
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ADAPTIVE PARAMETER-EFFICIENT FINE-TUNING VIA
MULTI-TASK OPTIMIZATION ON SUBSET SELECTION

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-efficient fine-tuning (PEFT) is a highly effective approach for adapting
large pre-trained models to downstream tasks with minimal computational overhead.
At the core, PEFT methods freeze most parameters and only trains a small subset
(say < 0.1% of total parameters). Notably, different PEFT methods select different
subsets of parameters and result in varying performances. This variation prompts a
key question: how to adaptively select the most influential subset?
We formulate the subset selection as a multi-task problem: maximizing the per-
formance and minimizing the number of trainable parameters, which consists of
both discrete and continuous objectives. We leverage a series of transformations –
including ϵ-constraint method and second-order Taylor approximation – to arrive
at the classical 0-1 knapsack problem, which we solve via the lens of Pareto opti-
mality. Consequently, we propose AdaPEFT, an efficient and scalable algorithm
for PEFT that adapts to various tasks, in which our subset selection is consistent as
the training horizons and model sizes scale up over 50×.

1 INTRODUCTION

Fine-tuning is an important technique in deep learning, which adapts large pre-trained models to
new tasks quickly. At high level, there are two classes of fine-tuning methods: (I) fine-tune the
entire model (i.e. 100% of parameters are trainable), or (II) only update a small portion of the
model (e.g. 0.1%) and freeze the majority of parameters. The second class of methods is known as
parameter-efficient fine-tuning (PEFT), including examples such as LoRA Hu et al. (2022), prompt
tuning Lester et al. (2021), linear probing (or last-layer tuning), LayerNorm tuning Zhao et al., and
BitFit Zaken et al. (2022). In contrast to full-model fine-tuning (FMT), PEFT enjoys ≈ 50% speedup
and significantly reduced memory cost, e.g. LoRA uses 5× less memory than FMT on LLAMA2-7B
Li et al. (2024).

On the other hand, the performance of PEFT depends on the choice of methods, or the choice of
a subset of parameters. With a proper choice of trainable parameters, PEFT can be as performant
as FMT. For example, training RoBERTa-base on 8 datasets in the GLUE benchmark Wang et al.
(a), FMT gets an average accuracy 86.4%, LoRA gets 87.2%, and BitFit gets 85.2%(see Table 2 in
Hu et al. (2022)); training GPT3 on WikiSQL Zhong et al. (2017), FMT gets an accuracy 73.8%,
LoRA gets 73.4%, and BitFit gets 71.3% (see Table 4 in Hu et al. (2022)). However, the success
of these PEFT methods may not be reproduced in some tasks. For example, LoRA significantly
underperforms FMT on CoLA and MRPC datasets (see Table 1 of Wang et al. (2024b; b)); on coding
and mathematics domains, Biderman et al. (2024) shows that "LoRA substantially underperforms
full finetuning" in both instruction tuning and continued learning (≈ 20B tokens).

As a consequence, we study the following question:

Q: How to adaptively select parameter groups (or active subset of parameters) so that
the model achieves high utility while only has a small portion of trainable parameters?

To answer this question, we build on top of existing PEFT methods and formulate a multi-task
problem. More precisely, we minimize the loss as a bi-level objective where the upper-level objective

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

is discrete and the low-level one is continuous, and we minimize the number of trainable parameters
as a purely discrete objective over the subsets:

min
A

(
LA := min

w(k)∈A
L(w(1), ...,w(K))

)
, min

A

(
|A|
|w|

:=

∑
k I(w(k) ∈ A) · |w(k)|∑

k |w(k)|

)
(1)

Here w := {w(1),w(2), ...,w(K)} is the set of all parameter groups in a model (inspired by existing
PEFT methods), i.e. |w| =

∑
k |w(k)|; L is the loss function; A is the active set of parameter groups

with |A| =
∑

k I(w(k) ∈ A)|w(k)|, e.g. A := {w(1),w(3)}. As shown in Table 1, each PEFT
method corresponds to some fixed subset A ⊆ w, and we recover the FMT when A = w.

