Under review as a conference paper at ICLR 2026

STRIDE: STRUCTURE AND EMBEDDING DISTILLA-
TION WITH ATTENTION FOR GRAPH NEURAL NET-
WORKS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent advancements in Graph Neural Networks (GNNs) have led to increased
model sizes to enhance their capacity and accuracy. Such large models incur high
memory usage, latency, and computational costs, thereby restricting their inference
deployment. GNN compression techniques compress large GNNSs into smaller ones
with negligible accuracy loss. One of the most promising compression techniques
is Knowledge Distillation (KD). However, most KD approaches for GNNs only
consider the outputs of the last layers and do not consider the outputs of the
intermediate layers of the GNNs. The intermediate layers may contain important
inductive biases indicated by the graph structure and embeddings. Ignoring these
layers may lead to a high accuracy drop, especially when the compression ratio is
high. To address these shortcomings, we propose a novel KD approach for GNN
compression that we call Structure and Embedding Distillation with Attention
(STRIDE). STRIDE utilizes attention to identify important intermediate teacher-
student layer pairs and focuses on using those pairs to align graph structure and
node embeddings. We evaluate STRIDE on several datasets, such as OGBN-Mag
and OGBN-Arxiv, using different model architectures, including GCNIIs, RGCNs,
and GraphSAGE. On average, STRIDE achieves a 2.13% increase in accuracy
with a 32.3 x compression ratio on OGBN-Mag, a large graph dataset, compared to
state-of-the-art approaches. On smaller datasets (e.g., Pubmed), STRIDE achieves
up to a 141 x compression ratio with higher accuracy compared to state-of-the-art
approaches. These results highlight the effectiveness of focusing on intermediate-
layer knowledge to obtain compact, accurate, and practical GNN models. During
the discussion phase, we will privately share the anonymized repo with reviewers
and area chairs, and we will release it publicly upon acceptance.

1 INTRODUCTION

The rapid growth in the scale and complexity of real-world graphs, including social networks |[Wang
et al.[(2020), web graphs Web Data Commons| (2024), knowledge graphs Wikipedia contributors
(2024)), e-commerce graphs GraphGeeks Lab|(2024), and biological networks Koohi Esfahani et al.
(2023) has driven significant advancements in Graph Neural Network (GNN) architectures, making
them increasingly deeper and more expressive.

Recent studies examining neural scaling laws demonstrate notable accuracy improvements for GNNs
by increasing depth, parameter count, and training dataset size |Li et al.|(2021)); Yang et al.|(2022b);
Liu et al.|(2025)); |Sypetkowski et al.|(2023); Ma et al.| (2022); |Chen et al.| (2024b); |Airas & Zhang
(2025). For instance, Liu et al. |Liu et al.| (2025) show clear performance gains with deeper and
wider GNN models. Similarly, Sypetkowski et al. Sypetkowski et al.| (2023) highlight enhanced
performance in molecular graph tasks by employing larger models and richer pretraining datasets.

However, these performance gains come at significant costs, including increased computational com-
plexity, memory usage, storage requirements, over-smoothing, and over-squashing, which complicate
their practical deployment|Liu et al.|(2024); [Sypetkowski et al.|(2023)); |Di Giovanni et al.| (2023). The
growing demand for real-time inference further exacerbates these deployment challenges. Real-time
applications such as autonomous vehicle point cloud segmentation Shi & Rajkumar| (2020); Sarkar|
et al.| (2023), high-energy physics data acquisition [Shlomi et al.| (2020)), real-time recommendation

Under review as a conference paper at ICLR 2026

systems |Liu et al.|(2022)), rapid image retrieval [Formal et al.[|(2020)), and spam detection |L1 et al.
(2019) require extremely low inference latencies. Unfortunately, as GNN model complexity increases,
inference latency escalates sharply, leading to substantial practical deployment barriers Zhou et al.
(2021); |Que et al.| (2024); [Tan et al.|(2023); Huang et al.|(2021); Kiningham et al.| (2022). Conse-
quently, compressing large GNNs into smaller, low-latency models without losing accuracy is now a
key research goal.

Knowledge Distillation (KD) is a widely adopted model compression technique in which a compact
student model is trained using supervision signals from a larger, well-performing feacher model Hin+
ton et al|(2014). Although conventional KD can be applied directly to GNN:ss, it largely ignores
structural properties inherent in graphs (e.g., Fitnets Romero et al.|(2015) and Attention Transfer
(AT)|Zagoruyko & Komodakis|(2017)). Hence, simply matching node embeddings or attention maps
overlooks critical structural information in GNNSs, limiting the effectiveness of these methods when
directly applied to graph data.

Recently, Tian et al. [Tian et al.|(2025) identify three primary types of transferable knowledge in GNN
distillation: logits, structure, and embeddings. Among these, logits-based distillation using soft-label
predictions is straightforward, prompting recent research to focus on more advanced methods for
transferring structural and embedding knowledge from teacher to student GNNs. Structural knowledge
captures how nodes are interconnected and how the teacher network encodes graph topology [Yang
et al.| (2020). Embedding knowledge mainly reflects node-level semantic relationships in the learned
feature space He et al.|(2022); Joshi et al.|(2022). Early KD methods for GNNs primarily focused
on preserving local graph structure. For example, LSP [Yang et al.| (2020) emphasizes the local
structural alignment between the teacher and the student. Joshi et al. build on LSP by introducing
GSP, which distills knowledge using all pairwise node similarities, and G-CRD, which preserves
global topology via contrastive alignment of student and teacher node features Joshi et al.| (2022).
Later, GraphAKD He et al.|(2022) directly distills embedding knowledge by forcing the student’s
node and class-level embeddings to match those of the teacher through adversarial training.

On the other hand, several studies have developed attention mechanisms for KD in GNNgs, typically
focusing on transferring knowledge from multiple teachers to a single student Wang et al.| (2021);
Zhang et al.| (2022) or leveraging only embedding or structural features to enhance distillation.

Despite this progress, current KD methods for GNNs remain fundamentally limited by focusing
mainly on final-layer embeddings, neglecting valuable information captured in intermediate lay-
ers [Baxter| (2000); Uselis & Oh!(2025)). Intermediate GNN layers encode distinct graph connectivity
patterns and hierarchical structural relationships, which are critical for generalization. Ignoring these
intermediate representations restricts the student’s capability to learn deeper structural relationships,
causing it to rely heavily on superficial mappings between node attributes and final-layer outputs,
thus hindering generalization to unseen graph data. In particular, it is essential to jointly leverage
structural relationships, node embeddings, and intermediate-layer representations. These
components collectively encode distinct yet complementary information about graph data.

Unfortunately, aligning intermediate-layer representations poses a nontrivial challenge due to inher-
ent architectural differences between teacher and student models. Typically, compressed student
networks contain fewer layers, creating a mismatch in intermediate representations and preventing
straightforward one-to-one alignment. Consequently, most existing GNN distillation methods avoid
intermediate-layer alignment, limiting their ability to fully utilize the rich hierarchical information
embedded within teacher layers [Joshi et al| (2022); Kim et al.| (2021)); Jing et al.| (2021)); [Wang
et al.| (2024); |[Huo et al.| (2023); Wang & Yang| (2024). Addressing this challenge represents an
important research frontier in GNN distillation, motivating innovative approaches to dynamically
align intermediate representations without relying on fixed-layer correspondences.

To address the shortcomings of existing KD methods for Graph Neural Networks, we propose
Structure and Embedding Distillation with Attention (STRIDE). The core novelty of our approach
lies in using a trainable attention mechanism to automatically identify and align the most informative
pairs of intermediate layers, resolving the longstanding challenge of mismatched architectures in
GNN distillation. Unlike prior methods that rely on explicit, fixed layer mappings, STRIDE enables
flexible and dynamic distillation of structural and embedding information even when the teacher and
student networks differ significantly in depth and architecture.

