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Abstract

Bayesian optimisation in the latent space of a
Variational AutoEncoder (VAE) is a powerful
framework for optimisation tasks over complex
structured domains, such as the space of scien-
tifically interesting molecules. However, exist-
ing approaches tightly couple the surrogate and
generative models, which can lead to suboptimal
performance when the latent space is not tailored
to specific tasks, which in turn has led to the pro-
posal of increasingly sophisticated algorithms. In
this work, we explore a new direction, instead
proposing a decoupled approach that trains a gen-
erative model and a Gaussian Process (GP) surro-
gate separately, then combines them via a simple
yet principled Bayesian update rule. This sep-
aration allows each component to focus on its
strengths— structure generation from the VAE
and predictive modelling by the GP. We show
that our decoupled approach improves our ability
to identify high-potential candidates in molecular
optimisation problems under constrained evalua-
tion budgets.

1. Introduction
First introduced by Gómez-Bombarelli et al. (2018),
Bayesian Optimisation (BO) over latent spaces has emerged
as a powerful technique for optimising over structures.
Rather than performing challenging combinatorial or high-
dimensional optimisation directly on discrete structures —
such as molecules or proteins — Latent Space BO (LSBO)
first maps inputs into a fixed-dimensional Euclidean latent
space, where standard surrogate models and gradient-based
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Figure 1. Unlike LSBO where GPs are fit in a VAE’s latent space,
COWBOYS’s GP is fit in structure space, decoupled from its VAE.
acquisition routines can be employed. Candidate points
selected by the optimiser are then decoded back into the
original structured domain to yield new query points.

Learning a complex mapping from variable-size structured
inputs to fixed-size Euclidean representations requires more
data than is typically gathered in LSBO itself. Therefore,
LSBO relies on embeddings pre-trained on a related task
with abundant unlabelled data (e.g., using a VAE latent
space trained on a large set of valid molecules). However,
it is well known (Chu et al., 2024) that fitting surrogates
in the latent space of a VAE can lead to suboptimal mod-
elling; therefore, the recent LSBO literature has focused on
introducing increasingly sophisticated heuristics to fine-tune
the VAE on newly acquired experimental data. These ap-
proaches remain challenged by the persistent risk of overfit-
ting when training neural network components of Bayesian
models on limited datasets (Ober et al., 2021). In this work,
we also make a new argument that the prevalent approach of
limiting the search to a fixed box subset of the latent space
— necessary to apply traditional BO methods — also limits
the effectiveness of LSBO.

While the VAE is designed purely as a generative model,
LSBO attempts to repurpose it for discrimination — a funda-
mental mismatch that gives rise to the pathologies discussed
above. We propose an alternative approach that preserves
the original motivation of the VAE as a generative model
by coupling it with a separately trained surrogate GP model
via a novel Bayesian formulation. Our primary goal is
straightforward: develop a sampling strategy that increas-
ingly favours structures with desirable objective values.

We propose Categorical Optimisation With Belief Of un-
derlYing Structure (COWBOYS), a novel principled frame-
work that unifies GPs and VAEs within a BO loop. Although
we focus on molecular search—the most popular applica-
tion of LSBO—where we demonstrate that COWBOYS
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excels under heavily constrained optimisation budgets, our
approach is general and applicable to any structured prob-
lem for which a suitable structural GP kernel can be defined
(see our discussion in Section 8).

2. Background
2.1. Bayesian Optimisation

Bayesian Optimisation (BO) (Mockus, 2005) is a powerful
framework for the efficient optimisation of costly black-box
functions f : X → R. For a successful application of
BO, we typically need three components: a search space, a
surrogate model, and an acquisition function. Given some
initial data, BO constructs a surrogate model of the data,
which is then used in tandem with an acquisition function
to determine which point in the search space will be most
valuable to acquire. Once this point is chosen, we query the
black-box function at this point and update the surrogate
model, repeating until the evaluation budget is exhausted.

Search spaces. In order for optimisation to succeed, the
space over which we attempt to find the optimal value must
be suitably restricted. For instance, when dealing with a
Euclidean space Rd, it is typical to restrict the search space
to a box region [−δ, δ]d, where δ is typically chosen using
some prior knowledge about the expected location of the
optimum (Hvarfner et al., 2022). In this example, choosing
too large a δ will lead to slow convergence due to the need
for more data so that the surrogate can be effective, whereas
too small a δ will risk missing the optimum. Later, we will
discuss how choosing appropriate search spaces is a key
bottleneck for LSBO and how COWBOYS addresses this.

Surrogate models. BO requires surrogate models that ac-
curately quantify uncertainty while retaining flexibility: as
such, Gaussian Processes (GPs) (Rasmussen, 2003) are a
standard choice. A GP can be defined as an infinite collec-
tion of random variables, any finite number of which are
Gaussian distributed, and is entirely defined by a mean func-
tion µ(·) and a kernel k(·, ·). Under a GP f ∼ GP(µ, k),
making a prediction f̂ at a test point x̂ amounts to condition-
ing on the observed data D : p(f̂ |D) = N (µ∗,Σ∗), where
µ̂ and Σ̂ can be computed in closed form via the properties
of Gaussians with O(N3) computational complexity and
O(N2) memory.

Acquisition functions. Acquisition functions measure the
utility of acquiring an unseen point x according to the pre-
dictions of our surrogate model. Common acquisition func-
tions measure the Expected Improvement (EI), Probability
of Improvement (PI) (Bergstra et al., 2011) or Upper Confi-
dence Bounds (UCB) (Auer, 2000) of candidate points, or
use information theoretical arguments (Hennig & Schuler,

2012; Moss et al., 2021), e.g.,

αPI(x;D) = P(f(x) > f∗|D), (1)

where f∗ is the best objective value observed so far.

Covariance (kernel) functions. In this work, where we
must build a surrogate model over the space of molecules,
we use the Tanimoto kernel (Tripp et al., 2023):

KT (m,m′) = σ2 m ·m′

∥m∥2 + ∥m′∥2 −m ·m′ ,

where m and m′ are molecular fingerprints representation
vectors of molecules and σ ∈ R+ is a tunable scaling factor.
We follow the advice of Tripp & Hernández-Lobato (2024)
and use count-based vectors that count specific molecular
features (Landrum, 2013). Structural kernels such as the
Tanimoto kernel, but also string kernels (Moss et al., 2020a)
and graph kernels (Kriege et al., 2020), can often outperform
deep learning alternatives, particularly in low- to medium-
data regimes (Moss & Griffiths, 2020; Griffiths et al., 2022).

