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ABSTRACT

Recent advancements in Graph Neural Networks (GNNs) have led to increased
model sizes to enhance their capacity and accuracy. Such large models incur high
memory usage, latency, and computational costs, thereby restricting their inference
deployment. GNN compression techniques compress large GNNs into smaller ones
with negligible accuracy loss. One of the most promising compression techniques
is Knowledge Distillation (KD). However, most KD approaches for GNNs only
consider the outputs of the last layers and do not consider the outputs of the
intermediate layers of the GNNs. The intermediate layers may contain important
inductive biases indicated by the graph structure and embeddings. Ignoring these
layers may lead to a high accuracy drop, especially when the compression ratio is
high. To address these shortcomings, we propose a novel KD approach for GNN
compression that we call Structure and Embedding Distillation with Attention
(STRIDE). STRIDE utilizes attention to identify important intermediate teacher-
student layer pairs and focuses on using those pairs to align graph structure and
node embeddings. We evaluate STRIDE on several datasets, such as OGBN-Mag
and OGBN-Arxiv, using different model architectures, including GCNIIs, RGCNs,
and GraphSAGE. On average, STRIDE achieves a 2.13% increase in accuracy
with a 32.3× compression ratio on OGBN-Mag, a large graph dataset, compared to
state-of-the-art approaches. On smaller datasets (e.g., Pubmed), STRIDE achieves
up to a 141× compression ratio with higher accuracy compared to state-of-the-art
approaches. These results highlight the effectiveness of focusing on intermediate-
layer knowledge to obtain compact, accurate, and practical GNN models. During
the discussion phase, we will privately share the anonymized repo with reviewers
and area chairs, and we will release it publicly upon acceptance.

1 INTRODUCTION

The rapid growth in the scale and complexity of real-world graphs, including social networks Wang
et al. (2020), web graphs Web Data Commons (2024), knowledge graphs Wikipedia contributors
(2024), e-commerce graphs GraphGeeks Lab (2024), and biological networks Koohi Esfahani et al.
(2023) has driven significant advancements in Graph Neural Network (GNN) architectures, making
them increasingly deeper and more expressive.

Recent studies examining neural scaling laws demonstrate notable accuracy improvements for GNNs
by increasing depth, parameter count, and training dataset size Li et al. (2021); Yang et al. (2022b);
Liu et al. (2025); Sypetkowski et al. (2023); Ma et al. (2022); Chen et al. (2024b); Airas & Zhang
(2025). For instance, Liu et al. Liu et al. (2025) show clear performance gains with deeper and
wider GNN models. Similarly, Sypetkowski et al. Sypetkowski et al. (2023) highlight enhanced
performance in molecular graph tasks by employing larger models and richer pretraining datasets.

However, these performance gains come at significant costs, including increased computational com-
plexity, memory usage, storage requirements, over-smoothing, and over-squashing, which complicate
their practical deployment Liu et al. (2024); Sypetkowski et al. (2023); Di Giovanni et al. (2023). The
growing demand for real-time inference further exacerbates these deployment challenges. Real-time
applications such as autonomous vehicle point cloud segmentation Shi & Rajkumar (2020); Sarkar
et al. (2023), high-energy physics data acquisition Shlomi et al. (2020), real-time recommendation
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systems Liu et al. (2022), rapid image retrieval Formal et al. (2020), and spam detection Li et al.
(2019) require extremely low inference latencies. Unfortunately, as GNN model complexity increases,
inference latency escalates sharply, leading to substantial practical deployment barriers Zhou et al.
(2021); Que et al. (2024); Tan et al. (2023); Huang et al. (2021); Kiningham et al. (2022). Conse-
quently, compressing large GNNs into smaller, low-latency models without losing accuracy is now a
key research goal.

Knowledge Distillation (KD) is a widely adopted model compression technique in which a compact
student model is trained using supervision signals from a larger, well-performing teacher model Hin-
ton et al. (2014). Although conventional KD can be applied directly to GNNs, it largely ignores
structural properties inherent in graphs (e.g., Fitnets Romero et al. (2015) and Attention Transfer
(AT) Zagoruyko & Komodakis (2017)). Hence, simply matching node embeddings or attention maps
overlooks critical structural information in GNNs, limiting the effectiveness of these methods when
directly applied to graph data.

Recently, Tian et al. Tian et al. (2025) identify three primary types of transferable knowledge in GNN
distillation: logits, structure, and embeddings. Among these, logits-based distillation using soft-label
predictions is straightforward, prompting recent research to focus on more advanced methods for
transferring structural and embedding knowledge from teacher to student GNNs. Structural knowledge
captures how nodes are interconnected and how the teacher network encodes graph topology Yang
et al. (2020). Embedding knowledge mainly reflects node-level semantic relationships in the learned
feature space He et al. (2022); Joshi et al. (2022). Early KD methods for GNNs primarily focused
on preserving local graph structure. For example, LSP Yang et al. (2020) emphasizes the local
structural alignment between the teacher and the student. Joshi et al. build on LSP by introducing
GSP, which distills knowledge using all pairwise node similarities, and G-CRD, which preserves
global topology via contrastive alignment of student and teacher node features Joshi et al. (2022).
Later, GraphAKD He et al. (2022) directly distills embedding knowledge by forcing the student’s
node and class-level embeddings to match those of the teacher through adversarial training.

On the other hand, several studies have developed attention mechanisms for KD in GNNs, typically
focusing on transferring knowledge from multiple teachers to a single student Wang et al. (2021);
Zhang et al. (2022) or leveraging only embedding or structural features to enhance distillation.