Under review as a conference paper at ICLR 2026

Specifically, STRIDE projects intermediate hidden representations from both teacher and student
GNNes into a shared latent space, facilitating meaningful comparison across layers. Subsequently,
a learned attention mechanism dynamically weighs the importance of aligning each potential pair
of teacher and student layers based on their representational similarity and informativeness. By
aligning embeddings and structural information at multiple intermediate layers, STRIDE encourages
the student network to internalize the hierarchical reasoning and richer graph structures captured by
the teacher, rather than relying solely on superficial input-output mappings (see Figure [I).

The main contributions of our work include:

1. We introduce STRIDE, the first attention-based GNN knowledge distillation framework
capable of simultaneously aligning structural and embedding representations across all
intermediate layers. Crucially, STRIDE accommodates substantial architectural differences
(e.g., depth, hidden dimensions) between teacher and student models, without requiring
explicit layer correspondence.

2. We develop a novel attention-driven alignment mechanism, enabling dynamic identifica-
tion of critical teacher-student layer pairs. This facilitates effective knowledge transfer and
improves the student’s representational capability across diverse GNN configurations.

3. We provide extensive empirical validation of STRIDE using multiple widely-adopted bench-
mark datasets, such as OGBN-Mag /Wang et al.| (2020) and OGBN-ArxivWang et al.| (2020),
and various GNN architectures including GCNII|Chen et al.| (2020), RGCN |Schlichtkrull
et al.| (2018)), and GraphSAGE Hamilton et al.| (2017). Our experiments demonstrate con-
sistent performance improvements in accuracy and generalization across different degrees
of model compression. On the large-scale OGBN-Mag dataset, our method outperforms
state-of-the-art approaches by 2.13% in accuracy and achieves a 32.3 X compression ratio.
On smaller datasets (e.g., Pubmed), STRIDE attains compression ratios as high as 141 x
with higher accuracy relative to state-of-the-art baselines.

2 PROPOSED APPROACH

2.1 INTUITION AND MATHEMATICAL FOUNDATIONS

In this section, we first discuss Attention Map
the intuition behind STRIDE and
introduce some of the mathemat-

ical definitions needed to explain l'_';;i?; B .
it thoroughly. The mathematical seacher : - N
gg:fg;gn(ffatfee;ggsfed in the Ap- - Structure Dissimilarity Map =t
[B
|

2.1.1 SOFTKD INTUITION — L —

Student L.
In SoftKD [Hinton et al.| (2014)), = | x
we compute two different losses. - Embedding Dissimilarity Map
The first, H(sp,y), is a cross- ~ /’
entropy loss between the out- i
put student probability distribu- -
tion and the ground truth labels. "

The other, H(sp,t,), is a cross-

entropy loss between the output Figure 1: STRIDE generates an attention map using a trainable
student probability distribution attention mechanism and a dissimilarity map using a trainable
and the output teacher probabil- subspace projection. The loss matrix is an element-wise multipli-
ity distribution. The total loss is cation of the attention matrix and the dissimilarity matrix.
defined as:

Lxp = H(sp,y) + aH(sp,tp) (D

Here, « is a hyper-parameter controlling how much the KD loss affects the total loss. The goal is to
align the output student probability distribution with the output teacher probability distribution. The
higher H (s, tp) is, the less aligned the student and teacher output probability distributions are.

Under review as a conference paper at ICLR 2026

2.1.2 STRIDE INTUITION

Similarly, STRIDE aims to incorporate alignment, but goes beyond final output alignment by focusing
on intermediate layers, which encode valuable inductive biases. We pay special attention to the
structural information within these representations. A key challenge arises from our goal to support
arbitrary teacher-student architectures. Since their number of layers may differ, a direct layer-to-layer
alignment is not feasible.

STRIDE solves this problem by identifying which teacher-student layer pairs are the most important
to align via an attention mechanism. This mechanism works with an arbitrary number of teacher and
student layers, which makes this approach amenable to any arbitrary teacher-student configuration.
STRIDE also proposes a reprojection technique to account for the student and teacher networks
having different hidden dimensions. The output of each hidden layer for both the teacher and student
networks is projected into a standardized embedding dimension, which ensures that it will work with
student and teacher networks of any embedding dimension (Figure|[T).

As each layer represents unique semantic information, an important challenge is to ensure that each
layer’s feature map is not smoothed out by a single projection matrix. To this end, we use separate
trainable linear layers for each hidden layer in both the teacher and student networks to ensure that
we do not lose any valuable semantic information in the hidden layers. These trainable linear layers
help us construct the three key components of STRIDE, which are the attention map, the structural
dissimilarity map, and the embedding dissimilarity map. At a high level, the attention map tells us
how important each teacher-student layer pair is, while the dissimilarity maps tell us how distant
the feature maps of each teacher-student layer pair are in terms of both embedding and structure.
The teacher-student layer pairs with higher attention scores are deemed as more important; STRIDE
focuses on reducing their structural and embedding dissimilarity scores during training (Figure|[T).

2.1.3 MATHEMATICAL FOUNDATION

Without loss of generality, we consider distilling a general Graph Convolutional Network (GCN)
Kipf & Welling|(2017)), in which the output of the [-th layer is:

HO = G(AH(lfl)W(l)))

Here, o is an activation function. The A = D~1/2AD~/2 s the normalized adjacency matrix,
where A is the adjacency matrix and D is the diagonal degree matrix. The term H(~1) ¢ R?*di-1
represents the node feature matrix from the previous layer, and W() ¢ R%-1%% represents the
trainable weight matrix of the current layer. Note that this formulation allows the hidden dimension
to change among layers. In our method, we will denote the weight matrix for the ¢-th teacher layer as
W and for the j-th student layer as Wi

For STRIDE, we are interested in the collection of intermediate feature representations from both
the teacher and student networks. Let us define the teacher network 7 and the student network S as
having 7; and 5; layers, respectively. We collect the pre-activation feature maps from each layer.

LetT; € R™*%; be the pre-activation output of the i-th layer of the teacher network, where n is the
number of nodes and d! is the feature dimension of that specific layer. Similarly, let S; € R"*%
be the pre-activation output of the j-th layer of the student network with output dimension d;. Our
goal is to distill knowledge from the set of teacher representations {TZ-}Z;1 to the set of student
representations {S; }flzl .

2.2 STRIDE MECHANISM
2.2.1 ATTENTION SCORES

The first step of STRIDE is to generate the attention matrix o € RT*51, An element «Qu;j represents
an “importance” score for the layer pair consisting of teacher layer ¢ and student layer j. We take
the average of the feature maps along the node dimension to compute a mean node feature for every
layer in both the teacher and student networks. We call these tensors T, € R7i*% and S, € R%* %
Then, we pass each layer in T, through its own linear layer to create T, € RT1*4a_ where d,, is the
embedding dimension of STRIDE. Similarly, we create S,, € R We can finally generate v in
the following manner:

Under review as a conference paper at ICLR 2026

T, ST
« = softmax A 3)

The softmax is applied row-wise on the matrix product, such that for each teacher layer ¢, the sum of
its attention scores across all student layers j is equal to 1. This normalizes the importance scores
from the perspective of a single teacher layer.

