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Abstract

Medical Visual Question Answering (Med-
VQA) provides language responses to image-
based medical inquiries, facilitating more ac-
curate diagnoses. However, existing MedVQA
methods lack interpretability and transparency.
To address this, we introduce a semi-automated
annotation process and create new benchmark
datasets, R-RAD and R-SLAKE, incorporat-
ing multimodal language models and human
annotations. Additionally, we develop a frame-
work, MedThink, to fine-tune lightweight gen-
erative models with medical decision-making
rationales. This framework employs three dis-
tinct strategies to generate decision outcomes
and corresponding rationales, effectively show-
casing the medical decision-making process
during reasoning. MedThink achieves 83.5%
accuracy on R-RAD and 86.3% on R-SLAKE,
outperforming current baselines. Datasets and
code will be released.

1 Introduction

The Medical Visual Question Answering (Med-
VQA) task uses images to answer medical queries,
aiding diagnosis, and reducing misdiagnosis risk
(Hasan et al., 2018; Liu et al., 2023b; Zhan et al.,
2020). However, existing MedVQA faces two chal-
lenges. First, datasets lack the decision-making
process between questions and answers, hinder-
ing model interpretability (Lau et al., 2018; Liu
et al., 2021b; Lu et al., 2022; Liu et al., 2023c;
Lai et al., 2024a). However, manual rationale
annotation for decision-making process is time-
consuming and requires in-depth understanding of
medical knowledge (Litjens et al., 2017; Liu et al.,
2023a). Second, models need to resolve MedVQA
tasks quickly, accurately, and interpretably. Current
methods use retrieval, contrastive, or classification
objectives (Nguyen et al., 2019; Zhang et al., 2022;
Liu et al., 2021a; Eslami et al., 2023). Multimodal
large language models (MLLMs) handle text and
image inputs but are impractical due to high costs

and latency (Nori et al., 2023; Lai et al., 2024b;
OpenAl, 2023; Team et al., 2023).

In this paper, we introduce new benchmark
datasets and novel solutions for MedVQA. We de-
sign a semi-automated annotation method leverag-
ing the powerful inference capabilities of MLLMs,
creating the R-RAD and R-SLAKE datasets with
Medical Decision-Making Rationales. Besides, we
develop our framework, MedThink, to fine-tune
T5-base generative models (Raffel et al., 2020), to
output decision outcomes and rationales, propos-
ing three generative modes: "Explanation", "Rea-
soning", and "Two-Stage Reasoning". MedThink
show 83.5% accuracy on R-RAD and 86.3% on
R-SLAKE, improving over PubMedCLIP (Eslami
et al., 2023) by 4.0% and 3.8%. Ablations on differ-
ent large language models (LLMs), such as GPT-4
(Achiam et al., 2023) and Gemini (Team et al.,
2023), further validate MedThink. Our contribu-
tions are as follows:

We develop a semi-automated process for anno-
tating MedVQA data with decision-making ratio-
nale. To the best of our knowledge, the R-RAD and
R-SLAKE datasets represent the first multimodal
MedVQA benchmark datasets that encompass ra-
tionales for answers.

We propose a lightweight framework with three
answering strategies, enabling faster and more ac-
curate MedVQA with enhanced interpretability.
We conduct extensive experiments and ablations
that demonstrate the usefulness of the R-RAD and
R-SLAKE datasets and superiority of our method.

2 Methodology

2.1 Dataset Collection

We establish two datasets, R-RAD and R-SLAKE,
based on VQA-RAD (Lau et al., 2018) and SLAKE
(Liu et al., 2021b). VQA-RAD, from MedPix®,
contains 315 images and 3,515 questions, split into
closed-end" and open-end" categories. We fol-
low the official dataset split for evaluation. The
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Figure 1: Overview of MedThink. (a) Data annotation. (b) Model architecture. (¢) Reasoning strategies.

SLAKE dataset, from ChestX-ray8 (Wang et al.,
2017), CHAOS Challenge (Kavur et al., 2021), and
Medical Segmentation Decathlon (MSD) (Simp-
son et al., 2019), contains 642 medical images and
around 14,000 questions. We use only the “En-
glish" component and follow the original split. The
datasets we used are rigorously desensitized.

After cleaning and annotation, R-RAD has 3,515
questions and 314 images, and R-SLAKE has
5,980 questions and 546 images. Both datasets
include open-ended and closed-ended questions,
with statistics in Table 3 in the Appendix.