Despite this progress, current KD methods for GNNs remain fundamentally limited by focusing
mainly on final-layer embeddings, neglecting valuable information captured in intermediate lay-
ers Baxter (2000); Uselis & Oh (2025). Intermediate GNN layers encode distinct graph connectivity
patterns and hierarchical structural relationships, which are critical for generalization. Ignoring these
intermediate representations restricts the student’s capability to learn deeper structural relationships,
causing it to rely heavily on superficial mappings between node attributes and final-layer outputs,
thus hindering generalization to unseen graph data. In particular, it is essential to jointly leverage
structural relationships, node embeddings, and intermediate-layer representations. These
components collectively encode distinct yet complementary information about graph data.

Unfortunately, aligning intermediate-layer representations poses a nontrivial challenge due to inher-
ent architectural differences between teacher and student models. Typically, compressed student
networks contain fewer layers, creating a mismatch in intermediate representations and preventing
straightforward one-to-one alignment. Consequently, most existing GNN distillation methods avoid
intermediate-layer alignment, limiting their ability to fully utilize the rich hierarchical information
embedded within teacher layers Joshi et al. (2022); Kim et al. (2021); Jing et al. (2021); Wang
et al. (2024); Huo et al. (2023); Wang & Yang (2024). Addressing this challenge represents an
important research frontier in GNN distillation, motivating innovative approaches to dynamically
align intermediate representations without relying on fixed-layer correspondences.

To address the shortcomings of existing KD methods for Graph Neural Networks, we propose
Structure and Embedding Distillation with Attention (STRIDE). The core novelty of our approach
lies in using a trainable attention mechanism to automatically identify and align the most informative
pairs of intermediate layers, resolving the longstanding challenge of mismatched architectures in
GNN distillation. Unlike prior methods that rely on explicit, fixed layer mappings, STRIDE enables
flexible and dynamic distillation of structural and embedding information even when the teacher and
student networks differ significantly in depth and architecture.
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Specifically, STRIDE projects intermediate hidden representations from both teacher and student
GNNs into a shared latent space, facilitating meaningful comparison across layers. Subsequently,
a learned attention mechanism dynamically weighs the importance of aligning each potential pair
of teacher and student layers based on their representational similarity and informativeness. By
aligning embeddings and structural information at multiple intermediate layers, STRIDE encourages
the student network to internalize the hierarchical reasoning and richer graph structures captured by
the teacher, rather than relying solely on superficial input-output mappings (see Figure 1).

The main contributions of our work include:

1. We introduce STRIDE, the first attention-based GNN knowledge distillation framework
capable of simultaneously aligning structural and embedding representations across all
intermediate layers. Crucially, STRIDE accommodates substantial architectural differences
(e.g., depth, hidden dimensions) between teacher and student models, without requiring
explicit layer correspondence.

2. We develop a novel attention-driven alignment mechanism, enabling dynamic identifica-
tion of critical teacher-student layer pairs. This facilitates effective knowledge transfer and
improves the student’s representational capability across diverse GNN configurations.

3. We provide extensive empirical validation of STRIDE using multiple widely-adopted bench-
mark datasets, such as OGBN-Mag Wang et al. (2020) and OGBN-Arxiv Wang et al. (2020),
and various GNN architectures including GCNII Chen et al. (2020), RGCN Schlichtkrull
et al. (2018), and GraphSAGE Hamilton et al. (2017). Our experiments demonstrate con-
sistent performance improvements in accuracy and generalization across different degrees
of model compression. On the large-scale OGBN-Mag dataset, our method outperforms
state-of-the-art approaches by 2.13% in accuracy and achieves a 32.3× compression ratio.
On smaller datasets (e.g., Pubmed), STRIDE attains compression ratios as high as 141×
with higher accuracy relative to state-of-the-art baselines.

2 PROPOSED APPROACH

2.1 INTUITION AND MATHEMATICAL FOUNDATIONS

Figure 1: STRIDE generates an attention map using a trainable
attention mechanism and a dissimilarity map using a trainable
subspace projection. The loss matrix is an element-wise multipli-
cation of the attention matrix and the dissimilarity matrix.

In this section, we first discuss
the intuition behind STRIDE and
introduce some of the mathemat-
ical definitions needed to explain
it thoroughly. The mathematical
notations are explained in the Ap-
pendix of the paper.

2.1.1 SOFTKD INTUITION

In SoftKD Hinton et al. (2014),
we compute two different losses.
The first, H(sp, y), is a cross-
entropy loss between the out-
put student probability distribu-
tion and the ground truth labels.
The other, H(sp, tp), is a cross-
entropy loss between the output
student probability distribution
and the output teacher probabil-
ity distribution. The total loss is
defined as:

LKD = H(sp, y) + αH(sp, tp) (1)

Here, α is a hyper-parameter controlling how much the KD loss affects the total loss. The goal is to
align the output student probability distribution with the output teacher probability distribution. The
higher H(sp, tp) is, the less aligned the student and teacher output probability distributions are.
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2.1.2 STRIDE INTUITION

Similarly, STRIDE aims to incorporate alignment, but goes beyond final output alignment by focusing
on intermediate layers, which encode valuable inductive biases. We pay special attention to the
structural information within these representations. A key challenge arises from our goal to support
arbitrary teacher-student architectures. Since their number of layers may differ, a direct layer-to-layer
alignment is not feasible.

STRIDE solves this problem by identifying which teacher-student layer pairs are the most important
to align via an attention mechanism. This mechanism works with an arbitrary number of teacher and
student layers, which makes this approach amenable to any arbitrary teacher-student configuration.
STRIDE also proposes a reprojection technique to account for the student and teacher networks
having different hidden dimensions. The output of each hidden layer for both the teacher and student
networks is projected into a standardized embedding dimension, which ensures that it will work with
student and teacher networks of any embedding dimension (Figure 1).