2.2.2 EMBEDDING DISSIMILARITY SCORES

The next step is to compute a pairwise embedding dissimilarity score for each teacher-student layer
pair. Again, we project the features into d,. For calculating the attention scores, we average over the
node dimension before projecting, as our goal was to identify important layers. When calculating
the pairwise embedding dissimilarity, we want to incorporate the per-node embeddings. So, we
use a separate set of projection matrices. We use P; € R%*% and P, € R%*4a to represent the
projections. However, distance metrics are less semantically valuable if d, is high. To alleviate this
problem, we define a trainable matrix P € R% *a to project all vectors into the subspace defined by
the column space of P. Since the rank of P can be less than d,,, distance metrics within the learned
subspace can be more semantically valuable.

The final step is to average over the embedding dimension and then produce the embedding dissimi-
larity matrix Doy € RT1¥50 Tts elements give the dissimilarity scores for each teacher-student layer
pair. To calculate the embedding dissimilarity, we experiment with Euclidean and cosine distance,
but Euclidean distance generally tends to perform better. The embedding dissimilarity score for a
layer pair (i, j) is a scalar obtained by aggregating the per-node differences. It can be represented as:

Dasls = 23 (i 1247 - 5,100 . @
v=1

Here, T;[v,:] € R1*4 and S;[v,:] € R4 are the feature vectors for node v in teacher layer i

and student layer j, respectively. P,gi) € R xda gnd P,(;j) € R% %da gre the layer-specific trainable
projections. The aggregation is performed by averaging the squared Euclidean distance over all n
nodes.

2.2.3 STRUCTURAL DISSIMILARITY SCORES

Before calculating the loss, the final step is to compute a pairwise structural dissimilarity for each
teacher-student layer pair. As usual, we first project teacher and student features to d, via a trainable
linear projection. We use E; € R% >4« and E, € R% *% to represent these trainable projections.
After projecting to d, to find the structural dissimilarity, we simply use the G-CRD loss|Joshi et al.
(2022)). We can also use other structure-aligning losses, such as LSP or GSP, but experimentally
we find that using G-CRD produces the best results. We use the G-CRD loss to find the structural
dissimilarity for every teacher-student layer pair to produce the structural dissimilarity matrix Dy, €
RTi%St, The structural dissimilarity score for a layer pair (4, j) can be represented as:

(Dgr)ij = ¢(T;E, S;Ey) (5)
where ¢ represents the structure-aligning loss of G-CRD.

Specifically, for each layer pair (i, j), we adapt the G-CRD framework to create a contrastive loss.
For a given anchor node v, its positive sample is its representation from the other network at the
aligned layer (e.g., T'_: for an anchor from S_j), and negative samples are representations of other
nodes from the same layer and network. The loss for a single layer pair is then the average of the
contrastive loss over all nodes.

2.2.4 FINAL LoSS CALCULATION

To produce the final loss value, we first compute a total dissimilarity matrix M = Dy, + Depp. We
then multiply element-wise with the attention matrix « and take the mean to produce a single number
that represents the STRIDE distillation loss, LsTripE-
1 Ty S
LstrRIDE = 7.5, Z Z o M (6)

i=1 j=1

Under review as a conference paper at ICLR 2026

The final loss is calculated as L = H(sp,y) + fLsrrrpr where H(sp,y) is the standard cross-
entropy loss between the student’s predictions and the ground truth labels. There is one important
theorem to consider that proves Lsrrrpg distills valuable knowledge from the teacher network to
the student network.

Theorem 1 (STRIDE Cross-Layer Gradient Dependence) Letr the STRIDE distillation loss be
Lstripe, which is a function of the set of all teacher weight matrices {Wf}ZTL1 and student weight

matrices {Wj}f L 1. The gradient of the loss with respect to any student layer’s weight matrix, W73,
is functionally dependent on every teacher layer’s weight matrix, W*. Formally:

L
OLSTRIDE _ j({wi)TL, (W) Vie [1Ti)% € [1,5) Q
J

This holds even for teacher layers i that are deeper than the student layer j (i.e., © > j).

Intuitive Proof The full proof involves a detailed expansion of the partial derivatives and is provided
in the Appendix. The core intuition, however, is straightforward and relies on the chain rule through
the attention mechanism.

1. The total STRIDE loss is a sum of losses for each teacher-student layer pair (i, j), weighted
by an attention score «;;. The loss for a single pair is L;; = ay; - M;;, where M;; is the
dissimilarity score.

2. Crucially, the attention score o;; is a function of the outputs of teacher layer i (denoted

T,) and student layer j (denoted S;).
J ozij X g(T,, SJ) (8)

3. The output of any teacher layer, T, is a function of its weights, T; = f,(W?, ..., W)
Likewise, the student’s output S; is a function of its weights, S; = fs(W7,..., W?).

4. Therefore, when calculating the weight update for W7 via the gradient ‘{M%T%, the chain

J
rule must backpropagate through cv;;. Since «;; directly depends on the teacher’s output T';,
the gradient flowing to the student weight W will necessarily contain terms involving the

teacher’s weight W.

This structure creates a computational graph where the teacher’s weights from every layer influence
the gradient of every student layer, thus proving the cross-layer dependency.

Main Takeaway Theorem [I| provides the theoretical justification for our core claim: STRIDE
enables a richer, more comprehensive knowledge transfer than prior methods. The key insight is that
our attention mechanism creates direct gradient pathways from all teacher layers to all student
layers. This means a shallow student layer (e.g., layer 1) can receive immediate supervisory signals
not just from the teacher’s first layer, but also from its deepest layers (e.g., layer 5). This allows the
student to learn how to represent complex, higher-order neighborhood information—a task usually
reserved for deeper layers—much earlier in its own architecture. This ability to distill the teacher’s
entire representational hierarchy into a more compact student model is what leads to the significant
gains in accuracy and generalization that we observe in our experiments.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP

For our main experiments, we test STRIDE on two difficult datasets: OGBN-Mag and OGBN-Arxiv
Hu et al.[(2020); Wang et al.| (2020). These datasets utilize temporal splitting to create validation
and test sets that assess a model’s ability to generalize to out-of-distribution data. For OGBN-Mag,
we run experiments using RGCN |Schlichtkrull et al.|(2018)) as the teacher and student models, and
for OGBN-ATrxiv, we run experiments using GAT |Velickovic et al.|(2018)) as the teacher model and
GraphSAGE Hamilton et al.|(2017) as the student model. This allows us to evaluate the effectiveness
of STRIDE for different GNN architectures. It also allows us to assess if STRIDE can distill
information between different types of GNN architectures. To further assess generalization, we
also evaluate on smaller datasets, including Cora Mccallum et al.| (2000), Citeseer Sen et al.| (2008),
Pubmed |[Namata et al.| (2012), and NELL |Carlson et al.| (2010). In our experiments, we keep the

Under review as a conference paper at ICLR 2026

teacher model architecture and weights fixed and only modify the size of the student network. Each
distillation method starts from the same set of weights and trains for the same number of epochs
across 5 runs. For our baselines, we consider LSP |Yang et al.| (2020), GSP [Joshi et al.| (2022),
G-CRD (2022), Fitnets Romero et al.| (2015), and Attention Transfer (AT) Zagoruyko &
Komodakis| (2017), which are most closely related to STRIDE. We run all experiments on a Tesla
V100 GPU.

3.2 EXPERIMENTAL RESULTS
3.2.1 OUT-OF-DISTRIBUTION EVALUATION

As shown in Table [T|and Figure 2] STRIDE consistently outperforms state-of-the-art across various
compression ratios on OGBN-Mag and OGBN-Arxiv. Notably, it achieves gains of 2.13% and 1.70%
at 32.3x and 16.1x compression, respectively. Since these benchmarks target out-of-distribution
generalization, the results demonstrate STRIDE’s ability to produce student models with superior
generalization compared to existing KD methods.