Table 1: Summary of PEFT methods (row) and corresponding parameter groups (column). Here
‘lora_A/lora_B’ are low-rank matrices, ‘head’ is the last linear layer, ‘norm’ is layer normalization,
and ‘bias’ is bias terms. Y/N indicate whether a parameter group is active and trainable.

lora_A lora_B head norm bias
LoRA Y Y N N N

LoRA-FA N Y N N N
BitFit N N N N Y

Linear probing N N Y N N
LayerNorm N N N Y N

AdaPEFT (ours) adaptive

In contrast to applying a fixed A like existing PEFT, we enable the adaptivity of A in (1). However,
the two tasks in (1) may conflict with each other. For instance, the minimum number of trainable
parameters is 0 but then the model is not trainable at all, hence the loss is not minimized.

To resolve the conflict, we solve our multi-task problem in (1) under the Pareto optimality.

Definition 1.1. (Pareto optimality for PEFT). For two active sets A1 and A2, if LA1
≤ LA2

and
|A1| ≤ |A2| with at least one inequality being strict, then A1 dominates A2. Furthermore, an active
set is Pareto optimal if it is not dominated by any other sets.

Contribution.

• We formulate a multi-task problem with both discrete and continuous objectives, to adap-
tively select the active set of parameter groups for PEFT under the Pareto optimality.

• We transform our multi-task problem (optimized on both subsets and parameters) to a
classical single-task problem (optimized on binary variables) that is known as 0-1 knap-
sack problem. Specifically, our transformation leverages a series of methods including
ϵ-constraint method, gradient descent, and Taylor approximation.

• We propose efficient algorithms to compute the Hessian-informed loss reduction (without
extra back-propagation) and to solve the 0-1 knapsack problem.

• We observe consistent patterns indicating that influential parameter groups can be discovered
early in training, and such patterns can transfer across model sizes. These scaling patterns
serve as the basis for our adaptive PEFT (AdaPEFT; see Figure 1).

Related work. We briefly discuss some related work and extensively discuss them in Appendix E.
Broadly speaking, our multi-task framework can be formulated on all subset-based PEFT methods
and their combinations, because it is adaptive to model architectures and tasks. However, most
multi-task methods such as GradNorm Chen et al. (2018), MGDA Désidéri (2012); Sener & Koltun
(2018), and PCGrad Yu et al. (2020) cannot be applied directly since the subset optimization (1) is
discrete and the meta-minimization is bi-level. As a solution, we work on the 0-1 knapsack problem
by drawing on techniques from Bu & Xu (2024) to compute Hessian-informed loss reduction, and
employing a greedy approximation algorithm Martello & Toth (1990) to estimate the Pareto frontier.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

FMT AdaPEFT LoRA
0

10000

20000

30000

40000

Wa
ll c

loc
k t

im
e (

se
c)

FMT
AdaPEFT part I
AdaPEFT part II
LoRA

FMT AdaPEFT LoRA
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Tim
e c

om
ple

xit
y (

FL
OP

s)

1e17

FMT
AdaPEFT part I
AdaPEFT part II
LoRA

Figure 1: AdaPEFT framework. Left: Illustrated of Algorithm 2 on GPT2. Right: wall-clock time
(upper) and time complexity (lower) for fine-tuning GPT2-large on three methods (see details in
Appendix D). For AdapPEFT, part I refers to FMT with Algorithm 1 on GPT2-small for 10% of the
total traning horizon and part II refers to running the PEFT with our selected subsets.

2 PROBLEM FORMULATION

Table 2: Roadmap of transformations from multi-task optimization to 0-1 knapsack problem.

reference multi-task problems constrained bi-level transformation
(1) yes minimization on (subset, w) no yes – –
(2) no minimization on (subset, w) yes yes ϵ-constraint
(7) no minimization on (subset, η) yes yes gradient descent
(10) no maximization on subset yes no Taylor approximation
(11) no maximization on binary yes no knapsack problem

2.1 NOTATIONS

We denote w ∈ RD as all model parameters, while wt represents the iteration t and w(k) represents
the k-th parameter group. The same notation follows for other variables including the mini-batch
gradient g ∈ RD. We denote the loss as L(w), its first-order derivative as G(k) :=

∂L
∂w(k)

and its

second-order derivative as H(k) :=
∂2L

∂w2
(k)

. We omit t when it is obvious from the context.

