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ABSTRACT

Parameter-efficient fine-tuning (PEFT) is a highly effective approach for adapting
large pre-trained models to downstream tasks with minimal computational overhead.
At the core, PEFT methods freeze most parameters and only trains a small subset
(say < 0.1% of total parameters). Notably, different PEFT methods select different
subsets of parameters and result in varying performances. This variation prompts a
key question: how to adaptively select the most influential subset?
We formulate the subset selection as a multi-task problem: maximizing the per-
formance and minimizing the number of trainable parameters, which consists of
both discrete and continuous objectives. We leverage a series of transformations –
including ϵ-constraint method and second-order Taylor approximation – to arrive
at the classical 0-1 knapsack problem, which we solve via the lens of Pareto opti-
mality. Consequently, we propose AdaPEFT, an efficient and scalable algorithm
for PEFT that adapts to various tasks, in which our subset selection is consistent as
the training horizons and model sizes scale up over 50×.

1 INTRODUCTION

Fine-tuning is an important technique in deep learning, which adapts large pre-trained models to
new tasks quickly. At high level, there are two classes of fine-tuning methods: (I) fine-tune the
entire model (i.e. 100% of parameters are trainable), or (II) only update a small portion of the
model (e.g. 0.1%) and freeze the majority of parameters. The second class of methods is known as
parameter-efficient fine-tuning (PEFT), including examples such as LoRA Hu et al. (2022), prompt
tuning Lester et al. (2021), linear probing (or last-layer tuning), LayerNorm tuning Zhao et al., and
BitFit Zaken et al. (2022). In contrast to full-model fine-tuning (FMT), PEFT enjoys ≈ 50% speedup
and significantly reduced memory cost, e.g. LoRA uses 5× less memory than FMT on LLAMA2-7B
Li et al. (2024).

On the other hand, the performance of PEFT depends on the choice of methods, or the choice of
a subset of parameters. With a proper choice of trainable parameters, PEFT can be as performant
as FMT. For example, training RoBERTa-base on 8 datasets in the GLUE benchmark Wang et al.
(a), FMT gets an average accuracy 86.4%, LoRA gets 87.2%, and BitFit gets 85.2%(see Table 2 in
Hu et al. (2022)); training GPT3 on WikiSQL Zhong et al. (2017), FMT gets an accuracy 73.8%,
LoRA gets 73.4%, and BitFit gets 71.3% (see Table 4 in Hu et al. (2022)). However, the success
of these PEFT methods may not be reproduced in some tasks. For example, LoRA significantly
underperforms FMT on CoLA and MRPC datasets (see Table 1 of Wang et al. (2024b; b)); on coding
and mathematics domains, Biderman et al. (2024) shows that "LoRA substantially underperforms
full finetuning" in both instruction tuning and continued learning (≈ 20B tokens).

As a consequence, we study the following question:

Q: How to adaptively select parameter groups (or active subset of parameters) so that
the model achieves high utility while only has a small portion of trainable parameters?

To answer this question, we build on top of existing PEFT methods and formulate a multi-task
problem. More precisely, we minimize the loss as a bi-level objective where the upper-level objective
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is discrete and the low-level one is continuous, and we minimize the number of trainable parameters
as a purely discrete objective over the subsets:

min
A

(
LA := min

w(k)∈A
L(w(1), ...,w(K))

)
, min

A

(
|A|
|w|

:=

∑
k I(w(k) ∈ A) · |w(k)|∑

k |w(k)|

)
(1)

Here w := {w(1),w(2), ...,w(K)} is the set of all parameter groups in a model (inspired by existing
PEFT methods), i.e. |w| =

∑
k |w(k)|; L is the loss function; A is the active set of parameter groups

with |A| =
∑

k I(w(k) ∈ A)|w(k)|, e.g. A := {w(1),w(3)}. As shown in Table 1, each PEFT
method corresponds to some fixed subset A ⊆ w, and we recover the FMT when A = w.

Table 1: Summary of PEFT methods (row) and corresponding parameter groups (column). Here
‘lora_A/lora_B’ are low-rank matrices, ‘head’ is the last linear layer, ‘norm’ is layer normalization,
and ‘bias’ is bias terms. Y/N indicate whether a parameter group is active and trainable.

lora_A lora_B head norm bias
LoRA Y Y N N N

LoRA-FA N Y N N N
BitFit N N N N Y

Linear probing N N Y N N
LayerNorm N N N Y N

AdaPEFT (ours) adaptive

In contrast to applying a fixed A like existing PEFT, we enable the adaptivity of A in (1). However,
the two tasks in (1) may conflict with each other. For instance, the minimum number of trainable
parameters is 0 but then the model is not trainable at all, hence the loss is not minimized.

To resolve the conflict, we solve our multi-task problem in (1) under the Pareto optimality.

Definition 1.1. (Pareto optimality for PEFT). For two active sets A1 and A2, if LA1
≤ LA2

and
|A1| ≤ |A2| with at least one inequality being strict, then A1 dominates A2. Furthermore, an active
set is Pareto optimal if it is not dominated by any other sets.

Contribution.

• We formulate a multi-task problem with both discrete and continuous objectives, to adap-
tively select the active set of parameter groups for PEFT under the Pareto optimality.