As each layer represents unique semantic information, an important challenge is to ensure that each
layer’s feature map is not smoothed out by a single projection matrix. To this end, we use separate
trainable linear layers for each hidden layer in both the teacher and student networks to ensure that
we do not lose any valuable semantic information in the hidden layers. These trainable linear layers
help us construct the three key components of STRIDE, which are the attention map, the structural
dissimilarity map, and the embedding dissimilarity map. At a high level, the attention map tells us
how important each teacher-student layer pair is, while the dissimilarity maps tell us how distant
the feature maps of each teacher-student layer pair are in terms of both embedding and structure.
The teacher-student layer pairs with higher attention scores are deemed as more important; STRIDE
focuses on reducing their structural and embedding dissimilarity scores during training (Figure 1).
2.1.3 MATHEMATICAL FOUNDATION

Without loss of generality, we consider distilling a general Graph Convolutional Network (GCN)
Kipf & Welling (2017), in which the output of the l-th layer is:

H(l) = σ(ÂH(l−1)W(l)) (2)

Here, σ is an activation function. The Â = D−1/2AD−1/2 is the normalized adjacency matrix,
where A is the adjacency matrix and D is the diagonal degree matrix. The term H(l−1) ∈ Rn×dl−1

represents the node feature matrix from the previous layer, and W(l) ∈ Rdl−1×dl represents the
trainable weight matrix of the current layer. Note that this formulation allows the hidden dimension
to change among layers. In our method, we will denote the weight matrix for the i-th teacher layer as
Wt

i and for the j-th student layer as Ws
j .

For STRIDE, we are interested in the collection of intermediate feature representations from both
the teacher and student networks. Let us define the teacher network T and the student network S as
having Tl and Sl layers, respectively. We collect the pre-activation feature maps from each layer.

Let Ti ∈ Rn×dt
i be the pre-activation output of the i-th layer of the teacher network, where n is the

number of nodes and dti is the feature dimension of that specific layer. Similarly, let Sj ∈ Rn×ds
j

be the pre-activation output of the j-th layer of the student network with output dimension dsj . Our
goal is to distill knowledge from the set of teacher representations {Ti}Tl

i=1 to the set of student
representations {Sj}Sl

j=1.

2.2 STRIDE MECHANISM

2.2.1 ATTENTION SCORES

The first step of STRIDE is to generate the attention matrix α ∈ RTl×Sl . An element αij represents
an “importance” score for the layer pair consisting of teacher layer i and student layer j. We take
the average of the feature maps along the node dimension to compute a mean node feature for every
layer in both the teacher and student networks. We call these tensors Ta ∈ RTl×dt and Sa ∈ RSl×ds .
Then, we pass each layer in Ta through its own linear layer to create Tp ∈ RTl×da , where da is the
embedding dimension of STRIDE. Similarly, we create Sp ∈ RSl×da . We can finally generate α in
the following manner:
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α = softmax

(
TpS

T
p√

da

)
(3)

The softmax is applied row-wise on the matrix product, such that for each teacher layer i, the sum of
its attention scores across all student layers j is equal to 1. This normalizes the importance scores
from the perspective of a single teacher layer.

2.2.2 EMBEDDING DISSIMILARITY SCORES

The next step is to compute a pairwise embedding dissimilarity score for each teacher-student layer
pair. Again, we project the features into da. For calculating the attention scores, we average over the
node dimension before projecting, as our goal was to identify important layers. When calculating
the pairwise embedding dissimilarity, we want to incorporate the per-node embeddings. So, we
use a separate set of projection matrices. We use Pt ∈ Rdt×da and Ps ∈ Rds×da to represent the
projections. However, distance metrics are less semantically valuable if da is high. To alleviate this
problem, we define a trainable matrix P ∈ Rda×da to project all vectors into the subspace defined by
the column space of P. Since the rank of P can be less than da, distance metrics within the learned
subspace can be more semantically valuable.

The final step is to average over the embedding dimension and then produce the embedding dissimi-
larity matrix Demb ∈ RTl×Sl . Its elements give the dissimilarity scores for each teacher-student layer
pair. To calculate the embedding dissimilarity, we experiment with Euclidean and cosine distance,
but Euclidean distance generally tends to perform better. The embedding dissimilarity score for a
layer pair (i, j) is a scalar obtained by aggregating the per-node differences. It can be represented as:

(Demb)ij =
1

n

n∑
v=1

∥∥∥(Ti[v, :]P
(i)
t − Sj [v, :]P

(j)
s

)
P
∥∥∥2
2

(4)

Here, Ti[v, :] ∈ R1×dt
i and Sj [v, :] ∈ R1×ds

j are the feature vectors for node v in teacher layer i
and student layer j, respectively. P(i)

t ∈ Rdt
i×da and P

(j)
s ∈ Rds

j×da are the layer-specific trainable
projections. The aggregation is performed by averaging the squared Euclidean distance over all n
nodes.

2.2.3 STRUCTURAL DISSIMILARITY SCORES

Before calculating the loss, the final step is to compute a pairwise structural dissimilarity for each
teacher-student layer pair. As usual, we first project teacher and student features to da via a trainable
linear projection. We use Et ∈ Rdt×da and Es ∈ Rds×da to represent these trainable projections.
After projecting to da to find the structural dissimilarity, we simply use the G-CRD loss Joshi et al.
(2022). We can also use other structure-aligning losses, such as LSP or GSP, but experimentally
we find that using G-CRD produces the best results. We use the G-CRD loss to find the structural
dissimilarity for every teacher-student layer pair to produce the structural dissimilarity matrix Dstr ∈
RTl×Sl . The structural dissimilarity score for a layer pair (i, j) can be represented as:

(Dstr)ij = ϕ(TiEt,SjEs) (5)

where ϕ represents the structure-aligning loss of G-CRD.

Specifically, for each layer pair (i, j), we adapt the G-CRD framework to create a contrastive loss.
For a given anchor node v, its positive sample is its representation from the other network at the
aligned layer (e.g., T_i for an anchor from S_j), and negative samples are representations of other
nodes from the same layer and network. The loss for a single layer pair is then the average of the
contrastive loss over all nodes.