2.2 MULTI-TASK OPTIMIZATION AND PARETO OPTIMALITY

In this section, we transform the multi-task problem to a single-task problem, which has a bi-level
objective and a constraint. We use the ϵ-constraint method as a scalarization technique, which chooses
one task to optimize and converts the remaining tasks into constraints. Thus, (1) leads to

min
A

LA s.t. |A|/|w| ≤ ϵ (2)

However, we emphasize that a solution to (2) is not necessarily Pareto optimal in terms of (1) (shown
in Theorem 2.1), unless we restrict ourselves to an unrealistic case where (2) has a unique solution.

Theorem 2.1. For any ϵ ≥ 0, a solution to (2) may not be Pareto optimal of (1). Nevertheless, if (2)
has only one solution, then the solution is Pareto optimal.

Proof. Suppose A⋆ is a solution to (2) but not Pareto optimal, then ∃A′ such that,

LA′ ≤ LA⋆ and |A′| ≤ |A⋆| (3)

with at least one strict inequality. Hence A′ is also in the feasible domain since |A′| ≤ |A⋆| ≤ ϵ|w|.
Now A⋆ being the minimizer of (2) gives LA⋆ ≤ LA′ . Hence, LA′ = LA⋆ , and the strict inequality
can only be |A′| < |A⋆|. If the solution of (2) is unique, contradiction; otherwise, A⋆ may not be
Pareto optimal.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

To guarantee the Pareto optimality when (2) has more than one solutions, we propose a refined solu-
tion in two steps: (I) exhaustively find all solutions of (2), denoted by the set argminA:|A|/|w|≤ϵLA;
(II) select one solution with the smallest number of trainable parameters. Mathematically, we select

A⋆(ϵ) = argminA

{
|A| : A ∈ argminA:|A|/|w|≤ϵLA

}
(4)

Theorem 2.2. For any ϵ ≥ 0, the refined solution to (2) (i.e. (4)) is always Pareto optimal of (1).

Proof. Similar to the proof of Theorem 2.1, if ∃A′ that dominates A⋆, then LA′ = LA⋆ and
|A′| < |A⋆|. Hence A′ belongs to the solution set, which contradicts that A⋆ has the smallest |A|
among all solutions.

Remark 2.3. Theorem 2.1 and Theorem 2.2 hold without requiring convexity. Note each ϵ yields one
A⋆(ϵ), hence one can sweep through 0 ≤ ϵ ≤ 1 to get different Pareto optimal solutions.

2.3 GRADIENT DESCENT FOR LOW-LEVEL MINIMIZATION

In this section, we transform the bi-level meta-minimization to a single-level problem, by providing a
closed-form approximation for the low-level minimization of (2), i.e. LA := minw(k)∈A L(w). This
is achieved by two steps: (I) translating the minimization over w ∈ RD to the minimization over
η ∈ R and (II) using the Hessian-informed solution to explicitly solve the minimization.

Algorithmically, the low-level minimization is solved iteratively via gradient descent, such as SGD
and Adam. For example, for 1 ≤ t ≤ T ,

w(k),t+1 = w(k),t − ηI(k)g(k),t := w(k),t − ηI(w(k) ∈ A)g(k),t (5)

in which the binary mask I(w(k) ∈ A) assigns 0 to frozen groups and 1 to active groups. Note (5)
recovers FMT: wt+1 = wt − ηgt since I(w(k) ∈ w) ≡ 1.

As a consequence, the gradient descent translates the high-dimensional parameter minimization
minw(k)∈A L(w) to an one-dimensional hyperparameter minη∈R L(wT):

LA ≈ min
η
L(wT) s.t. (5) (6)

Furthermore, the optimization problem minw L(w) is unconstrained, whereas the optimization
minη s.t. (5) L(wT (η)) is restricted to the gradient descent path {wt}t governed by the update rule
(5). We know minη s.t. (5) L(wT (η)) ≥ minw L(w), with the equality holding if and only if a global
minimizer of L lies on the path {wt}t.
To enjoy a closed-form approximation, we study the minimization from a local perspective (i.e. one
iteration at a time) where (6) is equivalent to

LA ≈
T−1∑
t=1

min
η

[L(wt+1; η)− L(wt)] s.t. (5) (7)

up to a constant L(w0). At each iteration, by only updating one parameter group (say A = {w(k)})
and freezing all the others, the loss reduction from this w(k) is

L(wt+1; η)− L(wt) ≈ ∆L(k),t(η) := −ηG⊤
(k),tg(k),t +

η2

2
g⊤
(k),tH(k),tg(k),t (8)

We note that the second-order Taylor approximation is reasonably accurate, since the approximation
error is o(η2) and hence negligible in practice (c.f. Figure 2 in Bu & Xu (2024)).