2.2 Dataset Cleaning and Annotation

We integrate GPT-4V (OpenAl, 2023) into SLAKE
and VQA-RAD data cleaning and annotation to
streamline workflows. GPT-4V identifies errors for
expert review. After cleaning, GPT-4V generates
medical decision-making rationales (Figure 1 (a)),
enhancing model reasoning without revealing an-
swers. Fixed prompts guide GPT-4V, with domain
experts validating and regenerating rationales as
needed. If unsuccessful after three attempts, an
expert creates it manually. We select physicians
with clinical experience as domain experts to en-
sure the professional and accurate annotation of
data. Recognizing the diversity of opinions among
physicians, we establish review criteria to guide
our annotation process: a) The rationale generated
by GPT-4V must enable experts to deduce the cor-
rect answer to the question. b) The rationale should
be free of common sense and medical errors, and
directly related to the question.

2.3 Dataset Analysis

We segment the rationales into words, excluding
common stop words. The word cloud (Figure 3)
highlights terms like “brain", “chest", “lung", “lo-
cated", “transverse", and “density", reflecting med-
ical knowledge and enhancing Al performance in
MedVQA. The rationale length distribution (Fig-
ure 4) ranges from 60-110 words for organ-related
questions, indicating balanced annotations.

2.4 Dataset Annotation Reliability

We validate R-RAD/R-SLAKE annotations
through expert verification of GPT-4 rationales
(Figure 1(a)) and test their reliability. Using an
answer stage (Two-Stage Reasoning strategy in
Figure 1(c)) with GPT4 rationale, we achieve
over 99% test set accuracy, which confirms the
reliability and validity of annotations.

2.5 Problem Formulation

Formulation. In this paper, we denote the medical
dataset as D = {(In, Tn, Am, Rm) }M_,, where
M 1is the number of samples. The goal of the Med-
VQA is to develop a function f(-) that generates
textual answers to medical questions:
{A7R}:f<I7T)ﬂ (D
Here, I denotes the medical image (X-ray, CT,
or MRI). T is the natural language question about
I. The model output f(-), {A, R}, includes: A
(the predicted answer to T"), and R (the medical
decision-making rationale), explaining A by detail-
ing the model’s processing of [ and 7.
Loss Function. Given the input X = {I,T'}, the
model f is trained to maximize the likelihood of



Table 1: Accuracy (%) Comparison on Closed-End
Questions in R-RAD and R-SLAKE. Gray and red back-
grounds highlight established methods and MedThink.

Table 2: Impact of Medical Decision-Making Rationales
on the Accuracy (%) of Gemini Pro for MedVQA on
Closed-End Questions in the R-RAD and R-SLAKE
Datasets.

Methods R-RAD R-SLAKE
MFB (Yu et al., 2017) 74.3 75.0 Strategy R-RAD R-SLAKE
SAN (Yang et al., 2016) 69.5 79.1 w/o R 73.2 72.8
BAN (Kim et al., 2018) 72.1 79.1 .
w/ Reasonin 76.5(+3.3 77.6(+4.8)
MEVF+SAN (Nguyen etal,, 2019) - 73.9 784 w/ Two-Stage Rea%oning 79 4E+6 2; 77 9E+i 1)
MEVF+BAN (Nguyen et al., 2019) 77.2 79.8 / Explanati 82‘0 +8' 9 81 '3 (+~8- 5
MMBERT (Tiong et al., 2022) 77.9 - w/ Explanation 0 (+8.8) 81.3(+8.5)
PubMedCLIP (Eslami et al., 2023) 79.5 82.5
w/o R 79.0 82.5 Three Generation Strategies. To investigate the
Reasoning 73.9 80.8 impact of the medical decision-making rationale on
T ot s Bl model performance in MedVQA, we present three
Explanation 83.5 86.3

predicting the target output Y = { A, R}. The loss
function, primarily the negative log-likelihood of
correctly predicting tokens in Y, is:

N
L==Y logp(Y,|X, Y™ ), (2
n=1
where N is the number of tokens in Y, and
p(Y,| X, Y1"=1) is the conditional probability of
predicting the n-th token in Y.
Model Architecture. The model architecture com-
prises five components (Figure 1 (b)): TextualEn-
coder, VisualEncoder, Cross Attention Network,
Gated Fusion Network, and TextualDecoder.
The TextualEncoder converts the input question
T into the textual feature Fp € R"Xd, and the
VisualEncoder transforms the input medical im-
age [ into vision features F7 € R™*d; Fp =
TextualEncoder(T"), Fi = VisualEncoder(I),
where n is the text length, d is the hidden dimen-
sion, and m is the number of image patches.
The Cross-Attention Network computes the

attention-guided visual feature H/,, € R"*9:
QK"
H!, = Softmax ( 7 v, (3)

where (), K, and V are derived from F; and F7.
The Gated Fusion Mechanism combines F7 and
HL.  with fusion coefficient A determined by:

attn>
A = Sigmoid(W, Fr + W, Hy), (4
The fused output Fryee € R"%4 ig a weighted
sum of Fr and HJ,, moderated by \:
Ffuse:(l_)\)'FT+)\’HgIlttna (5)

where W; and W,, are model parameters. Finally,
Fiyse 1s fed into the TextualDecoder to generate the

output A, R:
A, R = TextualDecoder( Fyyge ), 6)

generation strategies. These strategies guide the
model in generating outputs that reflect different
orders of the medical decision-making rationale.
The strategies are categorized as “Explanation”,
“Reasoning” and “Two-Stage Reasoning", as shown
in Figure 1 (c).

In the “Explanation”, the answer A is generated
first, followed by the rationale R. In the “Reason-
ing”, R is generated before A. The “Two-Stage
Reasoning" uses a phased approach with two inde-
pendent models. The first stage uses the medical
question 7" and image [ to generate the rationale R.
In the second stage, a model with different weights
but the same architecture uses R, T, and I to derive
the answer A.

3 Experiments
3.1 Setting

In this paper, UnifiedQA (Khashabi et al.,
2020) serves as TextualEncoder(-) and
TextualDecoder(-), while DETR (Carion et al.,
2020) is VisualEncoder(-). We evaluate “Explana-
tion”, “Reasoning”, and ‘“Two-Stage Reasoning”
on R-RAD and R-SLAKE datasets, comparing
with PubMedCLIP (Eslami et al., 2023), MM-
BERT (Tiong et al., 2022), MEVF (Nguyen et al.,
2019), BAN (Kim et al., 2018), SAN (Yang et al.,
2016), and MFB (Yu et al., 2017), and assess
rationale quality.

For MedThink model, the learning rate is set
at Se-4, with 300 epochs for R-SLAKE and 150
epochs for R-RAD. “Two-Stage Reasoning” uses
phased fine-tuning: first with these parameters,
then with a learning rate of 5e-5 for 20 epochs.

3.2 Main Results

Our performance evaluation is divided into two
parts: closed-end and open-end questions. Closed-
end questions, structured as multiple-choice with
a single definitive answer, are assessed using ac-



curacy, as shown in Table 1. Open-end questions
allow for a range of answers, making precise match-
ing difficult. Thus, we use text generation metrics
such as Rouge and BLEU to evaluate performance,
as exhibited in Table 4 in the Appendix.

For closed-end questions, the performance of
“Explanation” outperforms the “Reasoning" and
“Two-Stage Reasoning", achieving 83.5% accuracy
on R-RAD and 86.3% on R-SLAKE, surpassing
the state-of-the-art PubMedCLIP model by 4.0%
and 3.8%. Besides, we evaluate MLLMs on the R-
RAD and R-SLAKE datasets, presenting zero-shot
and fine-tuning results in Table 6 in the Appendix.
It can be obseved that MedThink remains competi-
tive with fine-tuned MLLMs.

To observe the role of medical decision-making
rationales in MedVQA, Figure 2 shows examples
using the "Explanation". For instance, when asked
“Are the small bubbles of air seen abnormal?", the
model without rationales responds incorrectly. In
contrast, MedThink with the “Explanation” method
correctly answers and explains, “The small bubbles
appear very dark or black on the CT scan" and adds,
“there are multiple areas of radiolucency, consistent
with small bubbles of air". This highlights the
supportive role of rationales in guiding the model
to answer MedVQA questions accurately.

3.3 Generalizability Across Diverse Datasets

To evaluate generalizability, additional tests are
conducted using other datasets, VQAMed-2019
and PathVQA. Table 5 in the Appendix shows that
incorporating rationales improve accuracy by 4.6%
and 1.2%.