• We transform our multi-task problem (optimized on both subsets and parameters) to a
classical single-task problem (optimized on binary variables) that is known as 0-1 knap-
sack problem. Specifically, our transformation leverages a series of methods including
ϵ-constraint method, gradient descent, and Taylor approximation.

• We propose efficient algorithms to compute the Hessian-informed loss reduction (without
extra back-propagation) and to solve the 0-1 knapsack problem.

• We observe consistent patterns indicating that influential parameter groups can be discovered
early in training, and such patterns can transfer across model sizes. These scaling patterns
serve as the basis for our adaptive PEFT (AdaPEFT; see Figure 1).

Related work. We briefly discuss some related work and extensively discuss them in Appendix E.
Broadly speaking, our multi-task framework can be formulated on all subset-based PEFT methods
and their combinations, because it is adaptive to model architectures and tasks. However, most
multi-task methods such as GradNorm Chen et al. (2018), MGDA Désidéri (2012); Sener & Koltun
(2018), and PCGrad Yu et al. (2020) cannot be applied directly since the subset optimization (1) is
discrete and the meta-minimization is bi-level. As a solution, we work on the 0-1 knapsack problem
by drawing on techniques from Bu & Xu (2024) to compute Hessian-informed loss reduction, and
employing a greedy approximation algorithm Martello & Toth (1990) to estimate the Pareto frontier.
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Figure 1: AdaPEFT framework. Left: Illustrated of Algorithm 2 on GPT2. Right: wall-clock time
(upper) and time complexity (lower) for fine-tuning GPT2-large on three methods (see details in
Appendix D). For AdapPEFT, part I refers to FMT with Algorithm 1 on GPT2-small for 10% of the
total traning horizon and part II refers to running the PEFT with our selected subsets.

2 PROBLEM FORMULATION

Table 2: Roadmap of transformations from multi-task optimization to 0-1 knapsack problem.

reference multi-task problems constrained bi-level transformation
(1) yes minimization on (subset, w) no yes – –
(2) no minimization on (subset, w) yes yes ϵ-constraint
(7) no minimization on (subset, η) yes yes gradient descent
(10) no maximization on subset yes no Taylor approximation
(11) no maximization on binary yes no knapsack problem

2.1 NOTATIONS

We denote w ∈ RD as all model parameters, while wt represents the iteration t and w(k) represents
the k-th parameter group. The same notation follows for other variables including the mini-batch
gradient g ∈ RD. We denote the loss as L(w), its first-order derivative as G(k) :=

∂L
∂w(k)

and its

second-order derivative as H(k) :=
∂2L

∂w2
(k)

. We omit t when it is obvious from the context.

2.2 MULTI-TASK OPTIMIZATION AND PARETO OPTIMALITY

In this section, we transform the multi-task problem to a single-task problem, which has a bi-level
objective and a constraint. We use the ϵ-constraint method as a scalarization technique, which chooses
one task to optimize and converts the remaining tasks into constraints. Thus, (1) leads to

min
A

LA s.t. |A|/|w| ≤ ϵ (2)

However, we emphasize that a solution to (2) is not necessarily Pareto optimal in terms of (1) (shown
in Theorem 2.1), unless we restrict ourselves to an unrealistic case where (2) has a unique solution.

Theorem 2.1. For any ϵ ≥ 0, a solution to (2) may not be Pareto optimal of (1). Nevertheless, if (2)
has only one solution, then the solution is Pareto optimal.

Proof. Suppose A⋆ is a solution to (2) but not Pareto optimal, then ∃A′ such that,

LA′ ≤ LA⋆ and |A′| ≤ |A⋆| (3)

with at least one strict inequality. Hence A′ is also in the feasible domain since |A′| ≤ |A⋆| ≤ ϵ|w|.
Now A⋆ being the minimizer of (2) gives LA⋆ ≤ LA′ . Hence, LA′ = LA⋆ , and the strict inequality
can only be |A′| < |A⋆|. If the solution of (2) is unique, contradiction; otherwise, A⋆ may not be
Pareto optimal.
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To guarantee the Pareto optimality when (2) has more than one solutions, we propose a refined solu-
tion in two steps: (I) exhaustively find all solutions of (2), denoted by the set argminA:|A|/|w|≤ϵLA;
(II) select one solution with the smallest number of trainable parameters. Mathematically, we select

A⋆(ϵ) = argminA

{
|A| : A ∈ argminA:|A|/|w|≤ϵLA

}
(4)

Theorem 2.2. For any ϵ ≥ 0, the refined solution to (2) (i.e. (4)) is always Pareto optimal of (1).

Proof. Similar to the proof of Theorem 2.1, if ∃A′ that dominates A⋆, then LA′ = LA⋆ and
|A′| < |A⋆|. Hence A′ belongs to the solution set, which contradicts that A⋆ has the smallest |A|
among all solutions.

Remark 2.3. Theorem 2.1 and Theorem 2.2 hold without requiring convexity. Note each ϵ yields one
A⋆(ϵ), hence one can sweep through 0 ≤ ϵ ≤ 1 to get different Pareto optimal solutions.