Therefore, if g⊤
(k)H(k)g(k) > 0, updating the k-th parameter group can minimize (8) to − (G⊤

(k)g(k))
2

g⊤
(k)

H(k)g(k)

under η =
G⊤

(k)g(k)

g⊤
(k)

H(k)g(k)
. Extending to multiple parameter groups, we write the total loss reduction as

LA ≈
∑
k,t

∆L(k),t = −
∑
k

I(w(k) ∈ A) ·
∑
t

(
G⊤

(k),tg(k),t

)2
g⊤
(k),tH(k),tg(k),t

(9)

which explicitly replaces the low-level minimization problem of (7).

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

2.4 KNAPSACK PROBLEM

All in all, we transform the meta-minimization in (2) to a subset maximization problem in (10),

min
A

(
min

w(k)∈A
L(w)

)
≈ max

A

∑
k

I(w(k) ∈ A) ·
∑
t

(
G⊤

(k),tg(k),t

)2
g⊤
(k),tH(k),tg(k),t

s.t. |A|/|w| ≤ ϵ (10)

Finally, given that A is only reflected in the binary variable I(w(k) ∈ A), we can further simplify the
subset maximization in (10) to a binary maximization problem:

max
Ik∈{0,1}

∑
k

Ik ·
∑
t

(
G⊤

(k),tg(k),t

)2
g⊤
(k),tH(k),tg(k),t

s.t.
∑

k Ik|w(k)|∑
k |w(k)|

≤ ϵ (11)

Importantly, (11) is essentially the 0-1 knapsack problem in Definition 2.4, which is an NP-complete
combinatorial problem.
Definition 2.4. (0-1 knapsack problem). Given a set of items, each with a weight Wk and a value Vk,
the knapsack problem determines which items to include (whether Ik = 1) so that the total value is
maximized within the total weight limit Wlimit:

max
Ik∈{0,1}

∑
k

Vk × Ik s.t.
∑
k

Wk × Ik ≤Wlimit (12)

From the perspective of PEFT, we view each parameter group as an item, the parameter count

as weight Wk := |w(k)| and loss reduction as value Vk :=
∑

t
(G⊤

(k),tg(k),t)
2

g⊤
(k),t

H(k),tg(k),t
, under the limit

Wlimit := ϵ
∑

k |w(k)|.
With hindsight, (11) is equivalent to applying ϵ-constraint method to the following multi-task opti-
mization,

max
A

∑
k

I(w(k) ∈ A) ·
∑
t

(
G⊤

(k),tg(k),t

)2
g⊤
(k),tH(k),tg(k),t

, min
A

∑
k I(w(k) ∈ A) · |w(k)|∑

k |w(k)|
. (13)

3 ALGORITHMS

We discuss two classes of algorithms – one to efficiently compute the objectives of the knapsack
problem, and the other to actually solve the knapsack problem.

3.1 EFFICIENTLY COMPUTING LOSS REDUCTION WITHOUT BACK-PROPAGATION

We propose Algorithm 1 to efficiently compute the loss reduction, which requires the knowledge of
G⊤

(k)g(k) and g⊤
(k)H(k)g(k). We use two techniques, (I) quadratic curve fitting and (II) lazy updating.

Quadratic curve fitting. We fit the quadratic function (8) by using multiple forward passes at
different learning rates to get different ∆L(k)(η). Next, we directly find the two scalars G⊤

(k)g(k)

and g⊤
(k)H(k)g(k) via a finite-sum problem:

g⊤
(k)H(k)g(k),G

⊤
(k)g(k) ≈ argminA,b

∑
j

(
∆L(k)(η̂j) + η̂jb−

η̂2j
2
A

)2

where η̂j ∈ {−2η,−η, 0, η, 2η}. This back-propagation-free approach from Bu & Xu (2024) has
minimal memory overhead, as it does not instantiate G(k) or H(k).