3.4 Rationale Quality Assessment

We compare “Explanation”, “Reasoning"”, and
“Two-Stage Reasoning"” strategies for closed-end
questions on R-RAD and R-SLAKE datasets, with
“w/o R" as a control excluding medical decision-
making rationales. Table 1 shows accuracy changes
on R-RAD by 4.5%, -5.1%, and 1.5%, and on R-
SLAKE by 3.8%, -1.7%, and -3.4%, respectively.
Employing Gemini Pro, we evaluate the assis-
tance of medical decision-making rationales. Ini-
tially, Gemini Pro’s input includes only medical
queries and image. Subsequently, rationales gen-
erated by our strategies are incorporated to assist
Gemini Pro. Following the self-consistency proto-
col (Wang et al., 2022), where Gemini Pro answers
each question five times, Table 2 shows initial ac-
curacies of 73.2% on R-RAD and 72.8% on R-
SLAKE. The “Explanation" improves accuracy by

Answer w/o R:

Explanation: Solution: The small
bubbles of air are considered abnormal because they
appear as very dark or black on the CT scan because they
are filled with air. In the provided CT image, there are
multiple areas of radiol 'y, which are i with
the appearance of small bubbles of air. These dark spots
are not typically present in a healthy individual, as air
does not produce a signal on CT scans like this one. The
presence of these dark spots suggests an abnormal

ition such as gas ion or a condition that
requires medical attention.

Question: Are the small bubbles
of air seen abnormal?
Ground Truth:

Figure 2: Illustration of enhancing MedVQA with
decision-making rationales. The figure shows “Expla-
nation" aiding diagnostics. Yellow highlights medical
knowledge, blue image details, and red anatomical fea-
tures in red box, aligning rationale with visual evidence.

8.8% on R-RAD and 8.5% on R-SLAKE.
3.5 Zero-shot Capability

We evaluate the model’s zero-shot capability on
the VQA-Med-2019 dataset. Pretrained with “Ex-
planation" on R-RAD, MedThink achieves 62.34%
accuracy on the closed-end set, close to the highest
reported accuracy of 62.40%. Our focus, however,
is on integrating medical decision-making rationale
into the MedVQA and developing a comprehensive
data production and model training system.

3.6 Ablation Study

To validate the impact of MLLMs selection and ex-
pert annotation, we design three variations for anno-
tating closed-end questions in the R-RAD dataset:
Gemini Pro without expert input, GPT-4V without
expert input, and GPT-4V with expert input. Re-
sults in Figure 5 in the Appendix show GPT-4V
enhances MedVQA performance over Gemini Pro,
aligning with prior research (Qi et al., 2023; Fu
et al., 2023).

Expert annotations improve data quality. Ta-
ble 1 shows the baseline (w/o R) at 79.0% accu-
racy. Models with rationales varied: “Gemini Pro"
reached 79.4%, “GPT-4V w/o Expert" 76.5%, and
“GPT-4V w/ Expert" 73.9%. Longer rationales may
cause hallucinations, shifting focus from the an-
swer to the rationale (Lu et al., 2022).

4 Conclusion

In this paper, we present a generative model-based
framework MedThink for MedVQA and construct
the R-RAD and R-SLAKE datasets with intermedi-
ate reasoning steps to address black-box decision-
making. Experimental results show MedThink clar-
ifies the medical decision-making process and sig-
nificantly enhances performance. Future research
will further explore generative models tailored for
clinical settings and better evaluate MedVQA mod-
els’ performance in open-ended scenarios.



Limitations

Data Security and Privacy: While we use open-
source and desensitized datasets like VQA-RAD
and SLAKE, there are still concerns about data se-
curity with external LLMs. Ensuring encryption,
anonymization, and compliance with privacy stan-
dards is crucial, especially for private datasets or
sensitive medical data. Trust and Reliability: Our
work aims to improve medical decision-making
accuracy and model interpretability. However, the
extent to which our method can be trusted remains a
challenge. The reliability of Al outputs depends on
the clinician’s expertise, and inexperienced doctors
might struggle to identify unreliable outputs. This
issue requires further research and collaboration
to establish common standards for Al in clinical
practice.
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A Appendix
A.1 Related Work
1. MedVQA

VQA represents a cutting-edge, multimodal task at
the intersection of computer vision and natural lan-
guage processing, drawing significant attention in
both domains. MedVQA applies the principles of
VQA to interpret and respond to complex inquiries
about medical imagery. A MedVQA system usu-
ally consists of three key components for feature
extraction, feature fusion and answer reasoning, re-
spectively, which aims to generate answers in text
by processing given medical images.