2.3 GRADIENT DESCENT FOR LOW-LEVEL MINIMIZATION

In this section, we transform the bi-level meta-minimization to a single-level problem, by providing a
closed-form approximation for the low-level minimization of (2), i.e. LA := minw(k)∈A L(w). This
is achieved by two steps: (I) translating the minimization over w ∈ RD to the minimization over
η ∈ R and (II) using the Hessian-informed solution to explicitly solve the minimization.

Algorithmically, the low-level minimization is solved iteratively via gradient descent, such as SGD
and Adam. For example, for 1 ≤ t ≤ T ,

w(k),t+1 = w(k),t − ηI(k)g(k),t := w(k),t − ηI(w(k) ∈ A)g(k),t (5)

in which the binary mask I(w(k) ∈ A) assigns 0 to frozen groups and 1 to active groups. Note (5)
recovers FMT: wt+1 = wt − ηgt since I(w(k) ∈ w) ≡ 1.

As a consequence, the gradient descent translates the high-dimensional parameter minimization
minw(k)∈A L(w) to an one-dimensional hyperparameter minη∈R L(wT ):

LA ≈ min
η
L(wT ) s.t. (5) (6)

Furthermore, the optimization problem minw L(w) is unconstrained, whereas the optimization
minη s.t. (5) L(wT (η)) is restricted to the gradient descent path {wt}t governed by the update rule
(5). We know minη s.t. (5) L(wT (η)) ≥ minw L(w), with the equality holding if and only if a global
minimizer of L lies on the path {wt}t.
To enjoy a closed-form approximation, we study the minimization from a local perspective (i.e. one
iteration at a time) where (6) is equivalent to

LA ≈
T−1∑
t=1

min
η

[L(wt+1; η)− L(wt)] s.t. (5) (7)

up to a constant L(w0). At each iteration, by only updating one parameter group (say A = {w(k)})
and freezing all the others, the loss reduction from this w(k) is

L(wt+1; η)− L(wt) ≈ ∆L(k),t(η) := −ηG⊤
(k),tg(k),t +

η2

2
g⊤
(k),tH(k),tg(k),t (8)

We note that the second-order Taylor approximation is reasonably accurate, since the approximation
error is o(η2) and hence negligible in practice (c.f. Figure 2 in Bu & Xu (2024)).

Therefore, if g⊤
(k)H(k)g(k) > 0, updating the k-th parameter group can minimize (8) to − (G⊤

(k)g(k))
2

g⊤
(k)

H(k)g(k)

under η =
G⊤

(k)g(k)

g⊤
(k)

H(k)g(k)
. Extending to multiple parameter groups, we write the total loss reduction as

LA ≈
∑
k,t

∆L(k),t = −
∑
k

I(w(k) ∈ A) ·
∑
t

(
G⊤

(k),tg(k),t

)2
g⊤
(k),tH(k),tg(k),t

(9)

which explicitly replaces the low-level minimization problem of (7).

4
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2.4 KNAPSACK PROBLEM

All in all, we transform the meta-minimization in (2) to a subset maximization problem in (10),

min
A

(
min

w(k)∈A
L(w)

)
≈ max

A

∑
k

I(w(k) ∈ A) ·
∑
t

(
G⊤

(k),tg(k),t

)2
g⊤
(k),tH(k),tg(k),t

s.t. |A|/|w| ≤ ϵ (10)

Finally, given that A is only reflected in the binary variable I(w(k) ∈ A), we can further simplify the
subset maximization in (10) to a binary maximization problem:

max
Ik∈{0,1}

∑
k

Ik ·
∑
t

(
G⊤

(k),tg(k),t

)2
g⊤
(k),tH(k),tg(k),t

s.t.
∑

k Ik|w(k)|∑
k |w(k)|

≤ ϵ (11)

Importantly, (11) is essentially the 0-1 knapsack problem in Definition 2.4, which is an NP-complete
combinatorial problem.
Definition 2.4. (0-1 knapsack problem). Given a set of items, each with a weight Wk and a value Vk,
the knapsack problem determines which items to include (whether Ik = 1) so that the total value is
maximized within the total weight limit Wlimit:

max
Ik∈{0,1}

∑
k

Vk × Ik s.t.
∑
k

Wk × Ik ≤Wlimit (12)

From the perspective of PEFT, we view each parameter group as an item, the parameter count

as weight Wk := |w(k)| and loss reduction as value Vk :=
∑

t
(G⊤

(k),tg(k),t)
2

g⊤
(k),t

H(k),tg(k),t
, under the limit

Wlimit := ϵ
∑

k |w(k)|.
With hindsight, (11) is equivalent to applying ϵ-constraint method to the following multi-task opti-
mization,

max
A

∑
k

I(w(k) ∈ A) ·
∑
t

(
G⊤

(k),tg(k),t

)2
g⊤
(k),tH(k),tg(k),t

, min
A

∑
k I(w(k) ∈ A) · |w(k)|∑

k |w(k)|
. (13)

3 ALGORITHMS

We discuss two classes of algorithms – one to efficiently compute the objectives of the knapsack
problem, and the other to actually solve the knapsack problem.