Lazy updating. We need 4K + 1 forward passes, hence incurring O(K) training time overhead if
implemented naively. This overhead can be reduced significantly if the loss reduction is computed
infrequently, following Bu & Xu (2024). In practice, we update every O(K) iterations so that the
overhead is O(1) and roughly negligible.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 Hessian-informed loss reduction (iteration t)

1: Compute loss L0 = L(wt) by forward pass
2: Compute gradient g := {g(k)}k on L0 by SGD, AdamW, etc.
3: if t mod 4K == 0 then
4: for k ∈ 1, ...,K do
5: for η̂j ∈ {−2,−1, 1, 2} · ηt do
6: Compute Lj = L (wt − η̂jek ⊙ g) by forward pass
7: Fit a quadratic curve from {η̂j} → {Lj − L0}
8: Derive G⊤

(k),tg(k),t and g⊤
(k),tH(k),tg(k),t in (8)

9: if G⊤
(k),tg(k),t > 0,g⊤

(k),tH(k),tg(k),t > 0,R2 score > 0.99 then

10: Accumulate APPIk = APPIk +
|G⊤

(k),tg(k),t|2

g⊤
(k),t

H(k),tg(k),t·|w(k)|

11: Derive optimal learning rates η∗(k) =
G⊤

(k),tg(k),t

g⊤
(k),t

H(k),tg(k),t

12: Update the parameters: w(k),t+1 = w(k),t − η∗(k)g(k),t

3.2 SOLVING 0-1 KNAPSACK PROBLEM

Exhaustive search To obtain the Pareto optimal solution of (13), we need to exhaustively search
all 2K subsets and compute the value

∑
k I(w(k) ∈ A) · Vk and the weight

∑
k I(w(k) ∈ A) ·Wk

for each subset. Then we find all subsets with |A|/|w| ≤ ϵ and select the subset with the largest
value. This algorithm guarantees to find a Pareto optimal minimizer by Theorem 2.2, but it has an
exponential complexity in terms of K.

Approximate solutions In practice, we turn to approximate solutions like the greedy approximation
Martello & Toth (1990) to solve (11) instead of directly (13). We define the value-to-weight ratio as
Per-Parameter Influence (PPI) and its accumulation where

PPIk(t) =
(G⊤

(k),tg(k),t)
2

g⊤
(k),tH(k),tg(k),t · |w(k)|

, APPIk(τ) =
τ∑

t=1

PPIk(t) (14)

is computed by Algorithm 1.

Next, we (I) sort {w(k)}k by APPIk in descending order; (II) output K subsets {A1, ...AK}, with
the k-th subset containing the first k parameter groups.

As a result, we view Ak as the solution to (11) for any ϵ ∈
[
|Ak|
|w| ,

|Ak+1|
|w|

)
1, and as an approximately

Pareto optimal solution to (13). Rigorously speaking, by Theorem 2.1, Ak is not guaranteed to be
Pareto optimal, yet it provides empirical guidance for adaptive PEFT design later in Section 5.

4 VISUALIZATION OF PARAMETER GROUP INFLUENCE

In this section, we visualize PPI and APPI of (14) in training. We experiment with multiple tasks
(image classification, natural language understanding, and generation), model architectures (Vision
Transformer or ViT Dosovitskiy et al. (2020), T5 Raffel et al. (2020), RoBERTa Liu et al. (2019),
GPT Radford et al. (2019)) and model sizes (∼ 0.1 − 1B). We partition models into parameter
groups that are fine-tuned by LoRA (Hu et al. (2022); with module names lora_A and lora_B), BitFit
(Zaken et al. (2022); with name bias), linear probing (with name head), LayerNorm tuning (Zhao
et al.; with name norm), and embedding layer tuning (with name embed).

1Alternatively, we may use dynamic programming or meet-in-the-middle algorithm algorithm to solve (11)
exactly. However, each of these algorithms gives one minimizer of (11), which is not guaranteed to be Pareto
optimal in terms of (13) by Theorem 2.1, if the problem has multiple minimizers. Furthermore, to estimate
the Pareto frontier, these algorithms need to be applied multiple times, for different ϵ’s, whereas the greed
approximation is applied once as it is ϵ-independent.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

We generate two types of figures: (I) heatmap of PPI for different parameter groups at different
iterations, i.e. PPIk(t), where the lighter color indicates a stronger influence; (II) line plot of
accumulative PPI, i.e. APPIk(τ) ≈ L(w0)− L(wτ). We leave more details in Appendix A.1.