2.2. Variational AutoEncoders

Variational AutoEncoders (VAEs) (Kingma & Welling,
2014; Rezende et al., 2014) are deep generative models
that model data through a two-step process: sampling a
latent variable z (with dimension smaller than X ) from a
prior p(z), followed by sampling x through a distribution
pθ(x|z), resulting in a generative model x ∼ pθ(x). The
latter of these steps is performed by a neural network, known
as the decoder, with parameters θ. The decoder outputs the
parameters of the conditional distribution pθ(x|z), for in-
stance the mean and variance of a normal distribution, or
class probabilities for a categorical distribution. In order to
train a VAE, we require the posterior pθ(z|x). However, as
this is intractable, we use a neural network encoder with
parameters ϕ to approximate it through amortised inference:
qϕ(z|x) = N (µ(x),σ2(z)I), where ϕ parameterises µ(·)
and σ2(·). The encoder and decoder are trained jointly
through a minibatch-friendly lower bound to the marginal
likelihood of the data.

3. The Pitfalls of Latent Space BO
In what follows, we assume that we have access to a pre-
trained VAE with a d-dimensional latent space Z = Rd,
resulting in a decoding distribution pθ(x|z), and imply a
data distribution pθ(x).

3.1. Latent Space BO

Latent Space BO (LSBO) (Gómez-Bombarelli et al., 2018)
can be viewed as standard BO conducted over an alternative
search space — the latent space Z of a VAE — and using
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Algorithm 1 Latent Space Bayesian Optimisation

Input: budget N , init size Ninit, search bounds δ
Clip search space Zδ ← [−δ, δ]d ⊂ Z
for n ∈ {1, .., N} do

if n < Ninit then ◁ initial design
zn ∼ SpaceFillingDesign(Zδ)

else ◁ sequential optimisation
zn ← argmaxz∈Zδ

α(z;DZ
n−1) ◁ e.g. Eq. (1)

end if
Decode chosen latent xn ∼ pθ(x|zn)
Evaluate new molecular structure yn ← f(xn)
Update dataset DZ

n ← DZ
n−1

⋃
{(zn, yn)}

Fit latent space GP on DZ
n

end for
return Believed optimum across {z1, ..,zn}

a different surrogate model, one modelling the mapping
g : Z → R from latent codes to objective function values
with a surrogate g̃. At the nth optimisation step, LSBO
proceeds analogously to standard BO. For example, under
the PI acquisition function, LSBO selects a new latent code
zn with highest utility

zn ← argmax
z∈Z

P(g̃(z) > f∗|DZ
n−1),

where the surrogate g̃ is trained on the dataset DZ
n−1 =

{(zi, yi)}n−1
i=1 of latent code-evaluation pairs. The result zn

is then decoded and the resulting structure is evaluated on
the objective function (see Algorithm 1).

We dedicate the remainder of this section to precisely state
the two primary pathological issues caused by this current
way of coupling VAEs and GPs in LSBO: i) fitting GPs in
VAE latent spaces can lead to poor surrogate models, and
ii) it is challenging to define a search space within the latent
space so that it reliably targets the most performant regions
of the decoder and so leads to the selection and generation of
high-quality and useful molecular structures (i.e., avoiding
chemically invalid or biologically irrelevant molecules).

3.2. LSBO Surrogate Models can be Poor Predictors

The premise behind the efficiency of BO is the ability to
build an effective surrogate model by exploiting the smooth-
ness of our objective f over the search spaceX . However, as
demonstrated by many (e.g., Griffiths & Hernández-Lobato,
2020; Moss et al., 2020a; Tripp et al., 2020), the mapping
g from the latent space to objective function values can be
significantly more challenging to learn with a GP than f .
Consequently, LSBO often ends up with a poor surrogate
model that under-represents variations, over-emphasises
sub-optimal areas of the space, and fails to extrapolate the
target property to not-yet-evaluated structures — a notion
typically referred to by the catch-all term “poor latent space

alignment,” generally attributed to two VAE properties:

1) The VAE is trained offline. Lack of alignment in LSBO
is typically attributed to the purely unsupervised training
of VAEs, which focuses solely on reconstructing the (unla-
belled) training data of the VAE. In particular, as the highly
expressive neural network underlying the VAE can distort
local neighbourhoods, any smoothness assumptions that mo-
tivate Bayesian optimisation in the original space X—for
instance, the continuity of a molecule’s performance un-
der small structural perturbations—are unlikely to transfer
to smoothness in the latent space of the VAE. The vast
majority of recent LSBO work (see Section 6) attempts to
fine-tune the VAE during optimisation to improve align-
ment for the current optimisation objective. However, such
approaches are plagued by the fundamental challenge of re-
liably fine-tuning neural networks on small datasets without
over-fitting behaviour. Indeed, as the VAE has a large num-
ber of hyperparameters from a Bayesian point of view (i.e.,
the parameters of the decoder), the VAE’s decoder is prone
to doing all the heavy lifting, which can lead to overfitting
analogous to that described for deep kernel learning in Ober
et al. (2021).

2) The VAE has a stochastic decoder. The second chal-
lenge for GP models in LSBO, one largely ignored until the
recent works of Chu et al. (2024); Lee et al. (2025), is the
stochasticity of the decoder. Since the decoder is stochas-
tic, a single latent code z can decode to multiple different
molecular structures x, and thereby a range of objective
function values (see Figure 2(a)). A standard GP can only
explain such discrepancies as additional observation noise
or by over-fitting, limiting the utility of predictions across
the rest of the space — a well-known problem that has moti-
vated substantial work on providing GP models that support
noisy inputs (e.g., McHutchon & Rasmussen, 2011; Qing
et al., 2023a).

In COWBOYS, we avoid alignment issues entirely by depart-
ing from using a GP in the latent space, instead only fitting
surrogate models directly in the data-space.