2.2.4 FINAL LOSS CALCULATION

To produce the final loss value, we first compute a total dissimilarity matrix M = Dstr +Demb. We
then multiply element-wise with the attention matrix α and take the mean to produce a single number
that represents the STRIDE distillation loss, LSTRIDE .

LSTRIDE =
1

TlSl

Tl∑
i=1

Sl∑
j=1

αijMij (6)
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The final loss is calculated as L = H(sp, y) + βLSTRIDE where H(sp, y) is the standard cross-
entropy loss between the student’s predictions and the ground truth labels. There is one important
theorem to consider that proves LSTRIDE distills valuable knowledge from the teacher network to
the student network.

Theorem 1 (STRIDE Cross-Layer Gradient Dependence) Let the STRIDE distillation loss be
LSTRIDE , which is a function of the set of all teacher weight matrices {Wt

i}
Tl
i=1 and student weight

matrices {Ws
j}

Sl
j=1. The gradient of the loss with respect to any student layer’s weight matrix, Ws

j ,
is functionally dependent on every teacher layer’s weight matrix, Wt

i . Formally:
∂LSTRIDE

∂Ws
j

= f({Wt
k}

Tl

k=1, {W
s
l }

Sl

l=1) ∀i ∈ [1, Tl], ∀j ∈ [1, Sl] (7)

This holds even for teacher layers i that are deeper than the student layer j (i.e., i > j).

Intuitive Proof The full proof involves a detailed expansion of the partial derivatives and is provided
in the Appendix. The core intuition, however, is straightforward and relies on the chain rule through
the attention mechanism.

1. The total STRIDE loss is a sum of losses for each teacher-student layer pair (i, j), weighted
by an attention score αij . The loss for a single pair is Lij = αij ·Mij , where Mij is the
dissimilarity score.

2. Crucially, the attention score αij is a function of the outputs of teacher layer i (denoted
Ti) and student layer j (denoted Sj).

αij ∝ g(Ti,Sj) (8)

3. The output of any teacher layer, Ti, is a function of its weights, Ti = ft(W
t
1, . . . ,W

t
i).

Likewise, the student’s output Sj is a function of its weights, Sj = fs(W
s
1, . . . ,W

s
j).

4. Therefore, when calculating the weight update for Ws
j via the gradient ∂LSTRIDE

∂Ws
j

, the chain
rule must backpropagate through αij . Since αij directly depends on the teacher’s output Ti,
the gradient flowing to the student weight Ws

j will necessarily contain terms involving the
teacher’s weight Wt

i .

This structure creates a computational graph where the teacher’s weights from every layer influence
the gradient of every student layer, thus proving the cross-layer dependency.

Main Takeaway Theorem 1 provides the theoretical justification for our core claim: STRIDE
enables a richer, more comprehensive knowledge transfer than prior methods. The key insight is that
our attention mechanism creates direct gradient pathways from all teacher layers to all student
layers. This means a shallow student layer (e.g., layer 1) can receive immediate supervisory signals
not just from the teacher’s first layer, but also from its deepest layers (e.g., layer 5). This allows the
student to learn how to represent complex, higher-order neighborhood information—a task usually
reserved for deeper layers—much earlier in its own architecture. This ability to distill the teacher’s
entire representational hierarchy into a more compact student model is what leads to the significant
gains in accuracy and generalization that we observe in our experiments.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETUP
For our main experiments, we test STRIDE on two difficult datasets: OGBN-Mag and OGBN-Arxiv
Hu et al. (2020); Wang et al. (2020). These datasets utilize temporal splitting to create validation
and test sets that assess a model’s ability to generalize to out-of-distribution data. For OGBN-Mag,
we run experiments using RGCN Schlichtkrull et al. (2018) as the teacher and student models, and
for OGBN-Arxiv, we run experiments using GAT Veličković et al. (2018) as the teacher model and
GraphSAGE Hamilton et al. (2017) as the student model. This allows us to evaluate the effectiveness
of STRIDE for different GNN architectures. It also allows us to assess if STRIDE can distill
information between different types of GNN architectures. To further assess generalization, we
also evaluate on smaller datasets, including Cora Mccallum et al. (2000), Citeseer Sen et al. (2008),
Pubmed Namata et al. (2012), and NELL Carlson et al. (2010). In our experiments, we keep the
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teacher model architecture and weights fixed and only modify the size of the student network. Each
distillation method starts from the same set of weights and trains for the same number of epochs
across 5 runs. For our baselines, we consider LSP Yang et al. (2020), GSP Joshi et al. (2022),
G-CRD Joshi et al. (2022), Fitnets Romero et al. (2015), and Attention Transfer (AT) Zagoruyko &
Komodakis (2017), which are most closely related to STRIDE. We run all experiments on a Tesla
V100 GPU.

3.2 EXPERIMENTAL RESULTS

3.2.1 OUT-OF-DISTRIBUTION EVALUATION

As shown in Table 1 and Figure 2, STRIDE consistently outperforms state-of-the-art across various
compression ratios on OGBN-Mag and OGBN-Arxiv. Notably, it achieves gains of 2.13% and 1.70%
at 32.3× and 16.1× compression, respectively. Since these benchmarks target out-of-distribution
generalization, the results demonstrate STRIDE’s ability to produce student models with superior
generalization compared to existing KD methods.

Dataset OGBN-Mag OGBN-Arxiv
Teacher RGCN (3L-512H-5.5M) GAT (3L-750H-1.4M)
Student RGCN (2L-32H-170K) GraphSAGE (2L-256H-87K)
Teacher 49.80 74.20
Student 44.23± 0.47 70.87± 0.58
Fitnets 44.87± 0.84 71.32± 0.32

AT 43.87± 0.67 71.04± 0.48
LSP 45.21± 0.54 71.47± 0.45
GSP 44.97± 0.58 71.97± 0.64

G-CRD 45.42± 0.43 71.87± 0.56
STRIDE 47.55± 0.28 73.67± 0.49

Ratio 32.3× 16.1×

Table 1: Average accuracies for a variety of large
datasets. The results are based on the average of five
trials, with each distillation method applied to the same
set of student weights. The notation aL-bH-cM in the
second and third rows means the model has “a” layers,
a hidden dimension of “b”, and “c” million trainable
parameters.