3.1 EFFICIENTLY COMPUTING LOSS REDUCTION WITHOUT BACK-PROPAGATION

We propose Algorithm 1 to efficiently compute the loss reduction, which requires the knowledge of
G⊤

(k)g(k) and g⊤
(k)H(k)g(k). We use two techniques, (I) quadratic curve fitting and (II) lazy updating.

Quadratic curve fitting. We fit the quadratic function (8) by using multiple forward passes at
different learning rates to get different ∆L(k)(η). Next, we directly find the two scalars G⊤

(k)g(k)

and g⊤
(k)H(k)g(k) via a finite-sum problem:

g⊤
(k)H(k)g(k),G

⊤
(k)g(k) ≈ argminA,b

∑
j

(
∆L(k)(η̂j) + η̂jb−

η̂2j
2
A

)2

where η̂j ∈ {−2η,−η, 0, η, 2η}. This back-propagation-free approach from Bu & Xu (2024) has
minimal memory overhead, as it does not instantiate G(k) or H(k).

Lazy updating. We need 4K + 1 forward passes, hence incurring O(K) training time overhead if
implemented naively. This overhead can be reduced significantly if the loss reduction is computed
infrequently, following Bu & Xu (2024). In practice, we update every O(K) iterations so that the
overhead is O(1) and roughly negligible.

5
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Algorithm 1 Hessian-informed loss reduction (iteration t)

1: Compute loss L0 = L(wt) by forward pass
2: Compute gradient g := {g(k)}k on L0 by SGD, AdamW, etc.
3: if t mod 4K == 0 then
4: for k ∈ 1, ...,K do
5: for η̂j ∈ {−2,−1, 1, 2} · ηt do
6: Compute Lj = L (wt − η̂jek ⊙ g) by forward pass
7: Fit a quadratic curve from {η̂j} → {Lj − L0}
8: Derive G⊤

(k),tg(k),t and g⊤
(k),tH(k),tg(k),t in (8)

9: if G⊤
(k),tg(k),t > 0,g⊤

(k),tH(k),tg(k),t > 0,R2 score > 0.99 then

10: Accumulate APPIk = APPIk +
|G⊤

(k),tg(k),t|2

g⊤
(k),t

H(k),tg(k),t·|w(k)|

11: Derive optimal learning rates η∗(k) =
G⊤

(k),tg(k),t

g⊤
(k),t

H(k),tg(k),t

12: Update the parameters: w(k),t+1 = w(k),t − η∗(k)g(k),t

3.2 SOLVING 0-1 KNAPSACK PROBLEM

Exhaustive search To obtain the Pareto optimal solution of (13), we need to exhaustively search
all 2K subsets and compute the value

∑
k I(w(k) ∈ A) · Vk and the weight

∑
k I(w(k) ∈ A) ·Wk

for each subset. Then we find all subsets with |A|/|w| ≤ ϵ and select the subset with the largest
value. This algorithm guarantees to find a Pareto optimal minimizer by Theorem 2.2, but it has an
exponential complexity in terms of K.

Approximate solutions In practice, we turn to approximate solutions like the greedy approximation
Martello & Toth (1990) to solve (11) instead of directly (13). We define the value-to-weight ratio as
Per-Parameter Influence (PPI) and its accumulation where

PPIk(t) =
(G⊤

(k),tg(k),t)
2

g⊤
(k),tH(k),tg(k),t · |w(k)|

, APPIk(τ) =
τ∑

t=1

PPIk(t) (14)

is computed by Algorithm 1.

Next, we (I) sort {w(k)}k by APPIk in descending order; (II) output K subsets {A1, ...AK}, with
the k-th subset containing the first k parameter groups.

As a result, we view Ak as the solution to (11) for any ϵ ∈
[
|Ak|
|w| ,

|Ak+1|
|w|

)
1, and as an approximately

Pareto optimal solution to (13). Rigorously speaking, by Theorem 2.1, Ak is not guaranteed to be
Pareto optimal, yet it provides empirical guidance for adaptive PEFT design later in Section 5.

4 VISUALIZATION OF PARAMETER GROUP INFLUENCE

In this section, we visualize PPI and APPI of (14) in training. We experiment with multiple tasks
(image classification, natural language understanding, and generation), model architectures (Vision
Transformer or ViT Dosovitskiy et al. (2020), T5 Raffel et al. (2020), RoBERTa Liu et al. (2019),
GPT Radford et al. (2019)) and model sizes (∼ 0.1 − 1B). We partition models into parameter
groups that are fine-tuned by LoRA (Hu et al. (2022); with module names lora_A and lora_B), BitFit
(Zaken et al. (2022); with name bias), linear probing (with name head), LayerNorm tuning (Zhao
et al.; with name norm), and embedding layer tuning (with name embed).

1Alternatively, we may use dynamic programming or meet-in-the-middle algorithm algorithm to solve (11)
exactly. However, each of these algorithms gives one minimizer of (11), which is not guaranteed to be Pareto
optimal in terms of (13) by Theorem 2.1, if the problem has multiple minimizers. Furthermore, to estimate
the Pareto frontier, these algorithms need to be applied multiple times, for different ϵ’s, whereas the greed
approximation is applied once as it is ϵ-independent.
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We generate two types of figures: (I) heatmap of PPI for different parameter groups at different
iterations, i.e. PPIk(t), where the lighter color indicates a stronger influence; (II) line plot of
accumulative PPI, i.e. APPIk(τ) ≈ L(w0)− L(wτ ). We leave more details in Appendix A.1.