3.3. LSBO Search Spaces are not Uniform Boxes

The latent spaces of VAEs are unbounded, therefore LSBO
typically restricts the search to a pre-specified bounded re-
gion [−δ, δ]d ⊂ Z (see Algorithm 1). This simplification
serves two main purposes. First, limiting the search space
facilitates the use of established acquisition function op-
timisation methods. Second, by focusing on a central re-
gion hypothesized to be more well-behaved, one can limit
the presence so-called “dead regions” in the latent space:
areas known to yield unrealistic decodings (Griffiths &
Hernández-Lobato, 2020). However, for the VAEs typi-
cally considered in molecular design problems, we now
show that this intuition is entirely incorrect.
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(a) (b)

Figure 2. (a) In LSBO, the same latent input (blue dot) will, via the
stochastic decoder (grey box), map to different values in structure
space (black dots) and so corresponds to multiple objective func-
tion values (red dots) — a discrepancy that hinders the learning of
accurate surrogate models. (b) In higher-dimensional problems,
the area of the latent space supported by the prior of the VAE (blue)
concentrates in a thin circular shell.

“Dead areas” are regions in a generative model’s latent space
that lie far from the training data’s encodings—encodings
which themselves populate high-probability zones under
the prior. This concept is often referenced when manipulat-
ing latent vectors across a wide range of generative models
(White, 2016) (for VAEs and Generative Adversarial Net-
works (GANs)) and (Song et al., 2020a;b) (for diffusion-
based approaches). Outside of the LSBO setting, common
strategies for latent space manipulation draw on a classical
result which shows that most of a high-dimensional Gaus-
sian’s probability mass resides in a thin annulus rather than
near the centre:

Theorem 3.1 (Gaussian Annulus Theorem, Section 3.3.3 of
Vershynin (2018)). Nearly all of the probability mass of a
standardised Gaussian is concentrated in a thin annulus of
width O(1) at radius

√
d.

Although the Gaussian Annulus Theorem is well known in
machine learning—leading to “radius-preserving” methods
for latent value manipulation like spherical linear interpola-
tion (SLERP) (Shoemake, 1985) and sub-space extraction
(Bodin et al., 2024)—its implications pose a serious chal-
lenge to the practice of clipping the latent search space
in LSBO when considering VAEs with even just moder-
ate dimensionality. For example, the encoder of the 128-
dimensional VAE used for our second set of experiments
(Section 7.2) maps 95% a 5, 000 random subset of its train-
ing data to be within a 128-dimensional spherical shell of
thickness 0.06. Even advanced LSBO approaches, such as
adaptive centring of the search space (Maus et al., 2022a),
still rely on box-shaped regions, making it impossible to
target only this high-probability “shell” where the VAE en-
coder produces its most useful structures.

In COWBOYS we can avoid the need to define a search
space entirely, instead proposing a sampling-based strategy
rather than one requiring acquisition optimisation.

4. Return of the Latent Space COWBOYS
As in LSBO, COWBOYS relies on two probabilistic models:
the VAE x ∼ pθ(x) for generating likely valid molecules,
and a GP-based predictive distribution p(f(x)|DX

n ) for es-
timating objective values. However, rather than predicting
these values directly from latent codes—an often challeng-
ing task (see above) — we leverage GP’s proven effec-
tiveness in the original structured space using a dataset
DX

n−1 = {(xi, yi)}n−1
i=1 of structure-evaluation pairs and a

Tanimoto kernel (as introduced in Section 2.1).

We now summarise Categorical Optimisation With Belief
Of underlYing Structures (COWBOYSs), as Algorithm 2.
Notably it avoids any explicit reference to the latent spaceZ .
Despite its simplicity, COWBOYS’s formulation allows us
to exploit the power of the VAE whilst avoiding LSBO’s two
core challenges: (i) we do not fit models in the latent space
and (ii) we do not use the latent space as a search space. To
“focus” the generating distribution pθ(x) towards promising
regions during optimisation, we apply a Bayesian update
informed by the GP surrogate. The algorithm proceeds via
two main steps, described below for the nth iteration under
an initial design of size Ninit.

1. Initial design (n ≤ Ninit) To generate our initial design
of size Ninit we use the VAE exactly as it was designed,
i.e. by decoding Gaussian latent samples. Therefore
for n ∈ {1, ..., Ninit} we sample

xn ∼ pθ(x), (2)

resulting in an initial dataset of structure-evaluation
pairs over which we can initialise our GP model, with-
out the need to specify a clipped search space.

2. Optimisation steps (n > Ninit) After the initial de-
sign, COWBOYS refines its search by only sampling
molecules that the surrogate GP predicts will exceed
the best observed objective value so far. More con-
cretely,

xn ∼ pθ(x|fx > f∗, DX
n ), (3)

where fx|DX
n is a random variable following the GP’s

posterior predictive distribution for the objective value
at x, and f∗ denotes the highest observed objective
value so far.

To build intuition for COWBOYS, one might consider a
simple, though computationally prohibitive, approach via
rejection sampling: generate a large number of candidate
structures from the VAE and retain only those satisfying
fx > f∗|DX

n (under a realisation of fx|DX
n ).

Batch BO. Note that an arbitrary number of samples can be
drawn in parallel from (3), making COWBOYS well-suited
for the large-batch evaluations often tackled in Bayesian
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Algorithm 2 COWBOYS

Input: Budget N , init size Ninit
for n ∈ {1, .., N} do

if n < Ninit then ◁ initial design
xn ∼ pθ(x) ◁ vanilla VAE

else ◁ sequential optimisation
f∗ ← maxi=1,..,n−1 yi
xn ∼ pθ(x|fx > f∗, DX

n−1)◁ GP-conditioned VAE
end if
Evaluate new structure yn ← f(xn)
Update dataset DX

n ← DX
n−1

⋃
{(xn, yn)}

Fit structured space GP on DX
n

end for
return Believed optimum across {x1, . . . ,xn}

optimisation (Vakili et al., 2021) and active learning (Ober
et al., 2025).

5. Practical Sampling for COWBOYS
Although the GP-conditioned VAE is a conceptually ap-
pealing way to focus on increasingly narrower, relevant
proportions of molecular space, sampling from (3) remains
non-trivial. Indeed, the naive rejection sampler that uses
the VAE pθ(x) as a proposal becomes prohibitively ineffi-
cient once the region of the search space likely to satisfy
fx > f∗

n narrows, which typically occurs in the early stages
of the optimisation process. Consequently, we recommend
leveraging more advanced sampling algorithms from the
computational statistics literature.

In the remainder of this section, we illustrate how a popular
Markov Chain Monte Carlo (Brooks et al., 2011, MCMC)
approach can be used to approximate COWBOYS. Specifi-
cally, we demonstrate that sampling from COWBOYS’ GP-
conditioned Variational AutoEncoder (VAE) can be refor-
mulated as sampling from a posterior distribution induced
by a Gaussian prior and a corresponding likelihood — a
well-established setting for which effective MCMC algo-
rithms already exist and can be readily applied.

