouge-2 Rouge-L BLEU-1 BLEU-2 BLEU-3 BLEU-4

R-RAD
Explanation 50.2 20.2 29.5 38.3 22.9 14.0 8.8
Reasoning 49.8 20.3 29.3 37.8 22.7 14.0 8.9

Two-Stage Reasoning 49.1 19.9 28.7 37.7 22.5 13.9 8.8

R-SLAKE
Explanation 53.1 22.7 31.7 39.2 24.1 15.4 9.9
Reasoning 53.5 22.8 32.1 39.5 24.3 15.5 10.0

Two-Stage Reasoning 53.2 23.1 32.0 39.5 24.5 15.8 10.3

(a) R-RAD

(b) R-SLAKE

Figure 4: Length Distribution of Medical Decision-
Making Rationales in the R-RAD and R-SLAKE
Datasets. The x-axis denotes length ranges, while the
y-axis represents the frequency of medical decision-
making rationales across various medical categories.

Table 5: Accuracy (%) of strategies on Closed-
End Questions in the VQAMed-2019 and PathVQA
Datasets.

Strategies VQAMed-2019 PathVQA
w/o R 68.8 86.0

w/Reasoning 64.1 83.1
w/Explanation 73.4 87.0

w/Two-Stage Reasoning 68.8 87.2

methods, commonly referred to as “the thought607

chain", introduces intermediate steps to assist the608

model in reasoning. In this paper, we present the609

“Medical Decision-Making Rationale" and apply it610

to the MedVQA task. We anticipate that MedVQA611

systems, equipped with the “Medical Decision-612

Making Rationale", will not only offer support in613

medical decision-making but also elucidate the un-614

derlying rationales behind these decisions.615

A.2 More Cases616

To observe the assistance of medical decision-617

making rationales in MedVQA tasks specifically,618

Figure 6 shows more examples where the model619

Figure 5: Impact of Selecting MLLMs and Expert Par-
ticipation during the Data Annotation Process on Med-
VQA Task Accuracy (%).
Table 6: Accuracy(%) Comparison of Methods with
open MLLMs on Closed-End Questions in the R-RAD
and R-SLAKE Datasets.

Type Method R-RAD R-SLAKE
Zero-shot LLaVA 59.19 50.24
Zero-shot Qwen-VL-Chat 47.79 57.69
Finetuning LLaVA 65.07 63.22
Finetuning LLaVA-Med (From LLaVA) 84.19 85.34
Finetuning LLaVA-Med (From Vicuna) 81.98 83.17
Finetuning Ours 83.50 86.30

employs the “Explanation" strategy. 620

A.3 Details of Rationale Quality Assessment 621

In this section, we show how to use Gemini Pro 622

to validate the medical decision-making rationales 623

generated by our methods. To further enhance the 624

capabilities of Gemini Pro, we use “Let’s think 625

step by step" as part of the prompt word. As shown 626

in Figure 7, Gemini Pro answers the question cor- 627

rectly after receiving the rationale generated by our 628

methods. 629

A.4 Details of Dataset Cleaning 630

In this section, we detail the data cleaning pro- 631

cess. We discover that within the raw datasets, 632

some closed-end questions are similar in form to 633

open-end questions. To preserve the original cat- 634

egorization of the dataset while enhancing clarity, 635

we employ GPT-4V to alter the presentation format 636

of these questions, while keeping their categoriza- 637

tion unchanged, as shown in Figure 8. After the 638

GPT-4V modification, for instance, the question 639
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Figure 6: More Cases. The figure showcases four examples where the “Explanation" strategy facilitates the
diagnostic process of the model. The yellow highlighted text indicates medically relevant knowledge that aids in
answering the question, while the blue highlighted text provides descriptive details of the image. The red boxes in
the images correspond to the described anatomical features, underscoring the alignment between the rationale and
the visual evidence.

“How would you describe the stomach wall thick-640

ening?" is reformulated to “Is the stomach thicken-641

ing asymmetric?". This modification ensures the642

preservation of the original intent of the question,643

while aligning its presentation more closely with644

the defining characteristics of the closed-end ques-645

tion.646

Additionally, to address inconsistencies within647

same medical image, we firstly use GPT-4V to as-648

sist in manually identifying inconsistent questions649

within each medical image, as shown in Figure 9,650

while systematically traversing the entire dataset651

of medical images. Subsequently, after aggregat-652

ing all identified inconsistencies, experts revised653

the answers to these question, ensuring consistency654

across all questions pertaining to the same medical655

image.656

A.5 Details of Dataset Annotation657

In this section, we demonstrate what constitutes658

standard medical decision-making rationales dur-659

ing the annotation process. As shown in Figure 10,660

for the question “Is this patient female?", the initial661

response from GPT-4V is “I’m sorry, but I can’t 662

assist with that request", signifying a refusal to an- 663

swer the question. During the annotation process, 664

the issue is observed in approximately 2% of the 665

samples. The subsequent response from GPT-4V 666

does not meet the criteria, as the answer could not 667

be inferred from the rationale provided. The third 668

response from GPT-4V meets the criteria, not only 669

explaining the contents of the X-ray image (“The 670

X-ray image provided shows the chest area of a 671

patient, including shadows that are consistent with 672

the tissue densities of female breasts"), but also 673

highlighting the medical background knowledge 674

necessary to correctly answer the question (“These 675

shadows are indicative of the presence of breast 676

tissue, which typically distinguishes a female chest 677

from a male chest on an X-ray"). 678

A.6 Hallucinations 679

It is noteworthy that the participation of expert 680

annotations is found to improve data quality. As 681

shown in Table 1 of our manuscript, the baseline 682

(w/o R) on the R-RAD dataset achieves 79.0% ac- 683
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Figure 7: An example of rationale validation using Gemini Pro. The red background text represents the incorrect
answer, while the green background text represents the correct answer.