49

Dataset OGBN-Mag OGBN-Arxiv — STRIDE
Teacher | RGCN (3L-512H-5.5M) GAT (3L-750H-1.4M) — GCRD
Student | RGCN (2L-32H-170K) GraphSAGE (2L-256H-87K) 481 i
Teacher 49.80 74.20
Student 14231047 70.87 £ 0.58 3 471 — Lsp
Fitnets 44.87 £ 0.84 71.32 +0.32 = — Fitnet
AT 43.87 +0.67 71.04 £ 0.48 S 46 AT
LSP 45.21 4 0.54 7147 £0.45 5
GSP 44.97 +0.58 71.97 +0.64 $ 451
G-CRD 45.42 4 0.43 71.87 + 0.56
STRIDE 47.55+0.28 73.67 +0.49
Ratio 32.3% 16.1x 441
. . 43+ : ‘ ; ‘ ; ‘
Table 1: Average accuracies for a variety of large 10 20 30 40 50 60

Compression Ratio

Figure 2: A comparison of KD methods applied to
student models of different sizes trained on the OGBN-
Mag dataset. The teacher model was the same as the one
described in Table[T] The student model was a two-layer
RGCN, and we varied the embedding dimension from
16 to 512 to induce this Pareto frontier.

datasets. The results are based on the average of five
trials, with each distillation method applied to the same
set of student weights. The notation aL.-bH-cM in the
second and third rows means the model has “a” layers,
a hidden dimension of “b”, and “c” million trainable
parameters.

3.2.2 ALIGNING INTERMEDIATE EMBEDDINGS IN STRIDE

To empirically prove that STRIDE

Attention Map Before STRIDE

Attention Map After STRIDE

aligns intermediate embeddings based ol] [“ R
0.

|
.
I
—

o

on the attention matrix, we visualize :
the before and after training attention
and dissimilarity maps in Figure [3]
We train on OGBN-Mag and use a
deeper teacher network of 5 layers and
a hidden dimension of 512. The stu-
dent network has 3 layers and a hid-
den dimension of 32. Our results show
that dissimilarity scores are low where
the attention scores are high and vice
versa. This is in line with the intu-
ition presented earlier in the STRIDE
mechanism.

0.2 0.2
I, - I |
. > " 0.1 L0.0
0 1 2 0 1 2

Dissimilarity Map Before STRIDE Dissimilarity Map After STRIDE

I.-

-0.5

r 1.0

-0.4
‘ Iro.3 h
1 2 0 1

Figure 3: Attention and Dissimilarity maps before and after
training with STRIDE. Cooler colors refer to lower scores
Deep GNNs: We also test STRIDE on and warmer colors correspond to higher scores.
deep GNN architectures (e.g., GCNII
Chen et al| (2020)). We test on Cora
Mccallum et al.| (2000), Citeseer [Sen|

et a!. (2008), Pubmed [Namata et al.| (2012)), and NELL [Carlson et al.| (2010). Table shows that
STRIDE can distill these deep GCNIIs into shallower GCNIIs with higher accuracy compared to

other distillation methods. At 27x compression, STRIDE achieves a 3.5% accuracy improvement.
Even at a 141 x compression ratio, STRIDE matches the original teacher model’s accuracy.

Under review as a conference paper at ICLR 2026

Dataset Cora Citeseer Pubmed NELL
Teacher | GCNII (64L-64H) GCNII (64L-64H) GCNII (64L-64H) GCNII (64L-64H)
Student | GCNII (4L-4H) GCNII (4L-4H) GCNII (4L-4H) GCNII (4L-4H)
Teacher 88.40 77.33 89.78 95.55
Student 73.87 +0.42 68.32 £ 0.45 87.87 £ 0.45 85.00 £ 0.65
LSP 75.07 £ 0.55 70.23 +0.32 88.07 + 0.45 85.15+0.47
GSP 78.22 +0.31 69.50 £ 0.67 89.19 £ 0.55 86.32 £ 0.45
G-CRD 83.45 +0.45 71.07 +0.41 89.66 + 0.48 88.42 +£0.53
STRIDE 84.27 +0.32 72.00 +£0.30 89.89 + 0.31 92.02 + 0.64
St. Params 5835 14910 2083 22686
Ratio 60.7x 33.5% 141.3x 27.7x

Table 2: Average accuracies for a variety of relatively smaller datasets. Each distillation method is
applied to the same set of student weights.

3.2.3 IMPROVED WEIGHT INITIALIZATION FOR HIGHLY COMPRESSED NETWORKS

We find that for smaller datasets, information from the teacher network is mainly distilled into
one layer of the student network, as shown in Figure[d] We hypothesize that smaller datasets lack
complexity, allowing a single layer to capture most patterns.

To test this hypothesis, we first apply STRIDE to a student network of arbitrary size and then generate
the attention map, o € R7** ¢, The next step is to use a row-wise argmaz and find the student layer
that has the most information distilled down to it. For example, in Figure[d] the selected layer for Cora
would be the third student layer (index 2 in the Figure). We then instantiate a new one-layer network
and copy over the weights from the identified layer (as indicated by the attention map o € RT*51),
Cora Attentio
0

ap after STRIDE Citeseer Attention Map after STRIDE Pubmed ap after STRIDE
10 0 10 0 L0

-0.8 -0.8 -0.8

-0.6 -0.6 -0.6

-0.4 -0.4 -0.4

-0.2 -0.2

ey — I -— I
IO.D 63— — 00 63 i 0.0

—_—
Figuore 4:1 Attzentién maps for oCoral, Citzeseear, and Pubméd. Ella(:h2 001(3)r in the
heatmap represents the importance score associated with that teacher-student
layer pair. Warmer colors mean higher importance scores. It id apparent that
most of the knowledge from the teacher layers is distilled into one student layer.

We then evaluate this new network on the test set and report the results in column 3 of Table[3] The
first column of Table [3] represents the accuracies that we obtain after we train the new one-layer
network for 1200 epochs; we compare this result to the accuracy obtained from training a one-layer
network from random initialization, which we report in the second column of Table 3]

3.3 ABLATION STUDIES

We conduct a series of ablation studies in this subsection to further validate the effectiveness of
STRIDE. Additional results and studies are provided in the Appendix.

3.3.1 BOOSTING PERFORMANCE BY ALIGNING BOTH STRUCTURE AND EMBEDDINGS

STRIDE is novel partly because it aligns both graph structure and node embeddings across teacher
and student networks. To demonstrate the advantage of aligning both structure and embeddings, we
compare STRIDE to variants that align only structure (S-STRIDE) or only embeddings (E-STRIDE).
Results in Table [show that aligning both structures and embeddings is better than aligning just one
of them.

3.3.2 IMPORTANCE OF ALIGNING INTERMEDIATE LAYERS

To prove that aligning intermediate layers is necessary for superior performance, we experiment with
a variant of STRIDE, which we call Modified STRIDE, where we set o € RTi%51 o all zeros, but
we set the bottom right value to 1. This indicates that we are only interested in the dissimilarity

Under review as a conference paper at ICLR 2026

Dataset Initialized Random Init No Training Dataset OGBN-Mag OGBN-Arxiv
Cora 80.35 73.59 65.36 STRIDE 47.55+0.28 73.67+£0.49
Citeseer 70.21 68.15 54.20 E-STRIDE 46.02 £0.48 71.32 £0.53
Pubmed 88.80 85.98 72.90 S-STRIDE 45.82 4 0.60 71.48 £0.57
Table 3: Results for weight initialization experi- Table 4: STRIDE vs. S-STRIDE vs E-
ment. These are all one-layer networks. STRIDE. Teacher-student model configura-

tions are in Tablem

between the last layer node embeddings of the teacher and student models. The results in Table 3]
prove that we gain accuracy by considering the outputs of intermediate layers for both teacher and
student models. In this experiment, we start from the same set of initialized weights for both the
STRIDE and modified STRIDE approaches.