We consistently observe that some parameter groups are highly influential, with ≈ 104× higher PPI
than the majority of model parameters. This observation supports the effectiveness of PEFT, only if
we actually select the influential parameters.

4.1 DISCREPANCY ACROSS MODELS AND TASKS

In Figure 2 and Figure 3, we observe that the influence of parameter groups varies significantly across
models and tasks. In summary, none of the methods is performant in all scenarios, which motivates
an adaptive PEFT design in Section 5.

Varying models and tasks In Figure 2, it is clear that PPI patterns are highly dependent on model
architectures (not sizes) and tasks, and we can leverage such patterns to shed light on the effectiveness
of new PEFT methods. In fact, it is no surprise that a combination of multiple PEFT methods can give
very strong performance. For example, the LoRA library Hu et al. (2022) states that “training bias
vectors in tandem with LoRA might be a cost-efficient way to squeeze out extra task performance".
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(b) E2E, GPT2-small, fine-
tuning
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(c) E2E, GPT2-medium,
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(e) ImageNet, ViT-base,
fine-tuning
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(f) MRPC, RoBERTa-base,
fine-tuning
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(g) SST2, RoBERTa-base,
fine-tuning
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(h) SST2, RoBERTa-base,
pre-training

Figure 2: Heatmap of PPI for multiple parameter groups in log-scale.

For example in image classification, on CIFAR100, ViT can be effectively trained with a combination
of LayerNorm tuning and linear probing, whereas on ImageNet, only LayerNorm tuning may be
sufficient. For example in language modeling, GPT2 on E2E can benefit from a combination of
LoRA, BitFit and LayerNorm tuning; RoBERTa-base can be effectively fine-tuned on MRPC and
SST2 by linear probing and BitFit, but it may freeze lora_A matrix (like in LoRA-FA Zhang et al.
(2023)). In what follows, we demonstrate that PPI can be different by varying only the model or only
the task (e.g. dataset or training stage).

Varying tasks with fixed model A closer look at Figure 2(g)(h), both training RoBERTa model
on SST2 dataset, reveals that PPI can be different at different training stages: lora_A matrix is less
influential in fine-tuning than in pre-training. Additionally, comparing Figure 2(a)(e) or comparing
Figure 2(f)(g) reveals that PPI can be different on the same model when the datasets change.

Varying models with fixed task In Figure 3, we compare PPI on T5 and RoBERTa models on the
same task. It is clear that different model architectures can have different patterns.
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Figure 3: Heatmap of PPI on CoLA in log-scale. Left to right: RoBERTa-base, RoBERTa-large,
T5-small, and T5-base.

4.2 CONSISTENCY ACROSS TRAINING ITERATIONS

We empirically observe a consistent pattern of PPI and APPI across iterations, shortly after the
initialization of models. See Figure 2 and Figure 3 for PPI, and Figure 4 for APPI. Such consistency
motivates an efficient strategy to design PEFT: train FMT for some iterations (say 10% of the full
run), determine PEFT based on APPI, then launch the full run with PEFT.
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Figure 4: Visualization of APPI. Left two on SST2: RoBERTa-base/large. Right three on E2E:
GPT2-small/medium/large.

4.3 CONSISTENCY ACROSS MODEL SIZES

Furthermore, we observe a roughly consistent pattern across model sizes for the same architecture
and task. We vary RoBERTa and T5 sizes in Figure 3, and GPT2 from small (124M) to large size
(0.8B) in Figure 2. We additionally vary ViT from tiny (5M) to large size (0.3B) in Figure 8 in
Appendix A. Such observation encourages us to train on small models and directly adopt the optimal
PEFT (i.e. the active set of parameter groups) for large models.

5 ADAPTIVE PEFT VIA ZERO-SHOT SUBSET TRANSFER

We propose the AdaPEFT framework to adaptively select the trainable parameter groups for PEFT.

Firstly, we demonstrate that selecting the active set via APPI is approximately Pareto optimal. In
Figure 5 (left column), the theoretical Pareto frontier formed by our selection (6 active sets) closely
matches that formed by all 26 = 64 active sets.
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Figure 5: Visualization of Pareto optimality on SST2. Left: theoretical loss reduction of RoBERTa-
base via APPI. Middle: actual loss and error of RoBERTa-base. Right: actual loss and error of
RoBERTa-large. Each PEFT is indexed in Table 3.
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Next, we compare our selection (5 active sets excluding FMT) with existing PEFT in terms of actual
train loss and test error. In Figure 5 (middle column), our actual Pareto frontier still closely matches
the frontier formed by all 10 methods, whereas some existing PEFT methods are far from the frontier,
indicating the potential failure of non-adaptive PEFT.

Having validated the (approximate) Pareto optimality of APPI selection, we now give AdaPEFT in
Algorithm 2, transferring the active set of parameter groups from {small models, short training} to
{large models, long training} in a zero-shot manner. Note that AdaPEFT can be implemented with
much flexibility, e.g. setting m =M or 10% → 100%.