Figure 8: An Example of the Question Reformulation
Process Using GPT-4V. The yellow background text
represents the system prompt, the blue background text
displays a 3-shot example to guide the LLMs, and the
green background text shows the input provided to the
LLMs along with the corresponding model response.

Figure 9: An Example of the Process for Identifying
Inconsistent Questions.

curacy. However, the accuracy for models with684

rationales varied: “Gemini Pro" reached 79.4%,685

“GPT-4V w/o Expert" achieved 76.5%, and “GPT-686

4V w/ Expert" recorded 73.9%. This demonstrates687

that their performance is either close to the baseline688

or significantly lower. In fact, similar phenomena689

are observed in general VQA tasks. Researchers690

speculate that the “Reasoning" strategy may cause691

severe hallucinations and in the training data, the692

longer the length of the Rationale, the more it will693

cause the model to focus on generating the Ratio-694

nale rather than generating the answer (e.g., (Lu695

et al., 2022)). Based on our findings from the exper-696

iment, we draw the following hypothesis. Shorter697

rationales from Gemini Pro keep the model’s focus698

question_845: Is this patient female? answer: yes.

Based on the image provided, please offer a correct and detailed explanation for the
question posed. Only explain the reasoning behind the answer without restating the
given answer. Furthermore, include the question index in your response.
**Response Format**:
The response should be structured with the question index encapsulated in square
brackets followed by the explanation. For example:
[question_XX] 'Explanation of question_XX'

[question_845] The X-ray image provided shows the chest area of a patient,
including shadows that are consistent with the tissue densities of female breasts. 
These shadows are indicative of the presence of breast tissue, which typically
distinguishes a female chest from a male chest on an X-ray. Hence, the
determination that the patient is female is based on the radiological appearance of
breast tissue in the image.

[question_845] The indication of the patient being female is not directly evident
from the X-ray image. The answer might be based on other non-visible factors or
information provided elsewhere.

[question_845] I'm sorry, but I can't assist with that request.

Figure 10: An Example of Annotation Process. The
input, consisting of an medical image and text with the
yellow background, prompts the LLMs for the response.
The output is showcased in two forms: the non-standard
response highlighted in blue and the standard response
highlighted in green.

on answer generation, reducing hallucinations, so 699

the accuracy of “Gemini Pro" is highest, essentially 700

on par with the baseline. Conversely, longer ra- 701

tionales from GPT-4V(GPT) emphasize rationale 702

generation, leading to increased hallucinations and 703

inferior accuracy. Therefore, the accuracy of “GPT 704

w/ Expert" and “GPT w/o Expert" is significantly 705

lower than that of “Gemini Pro" and the baseline. 706

Among them, the average length of the rationales 707

generated by “w/o Expert" is shorter than that of 708

“w/ Expert", thereby reducing the phenomenon of 709

hallucination. Therefore, the accuracy of “w/o Ex- 710

pert" is higher than that of “w/ Expert". Two-stage 711

Reasoning separates generating rationales and an- 712

swers, allowing the model to focus on answer gen- 713

eration. Its effectiveness is proven in MMCoT 714
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(Multimodal-CoT).Explanation outputs the Answer715

first, then the Rationale. This focuses the model716

on the Answer, with the Rationale explaining it,717

reducing hallucinations. Two-stage Reasoning and718

Explanation approaches significantly reduce the im-719

pact of hallucinations, hence the results presented720

in Figure 5.721

A.7 Open-end Questions722

With open-end questions, different strategies show723

distinct advantages in Table 4. The Rouge scores,724

similar to the “Recall", emphasizes the complete-725

ness of the generated text, while the BLEU scores,726

akin to the “Precision", stresses the preciseness727

of the generated text. The “Explanation" strat-728

egy demonstrates higher Rouge and BLEU scores729

on the R-RAD dataset, with Rouge-1, Rouge-L,730

BLEU-1, BLEU-2, and BLEU-3 reaching 50.2%,731

29.5%, 38.3%, 22.9%, and 14.0%, respectively.732

The “Two-Stage Reasoning" method showcases733

higher scores on the R-SLAKE dataset, with734

Rouge-2, BLEU-1, BLEU-2, BLEU-3, and BLEU-735

4 at 23.1%, 23.1%, 39.5%, 24.5%, 15.8%, and736

10.3%, respectively. The “Reasoning" method737

maintains robust performance across both the R-738

RAD and R-SLAKE datasets; on the R-RAD739

dataset, Rouge-2, BLEU-3, and BLEU-4 reached740

20.3%, 14.0%, and 8.9%, respectively, while on741

the R-SLAKE dataset, Rouge-1, Rouge-L, and742

BLEU-1 are 53.5%, 32.1%, and 39.5%, respec-743

tively. These outcomes highlight the necessity of744

diverse methods for various types of open-end ques-745

tions.746
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