Previous MedVQA solutions (Nguyen et al.,
2019; Al-Sadi et al., 2019; Jung et al., 2020; Do
etal., 2021; Sharma et al., 2021; Zhang et al., 2022)
rely on the CNNs, such as those pretrained on Im-
ageNet like VGGs or ResNets, to extract visual
features. Meanwhile, the RNNs are employed to
process textual information. With the development
of large-scale pretraining, recent works (Liu et al.,
2023b; van Sonsbeek et al., 2023; Eslami et al.,
2023) shift towards the transformer-based mod-
els to enhance feature extraction capabilities for
both textual and visual modalities. In terms of con-
tent, these works still treat the MedVQA as the

Table 3: Details of Datasets: Distribution of Images and
Questions in the R-RAD and R-SLAKE Datasets.

Dataset Images Training set Test set
R-RAD (closed-end) 300 1823 272
R-RAD(open-end) 267 1241 179
R-SLAKE(closed-end) 545 1943 416
R-SLAKE(open-end) 545 2976 645

Figure 3: Word Cloud Representation of High-
Frequency Terms in Medical Decision-Making Ratio-
nales from the R-RAD (left) and R-SLAKE (right)
Datasets.

classification problem. However, this approach is
misaligned with the realities of medical practice,
where clinicians rarely face scenarios that can be
addressed with predefined answer options.

This incongruity underscores the necessity for
a MedVQA approach that is more adaptive and
reflective of the complexities inherent in medical
diagnostics and decision-making. In this paper, we
redefine MedVQA as the generative task. Within
the actual medical environment, when faced with
open-ended queries, our proposed MedVQA model
can still generate informed responses based on the
medical knowledge it learns.

2. The Thought Chain

Recently, natural language processing (NLP) is sig-
nificantly transformed by language models (Raffel
et al., 2020; Ouyang et al., 2022; Chowdhery et al.,
2023).

To further enhance the reasoning capabilities of
language models, prior works (Cobbe et al., 2021;
Wei et al., 2022) incorporate reasoning rationales
during training or inference phases, which guide
models to generate the final prediction. On the
other hand, in the realm of VQA, it is crucial for
VQA systems to understand multimodal informa-
tion from diverse sources and reason about domain-
specific questions. To achieve this goal, several
works (Lu et al., 2022; Zhang et al., 2023) propose
multimodal reasoning methods for VQA. These



Table 4: Performance of Our strategies on Open-End Questions in the R-RAD and R-SLAKE Datasets.

Dataset Strategy Rouge-1 Rouge-2 Rouge-L. BLEU-1 BLEU-2 BLEU-3 BLEU-4
Explanation 50.2 20.2 29.5 38.3 229 14.0 8.8
R-RAD Reasoning 49.8 20.3 29.3 37.8 22.7 14.0 8.9
Two-Stage Reasoning 49.1 19.9 28.7 37.7 22.5 13.9 8.8
Explanation 53.1 22.7 31.7 39.2 24.1 15.4 9.9
R-SLAKE Reasoning 53.5 22.8 32.1 39.5 243 15.5 10.0
Two-Stage Reasoning 53.2 23.1 32.0 39.5 24.5 15.8 10.3
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Figure 5: Impact of Selecting MLLMs and Expert Par-
ticipation during the Data Annotation Process on Med-
VQA Task Accuracy (%).

Table 6: Accuracy(%) Comparison of Methods with
open MLLMs on Closed-End Questions in the R-RAD
and R-SLAKE Datasets.

Making Rationales in the R-RAD and R-SLAKE
Datasets. The x-axis denotes length ranges, while the
y-axis represents the frequency of medical decision-
making rationales across various medical categories.

Table 5: Accuracy (%) of strategies on Closed-
End Questions in the VQAMed-2019 and PathVQA

Type Method R-RAD R-SLAKE
Zero-shot LLaVA 59.19 50.24
Zero-shot Qwen-VL-Chat 47.79 57.69
Finetuning LLaVA 65.07 63.22
Finetuning LLaVA-Med (From LLaVA)  84.19 85.34
Finetuning LLaVA-Med (From Vicuna)  81.98 83.17
Finetuning Ours 83.50 86.30

Datasets.