Algorithm 2 AdaPEFT on model M for T iterations

1: Equip a smaller model m with PEFT components (e.g. LoRA and prefix).
2: Train m with Algorithm 1 under FMT, for 10% of T iterations.
3: Sort APPI to select influential parameter groups under |A|/|w| ≤ ϵ constraint
4: Train M under PEFT with selected A for T iterations.

We experiment with Algorithm 2 on RoBERTa and GPT2. We select the active sets from small
models – RoBERTa-base and GPT2-small, using 10% of the training budget, then directly transfer to
larger models – RoBERTa-large, GPT2-medium and GPT2-large. We list the active sets, number of
parameters and model utility in Table 3 and Table 4 (appendix), which are visualized in Figure 5 and
Figure 6.

Our key observation is that (I) the active sets selected by (small model, short horizon) consistently
give good Pareto frontier for (large models, long horizon), i.e. AdaPEFT is approximately Pareto
optimal and scalable; (II) AdaPEFT effectively evaluates PEFT configurations as strong (if an existing
PEFT is close to our Pareto frontier) or weak (if it is far away from the frontier).
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Figure 6: Visualization of Pareto optimality on E2E. Left: actual loss and error of GPT2-small.
Middle: actual loss and error of GPT2-medium. Right: actual loss and error of GPT2-large. Each
PEFT is indexed in Table 4.

6 DISCUSSION

We formulate the selection of active set in PEFT as a multi-task optimization problem, and transform
it to 0-1 knapsack problem that we solve under Pareto optimality. In particular, our objective in the
knapsack problem is Hessian-informed, which demonstrates that different parameters have different
influences on the model performance. Finally, we propose AdaPEFT to leverage such influence
pattern and select the active set for large model and long training with minimal budget. We note the
success of AdaPEFT depends on the grouping of parameters: a sub-optimal grouping strategy may
fail to lead to good performance even with AdaPEFT.
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APPENDIX

A EXPERIMENT DETAILS

Our experiments are run on A100 GPU, though our approach is independent to the choice of device.
Our experiments are three steps: (I) Visualizing the influence under FMT, trained with Algorithm 1
which is updated every 16 iterations (lazy updating); (II) Selecting influential parameter groups
to determine PEFT configurations; (III) Training PEFT with GeN AdamW Bu & Xu (2024) (lazy
updating frequence 8). For hyper-parameters not mentioned here, we follow Hu et al. (2022).

A.1 VISUALIZATION METHODOLOGY

Deep learning stochastic optimization is highly non-convex and may be unstable. In addition, the
curve fitting approach may occasionally have numerical errors. Therefore, we adopt some outlier
removal and smoothing tricks to give reproducible and clear patterns.

For each group k (i.e., a row), our input is a time series of PPIk(t) =
(G⊤

(k),tg(k),t)
2

g⊤
(k),t

H(k),tg(k),t·|w(k)|
.

For heatmaps and APPI plots, we remove outliers by Interquartile Range (IQR) method 2, smoothen
by exponential moving average. For heatmaps, we additionally divide each row by the first row (the
others, which is majority of parameters). Hence, the first row always stands for one unit of influence.
As shown below, our methodology is robust to random seeds in terms of ranking.
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Figure 7: Heatmap of PPI with RoBERTa-base on SST2 dataset from different random seeds.

A.2 NATURAL LANGUAGE UNDERSTANDING

For NLU tasks, we use batch size 128 and an initial learning rate 2e-5. For CoLA training with
RoBERTa, we use a total of 3 epochs. For the rest, we use total epochs of 10. The evaluation metric
is test accuracy.

A.3 GPT2

For GPT2, we experiment on the E2E dataset. For FMT with GeN AdamW, we use initial learning
rate 1e-4; for PEFT, it is 1e-3. The sequence length is 128, the total batch size is 256. The total
number of epochs for GPT2 (small, medium and large) is 5.

A.4 VIT CLASSIFICATION

We use ImageNet pre-trained ViT Dosovitskiy et al. (2020), which can be loaded from timm library.
We resize all images to 224x224 and normalize the pixel values to [-1,1]. We use initial learning rate
1e-4. We apply Algorithm 1 every 16 iterations.

2The outliers are removed by excluding values outside the range [Q1− 3 ∗ iqr,Q3 + 3 ∗ iqr], where the
interquartile range iqr is defined as the difference between the 25-th percentile Q1 and the 75-th percentile Q3
of the data, representing the spread of the central 50%.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Epochs

ot
he

rs
bi

as
no

rm
at

tn
he

ad

2

1

0

1

2

3

4

5

6

7

0 1 2 3 4 5
Epochs

ot
he

rs
bi

as
no

rm
at

tn
he

ad

2

1

0

1

2

3

4

5

6

7

0 1 2 3 4 5
Epochs

ot
he

rs
bi

as
no

rm
at

tn
he

ad

2

1

0

1

2

3

4

5

6

7

0 1 2 3 4 5
Epochs

ot
he

rs
bi

as
no

rm
at

tn
he

ad

2

1

0

1

2

3

4

5

6

7

Figure 8: Heatmap of PPI on CIFAR100. Left to right: ViT tiny, small, base and large.