5.1. COWBOYS ≈ Inference under a Gaussian Prior

Our practical implementation of COWBOYS approximates
the GP-conditioned VAE (3) as the posterior distributions
induced by a specific likelihood and a (potentially high-
dimensional) Gaussian prior. However, this approxima-
tion strategy requires a deterministic mapping from the la-
tent space to the structure space, rather than the stochastic
mapping provided by the VAE’s decoder. Consequently,
COWBOYS only ever considers the most likely decod-
ing of the latent variable, inducing a deterministic map-
ping between latent codes and structure given by hθ(z) =

argmaxx pθ(x|z). In other words, we approximate the
VAE’s decoder distribution with the delta function:

p̂θ(x|z) ≈ δ(x− hθ(z)),

i.e. a deterministic decoding strategy that selects only the
most-likely decoded molecule from each latent location z.

Note that we are not the first to replace the VAE’s probabilis-
tic decoding with the most-likely mapping (e.g., González-
Duque et al. (2024)). Removing this source of variation
can, at the risk of reducing the diversity of candidate sam-
ples, mitigate the alignment issues discussed in Section 3.2.
In our experiments, however, we found that COWBOYS
did not suffer empirically from this reduced variation (see
Appendix B). We also stress that the VAE is still initially
trained with a stochastic decoder, and that it is only when
performing BO that we take the most likely mapping.

Once we have defined the mapping hθ : Z → X , each
latent variable z ∈ Z now defines a corresponding
structure x ∈ X . Consequently, rather than sampling a
new structure directly, we can reframe the sampling task in
(3) as sampling a new latent value z from an appropriate
distribution and then mapping z through hθ to obtain
the new structure. Specifically, under the deterministic
approximation of the decoder distribution, sampling x
from (3) is equivalent to the following two step procedure:

z ∼ p(z|gθ,z > f∗, DX
n ) (4)

x = hθ(z),

where gθ,z|DX
n is the random variable following the GP

posterior predictive distribution for the objective value at
the decoded structure x = hθ(z), i.e., gθ,z = f(hθ(z)).

By decomposing (4) via Bayes’ rule as

p(z|gθ,z > f∗, DX
n ) ∝ p

(
gθ,z > f∗ | DX

n

)
× p(z), (5)

we can now see that (4) corresponds to sampling from the
posterior distribution induced by the VAE’s Gaussian prior
p(z) and a likelihood p

(
gθ,z > f∗ | DX

n

)
, which resembles

the PI acquisition function (and so can be calculated easily
in closed-form under the GP). Hence, our approximation
of COWBOYS reduces to a classical form for which many
well-established sampling methods are available.

5.2. Preconditioned Crank-Nicolson MCMC

For our experiments, we sample from (4) using a modifi-
cation of the Preconditioned Crank-Nicolson (PCN) algo-
rithm (Cotter et al., 2013). PCN is well-suited to sampling
from medium- to high-dimensional Gaussian priors, as it
concentrates on the annulus of high-prior probability (as
discussed in Section 3.3) rather than attempting to explore
the entire parameter space. This contrasts with more con-
ventional Markov Chain Monte-Carlo (MCMC) algorithms
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(e.g., random-walk methods), which rapidly deteriorate in ef-
fectiveness as dimensionality increases (Hairer et al., 2014)
— an observation closely aligned with our critique of existing
LSBO strategies.

Exact details of our implementation of PCN are provided in
Appendix A. Note that, in order to leverage parallel hard-
ware, we introduced a minor alteration that transforms PCN
into a non-reversible MCMC algorithm, thereby forfeiting
the rigorous sample quality guarantees derived by the com-
putational statistics community. However, in the context of
COWBOYS, where our ultimate goal is Bayesian optimisa-
tion, our empirical findings suggest that producing a set of
approximate samples is sufficient.

5.3. Computational Complexity

We now analyse the computational overhead incurred by
COWBOYS and standard LSBO in non-batch setting. Ig-
noring the shared computational cost of fitting GP surrogate
models, the nth step of a COWBOYS algorithm using PCN
with C MCMC chains and S MCMC steps has complexity
O(CS(N2 + V )), corresponding to the need to make a GP
prediction O(N2) (assuming a cached Gram matrix inverse)
and VAE decoding ( at cost V ) for each point considered
by PCN. In contrast, standard LSBO incurs O(AN2 + V ),
where A are the number of evaluations required to max-
imise its acquisition function. We set up our experiments
via choices of C and S so that GP costs are equivalent
(C × S ≈ A). We stress that although COWBOYS re-
quires more VAE evaluations than standard LSBO, advanced
LSBO approaches that fine-tune the VAE on incoming data
also require large numbers of additional VAE evaluations.

6. Baselines & Related Works
Improving “alignment”. The primary recent focus of the
LSBO literature has been on allowing VAEs to be fine-
tuned during optimisation, encouraging the alignment of
latent spaces with respect to the optimisation objective, with
Eissman et al. (2018), Tripp et al. (2020), Moriconi et al.
(2020), Grosnit et al. (2021), Maus et al. (2022a), and Chen
et al. (2024) proposing methods for fine-tuning the latent
space mappings — using additional supervised neural net-
works, re-weighted losses, or performing joint inference
over the surrogate model/mapping. Most recently, Lee et al.
(2023) fine-tune VAEs with the explicit goal of ensuring
the optimisation objective is smooth (in a Lipschitz sense)
across the latent space — an approach extended further in
Chu et al. (2024) to also address the additional alignment
issue arising from stochasticity in the VAE’s decoder. Here,
LSBO is recast as an inverse problem, where they use opti-
misation identify the latent codes most likely to decode to
any suggested structures before fitting surrogate models.

Encouraging valid decodings. Custom VAE decoders have
been proposed that can ensure the satisfaction of string-
based (Kusner et al., 2017) or graph-based constraints (Jin
et al., 2018). Alternatively, the suggestion of valid structures,
can be encouraged by using an additional model that predicts
the validity of proposed structures to help triage the query
points suggested by BO (Griffiths & Hernández-Lobato,
2020) or by avoiding areas of the latent space where the
decoder’s epistemic uncertainty is high (Notin et al., 2021).