Strategies VQAMed-2019 PathVQA
w/o R 68.8 86.0
w/Reasoning 64.1 83.1
w/Explanation 73.4 87.0
w/Two-Stage Reasoning 68.8 87.2

methods, commonly referred to as “the thought
chain", introduces intermediate steps to assist the
model in reasoning. In this paper, we present the
“Medical Decision-Making Rationale" and apply it
to the MedVQA task. We anticipate that MedVQA
systems, equipped with the “Medical Decision-
Making Rationale", will not only offer support in
medical decision-making but also elucidate the un-
derlying rationales behind these decisions.

A.2 More Cases
To observe the assistance of medical decision-

making rationales in MedVQA tasks specifically,
Figure 6 shows more examples where the model

employs the “Explanation” strategy.
A.3 Details of Rationale Quality Assessment

In this section, we show how to use Gemini Pro
to validate the medical decision-making rationales
generated by our methods. To further enhance the
capabilities of Gemini Pro, we use “Let’s think
step by step” as part of the prompt word. As shown
in Figure 7, Gemini Pro answers the question cor-
rectly after receiving the rationale generated by our
methods.

A.4 Details of Dataset Cleaning

In this section, we detail the data cleaning pro-
cess. We discover that within the raw datasets,
some closed-end questions are similar in form to
open-end questions. To preserve the original cat-
egorization of the dataset while enhancing clarity,
we employ GPT-4V to alter the presentation format
of these questions, while keeping their categoriza-
tion unchanged, as shown in Figure 8. After the
GPT-4V modification, for instance, the question



Question: Does the picture contain liver?
Ground Truth:

Answer wio R:

Explanation:

Solution: The image appears to be a cross-
sectional medical scan, likely an MRI or CT of
the human abdomen. The liver is a large organ
located in the upper right portion of the
abdomen, and it is clearly visible in this type of
scan due to ifs size and distinct texture. The scan
shows a large, dark area on the right side of the
image (which corresponds to the left side of the
patient's body), which is consistent with the
location and appearance of the liver in such
medical imaging.

Question: Is this image taken via MRI?

Ground Truth:

Answer w/o R:

Explanation:

Solution: The image shows a cross-sectional
view of a human brain, which is consistent with
the kind of images produced by Magnetic
Resonance Imaging (MRI). MRI uses strong
magnetic fields and radio waves to generate
detailed images of the inside of the body,
including the brain. The grayscale tones and the
level of detail in soft tissue contrast shown in the
image are characteristic of MRI scans.

Question: are there calcifications present on the
abdominal aorta?

Ground Truth:

Answer w/o R:

Explanation: Solution:
The presence of calcifications on the abdominal
aorta can be determined by identifying areas of
high attenuation (brightmess) within the wall of
the abdominal cavity that are indicative of
calcium deposits. In the provided image, there
are such high-attenuation areas visible within the
expected location of the aorta, which confirms
the presence of a calcified structure.

Question: Does the picture contain lung?

Ground Truth:

Answer w/o R:

Explanation: Solution: The
image is a cross-sectional CT scan of the human
torso at the level of the liver. The dark areas on both
sides of the image represent air-filled spaces, which
are characteristic of lung tissue. The branching
structures within these spaces are indicative of the
bronchial tree and vascular structures within the
lungs. Thus, the reasoning for the affirmative answer
is that the image clearly depicts the anatomical
structures of the human lungs.

Question: Is there small bowel in this image?
Ground Truth:

Answer w/o R:

Explanation: Solution: The
Image appears to be an axial slice of a CT scan at the
level of the cervical spine. In this type of scan, the
small bowel, which is located in the abdominal
cavity, would not be visible as it is well below the
area being imaged. The cervical spine region
predominantly includes structures such as the spinal
cord, vertebrae, and neck muscles, but not the small
bowel.

Question: Is the lung healthy?

Ground Truth:

Answer w/o R:

Explanation: Solution: The
lung is not healthy as indicated by the presence of
abnormal areas within the lung fields. On a healthy
lung CT scan, one would expect to see homogeneous
black areas representing air within the lungs, with
normal wvascular and bronchial structures. The
presence of white areas in the lung that are not part
of the normal anatomy suggests pathology, which
could be infection, inflammation, a mass, or other
abnormal tissue. The white areas in the provided
image are indicative of such pathology and therefore
support the conclusion that the lung is not healthy.

Figure 6: More Cases. The figure showcases four examples where the “Explanation” strategy facilitates the
diagnostic process of the model. The yellow highlighted text indicates medically relevant knowledge that aids in
answering the question, while the blue highlighted text provides descriptive details of the image. The red boxes in
the images correspond to the described anatomical features, underscoring the alignment between the rationale and

the visual evidence.