Figure 2: A comparison of KD methods applied to
student models of different sizes trained on the OGBN-
Mag dataset. The teacher model was the same as the one
described in Table 1. The student model was a two-layer
RGCN, and we varied the embedding dimension from
16 to 512 to induce this Pareto frontier.

3.2.2 ALIGNING INTERMEDIATE EMBEDDINGS IN STRIDE

Figure 3: Attention and Dissimilarity maps before and after
training with STRIDE. Cooler colors refer to lower scores
and warmer colors correspond to higher scores.

To empirically prove that STRIDE
aligns intermediate embeddings based
on the attention matrix, we visualize
the before and after training attention
and dissimilarity maps in Figure 3.
We train on OGBN-Mag and use a
deeper teacher network of 5 layers and
a hidden dimension of 512. The stu-
dent network has 3 layers and a hid-
den dimension of 32. Our results show
that dissimilarity scores are low where
the attention scores are high and vice
versa. This is in line with the intu-
ition presented earlier in the STRIDE
mechanism.

Deep GNNs: We also test STRIDE on
deep GNN architectures (e.g., GCNII
Chen et al. (2020)). We test on Cora
Mccallum et al. (2000), Citeseer Sen
et al. (2008), Pubmed Namata et al. (2012), and NELL Carlson et al. (2010). Table 2 shows that
STRIDE can distill these deep GCNIIs into shallower GCNIIs with higher accuracy compared to
other distillation methods. At 27× compression, STRIDE achieves a 3.5% accuracy improvement.
Even at a 141× compression ratio, STRIDE matches the original teacher model’s accuracy.
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Dataset Cora Citeseer Pubmed NELL
Teacher GCNII (64L-64H) GCNII (64L-64H) GCNII (64L-64H) GCNII (64L-64H)
Student GCNII (4L-4H) GCNII (4L-4H) GCNII (4L-4H) GCNII (4L-4H)
Teacher 88.40 77.33 89.78 95.55
Student 73.87± 0.42 68.32± 0.45 87.87± 0.45 85.00± 0.65

LSP 75.07± 0.55 70.23± 0.32 88.07± 0.45 85.15± 0.47
GSP 78.22± 0.31 69.50± 0.67 89.19± 0.55 86.32± 0.45

G-CRD 83.45± 0.45 71.07± 0.41 89.66± 0.48 88.42± 0.53
STRIDE 84.27± 0.32 72.00± 0.30 89.89± 0.31 92.02± 0.64

# St. Params 5835 14910 2083 22686
Ratio 60.7× 33.5× 141.3× 27.7×

Table 2: Average accuracies for a variety of relatively smaller datasets. Each distillation method is
applied to the same set of student weights.

3.2.3 IMPROVED WEIGHT INITIALIZATION FOR HIGHLY COMPRESSED NETWORKS

We find that for smaller datasets, information from the teacher network is mainly distilled into
one layer of the student network, as shown in Figure 4. We hypothesize that smaller datasets lack
complexity, allowing a single layer to capture most patterns.

To test this hypothesis, we first apply STRIDE to a student network of arbitrary size and then generate
the attention map, α ∈ RTl×Sl . The next step is to use a row-wise argmax and find the student layer
that has the most information distilled down to it. For example, in Figure 4, the selected layer for Cora
would be the third student layer (index 2 in the Figure). We then instantiate a new one-layer network
and copy over the weights from the identified layer (as indicated by the attention map α ∈ RTl×Sl ).

Figure 4: Attention maps for Cora, Citeseer, and Pubmed. Each color in the
heatmap represents the importance score associated with that teacher-student
layer pair. Warmer colors mean higher importance scores. It id apparent that
most of the knowledge from the teacher layers is distilled into one student layer.

We then evaluate this new network on the test set and report the results in column 3 of Table 3. The
first column of Table 3 represents the accuracies that we obtain after we train the new one-layer
network for 1200 epochs; we compare this result to the accuracy obtained from training a one-layer
network from random initialization, which we report in the second column of Table 3.

3.3 ABLATION STUDIES

We conduct a series of ablation studies in this subsection to further validate the effectiveness of
STRIDE. Additional results and studies are provided in the Appendix.

3.3.1 BOOSTING PERFORMANCE BY ALIGNING BOTH STRUCTURE AND EMBEDDINGS

STRIDE is novel partly because it aligns both graph structure and node embeddings across teacher
and student networks. To demonstrate the advantage of aligning both structure and embeddings, we
compare STRIDE to variants that align only structure (S-STRIDE) or only embeddings (E-STRIDE).
Results in Table 4 show that aligning both structures and embeddings is better than aligning just one
of them.

3.3.2 IMPORTANCE OF ALIGNING INTERMEDIATE LAYERS

To prove that aligning intermediate layers is necessary for superior performance, we experiment with
a variant of STRIDE, which we call Modified STRIDE, where we set α ∈ RTl×Sl to all zeros, but
we set the bottom right value to 1. This indicates that we are only interested in the dissimilarity

8
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Dataset Initialized Random Init No Training

Cora 80.35 73.59 65.36
Citeseer 70.21 68.15 54.20
Pubmed 88.80 85.98 72.90

Table 3: Results for weight initialization experi-
ment. These are all one-layer networks.