Additional improvements for LSBO. Extensions support
high-dimensional latent spaces (Maus et al., 2022a), multi-
objective (Stanton et al., 2022) and batch optimisation
(Maus et al., 2022b), as well as a method to include structure-
level knowledge into the surrogate model alongside latent
representations (Deshwal & Doppa, 2021). Recent work of
(Ramchandran et al., 2025) proposed the use of GP VAEs
that allows the inclusion of auxiliary variables to help learn
useful latent spaces.

7. Results
We compare the performance of COWBOYS over multiple
VAES, against 24 unique algorithms, and on 16 open-source
benchmark problems for molecular design. Our experiments
replicate the exact experimental setups of Chu et al. (2024),
González-Duque et al. (2024), and Maus et al. (2024); re-
sults are shown in Figure 3, Table 1, and Figure 4, respec-
tively. See (Brown et al., 2019) for the scientific motivation
and clear practical details behind these benchmarks.

General details. Our code is integrated into the bench-
marking suite of González-Duque et al. (2024) and is avail-
able at https://github.com/henrymoss/ROTLSC. We build
on BoTorch (Balandat et al., 2020), GPyTorch (Gard-
ner et al., 2018), and lastly GAUCHE (Griffiths et al., 2024)
for its Tanimoto and molecule utilities, adopting all default
settings for model optimisation and kernel hyperparame-
ters. Baseline methods are drawn from their respective
open-source implementations. For COWBOYS’s MCMC-
based sampling strategy (our modified PCN, described in
Appendix A), we run 100 MCMC steps over a single chain
when the batch size is one (B = 1), and 50 chains when
B > 5. This matches the 5, 000 acquisition function evalua-
tion budget typically used by TURBO (Eriksson et al., 2019),
a key component of all other high-performance LSBO rou-
tines. Appendix B examines COWBOYS’ robustness to
these MCMC settings and highlights the combined impact
of its two primary components by applying COWBOYS-
style sampling but with a latent-space GP model.

7.1. Comparison with State of the Art LSBO Methods

Baselines. Following Chu et al. (2024), we consider LOL-
BO (Maus et al., 2022a), CoBO (Lee et al., 2024), W-LBO
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(a) Osimertinib MPO (b) Median Molecules 2

(c) Amlodipine MPO (d) Perindopril MPO

(e) Ranolazine MPO (f) Zaleplon MPO

Figure 3. Average performance (± standard error) of COWBOYS
over 10 runs on problems considered by (Chu et al., 2024). COW-
BOYS achieves a substantial improvement in sample efficiency
over all existing LSBO methods (including those able to fine-tune
VAEs to incoming data) in this low data regime, with only the
recently proposed InvBO sometimes matching its performance.
We stress that COWBOYS does not fine-tune its VAE during opti-
misation, rather just uses it more efficiently.

(Tripp et al., 2020), InvBO (Chu et al., 2024), and PG-LBO
(Chen et al., 2024), all of which require fine-tuning the VAE
during optimisation. We also evaluate the standard LSBO
method (Algorithm 1) and its trust region variant TURBO-
L (Eriksson et al., 2019). As a reference point, we include
Graph-GA (Jensen, 2019), a BO-free baseline that uses a
widely adopted graph-based genetic algorithm. For a more
detailed discussion of these baselines, see Chu et al. (2024).
Note that we used a pre-trained VAE provided via direct
correspondence from the authors of (Maus et al., 2022a), as
the one provided in their open-source implementation was
not sufficient to recreate their results.

Results. As shown in Figure 3, COWBOYS achieves
marked improvements in sample efficiency over existing
LSBO methods in the low-data regime, outperforming even
those permitted to fine-tune their VAE. We replicate the
experimental setup from Maus et al. (2022a;b); Lee et al.
(2024); Chu et al. (2024), focusing on lower-budget prob-
lems (COWBOYS cannot currently handle evaluation bud-
gets of 80,000 due to a current lack of availability of scal-
able GP models for discrete data; see Section 8). Across
six tasks introduced by Brown et al. (2019), we run 100
BO steps with a batch size B = 5, starting from 100 rep-
resentative molecules as defined by Lee et al. (2024), a
scenario designed to mimic real-world lead optimisation.
These experiments employ the SELFIES VAE of Maus et al.
(2022a), which encodes and decodes molecules into a 256-
dimensional latent space using six transformer layers (see
Maus et al., 2022a, for details).

7.2. High-dimensional BO Benchmark

Baselines. Following the setup in González-Duque et al.
(2024), we compare COWBOYS to three categories of meth-
ods: (i) non-BO evolutionary optimisers applied to the VAE
latent space: hill-climbing, CMAES, and a Genetic Algo-
rithm (GA), (ii) high-dimensional BO methods also operat-
ing in the VAE latent space: RandomLineBO (Kirschner
et al., 2019) and TURBO (Eriksson et al., 2019), and (iii)
BO methods that optimise directly in the discrete (molecu-
lar) space: Bounce (Papenmeier et al., 2023) and ProbRep
(Daulton et al., 2022). For a more detailed discussion of
these baselines, see the online documentation in González-
Duque et al. (2024).

Results. Table 1 shows that COWBOYS consistently out-
performs all compared methods on the high-dimensional
discrete sequence optimisation tasks provided by González-
Duque et al. (2024), (based on the PMO benchmark of Gao
et al. (2022)). All algorithms start from an initial design of
10 molecules and run for 300 BO steps with a batch size of
B = 1. Because the original VAE used by González-Duque
et al. (2024) had relatively poor reconstruction accuracy,
we reran the entire benchmark (and all baselines) with an
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updated, more expressive, 128-dimensional fully-connected
VAE using the latest release of the benchmarking suite.

7.3. Comparison with Traditional LSBO

Baselines. In our final set of experiments, we restrict our
focus to methods that do not fine-tune their VAE. Specifi-
cally, we run COWBOYS and LSBO/TURBO-L with exact
Gaussian Processes for 100 steps of B = 20 evaluations, a
limit imposed by the computational demands of exact GP
inference. We also include scalable variants—EULBO EI
and EULBO KG (Maus et al., 2024), Vanilla BO (Hvarfner
et al., 2024), and IPA (Moss et al., 2022; 2023)—that rely on
Sparse Variational Gaussian Processes (SVGP) (Hensman
et al., 2013) to extend LSBO to 4,000 steps. This allows us
to examine whether significantly larger optimisation budgets
enable these methods to match COWBOYS’ performance.
Extending COWBOYS to accommodate large-budget opti-
misation is an intriguing avenue for future work (Section
8). Unlike above, here we used the exact pre-trained VAE
provided the open-source implementation of (Maus et al.,
2022a) for all approaches.