“How would you describe the stomach wall thick-
ening?" is reformulated to “Is the stomach thicken-
ing asymmetric?". This modification ensures the
preservation of the original intent of the question,
while aligning its presentation more closely with
the defining characteristics of the closed-end ques-
tion.

Additionally, to address inconsistencies within
same medical image, we firstly use GPT-4V to as-
sist in manually identifying inconsistent questions
within each medical image, as shown in Figure 9,
while systematically traversing the entire dataset
of medical images. Subsequently, after aggregat-
ing all identified inconsistencies, experts revised
the answers to these question, ensuring consistency
across all questions pertaining to the same medical
image.

A.5 Details of Dataset Annotation

In this section, we demonstrate what constitutes
standard medical decision-making rationales dur-
ing the annotation process. As shown in Figure 10,
for the question “Is this patient female?", the initial

response from GPT-4V is “I’m sorry, but I can’t
assist with that request", signifying a refusal to an-
swer the question. During the annotation process,
the issue is observed in approximately 2% of the
samples. The subsequent response from GPT-4V
does not meet the criteria, as the answer could not
be inferred from the rationale provided. The third
response from GPT-4V meets the criteria, not only
explaining the contents of the X-ray image (“The
X-ray image provided shows the chest area of a
patient, including shadows that are consistent with
the tissue densities of female breasts"), but also
highlighting the medical background knowledge
necessary to correctly answer the question (“These
shadows are indicative of the presence of breast
tissue, which typically distinguishes a female chest
from a male chest on an X-ray").

A.6 Hallucinations

It is noteworthy that the participation of expert
annotations is found to improve data quality. As

shown in Table 1 of our manuscript, the baseline
(w/o R) on the R-RAD dataset achieves 79.0% ac-



Let's think step-by-step, and please answer the following VQA question:

Q ion: does this rep inspiratory effort?

Solution: The image shows a chest radiograph (X-ray). The correct measurement of inspiratory effort is based on the observation of
the lungs and the heart shadow. A proper inspiratory effort is indicated by the right balance of pressure and pressure, indicating that
the lung fields are well-expanded and that the lung fields are well which is consistent with inspil y effort.”,
Options: (A) yes (B) no

Let's think step-by-step, and please
answer the following VQA question:
Question: does this represent adequate
inspiratory effort?

‘ Options: (A) yes (B) no

[no | yes

Figure 7: An example of rationale validation using Gemini Pro. The red background text represents the incorrect
answer, while the green background text represents the correct answer.

System: Please revised the question format based on the answer. You
User: Question: "Which is the biggest in this image,lung liver or heart?"
Answer: "Liver"
Assistant: Question: "Is the liver the biggest organ shown in this image a
among the lung, liver, and heart?" Answer: "Yes" 9

User: Question: "Which is the biggest in this image,lungliver or heart?"
Answer: "Lung"

Based on the image provided, please offer a correct and detailed explanation for the

question posed. Only explain the reasoning behind the answer without restating the

given answer. Furthermore, include the question index in your response.

**Response Format**:

The response should be structured with the question index encapsulated in square

Assistant: Question: "Are both the heart and lung abnormal in this image?" ES:Z?;?Q;‘;’,:;Z‘:;:: ‘;I? gsgggé:f;)e(lxample.

Answer: "Yes" question_845: Is this patient female? answer: yes.

Assistant: Question: "Is the lung the biggest organ shown in this image
among the lung, liver, and heart?" Answer: "Yes"

User: Question: "Which organ is abnormal, heart or lung?" Answer: "Both"

ChatGPT
‘ [question_845] I'm sorry, but | can't assist with that request.

User: Question: "How would you describe the stomach wall thickening?"
Answer: "Asymmetric"

Assistant: Question: "Is the stomach thickening asymmetric?"

Answer: "Yes" e
ChatGPT
. . . . [question_845] The indication of the patient being female is not directly evident
Flgure 8 Al'l Example Of the Questlon Reformulatlon from the X-ray image. The answer might be based on other non-visible factors or
Process Using GPT-4V. The yellow background text inemelonlproviledileeniers
: <2/3>
represents the system prompt, the blue background text ®
. . ©) ChatGPT
dlsplays a 3_Sh0t example to gulde the LLMS’ and the [question_845] The X-ray image provided shows the chest area of a patient,

1 1 including shadows that are consistent with the tissue densities of female breasts.
green background text ShOWS the lnput pr0V1ded to the These shadows are indicative of the presence of breast tissue, which typically
LILMs along Wlth the Corresponding model response distinguishes a female chest from a male chest on an X-ray. Hence, the

: determination that the patient is female is based on the radiological appearance of
breast tissue in the image.
<3/3
System: Please check the following question-answer pairs for inconsistencies.
If so, answer "yes", otherwise, answer "no". . .