B EXTENDED EXPERIMENTS

We extend Figure 5 below. Empirically speaking, our AdaPEFT Pareto frontier generated from 6
active sets matches closely the frontier generated from 26 = 64 active sets (all possible combinations)
throughout the training.
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Figure 9: Loss reduction in APPI (see (14)) at different iterations in training. SST2 with RoBERTa-
base. 5 epochs, 5270 iterations, logged every 16 iterations by lazy updating (5270/16 ≈ 320). Dark
blue color is due to overlapping.

Furthermore, we reproduce the success of AdaPEFT Pareto frontier on two different architectures,
two datasets, and various model sizes.
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(a) GPT2-small on E2E
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(b) GPT2-medium on E2E
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(c) GPT2-large on E2E
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(d) RoBERTa-base on SST2
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(e) RoBERTa-large on SST2

Figure 10: Loss reduction in APPI (see (14)) at the last iteration. Dark blue color is due to overlapping.
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C TABLES

Table 3: Performance of RoBERTa models on SST2. (Y)es indicates a parameter group is trainable.
(N)o indicates a group is frozen.

model codename others norm bias lora_A lora_B head accuracy % param
RoBERTa-base 1 N Y N N N N 91.55± 0.35 0.015

(ours) 2 N Y Y N N N 93.39± 0.37 0.098
3 N Y Y N Y N 93.58± 0.41 0.216
4 N Y Y N Y Y 94.07± 0.24 0.689
5 N Y Y Y Y Y 94.30± 0.18 0.807

FMT Y Y Y Y Y Y 93.73± 0.66 100
RoBERTa-base 7(BitFit) N N Y N N Y 93.92± 0.20 0.556

(heuristic) 8(LoRA) N N N Y Y Y 93.85± 0.07 0.709
9(LayerNorm) N Y N N N Y 92.74± 0.57 0.489

10(linear probing) N N N N N Y 85.24± 0.07 0.473
RoBERTa-large 1 N Y N N N N 94.34± 0.78 0.014

(ours) 2 N Y Y N N N 95.91± 0.13 0.091
3 N Y Y N Y N 95.80± 0.13 0.201
4 N Y Y N Y Y 95.83± 0.29 0.496
5 N Y Y Y Y Y 96.18± 0.18 0.606

FMT Y Y Y Y Y Y 95.80± 0.33 100
RoBERTa-large 7(BitFit) N N Y N N Y 95.80± 0.29 0.371

(heuristic) 8(LoRA) N N N Y Y Y 96.06± 0.26 0.516
9(LayerNorm) N Y N N N Y 95.07± 0.11 0.309

10(linear probing) N N N N N Y 87.61± 0.00 0.295

Table 4: Performance of GPT models on E2E. (Y)es indicates a parameter group is trainable. (N)o
indicates a group is frozen. We transfer the PEFT identified at ψ = 10 to larger models.

model codename others norm bias lora_A lora_B embed perplexity % param
GPT2-small 1 N Y N N N N 3.73± 0.04 0.031

(ours) 2 N Y N N Y N 3.58± 0.06 0.09
3 N Y Y N Y N 3.52± 0.03 0.157
4 N Y Y Y Y N 3.40± 0.01 0.216
5 N Y Y Y Y Y 3.19± 0.06 31.827

FMT Y Y Y Y Y Y 3.07± 0.00 100
GPT2-small 7(BitFit) N N Y N N N 3.76± 0.02 0.067
(heuristic) 8(LoRA) N N N Y Y N 3.49± 0.04 0.118

9(LoRA-FA) N N N Y Y N 3.88± 0.01 0.059
GPT2-medium 1 N Y N N N N 3.34± 0.03 0.028

(ours) 2 N Y N N Y N 3.28± 0.00 0.084
3 N Y Y N Y N 3.25± 0.01 0.146
4 N Y Y Y Y N 3.16± 0.01 0.201
5 N Y Y Y Y Y 3.03± 0.03 14.984

FMT Y Y Y Y Y Y 3.03± 0.02 100
GPT2-medium 7(BitFit) N N Y N N N 3.40± 0.03 0.062

(heuristic) 8(LoRA) N N N Y Y N 3.20± 0.01 0.111
9(LoRA-FA) N N N N Y N 3.36± 0.02 0.055

GPT2-large 1 N Y N N N N 3.25± 0.01 0.024
(ours) 2 N Y N N Y N 3.32± 0.02 0.072

3 N Y Y N Y N 3.28± 0.02 0.125
4 N Y Y Y Y N 3.19± 0.04 0.173
5 N Y Y Y Y Y 3.09± 0.11 8.645

FMT Y Y Y Y Y Y 2.99± 0.04 100
GPT2-large 7(BitFit) N N Y N N N 3.34± 0.03 0.054
(heuristic) 8(LoRA) N N N Y Y N 3.21± 0.01 0.095

9(LoRA-FA) N N N N Y N 3.39± 0.03 0.048

D COMPLEXITY ANALYSIS OF ADAPEFT

In this section, we analyze the computational costs and complexity of AdaPEFT in Algorithm 2. For
the memory cost, AdaPEFT has the same peak memory as a regular PEFT (e.g. LoRA). Specifically,
line 2 (and Algorithm 1) uses a back-propagation-free method to compute the Hessian-informed
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selection and the Hessian matrix is never calculated, hence it only adds extra forward passes and time
cost, but not the memory cost. We refer the interested readers to Section 4 in Bu & Xu (2024) for
details.