Results. As shown in Figure 4, COWBOYS achieves sub-
stantially better performance than other LSBO methods
that also do not fine-tune the VAE. Even when given a two
orders-of-magnitude increase in optimisation budget, these
baselines do not catch up to COWBOYS, highlighting the
value of our proposed method of combining VAEs and GPs
for Bayesian optimisation. These experiments replicate
those in Maus et al. (2024), who perform LSBO using the
latent space of a SELFIES VAE (see Section 7.1), focusing
on a subset of the molecular design benchmarks discussed
earlier.

8. Discussion and Limitations
COWBOYS leverages a simple Bayesian updating mecha-
nism that links separately trained VAEs and GPs through
a sampling strategy progressively biased toward promising
structures. Despite its simplicity, this sampling-based ap-
proach directly addresses LSBO’s two primary challenges.
First, COWBOYS does not model the objective in the VAE
latent space; instead, it retains the GP in the original, struc-
tured representation of the data, allowing the use of spe-
cialized kernels. Second, COWBOYS does not employ the
latent space for optimisation; instead, it naturally restricts its
focus to regions that are both plausible under the VAE prior
and potentially high-performing under the GP. We demon-
strate that COWBOYS offers a substantial boost in sample
efficiency on low-budget molecular design benchmarks.

Extensions into new application areas. By working in
the raw structure space, our approach naturally supports
specialized kernels tailored to particular domains—an area

(a) Osimertinib MPO (b) Fexofenadine MPO

(c) Median Molecules 1 (d) Median Molecules 2

Figure 4. Average performance (± standard error) over 20 repeti-
tions with an log-scaled x-axis, demonstrating that, among LSBO
methods that cannot fine-tune their latent space, COWBOYS pro-
vides significant improvemnt in efficiency.

where there is a rich, yet underused, literature. For instance,
the Tanimoto kernel, originally proposed by chemists, en-
codes prior knowledge of what sort of molecular attributes
are important in a way that can be especially powerful in
low-data regimes. Similar structural kernels exist for vari-
ous structured objects and, via COWBOYS, could now be
used for molecular graph optimisation with graph kernels
(Schraudolph et al., 2010), engineering design with 3d mesh
kernels (Perez et al., 2024), optimising computer code via
tree kernels (Beck et al., 2015), or protein design with new
protein kernels (Groth et al., 2024). By enabling the direct
use of such kernels, COWBOYS allows practitioners to in-
corporate a wealth of domain-specific prior knowledge. We
hope our work helps revitalize interest in harnessing these
powerful kernels across a range of complex design problems
and spurs further synergy between rich generative models
and carefully structured discriminative models.

Methodological extensions. Extending COWBOYS to the
important task of large-scale molecular optimisation raises
several exciting avenues for future research. First, we need
to develop methods for fitting sparse GPs to discrete molec-
ular data—an inherently more challenging task— where
inducing points are more difficult to optimise, perhaps by
applying techniques from Burt et al. (2019) or Chang et al.
(2022). Second, integrating COWBOYS with LSBO tech-
niques that fine-tune their VAEs during optimisation may
become essential for performance once experimental bud-
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Objective function COWBOYS HillClimbing CMAES GA RandomLineBO TURBO Bounce ProbRep
albuterol similarity 0.472±0.08 0.487±0.06 0.453±0.04 0.356±0.05 0.454±0.06 0.456±0.04 0.16 ± 0.01 0.21 ± 0.03
amlodipine mpo 0.477±0.04 0.449±0.02 0.458±0.02 0.440±0.01 0.453±0.02 0.444±0.02 0.00 ± 0.00 0.00 ± 0.00
celecoxib rediscovery 0.217±0.02 0.202±0.01 0.213±0.02 0.202±0.01 0.204±0.01 0.202±0.01 0.02 ± 0.01 0.02 ± 0.00
deco hop 0.570±0.01 0.562±0.01 0.563±0.00 0.562±0.01 0.564±0.01 0.562±0.01 0.50 ± 0.00 0.51 ± 0.00
drd2 docking 0.342±0.17 0.097±0.09 0.087±0.09 0.076±0.10 0.346±0.37 0.170±0.10 0.01 ± 0.00 0.01 ± 0.00
fexofenadine mpo 0.682±0.02 0.644±0.04 0.652±0.05 0.578±0.06 0.669±0.03 0.632±0.06 0.13 ± 0.13 0.20 ± 0.08
gsk3 beta 0.368±0.03 0.252±0.05 0.321±0.11 0.241±0.04 0.170±0.05 0.302±0.05 0.09 ± 0.08 0.12 ± 0.02
isomer c7h8n2o2 1.000±0.00 0.788±0.19 0.872±0.07 0.812±0.10 0.864±0.15 0.880±0.07 0.11 ± 0.09 0.24 ± 0.11
isomer c9h10n2o2pf2cl 0.690±0.08 0.600±0.12 0.567±0.11 0.639±0.07 0.654±0.12 0.618±0.24 0.01 ± 0.01 0.06 ± 0.03
jnk3 0.138±0.05 0.122±0.04 0.136±0.02 0.130±0.04 0.126±0.04 0.092±0.03 0.05 ± 0.04 0.06 ± 0.01
median 1 0.198±0.02 0.162±0.01 0.187±0.03 0.137±0.02 0.174±0.03 0.154±0.04 0.03 ± 0.01 0.02 ± 0.00
median 2 0.162±0.01 0.146±0.01 0.149±0.01 0.145±0.01 0.145±0.01 0.145±0.01 0.01 ± 0.00 0.01 ± 0.00
mestranol similarity 0.384±0.01 0.348±0.02 0.362±0.02 0.266±0.03 0.353±0.01 0.378±0.07 0.01 ± 0.00 0.02 ± 0.00
osimetrinib mpo 0.722±0.03 0.718±0.02 0.711±0.05 0.707±0.04 0.714±0.03 0.711±0.03 0.30 ± 0.31 0.59 ± 0.04
perindopril mpo 0.382±0.04 0.326±0.11 0.335±0.11 0.334±0.12 0.337±0.11 0.362±0.06 0.00 ± 0.00 0.00 ± 0.00
ranolazine mpo 0.648±0.04 0.609±0.02 0.625±0.08 0.484±0.06 0.632±0.03 0.597±0.04 0.00 ± 0.00 0.11 ± 0.02
rdkit logp 10.678±0.99 11.383±6.12 14.474±7.41 9.307±1.67 19.484±5.92 9.691±0.71 3.12 ± 1.20 5.49 ± 3.01
rdkit qed 0.909±0.03 0.902±0.03 0.912±0.03 0.902±0.03 0.906±0.04 0.903±0.04 0.52 ± 0.09 0.60 ± 0.05
sa tdc 7.909±0.07 7.920±0.06 7.516±0.55 8.878±0.16 7.877±0.11 7.952±0.05 8.36 ± 0.46 8.59 ± 0.13
scaffold hop 0.435±0.01 0.427±0.01 0.430±0.01 0.427±0.01 0.427±0.01 0.429±0.01 0.34 ± 0.01 0.34 ± 0.00
sitagliptin mpo 0.259±0.07 0.151±0.13 0.237±0.12 0.154±0.09 0.233±0.12 0.163±0.12 0.00 ± 0.00 0.00 ± 0.00
thiothixene rediscovery 0.247±0.03 0.224±0.02 0.224±0.02 0.224±0.02 0.226±0.02 0.224±0.02 0.02 ± 0.01 0.03 ± 0.01
troglitazone rediscovery 0.205±0.02 0.187±0.02 0.203±0.03 0.187±0.02 0.188±0.02 0.195±0.01 0.02 ± 0.01 0.02 ± 0.00
valsartan smarts 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.000±0.00 0.00 ± 0.00 0.00 ± 0.00
zaleplon mpo 0.379±0.05 0.337±0.08 0.293±0.12 0.297±0.11 0.344±0.08 0.297±0.11 0.00 ± 0.00 0.00 ± 0.00