3.3.3 IMPROVEMENTS DUE TO SUBSPACE PROJECTION

In Section |2} we introduced the concept of subspace projection as a way to alleviate issues caused by
high-dimensional embedding spaces. While it is not needed for STRIDE to work, as Table 6] shows,
it improves the results as the learned subspace projection matrix tends to be of lower rank than the
embedding dimension. This indicates that we can project our feature maps into subspaces smaller
than R% , which increases the semantic value of the dissimilarity scores.

Dataset OGBN-Mag OGBN-Arxiv Dataset Subspace Projection No Projection

Student 44.46 £ 0.54 71.27 £0.48 Cora 84.29 + 0.28 83.78 £ 0.35

Modified STRIDE 46.75 + 0.58 71.76 £0.52 Citeseer 72.05 + 0.35 71.34 +£0.41

STRIDE 47.58 £0.31 73.59+0.45 Pubmed 89.88 + 0.43 88.76 + 0.53

Table 5: Comparing the modified STRIDE that only NELL 91.95 £ 0.58 91.02£0.63

considers aligning the last layer node embeddings OGBN-Mag 47.54 £0.32 46.75+0.44

with STRIDE that considers intermediate layer node ~_ OGBN-Arxiv 73.58 £0.50 73.00+0.53
embeddings. Teacher/student model configurations Table 6: Subspace projection impact. Teacher and stu-
are in Table[T] dent networks are the same as the ones in Tables|T]and [2}

3.3.4 NECESSITY OF A LINEAR LAYER FOR EACH HIDDEN LAYER

In our approach, we mentioned that each hidden teacher and student layer is assigned a linear layer
for projection into d,. This is because each layer represents its own k-hop neighborhood, and using
just one linear layer would prove inadequate in capturing the full spectrum of essential semantic
information contained within each layer. We run an experiment in which we use only one linear layer
for the teacher and student projections. As Table [7]demonstrates, there is an accuracy drop compared
to the situation where we use individual linear layers for the projection.

4 CONCLUSION

The ever-growing size and complexity of GNNs
pose problems such as increased computational

Dataset Multiple Linear Layers One Linear Layer

; . Cora 84.29 +0.28 76.32 4 0.81
complexity, memory usage, storage require- Citeseer "9 05 & 0.95 69.00 £ 107
ments, over-smoothing, and over-squashing, Pubmed 80.88 + 0.43 87.85 + 0.84
which complicate their practical deployment for NELL 91.95 £ 0.58 85.67 +0.72

: nath e _ OGBN-Mag 47.54 4 0.32 45.02 4+ 0.67
various applications such as real-time recom OGBN-Arxhe 2398 £ 050 20,95 £ 0.79

mendation systems, spam detection, and rapid - -
image retrieval. To address this difficulty, we Table 7: Linear layer per hidden layer effect. The
propose an innovative solution known as Struc- teacher anq student networks are the same as the
ture and Embedding Distillation with Attention ©nes described in TablesT|and

(STRIDE). STRIDE employs an attention-based

feature linking mechanism to identify important

intermediate teacher-student layer pairs and focuses on aligning the node embeddings and graph
structure of those pairs. This KD approach broadly outperforms existing KD approaches for GNNs
over a wide variety of compression settings. It also works with both deep and shallow networks,
and shows robust performance with different GNN architectures. On average, we achieve a 2.13%
increase in accuracy with a 32.3 x compression ratio on OGBN-Mag, a large graph dataset, com-
pared to state-of-the-art approaches. On smaller datasets (e.g., Pubmed), STRIDE achieves a 141 x
compression ratio with higher accuracy compared to the state-of-the-art methods.

Under review as a conference paper at ICLR 2026

REFERENCES

Justin Airas and Bin Zhang. Scaling graph neural networks to large proteins. Journal of Chemical
Theory and Computation, 21(4):2055-2066, 2025.

Jonathan Baxter. A model of inductive bias learning. Journal of Artificial Intelligence Research
(JAIR), 12:149-198, 2000.

Andrew Carlson, Justin Betteridge, Bryan Kisiel, Burr Settles, Estevam Hruschka, and Tom Mitchell.
Toward an architecture for never-ending language learning. In Proceedings of the AAAI Conference
on Artificial Intelligence (AAAI), pp. 1306-1313, 2010.

Jie Chen, Mingyuan Bai, Shouzhen Chen, Junbin Gao, Junping Zhang, and Jian Pu. Sa-mlp: Distilling
graph knowledge from gnns into structure-aware mlp. Transactions on Machine Learning Research
(TMLR), 2024a.

Ming Chen, Zhewei Wei, Zengfeng Huang, Bolin Ding, and Yaliang Li. Simple and deep graph
convolutional networks. In Proceedings of the International Conference on Machine Learning
(ICML), pp. 1725-1735, 2020.

Weijian Chen, Shuibing He, Haoyang Qu, and Xuechen Zhang. Hopgnn: Boosting distributed gnn
training efficiency via feature-centric model migration. Preprint arXiv:2409.00657, 2024b.

Francesco Di Giovanni, Lorenzo Giusti, Federico Barbero, Giulia Luise, Pietro Lio, and Michael M
Bronstein. On over-squashing in message passing neural networks: The impact of width, depth,
and topology. In Proceedings of the International Conference on Machine Learning (ICML), pp.
7865-7885, 2023.

Thibault Formal, Stéphane Clinchant, Jean-Michel Renders, Sooyeol Lee, and Geun Hee Cho.
Learning to rank images with cross-modal graph convolutions. In Proceedings of the European
Conference on Information Retrieval (ECIR), pp. 589-604, 2020.

GraphGeeks Lab. Graph Explorer. https://github.com/graphgeeks—1lab/
graph—explorer)} 2024. [Online; accessed December-2024].

William L. Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the Advances in Neural Information Processing Systems (NeurIPS), pp.
1024-1034, 2017.

Huarui He, Jie Wang, Zhanqiu Zhang, and Feng Wu. Compressing deep graph neural networks
via adversarial knowledge distillation. In Proceedings of the 28th ACM SIGKDD conference on
Knowledge Discovery and Data mining (KDD), pp. 534-544, 2022.

Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network. In
Proceedings of the NeurIPS 2014 Deep Learning Workshop (NeurlPS Workshop), 2014.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In
Proceedings of the Advances in Neural Information Processing Systems (NeurlPS), pp. 22118-
22133, 2020.

Zengfeng Huang, Shengzhong Zhang, Chong Xi, Tang Liu, and Min Zhou. Scaling up graph
neural networks via graph coarsening. In Proceedings of the 27th ACM SIGKDD conference on
Knowledge Discovery & Data mining (KDD), pp. 675-684, 2021.

Cuiying Huo, Di Jin, Yawen Li, Dongxiao He, Yu-Bin Yang, and Lingfei Wu. T2-gnn: Graph neural
networks for graphs with incomplete features and structure via teacher-student distillation. In
Proceedings of the AAAI Conference on Artificial Intelligence (AAAI), pp. 4339-4346, 2023.

Mingi Ji, Byeongho Heo, and Sungrae Park. Show, attend and distill: Knowledge distillation via

attention-based feature matching. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAAI), pp. 7945-7952, 2021.

10

https://github.com/graphgeeks-lab/graph-explorer
https://github.com/graphgeeks-lab/graph-explorer

Under review as a conference paper at ICLR 2026

Yongcheng Jing, Yiding Yang, Xinchao Wang, Mingli Song, and Dacheng Tao. Amalgamating knowl-
edge from heterogeneous graph neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 15704-15713, 2021.