User: question_328: "Is the left hemidiaphragm normal?", answer_328: "yes", Flgure 10 A[l Example Of Annotatlon PI'OCCSS. The
question_329: "Is this image normal?", answer_329: "no", 3 1ot 3 1 1
question_330: "Is the left hemidiaphragm normal?", answer_330" "yes", lnp llt, con51st1ng Of an medlcal lmage and text Wlth the
question_331:"ls this image normal?", answer_331: "no, yellow background, prompts the LLMs for the response.
question_494: "Is this image normal?", answer_494: "no", . .
question_496: " Is/Are the right hemidiaphragm normal?", answer_496: "no" The output is showcased in two forms: the non-standard

e sianies | response highlighted in blue and the standard response

highlighted in green.

Figure 9: An Example of the Process for Identifying
Inconsistent Questions.

on answer generation, reducing hallucinations, so
curacy. However, the accuracy for models with  the accuracy of “Gemini Pro" is highest, essentially
rationales varied: “Gemini Pro" reached 79.4%, on par with the baseline. Conversely, longer ra-
“GPT-4V w/o Expert" achieved 76.5%, and “GPT- tionales from GPT-4V(GPT) emphasize rationale
4V w/ Expert" recorded 73.9%. This demonstrates  generation, leading to increased hallucinations and
that their performance is either close to the baseline  inferior accuracy. Therefore, the accuracy of “GPT
or significantly lower. In fact, similar phenomena  w/ Expert" and “GPT w/o Expert" is significantly
are observed in general VQA tasks. Researchers  lower than that of “Gemini Pro" and the baseline.
speculate that the “Reasoning” strategy may cause =~ Among them, the average length of the rationales
severe hallucinations and in the training data, the = generated by “w/o Expert" is shorter than that of
longer the length of the Rationale, the more it will ~ “w/ Expert", thereby reducing the phenomenon of
cause the model to focus on generating the Ratio-  hallucination. Therefore, the accuracy of “w/o Ex-
nale rather than generating the answer (e.g., (Lu  pert" is higher than that of “w/ Expert". Two-stage
etal., 2022)). Based on our findings from the exper-  Reasoning separates generating rationales and an-
iment, we draw the following hypothesis. Shorter ~ swers, allowing the model to focus on answer gen-
rationales from Gemini Pro keep the model’s focus  eration. Its effectiveness is proven in MMCoT
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(Multimodal-CoT).Explanation outputs the Answer
first, then the Rationale. This focuses the model
on the Answer, with the Rationale explaining it,
reducing hallucinations. Two-stage Reasoning and
Explanation approaches significantly reduce the im-
pact of hallucinations, hence the results presented
in Figure 5.

A.7 Open-end Questions

With open-end questions, different strategies show
distinct advantages in Table 4. The Rouge scores,
similar to the “Recall", emphasizes the complete-
ness of the generated text, while the BLEU scores,
akin to the “Precision", stresses the preciseness
of the generated text. The “Explanation” strat-
egy demonstrates higher Rouge and BLEU scores
on the R-RAD dataset, with Rouge-1, Rouge-L,
BLEU-1, BLEU-2, and BLEU-3 reaching 50.2%,
29.5%, 38.3%, 22.9%, and 14.0%, respectively.
The “Two-Stage Reasoning” method showcases
higher scores on the R-SLAKE dataset, with
Rouge-2, BLEU-1, BLEU-2, BLEU-3, and BLEU-
4 at 23.1%, 23.1%, 39.5%, 24.5%, 15.8%, and
10.3%, respectively. The ‘“Reasoning" method
maintains robust performance across both the R-
RAD and R-SLAKE datasets; on the R-RAD
dataset, Rouge-2, BLEU-3, and BLEU-4 reached
20.3%, 14.0%, and 8.9%, respectively, while on
the R-SLAKE dataset, Rouge-1, Rouge-L, and
BLEU-1 are 53.5%, 32.1%, and 39.5%, respec-
tively. These outcomes highlight the necessity of
diverse methods for various types of open-end ques-
tions.
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