Table 1. Average performance (± s.d.) over 5 repetitions of COWBOYS on the discrete BO benchmarking suite of (González-Duque et al.,
2024). We stress best average scores achieved after 300 evaluations (dark) and scores within a single standard deviation of best (light).

gets grows and VAE adaptation becomes more feasible.
Finally, more sophisticated sampling algorithms could fur-
ther improve MCMC efficiency (as is important for control-
ling the cost of COWBOYS under expensive VAE archi-
tectures) or allow us to exploit the full stochastic nature of
the decoder, rather than restricting the search to the most
likely decoding. Also, note that the condition in 3 does
resemble the well-known Probability of Improvement (PI)
acquisition function. While PI is intuitive, it is known to
be suboptimal and can exhibit pathological behaviour and
so adapting more sophisticated acquisition schemes into a
COWBOYS framework is an exciting direction for future
research, e.g. light-weight information-theoretic schemes
for multi-fidelity (Moss et al., 2020b), multi-objective (Qing
et al., 2023b) and tackling more ambitious problems like
quantile optimisation (Picheny et al., 2022).
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A. COWBOYS’ sampler details
We now provide full details for our PCN MCMC sampler (Cotter et al., 2013) as Algorithms 3 and 4 which we use to get a
set of samples from COWBOYS sampling objective (4). Note that we keep track of the latent value that decoded to give the
best structure so far zbest and use this to start our chains. We also employ an adaptive choice of PCN’s scale parameter
β following Andrieu & Thoms (2008). Often, especially early in the optimisation before the region satisfying likely to
satisfy f(x) > f∗ narrows, our PCN sampler can return a larger number of samples than our desired batch size. In this
case, we select the B samples that achieve the highest expected utility under greedy maximisation of the batch Expected
Improvement (qEI) acquisition function provided in BoTorch (Balandat et al., 2020). If very large batches are required,
then a subset could be chosen using Thompson following Vakili et al. (2021). Although this subset selection strategy breaks
MCMC’s detailed balance, it ensures that we return a diverse, high-value subset of samples to COWBOYS – samples that
are likely to be approximate anyway due to relatively small number of MCMC iterations and lack of burn-in phase. Note
that in practical implementations, our PCN (Algorithm 4) is trivially parallelised by running all chains present in the outer
loop at once.

Algorithm 3 COWBOYS’ MCMC Sampler

Input: Batch size B, number chains C, number steps S, threshold f∗, starting latent codezbest
Zsamples ← PCN(C, S, f∗, zbest) ◁ Algorithm 4
while |Zsamples| < B do ◁ Keep sampling if needed
Zsamples ← Zsamples

⋃
PCN(C, S, f∗, zbest) ◁ Algorithm 4 again

end while
if |Zsamples| > B then

Zsamples ← argmaxZ⊆Zsamples

:|Z|=B

qEI(Z) ◁ choose B best according to batch utility

end if
return Zchosen

Algorithm 4 PCN

Input: number chains C, number steps S, best score so far f∗, starting latent codezbest
Zsamples ← ∅
for c ∈ {1, .., C} do
β ← 0.1 ◁ Initialise step size
zcurrent ← zbest ◁ Initialise new chain at best so far
for n ∈ {1, .., S} do ◁ Do MCMC step
zproposal ∼ Nd(

√
1− β2zcurrent, β

2Id) ◁ Sample from PCN proposal density

α← min

(
1,

p
(
gθ,zproposal>f∗|DX

n

)
×p(zproposal)

p
(
gθ,zcurrent>f∗|DX

n

)
×p(zcurrent)

)
◁ Calculate acceptance probability using prior and likelihood from (5)

u ∼ U [0, 1]
if α > u then ◁ Stochastic acceptance step

zcurrent ← zproposal
Zsamples ∪ {zcurrent} ◁ Store sample

end if
β ← β + 0.1(α− 0.243) ◁ Adaptive MCMC update

end for
end for
return Zsamples ◁ return all accepted samples
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Oracle
COWBOYS
10 chains
100 steps