Dataset OGBN-Mag OGBN-Arxiv

STRIDE 47.55± 0.28 73.67± 0.49
E-STRIDE 46.02± 0.48 71.32± 0.53
S-STRIDE 45.82± 0.60 71.48± 0.57

Table 4: STRIDE vs. S-STRIDE vs E-
STRIDE. Teacher-student model configura-
tions are in Table 1.

between the last layer node embeddings of the teacher and student models. The results in Table 5
prove that we gain accuracy by considering the outputs of intermediate layers for both teacher and
student models. In this experiment, we start from the same set of initialized weights for both the
STRIDE and modified STRIDE approaches.

3.3.3 IMPROVEMENTS DUE TO SUBSPACE PROJECTION

In Section 2, we introduced the concept of subspace projection as a way to alleviate issues caused by
high-dimensional embedding spaces. While it is not needed for STRIDE to work, as Table 6 shows,
it improves the results as the learned subspace projection matrix tends to be of lower rank than the
embedding dimension. This indicates that we can project our feature maps into subspaces smaller
than Rda , which increases the semantic value of the dissimilarity scores.

Dataset OGBN-Mag OGBN-Arxiv

Student 44.46± 0.54 71.27± 0.48
Modified STRIDE 46.75± 0.58 71.76± 0.52

STRIDE 47.58± 0.31 73.59± 0.45

Table 5: Comparing the modified STRIDE that only
considers aligning the last layer node embeddings
with STRIDE that considers intermediate layer node
embeddings. Teacher/student model configurations
are in Table 1.

Dataset Subspace Projection No Projection

Cora 84.29± 0.28 83.78± 0.35
Citeseer 72.05± 0.35 71.34± 0.41
Pubmed 89.88± 0.43 88.76± 0.53

NELL 91.95± 0.58 91.02± 0.63
OGBN-Mag 47.54± 0.32 46.75± 0.44

OGBN-Arxiv 73.58± 0.50 73.00± 0.53

Table 6: Subspace projection impact. Teacher and stu-
dent networks are the same as the ones in Tables 1 and 2.

3.3.4 NECESSITY OF A LINEAR LAYER FOR EACH HIDDEN LAYER

In our approach, we mentioned that each hidden teacher and student layer is assigned a linear layer
for projection into da. This is because each layer represents its own k-hop neighborhood, and using
just one linear layer would prove inadequate in capturing the full spectrum of essential semantic
information contained within each layer. We run an experiment in which we use only one linear layer
for the teacher and student projections. As Table 7 demonstrates, there is an accuracy drop compared
to the situation where we use individual linear layers for the projection.

4 CONCLUSION

Dataset Multiple Linear Layers One Linear Layer

Cora 84.29± 0.28 76.32± 0.81
Citeseer 72.05± 0.35 69.00± 1.07
Pubmed 89.88± 0.43 87.85± 0.84

NELL 91.95± 0.58 85.67± 0.72
OGBN-Mag 47.54± 0.32 45.02± 0.67

OGBN-Arxiv 73.58± 0.50 70.98± 0.79

Table 7: Linear layer per hidden layer effect. The
teacher and student networks are the same as the
ones described in Tables 1 and 2.

The ever-growing size and complexity of GNNs
pose problems such as increased computational
complexity, memory usage, storage require-
ments, over-smoothing, and over-squashing,
which complicate their practical deployment for
various applications such as real-time recom-
mendation systems, spam detection, and rapid
image retrieval. To address this difficulty, we
propose an innovative solution known as Struc-
ture and Embedding Distillation with Attention
(STRIDE). STRIDE employs an attention-based
feature linking mechanism to identify important
intermediate teacher-student layer pairs and focuses on aligning the node embeddings and graph
structure of those pairs. This KD approach broadly outperforms existing KD approaches for GNNs
over a wide variety of compression settings. It also works with both deep and shallow networks,
and shows robust performance with different GNN architectures. On average, we achieve a 2.13%
increase in accuracy with a 32.3× compression ratio on OGBN-Mag, a large graph dataset, com-
pared to state-of-the-art approaches. On smaller datasets (e.g., Pubmed), STRIDE achieves a 141×
compression ratio with higher accuracy compared to the state-of-the-art methods.

9
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A APPENDIX

A.1 LATENCY INCREASE BY NUMBER OF PARAMETERS

Figure 5 demonstrates how increasing the number of model parameters directly impacts inference
latency. To visualize this trend, we plot the inference latency of a standard GCN model as we scale
up its parameter count (e.g., by enlarging the embedding dimension) on the Flickr dataset. The
figure reveals that as the model becomes more expressive and parameter-heavy, inference time rises
substantially.

Figure 5: Inference latency of a standard GCN model architecture by increasing the number of parameters (e.g.,
embedding dimension) on the Flickr dataset. All tests were run on a Tesla V100 GPU with a batch size of 1.

A.2 DATASET AND TEACHER NETWORK INFORMATION

Table 8 provides specifications of the datasets used in our experiments.

# of Nodes # of Edges # of Features # of Classes
Cora 2,708 10,556 1,433 7

Citeseer 3,327 9,104 3,703 6
Pubmed 19,717 88,648 500 3
NELL 65,755 251,550 61,278 186
Flickr 89,250 899,756 500 7

OGBN-Mag 1,939,743 21,111,007 128 349
OGBN-Arxiv 169,343 1,166,243 128 40

Table 8: Specification of evaluated datasets.

A.3 ABLATION STUDIES ON HYPERPARAMETERS

Two main hyperparameters need to be tuned when training STRIDE: the loss coefficient, β, and the
STRIDE embedding dimension, da. We present the test accuracies across various values for β and
da in Tables 9 and 10. These results show that a relatively lower β and a higher da tend to produce
slightly better results. For all of our experiments, we used a β of 10 and a da of 256 for this reason.

A.4 EUCLIDEAN VS. COSINE DISTANCE

In Section 2, we mention that we use the Euclidean distance metric instead of the cosine distance
metric to generate the dissimilarity matrix, M . We present the results of this ablation in Table 11.
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Dataset β = 1 β = 10 β = 20 β = 50

Cora 86.92 84.71 86.19 85.64
Citeseer 73.20 74.33 71.82 69.82
Pubmed 89.03 89.97 88.32 88.56

NELL 90.86 88.73 90.14 91.32

Table 9: Ablation results for β.