Chaitanya K. Joshi, Fayao Liu, Xu Xun, Jie Lin, and Chuan Sheng Foo. On representation knowledge
distillation for graph neural networks. IEEE Transactions on Neural Networks and Learning
Systems (TNNLS), pp. 1-12, 2022.

Junghun Kim, Jinhong Jung, and U Kang. Compressing deep graph convolution network with
multi-staged knowledge distillation. PLoS ONE, 16(8), 2021.

Kevin Kiningham, Philip Levis, and Christopher Ré. Grip: A graph neural network accelerator
architecture. IEEE Transactions on Computers (TC), 72(4):914-925, 2022.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional networks.
In Proceedings of the International Conference on Learning Representations (ICLR), 2017.

Mohsen Koohi Esfahani, Paolo Boldi, Hans Vandierendonck, Peter Kilpatrick, and Sebastiano Vigna.
Dataset announcement: Ms-biographs, trillion-scale public real-world sequence similarity graphs.
In Proceedings of the IEEE International Symposium on Workload Characterization (IISWC), pp.
193-195, 2023.

Ao Li, Zhou Qin, Runshi Liu, Yiqun Yang, and Dong Li. Spam review detection with graph
convolutional networks. In Proceedings of the 28th ACM International Conference on Information
and Knowledge Management (CIKM), pp. 2703-2711, 2019.

Rui Li, Xin Yuan, Mohsen Radfar, Peter Marendy, Wei Ni, Terrence J O’Brien, and Pablo M Casillas-
Espinosa. Graph signal processing, graph neural network and graph learning on biological data: a
systematic review. IEEE Reviews in Biomedical Engineering, 16:109-135, 2021.

Jingzhe Liu, Haitao Mao, Zhikai Chen, Tong Zhao, Neil Shah, and Jiliang Tang. Towards neural
scaling laws on graphs. In Proceedings of the Third Learning on Graphs Conference, pp. 44:1—
44:22,2025.

Juncheng Liu, Bryan Hooi, Kenji Kawaguchi, Yiwei Wang, Chaosheng Dong, and Xiaokui Xiao.
Scalable and effective implicit graph neural networks on large graphs. In Proceedings of The
International Conference on Learning Representations (ICLR), 2024.

Zhuoran Liu, Leqi Zou, Xuan Zou, Caihua Wang, Biao Zhang, Da Tang, Bolin Zhu, Yijie Zhu, Peng
Wu, Ke Wang, and Youlong Cheng. Monolith: Real time recommendation system with collisionless
embedding table. In Proceedings of the 5th Workshop on Online Recommender Systems and User
Modeling (ORSUM), in conjunction with the 16th ACM Conference on Recommender Systems,
2022.

Hehuan Ma, Yu Rong, and Junzhou Huang. Graph neural networks: Scalability. Graph Neural
Networks: Foundations, Frontiers, and Applications, pp. 99-119, 2022.

Andrew Mccallum, Kamal Nigam, and Jason Rennie. Automating the construction of internet portals.
Information Retrieval, 3:127-163, 2000.

Galileo Namata, Ben London, Lise Getoor, and Bert Huang. Query-driven active surveying for
collective classification. In Proceedings of the International Workshop on Mining and Learning
with Graphs (MLG), 2012.

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predictive
coding. Preprint arXiv:1807.03748, 2018.

Zhigiang Que, Hongxiang Fan, Marcus Loo, He Li, Michaela Blott, Maurizio Pierini, Alexander
Tapper, and Wayne Luk. LL-GNN: Low latency graph neural networks on FPGAs for high energy
physics. ACM Transactions on Embedded Computing Systems (TECS), 23(2):1-28, 2024.

Adriana Romero, Nicolas Ballas, Samira Ebrahimi Kahou, Antoine Chassang, Carlo Gatta, and
Yoshua Bengio. Fitnets: Hints for thin deep nets. In Proceedings of the International Conference
on Learning Representations (ICLR), 2015.

11

Under review as a conference paper at ICLR 2026

Rishov Sarkar, Stefan Abi-Karam, Yuqi He, Lakshmi Sathidevi, and Cong Hao. FlowGNN: A dataflow
architecture for real-time workload-agnostic graph neural network inference. In Proceedings of

the IEEE International Symposium on High-Performance Computer Architecture (HPCA), pp.
1099-1112, 2023.

Michael Schlichtkrull, Thomas N Kipf, Peter Bloem, Rianne Van Den Berg, Ivan Titov, and Max
Welling. Modeling relational data with graph convolutional networks. In Proceedings of the
European Semantic Web Conference (ESWC), pp. 593-607, 2018.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29:93, 2008.

Weijing Shi and Raj Rajkumar. Point-gnn: Graph neural network for 3d object detection in a point
cloud. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1711-1719, 2020.

Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle physics.
Machine Learning: Science and Technology (MLST), 2(2), 2020.

Maciej Sypetkowski, Frederik Wenkel, Farimah Poursafaei, Nia Dickson, Karush Suri, Philip Fradkin,
and Dominique Beaini. On the scalability of GNNs for molecular graphs. In Proceedings of the
Advances in Neural Information Processing Systems (NeurIPS), pp. 19870-19906, 2023.

Zeyuan Tan, Xiulong Yuan, Congjie He, Man-Kit Sit, Guo Li, Xiaoze Liu, Baole Ai, Kai Zeng, Peter
Pietzuch, and Luo Mai. Quiver: Supporting gpus for low-latency, high-throughput gnn serving
with workload awareness. Preprint arXiv:2305.10863, 2023.

Yijun Tian, Shichao Pei, Xiangliang Zhang, Chuxu Zhang, and Nitesh V Chawla. Knowledge
distillation on graphs: A survey. ACM Computing Surveys, 57(8):1-16, 2025.

Arnas Uselis and Seong Joon Oh. Intermediate layer classifiers for ood generalization. In Proceedings
of the International Conference on Learning Representations (ICLR), 2025.

Petar Velickovi¢, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Lio, and Yoshua
Bengio. Graph attention networks. In Proceedings of the International Conference on Learning
Representations (ICLR), 2018.

Can Wang, Zhe Wang, Defang Chen, Sheng Zhou, Yan Feng, and Chun Chen. Online adversarial
knowledge distillation for graph neural networks. Expert Systems with Applications, 237:121671,
2024.

Kai Wang, Yu Liu, Qian Ma, and Quan Z. Sheng. Mulde: Multi-teacher knowledge distillation for
low-dimensional knowledge graph embeddings. In Proceedings of the Web Conference (WWW),
pp. 1716-1726, 2021.

Kuansan Wang, Zhihong Shen, Chiyuan Huang, Chieh-Han Wu, Yuxiao Dong, and Anshul Kanakia.
Microsoft Academic Graph: When Experts Are not Enough. Quantitative Science Studies (QSS), 1
(1):396-413, 2020.

Yong Wang and Shuqun Yang. A lightweight method for graph neural networks based on knowledge
distillation and graph contrastive learning. Applied Sciences, 14(11):4805, 2024.

Web Data Commons. Web Data Commons Hyperlink Graph. https://webdatacommons |
org/hyperlinkgraph/, 2024. [Online; accessed December-2024].

Wikipedia contributors. DBpedia — Wikipedia, The Free Encyclopedia. https://en.
wikipedia.org/wiki/DBpedial, 2024. [Online; accessed December-2024].

Chenxiao Yang, Qitian Wu, and Junchi Yan. Geometric knowledge distillation: Topology compression
for graph neural networks. In Proceedings of the Advances in Neural Information Processing
Systems (NeurIPS), pp. 2976129775, 2022a.