For the time cost, there are two parts in Algorithm 2: (I) Algorithm 1 in line 2 on small model and
short training, and (II) regular PEFT in line 4 on large model and long training. We argue that, for
GPT2-large fine-tuning in Figure 1, part I takes only ≈ 10% and part II takes 100% of the training
time of a heuristic PEFT, hence the total training time is ≈ 110%. To see this, we analyze the
time complexity of Algorithm 1 and compare to the full fine-tuning (FMT), which has two major
components: forward pass (F ) and back-propagation (B). A standard FMT costs F +B ≈ 6DN
Kaplan et al. (2020) where D is the data size (e.g. total number of pixels or tokens) and N is the
model size (GPT2-small is 124e6, GPT2-large is 774e6), and roughly B = 2F = 4DN . With lazy
updating in Section 3.1, running Algorithm 1 costs (1+ 4K

Φ )F +B, where Φ is the update frequency
for the learning rates. This roughly translates to (6 + 8K

Φ )DN . To give a quick estimate, when
K = 6,Φ = 8, Algorithm 1 is roughly 50% as fast as FMT. Hence, in terms of time complexity,

Algorithm 2 = Algorithm 1(small model+short training) + PEFT(large model+long training)

To be explicit, we analyze the GPT2-large fine-tuning with AdaPEFT. Expetiment settings are the
same as Table 4, and we choose the PEFT with codename 4, i.e. mixing LayerNorm tuning, LoRA
and BitFit.

FLOP-wise, part I takes (6+ 8∗6
8 )∗(2.7e7∗10%)∗124e6 = 7e14, and part II takes 4∗2.7e7∗774e6 =

8.4e16, where we have used the formula that PEFT costs 4DN due to not computing most of the
parameter gradients. That is, part I takes < 1% of total time complexity.

We also provide the wall-clock training time. This is different than the theoretical time complexity
because of hardware constraints and extra time needed for data loading. Notice that all experiments
use the same logical batch size 256 on a single A100 GPU. To maximize GPU memory usage while
avoiding out-of-memory during training, we use physical batch size 8 for FMT and 32 for PEFT of
fine-tuning GPT2-large and 64 for FMT on GPT2-small.

In summary, AdaPEFT is almost as efficient as regular PEFT.

E RELATED WORK

PEFT methods AdaPEFT can work compatibly with many PEFT methods, including those ex-
perimented in this work (LoRA and variants, linear probing, BitFit, and LayerNorm), those not
experimented (e.g. prompt tuning Lester et al. (2021), prefix tuning Li & Liang (2021), P-tuning Liu
et al. (2021), and adapter Houlsby et al. (2019); see Ding et al. (2023); Han et al. (2024); Wang et al.
(2024a); Prottasha et al. (2025) for a list of existing PEFT) and those yet-to-come. By taking more
PEFT methods into consideration, we allow a larger search space for A and expect better performance
from AdaPEFT, without noticeably increasing the computational cost if we scale the lazy updating
accordingly.

Notice that AdaPEFT is a subset selection method that relates closely to subset-based or architecture-
wise PEFT methods, and less closely to methods that improve the initialization, optimization and
efficiency, such as QLoRA Dettmers et al. (2023), OLoRA Büyükakyüz (2024), LOFTQ Li et al.
(2024) , PISSA Meng et al. (2024), LoRA+ Hayou et al. (2024), LoRA-GA Wang et al. (2024b),
LoRA-Pro Wang et al. (b). Nevertheless, AdaPEFT is compatible with these methods.

Multi-task optimization Our multi-task formulation in (1) and (13) is solved through ϵ-constraint
method. Another standard solution is the linear scalarization or weighted sum method Sener & Koltun
(2018); Xin et al. (2022); Kendall et al. (2018): minA LA + a |A|

|w| for some tunable a. Note ∀a > 0,
without assuming convexity of the objective, this solution is guaranteed to be Pareto optimal. There
are two potential challenges: (I) the scalarization problem is usually solved by gradient descent, but
our subset selection problem is discrete and non-differentiable; (II) because each a corresponds to
one point on Pareto frontier, we need to try a number of a, whereas the ϵ-constraint method only
needs one sorting. Nevertheless, there may be multi-task optimization methods that can be directly
applicable to our problems.
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Hessian-informed loss and learning rate We have leveraged Hessian information to formulate our
problems. Besides GeN Bu & Xu (2024), a line of work also proposed back-propagation-free ways
to compute Hessian-informed learning rate Fu & Wu (2024); Zhu et al. (2021), though the Hessian-
informed loss reduction was not presented. It is also possible to use second-order back-propagation
(such as Hessian-vector product or Hessian matrix instantiation) to compute the loss reduction we
needed. However, this approach will be infeasible unless on very small models.
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