Dataset da = 64 da = 128 da = 256 da = 512

Cora 87.45 87.11 86.92 86.37
Citeseer 72.07 72.52 73.12 74.62
Pubmed 89.58 89.58 89.33 89.12

NELL 89.73 90.12 90.73 91.14

Table 10: Ablation results for da.

Cosine distance, which only considers the direction of vectors and not their magnitude, may disregard
critical information contained in the magnitude of hidden representations. We hypothesize that
preserving this information, as done by Euclidean distance, is important to its superior performance
observed in our experiments.

Dataset Euclidean Distance Cosine Distance

Cora 87.33 82.81
Citeseer 73.43 70.98
Pubmed 89.58 87.32

NELL 91.24 85.66

Table 11: Test accuracies when using Euclidean vs. cosine distance for computing dissimilarity
matrix M .

A.5 DETAILS OF THE THEOREM AND THE PROOF

Theorem 1 (STRIDE Cross-Layer Gradient Dependence) Let

LSTRIDE = 1⊤Tℓ

(
α⊙M

)1Sℓ

Sℓ
, M = Demb +Dstr (6)

be the distillation loss defined in Eq.(6) of the main paper, where α ∈ RTℓ×Sℓ is the attention matrix
of Eq.(3) and M collects the pair-wise embedding and structural dissimilarities of Eqs.(4)–(5). For
every student layer j ∈ [1, Sℓ] the gradient of LSTRIDE with respect to the student weight matrix W s

j

depends on every teacher weight matrix W t
i (i = 1, . . . , Tℓ):

∂LSTRIDE

∂W s
j

= f
(
{W t

i }
Tℓ
i=1, {W

s
ℓ }

Sℓ

ℓ=1

)
∀ j.

Consequently, gradients flow from all teacher layers—even those deeper than the student layer
(i > j)—directly into W s

j .

Proof: For a single teacher–student layer pair (i, j) define

Lij := αij Mij , αij =
exp zij∑

i′,j′ exp zi′j′
, (A1)
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where the pre-soft-max score zij =
1
n1

⊤
nÂHt

i−1W
t
iW

pt
i︸ ︷︷ ︸

T p
i

(W ps
j )⊤(W s

j )
⊤(Hs

j−1)
⊤Â⊤1n/n is a scalar

obtained by taking the trace of the product of two length-n vectors (so dimensions always match).
Mij is the corresponding dissimilarity entry of M.

By the product rule
∂Lij

∂W s
j

= Mij
∂αij

∂W s
j

+ αij
∂Mij

∂W s
j

. (A2)

Because αij is a soft-max, ∂αij

∂zi′j
= αij(δii′ − αi′j). Applying the chain rule,

∂αij

∂W s
j

=

Tℓ∑
i′=1

∂αij

∂zi′j

∂zi′j
∂W s

j

=

Tℓ∑
i′=1

αij

(
δii′ − αi′j

)
(9)

[
(Hs

j−1)
⊤Â⊤ 1n

n

] [1⊤n
n T p

i′(W
ps
j )⊤

]
. (A3)

Each factor T p
i′ = ÂHt

i′−1W
t
i′W

pt
i′ contains the teacher weight matrix W t

i′ . Therefore ∂αij/∂W
s
j

depends on every W t
i′ . Both Demb,ij and Dstr,ij are functions of Ti and Sj ; their gradients w.r.t. W s

j

pass through Ti exactly once, so ∂Mij/∂W
s
j also carries W t

i .

The STRIDE loss is the average over all (i, j): LSTRIDE = 1
Sℓ

∑
i,j Lij . Summing Eq.(A2) over i

preserves the dependence on every teacher weight appearing in (A3). Hence ∂LSTRIDE/∂W
s
j is a

function of the whole set {W t
i }

Tℓ
i=1. Since the argument holds for any student layer j, the gradient for

every student layer jointly involves all teacher layers, completing the proof.

A.6 DETAILED RELATED WORK

KD for GNNs without Attention: KD for GNNs is a relatively niche field that has been expanded
recently. In LSP Yang et al. (2020), the authors attempt to align node embeddings between the
student and teacher networks by maximizing the similarity between embeddings that share edges.
Since only node embeddings between connected edges are aligned, this KD method preserves only
local topology. Joshi et. al Joshi et al. (2022) extend LSP and propose two different KD algorithms:
Global Structure Preserving Distillation (GSP) and Global Contrastive Representation Distillation
(G-CRD). GSP extends LSP by considering all pairwise similarities among node features, not just
pairwise similarities between nodes connected by edges. G-CRD implicitly preserves global topology
by aligning the student and teacher node feature vectors via contrastive learning Oord et al. (2018).
These works are examples of methods that focus on aligning structure as they use relationships
between different nodes to transfer knowledge from the teacher to the student.

Mustad Kim et al. (2021) distills a large teacher GNN into a one-layer student GNN by minimizing
a distance function between the student’s final node embeddings and the teacher’s final node em-
beddings. Some studies use adversarial training methods to distill knowledge from a teacher to a
student network. GraphAKD He et al. (2022) treats the student network as a generator and trains a
discriminator to distinguish between the final node embeddings of the student and teacher networks.
Online Adversarial Distillation (OAD) Wang et al. (2024) trains multiple student models and trains a
discriminator to distinguish between the outputs of different student models. More recent approaches,
such as T2-GNN Huo et al. (2023), KDGCL Wang & Yang (2024), and SA-MLP Chen et al. (2024a),
further advocate for utilizing embedding features of GNNs to improve KD in GNNs.