Yiding Yang, Jiayan Qiu, Mingli Song, Dacheng Tao, and Xinchao Wang. Distilling knowledge from
graph convolutional networks. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pp. 7074-7083, 2020.

12

https://webdatacommons.org/hyperlinkgraph/
https://webdatacommons.org/hyperlinkgraph/
https://en.wikipedia.org/wiki/DBpedia
https://en.wikipedia.org/wiki/DBpedia

Under review as a conference paper at ICLR 2026

Ziduo Yang, Weihe Zhong, Lu Zhao, and Calvin Yu-Chian Chen. Mgraphdta: Deep multiscale graph
neural network for explainable drug—target binding affinity prediction. Chemical science, 13(3):
816-833, 2022b.

Sergey Zagoruyko and Nikos Komodakis. Paying more attention to attention: Improving the
performance of convolutional neural networks via attention transfer. In Proceedings of the
International Conference on Learning Representations (ICLR), 2017.

Chunhai Zhang, Jie Liu, Kai Dang, and Wenzheng Zhang. Multi-scale distillation from multiple
graph neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI),
pp. 4337-4344, 2022.

Hongkuan Zhou, Ajitesh Srivastava, Hanqing Zeng, Rajgopal Kannan, and Viktor Prasanna. Acceler-
ating large scale real-time GNN inference using channel pruning. In Proceedings of the VLDB
Endowment (VLDB), 14(9):1597-1605, 2021.

13

Under review as a conference paper at ICLR 2026

A APPENDIX

A.1 LATENCY INCREASE BY NUMBER OF PARAMETERS

Figure [5|demonstrates how increasing the number of model parameters directly impacts inference
latency. To visualize this trend, we plot the inference latency of a standard GCN model as we scale
up its parameter count (e.g., by enlarging the embedding dimension) on the Flickr dataset. The
figure reveals that as the model becomes more expressive and parameter-heavy, inference time rises
substantially.

500 A

400

300

Latency (ms)

200 A

Interactive Latency Range

100 +-=--

T T T
0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Number of Parameters le7

Figure 5: Inference latency of a standard GCN model architecture by increasing the number of parameters (e.g.,
embedding dimension) on the Flickr dataset. All tests were run on a Tesla V100 GPU with a batch size of 1.

A.2 DATASET AND TEACHER NETWORK INFORMATION

Table [§] provides specifications of the datasets used in our experiments.

of Nodes | # of Edges | # of Features | # of Classes
Cora 2,708 10,556 1,433 7
Citeseer 3,327 9,104 3,703 6
Pubmed 19,717 88,648 500 3
NELL 65,755 251,550 61,278 186
Flickr 89,250 899,756 500 7
OGBN-Mag | 1,939,743 | 21,111,007 128 349
OGBN-Arxiv 169,343 1,166,243 128 40

Table 8: Specification of evaluated datasets.

A.3 ABLATION STUDIES ON HYPERPARAMETERS
Two main hyperparameters need to be tuned when training STRIDE: the loss coefficient, 3, and the
STRIDE embedding dimension, d,. We present the test accuracies across various values for 5 and

d, in Tables 9] and These results show that a relatively lower 3 and a higher d, tend to produce
slightly better results. For all of our experiments, we used a 3 of 10 and a d,, of 256 for this reason.

A.4 EUCLIDEAN VS. COSINE DISTANCE

In Section 2} we mention that we use the Euclidean distance metric instead of the cosine distance
metric to generate the dissimilarity matrix, M. We present the results of this ablation in Table

14

Under review as a conference paper at ICLR 2026

Dataset f=1 pg=10 =20 =50

Cora 86.92 84.71 86.19 85.64
Citeseer 73.20 74.33 71.82 69.82
Pubmed §89.03 89.97 88.32 88.56

NELL 90.86 88.73 90.14 91.32

Table 9: Ablation results for [.

Dataset d, =64 d, =128 d, =256 d, =512

Cora 87.45 87.11 86.92 86.37
Citeseer 72.07 72.52 73.12 74.62
Pubmed 89.58 89.58 89.33 89.12

NELL 89.73 90.12 90.73 91.14

Table 10: Ablation results for d,,.

Cosine distance, which only considers the direction of vectors and not their magnitude, may disregard
critical information contained in the magnitude of hidden representations. We hypothesize that
preserving this information, as done by Euclidean distance, is important to its superior performance
observed in our experiments.

Dataset Euclidean Distance Cosine Distance

Cora 87.33 82.81
Citeseer 73.43 70.98
Pubmed 89.58 87.32

NELL 91.24 85.66

Table 11: Test accuracies when using Euclidean vs. cosine distance for computing dissimilarity
matrix M.

A.5 DETAILS OF THE THEOREM AND THE PROOF
Theorem 1 (STRIDE Cross-Layer Gradient Dependence) Let
1
Lstripe = 17,(a © M) Si;
be the distillation loss defined in Eq.(6) of the main paper, where o € RT¢*5¢ is the attention matrix
of Eq.(3) and M collects the pair-wise embedding and structural dissimilarities of Eqs.(4)—(5). For
every student layer j € [1, S| the gradient of Lstripg With respect to the student weight matrix w7

depends on every teacher weight matrix W} (i = 1,...,T}):

M = Demb + Dslr (6)

OLstriDE s)
o - VLAWY | Y.

Consequently, gradients flow from all teacher layers—even those deeper than the student layer
(i > j)—directly into W7.

Proof: For a single teacher—student layer pair (4, j) define

L

€XDP Zi5

ij = g Mg, Q==
D €XP Zirjs

(AD)

15

Under review as a conference paper at ICLR 2026

where the pre-soft-max score z;; = 1] AH! W/ WP (WP*)" (W) (H:_)T AT1, /n s a scalar
—_—

T
obtained by taking the trace of the product of two length-n vectors (so dimensions always match).
M;; is the corresponding dissimilarity entry of M.

By the product rule

L = Mij et + s A2
aws W T g (A2
Because «;; is a soft-max, gzo‘/] = a;(0; — aj). Applying the chain rule,
T£ Tz
6041‘]‘ (90[@‘ 8Zi/j

= = ij (O — auyrj 9
oW’ 2 Dzyr; OWS D o (B — i) ©

/=1 J i/ =1

s AT 1.7 (10 s

[(H})" AT] [S TR W) (A3)

Each factor T = AH!, W} WZ' contains the teacher weight matrix W},. Therefore dc;;/ oW’

1
depends on every W,. Both Demp ;; and Dy, ;; are functions of T; and S;; their gradients w.r.t. w7

pass through T exactly once, so OM;;/ OW; also carries Wt

The STRIDE loss is the average over all (i, j): LstripE = s% Z” L;;. Summing Eq.(A2) over ¢
preserves the dependence on every teacher weight appearing in (A3). Hence 0 Lstripg/ oWsisa

function of the whole set {Wf}zTél Since the argument holds for any student layer j, the gradient for
every student layer jointly involves all teacher layers, completing the proof.

A.6 DETAILED RELATED WORK

KD for GNNs without Attention: KD for GNNss is a relatively niche field that has been expanded
recently. In LSP |Yang et al.| (2020)), the authors attempt to align node embeddings between the
student and teacher networks by maximizing the similarity between embeddings that share edges.
Since only node embeddings between connected edges are aligned, this KD method preserves only
local topology. Joshi et. al Joshi et al.|(2022) extend LSP and propose two different KD algorithms:
Global Structure Preserving Distillation (GSP) and Global Contrastive Representation Distillation
(G-CRD). GSP extends LSP by considering all pairwise similarities among node features, not just
pairwise similarities between nodes connected by edges. G-CRD implicitly preserves global topology
by aligning the student and teacher node feature vectors via contrastive learning|Oord et al.| (2018]).
These works are examples of methods that focus on aligning structure as they use relationships
between different nodes to transfer knowledge from the teacher to the student.