COWBOYS
1 chains
100 steps

COWBOYS
10 chains
50 steps

COWBOYS
1 chains
50 steps

COWBOYS
1 chains
10 steps

COWBOYS
with Latent GP
10 chains
100 steps

albuterol similarity 0.454+/-0.06 0.472+/-0.08 0.450+/-0.06 0.435+/-0.05 0.464+/-0.07 0.459+/-0.09
amlodipine mpo 0.461+/-0.02 0.477+/-0.04 0.471+/-0.02 0.450+/-0.01 0.461+/-0.02 0.457+/-0.01
celecoxib rediscovery 0.264+/-0.04 0.217+/-0.02 0.240+/-0.03 0.224+/-0.02 0.240+/-0.04 0.202+/-0.00
deco hop 0.569+/-0.01 0.570+/-0.01 0.572+/-0.02 0.562+/-0.01 0.568+/-0.01 0.562+/-0.01
drd2 docking 0.214+/-0.23 0.342+/-0.17 0.325+/-0.17 0.217+/-0.21 0.266+/-0.08 0.241+/-0.26
fexofenadine mpo 0.671+/-0.02 0.682+/-0.02 0.681+/-0.02 0.677+/-0.01 0.698+/-0.02 0.674+/-0.03
gsk3 beta 0.410+/-0.02 0.368+/-0.03 0.358+/-0.06 0.354+/-0.10 0.322+/-0.05 0.290+/-0.03
isomer c7h8n2o2 0.934+/-0.05 1.000+/-0.00 0.889+/-0.06 0.976+/-0.05 0.921+/-0.06 0.880+/-0.07
isomer c9h10n2o2pf2cl 0.634+/-0.06 0.690+/-0.08 0.653+/-0.05 0.634+/-0.08 0.649+/-0.04 0.622+/-0.05
jnk3 0.138+/-0.01 0.138+/-0.05 0.124+/-0.02 0.146+/-0.02 0.144+/-0.01 0.134+/-0.03
median 1 0.211+/-0.02 0.198+/-0.02 0.218+/-0.02 0.198+/-0.03 0.175+/-0.02 0.170+/-0.03
median 2 0.156+/-0.01 0.162+/-0.01 0.150+/-0.01 0.155+/-0.01 0.158+/-0.01 0.145+/-0.01
mestranol similarity 0.423+/-0.04 0.384+/-0.01 0.458+/-0.05 0.380+/-0.03 0.388+/-0.03 0.362+/-0.04
osimetrinib mpo 0.749+/-0.02 0.722+/-0.03 0.731+/-0.01 0.733+/-0.02 0.754+/-0.02 0.721+/-0.02
perindopril mpo 0.390+/-0.03 0.382+/-0.04 0.388+/-0.03 0.376+/-0.04 0.399+/-0.03 0.357+/-0.06
ranolazine mpo 0.652+/-0.03 0.648+/-0.04 0.643+/-0.02 0.638+/-0.03 0.628+/-0.04 0.601+/-0.02
rdkit logp 9.733+/-0.96 10.678+/-0.99 10.508+/-0.57 10.690+/-0.69 9.517+/-0.53 9.406+/-1.34
rdkit qed 0.917+/-0.02 0.909+/-0.03 0.926+/-0.01 0.915+/-0.02 0.906+/-0.03 0.917+/-0.02
sa tdc 8.047+/-0.15 7.909+/-0.07 8.012+/-0.13 7.982+/-0.02 7.945+/-0.03 7.798+/-0.13
scaffold hop 0.451+/-0.02 0.435+/-0.01 0.441+/-0.02 0.444+/-0.02 0.440+/-0.01 0.427+/-0.01
sitagliptin mpo 0.388+/-0.05 0.259+/-0.07 0.277+/-0.06 0.246+/-0.03 0.247+/-0.06 0.276+/-0.09
thiothixene rediscovery 0.243+/-0.02 0.247+/-0.03 0.244+/-0.02 0.238+/-0.01 0.247+/-0.02 0.225+/-0.01
troglitazone rediscovery 0.197+/-0.01 0.205+/-0.02 0.208+/-0.02 0.214+/-0.02 0.203+/-0.02 0.192+/-0.01
valsartan smarts 0.000+/-0.00 0.000+/-0.00 0.000+/-0.00 0.000+/-0.00 0.000+/-0.00 0.000+/-0.00
zaleplon mpo 0.382+/-0.03 0.379+/-0.05 0.396+/-0.01 0.346+/-0.05 0.357+/-0.04 0.340+/-0.07

Table 2. Average performance (± s.d.) over 5 repetitions of COWBOYS on the discrete BO benchmarking suite of (González-Duque et al.,
2024). We stress best average scores achieved after 300 evaluations (dark) and scores within a single standard deviation of best (light). All
runs of COWBOYS achieve roughly comparable results except the two on the far right, i.e, using too few MCMC chains/iterations or
modifying COWBOYS to use a latent space GP, respectively.

B. COWBOYS’ Ablation Study
Table 2 examines COWBOYS’ robustness to different configurations of its PCN MCMC sampler across the benchmark
problems of González-Duque et al. (2024), demonstrating that COWBOYS is not sensitive to the number of MCMC chains
or the number of MCMC steps, unless they are set to be very small. Of course, no single parameter choice can yield
uniformly optimal performance across different objective functions, owing to varying degrees of model mismatch between
our GP and each specific problem objective and varying degrees of difficulty/locality of the optimisation problems. The final
column of the table highlights the combined impact of COWBOYS’ two primary components (its MCMC sampling, and
its modelling in structure space) by demonstrating that if we apply COWBOYS-style sampling but with a latent-space GP
model, we lose performance. More precisely, rather than fitting a Tanimoto GP in the structure space, we instead follow
an approach closer to LSBO, and fit a latent space GP, i.e., we replace the structured GP model f̂ (recall f̂(hθ(z))) with a
direct GP model g̃(z), but otherwise proceed as in COWBOYS.

In order to diagnose if our deterministic decoder approximation is limiting the flexibility of our proposed molecules, We
also ran the MCMC as described (to get a chosen z) but then sampled from the full stochastic decoder to get the chosen
molecule. This lead to a significant drop in performance for 10 of the 25 tasks (and returning statistically similar scores for
the other tasks), which we hypothesise is due to the fact that the resulting “sampled” molecules are now not the same as the
ones passed to the GP to see if the considered latent code will yield an improvement in score – i.e. we return to a problem
similar to that of the alignment issues that we discuss in Section 3.2.
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Finally, we also investigated the robustness of COWBOYS against degraded surrogate mode performance (to mimic settings
where it may be hard to propose a structure-space kernel). Here, we deliberately impaired the Tanimoto GP surrogate by
randomly swapping ones to zeros in molecular fingerprints with varying probabilities. This experiment corresponds to adding
significant input noise to the fingerprints by randomly removing the count of particular (hashed) molecular substructures.
Our findings indicated that COWBOYS maintains robust performance except under the most severe perturbations. In
summary, perturbing Tanimoto entries with probability 0.01, 0.1, and 0.5 lead to a statistically significant drop in the best
molecule found across 0, 3, and 8 tasks from the 25 molecular optimization tasks, respectively.
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