Adapting CNN-based KD Approaches to GNNs: There have been several KD approaches that have
been applied to CNNs that the GNN community has tried to adapt to GNNs, including Fitnets Romero
et al. (2015) and Attention Transfer (AT) Zagoruyko & Komodakis (2017). These methods both
compute a distance metric, such as mean-squared error between the last layer node embeddings of
the student and teacher networks, and do not take into account the adjacency matrix; therefore, these
approaches can all be categorized as aligning only embeddings. Using attention to find similarities
across student and teacher layers is a concept explored in CNNs Ji et al. (2021). However, the
ideas from this work cannot be applied to GNNs because the feature-comparison operations are not
applicable to graph data. GNNs need special consideration in this regard compared to CNNs due to
the non-spatial and unstructured form of graph data.
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KD for GNNs via Attention: Several works have constructed an attention mechanism for KD
in GNNs; however, these approaches focus on distilling knowledge from multiple teachers to a
single student. MSKD Zhang et al. (2022) uses an attention mechanism to assign weights to teacher
networks in proportion to how much knowledge they should transfer to student networks. MulDE
Wang et al. (2021) focuses on link prediction for knowledge graphs and uses a contrast attention
mechanism to weigh soft labels from different teachers.

It is important to note that the above works only consider the node embeddings at the final layer of the
teacher and student networks and aim to align them with one another in various ways. GeometricKD
Yang et al. (2022a) aligns all teacher and student node embeddings, but it constrains the student and
teacher networks to have the same number of layers to enforce a 1-1 correspondence between teacher
and student layers. It then proceeds to align teacher layer i with student layer i; this approach is
inflexible as it severely constrains the student architecture.

Table 12 summarizes the main features of closely related work and how they are different from
STRIDE. Unlike existing works, STRIDE aligns both structure and embeddings across all layers,
without requiring strict architectural matching between teacher and student. This enables a richer
transfer of hierarchical graph information and makes the approach applicable across diverse teacher-
student architectures.

Method Aligns Structure Aligns Embeddings Number of Layers Considered
GraphAKD × ✓ 1

G-CRD ✓ × 1
LSP ✓ × 1
GSP ✓ × 1

Fitnets × ✓ 1
AT × ✓ 1

STRIDE ✓ ✓ All
Table 12: Comparison of various KD approaches with STRIDE

A.7 SUMMARY OF NOTATIONS

In Section 2, we mathematically describe how STRIDE generates the attention matrix, α ∈ RTl×Sl ,
the structural dissimilarity matrix, Q, and the embedding dissimilarity matrix, D, which is then used
to calculate LSTRIDE . In Table 13, we provide a summary of all the mathematical notation used to
describe STRIDE.
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Symbol Meaning / Shape

Graph primitives
n Number of nodes in the input graph
A ∈ {0, 1}n×n Binary adjacency matrix
D = diag(d1, . . . , dn) Degree matrix (di =

∑
jAij)

Â = D−1/2AD−1/2 Symmetric normalised adjacency (Eq. 2)
1n ∈ Rn Vector of ones (all entries = 1)

Index sets and dimensions
Tℓ, Sℓ Number of layers in teacher / student networks
i ∈ {1, . . . , Tℓ} Teacher-layer index
j ∈ {1, . . . , Sℓ} Student-layer index
dt, ds Hidden dimension of a teacher / student layer
d
(i)
t , d

(j)
s Output dimension of teacher layer i / student layer j

dl Hidden dimension at generic layer l
da STRIDE latent dimension for projections / attention

Layer outputs and projections
H(l) ∈ Rn×dl Node-feature matrix at layer l
Ti = Ht

i ∈ Rn×dt Pre-activation output of teacher layer i
Sj = Hs

j ∈ Rn×ds Pre-activation output of student layer j
Tp

i = ÂHt
i−1W

t
i W

pt
i Projected teacher representation (Eq. 3)

Sp
j = ÂHs

j−1W
s
j W

ps
j Projected student representation (Eq. 3)

Tp
i , S

p
j ∈ Rda Mean-pooled projected representations

Trainable weight matrices

W t
i ∈ Rd

(i−1)
t ×d

(i)
t GNN weight matrix of teacher layer i

W s
j ∈ Rd

(j−1)
s ×d

(j)
s GNN weight matrix of student layer j

W pt
i ∈ Rdt×da Teacher projection for attention (layer i)

W ps
j ∈ Rds×da Student projection for attention (layer j)

Pt ∈ Rdt×da , Ps ∈ Rds×da Embedding dissimilarity projections
Et ∈ Rdt×da , Es ∈ Rds×da Structural dissimilarity projections
P ∈ Rda×da Shared low-rank sub-space projection (§3)

Attention and dissimilarity tensors
αij Attention score for teacher layer i↔ student layer j
α ∈ RTℓ×Sℓ Full attention matrix (Eq. 3)
zij Scalar pre-soft-max compatibility score for pair (i, j)
Demb

ij Pairwise embedding dissimilarity (Eq. 4)
Dstr

ij Pairwise structural dissimilarity (Eq. 5)
Demb, Dstr ∈ RTℓ×Sℓ Two dissimilarity matrices
Mij = Demb

ij +Dstr
ij Total dissimilarity for pair (i, j)

M = Demb +Dstr Total dissimilarity matrix

Losses, operators and hyper-parameters
Lij = αijMij STRIDE loss contribution of a single layer pair
LSTRIDE Global STRIDE distillation loss (Eq. 6)
H(·, ·) Cross-entropy loss (logit supervision)
σ(·) Element-wise activation function
ϕ(·, ·) G-CRD structural contrastive loss (Eq. 5)
⊙ Hadamard (element-wise) product
β Trade-off coefficient in the total loss (Eq. 7)

Table 13: Comprehensive notation used throughout the STRIDE paper. Bold uppercase symbols denote
matrices, bold lowercase symbols denote vectors, and plain symbols denote scalars unless stated otherwise.
Dimensions are provided where applicable.
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