Mustad [Kim et al.| (2021 distills a large teacher GNN into a one-layer student GNN by minimizing
a distance function between the student’s final node embeddings and the teacher’s final node em-
beddings. Some studies use adversarial training methods to distill knowledge from a teacher to a
student network. GraphAKD [He et al.[(2022) treats the student network as a generator and trains a
discriminator to distinguish between the final node embeddings of the student and teacher networks.
Online Adversarial Distillation (OAD)|Wang et al.|(2024) trains multiple student models and trains a
discriminator to distinguish between the outputs of different student models. More recent approaches,
such as T2-GNN [Huo et al.| (2023)), KDGCL Wang & Yang|(2024)), and SA-MLP Chen et al.|(2024a),
further advocate for utilizing embedding features of GNNs to improve KD in GNNs.

Adapting CNN-based KD Approaches to GNNs: There have been several KD approaches that have
been applied to CNNs that the GNN community has tried to adapt to GNNs, including Fitnets Romero
et al.| (2015)) and Attention Transfer (AT) [Zagoruyko & Komodakis|(2017). These methods both
compute a distance metric, such as mean-squared error between the last layer node embeddings of
the student and teacher networks, and do not take into account the adjacency matrix; therefore, these
approaches can all be categorized as aligning only embeddings. Using attention to find similarities
across student and teacher layers is a concept explored in CNNs Ji et al.| (2021). However, the
ideas from this work cannot be applied to GNNs because the feature-comparison operations are not
applicable to graph data. GNNs need special consideration in this regard compared to CNNs due to
the non-spatial and unstructured form of graph data.

16

Under review as a conference paper at ICLR 2026

KD for GNNs via Attention: Several works have constructed an attention mechanism for KD
in GNNs; however, these approaches focus on distilling knowledge from multiple teachers to a
single student. MSKD |Zhang et al.| (2022} uses an attention mechanism to assign weights to teacher
networks in proportion to how much knowledge they should transfer to student networks. MulDE
Wang et al.| (2021]) focuses on link prediction for knowledge graphs and uses a contrast attention
mechanism to weigh soft labels from different teachers.

It is important to note that the above works only consider the node embeddings at the final layer of the
teacher and student networks and aim to align them with one another in various ways. GeometricKD
Yang et al. (2022a) aligns all teacher and student node embeddings, but it constrains the student and
teacher networks to have the same number of layers to enforce a 1-1 correspondence between teacher
and student layers. It then proceeds to align teacher layer ¢ with student layer ¢; this approach is
inflexible as it severely constrains the student architecture.

Table [12] summarizes the main features of closely related work and how they are different from
STRIDE. Unlike existing works, STRIDE aligns both structure and embeddings across all layers,
without requiring strict architectural matching between teacher and student. This enables a richer
transfer of hierarchical graph information and makes the approach applicable across diverse teacher-
student architectures.

Method Aligns Structure | Aligns Embeddings | Number of Layers Considered
GraphAKD X v 1
G-CRD v X 1
LSP v X 1
GSP v X 1
Fitnets X v 1
AT X v 1

STRIDE v v All

Table 12: Comparison of various KD approaches with STRIDE

A.7 SUMMARY OF NOTATIONS

In Section we mathematically describe how STRIDE generates the attention matrix, o € R xSt
the structural dissimilarity matrix, (), and the embedding dissimilarity matrix, D, which is then used
to calculate Lsrrrpg. In Table @ we provide a summary of all the mathematical notation used to
describe STRIDE.

17

Under review as a conference paper at ICLR 2026

Symbol Meaning / Shape

Graph primitives
n Number of nodes in the input graph
A e {0,1}"*" Binary adjacency matrix

D = diag(di,...,dn)
A =D"'2AD1/?
1, e R"”

Degree matrix (d; = Zj Aij)
Symmetric normalised adjacency (Eq. 2)
Vector of ones (all entries = 1)

Index sets and dimensions

Te, Se Number of layers in teacher / student networks

ie{l,..., Ty} Teacher-layer index

jedl,...,S¢} Student-layer index

dy, ds Hidden dimension of a teacher / student layer

dgl), dg]) Output dimension of teacher layer ¢ / student layer j

di Hidden dimension at generic layer [

da STRIDE latent dimension for projections / attention
Layer outputs and projections

HY e Rrxd Node-feature matrix at layer [

T, = Hj e R"*%

S; = Hj e R"*%
TP = AH!_ \W/WP!
St = AH;_ , W;WwPr*
T?, S? € R%

Pre-activation output of teacher layer ¢
Pre-activation output of student layer j
Projected teacher representation (Eq. 3)
Projected student representation (Eq. 3)
Mean-pooled projected representations

1—1 i
Wi e R
G=1) 4@
Wp e Rd Txds
WPt e Rt *da
2
WP € ReXdo

Pt c Rthda, Ps c Rds Xdg
dyXdg ds Xdg
E, e R%*da B cR

Trainable weight matrices

GNN weight matrix of teacher layer ¢

GNN weight matrix of student layer j
Teacher projection for attention (layer ¢)
Student projection for attention (layer j)
Embedding dissimilarity projections
Structural dissimilarity projections

P € RéaXda Shared low-rank sub-space projection (§3)

Attention and dissimilarity tensors
Qij Attention score for teacher layer ¢ <+ student layer j
a € RTex5e Full attention matrix (Eq. 3)
Zij Scalar pre-soft-max compatibility score for pair (7,)
Dgmb Pairwise embedding dissimilarity (Eq. 4)
Diif Pairwise structural dissimilarity (Eq. 5)

Demb; Dstr S RTZXS@
M;; = D§§° + D3

]

M = Demb + Dstr

Two dissimilarity matrices
Total dissimilarity for pair (2, j)
Total dissimilarity matrix

Losses, operators and hyper-parameters

Lij = OéijMi‘
LstriDE

H('?)
o()
¢<'7)
®©

B

STRIDE loss contribution of a single layer pair
Global STRIDE distillation loss (Eq. 6)
Cross-entropy loss (logit supervision)
Element-wise activation function

G-CRD structural contrastive loss (Eq. 5)
Hadamard (element-wise) product

Trade-off coefficient in the total loss (Eq. 7)

Table 13: Comprehensive notation used throughout the STRIDE paper. Bold uppercase symbols denote
matrices, bold lowercase symbols denote vectors, and plain symbols denote scalars unless stated otherwise.
Dimensions are provided where applicable. 18

	Introduction
	Proposed Approach
	Intuition and Mathematical Foundations
	SoftKD Intuition
	STRIDE Intuition
	Mathematical Foundation

	STRIDE Mechanism
	Attention Scores
	Embedding Dissimilarity Scores
	Structural Dissimilarity Scores
	Final Loss Calculation

	Experiments
	Experimental Setup
	Experimental Results
	Out-Of-Distribution Evaluation
	Aligning Intermediate Embeddings in STRIDE
	Improved Weight Initialization for Highly Compressed Networks

	Ablation Studies
	Boosting Performance by Aligning both Structure and Embeddings
	Importance of Aligning Intermediate Layers
	Improvements due to Subspace Projection
	Necessity of a Linear Layer for Each Hidden Layer

	Conclusion
	Appendix
	Latency Increase by Number of Parameters
	Dataset and Teacher Network Information
	Ablation Studies on Hyperparameters
	Euclidean vs. Cosine Distance
	Details of the Theorem and the Proof
	Detailed Related Work
	Summary of Notations