We consistently observe that some parameter groups are highly influential, with ≈ 104× higher PPI
than the majority of model parameters. This observation supports the effectiveness of PEFT, only if
we actually select the influential parameters.

4.1 DISCREPANCY ACROSS MODELS AND TASKS

In Figure 2 and Figure 3, we observe that the influence of parameter groups varies significantly across
models and tasks. In summary, none of the methods is performant in all scenarios, which motivates
an adaptive PEFT design in Section 5.

Varying models and tasks In Figure 2, it is clear that PPI patterns are highly dependent on model
architectures (not sizes) and tasks, and we can leverage such patterns to shed light on the effectiveness
of new PEFT methods. In fact, it is no surprise that a combination of multiple PEFT methods can give
very strong performance. For example, the LoRA library Hu et al. (2022) states that “training bias
vectors in tandem with LoRA might be a cost-efficient way to squeeze out extra task performance".

0 1 2 3 4 5
Epochs

ot
he

rs
bi

as
no

rm
at

tn
he

ad

2

1

0

1

2

3

4

5

6

7

(a) CIFAR100, ViT-base,
fine-tuning

0 1 2 3 4 5
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
em

be
d

2

1

0

1

2

3

4

5

6

7

(b) E2E, GPT2-small, fine-
tuning

0 1 2 3 4 5
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
em

be
d

2

1

0

1

2

3

4

5

6

7

(c) E2E, GPT2-medium,
fine-tuning

0 1 2 3 4 5
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
em

be
d

2

1

0

1

2

3

4

(d) E2E, GPT2-large, fine-
tuning

0 1 2
Epochs

ot
he

rs
bi

as
no

rm
at

tn
he

ad

2

1

0

1

2

3

4

5

6

7

(e) ImageNet, ViT-base,
fine-tuning

0 1 2 3 4 5 6 7 8 9 10
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
he

ad

2

1

0

1

2

3

4

5

6

7

(f) MRPC, RoBERTa-base,
fine-tuning

0 1 2 3 4 5 6 7 8 9 10
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
he

ad

2

1

0

1

2

3

4

5

6

7

(g) SST2, RoBERTa-base,
fine-tuning

0 1 2 3 4 5 6 7 8 9 10
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
he

ad

2

1

0

1

2

3

4

5

6

7

(h) SST2, RoBERTa-base,
pre-training

Figure 2: Heatmap of PPI for multiple parameter groups in log-scale.

For example in image classification, on CIFAR100, ViT can be effectively trained with a combination
of LayerNorm tuning and linear probing, whereas on ImageNet, only LayerNorm tuning may be
sufficient. For example in language modeling, GPT2 on E2E can benefit from a combination of
LoRA, BitFit and LayerNorm tuning; RoBERTa-base can be effectively fine-tuned on MRPC and
SST2 by linear probing and BitFit, but it may freeze lora_A matrix (like in LoRA-FA Zhang et al.
(2023)). In what follows, we demonstrate that PPI can be different by varying only the model or only
the task (e.g. dataset or training stage).

Varying tasks with fixed model A closer look at Figure 2(g)(h), both training RoBERTa model
on SST2 dataset, reveals that PPI can be different at different training stages: lora_A matrix is less
influential in fine-tuning than in pre-training. Additionally, comparing Figure 2(a)(e) or comparing
Figure 2(f)(g) reveals that PPI can be different on the same model when the datasets change.

Varying models with fixed task In Figure 3, we compare PPI on T5 and RoBERTa models on the
same task. It is clear that different model architectures can have different patterns.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

0 1 2 3
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
he

ad

2

1

0

1

2

3

4

5

6

7

0 1 2 3
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
he

ad

2

1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
he

ad

2

1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
he

ad

2

1

0

1

2

3

4

5

6

7

Figure 3: Heatmap of PPI on CoLA in log-scale. Left to right: RoBERTa-base, RoBERTa-large,
T5-small, and T5-base.

4.2 CONSISTENCY ACROSS TRAINING ITERATIONS

We empirically observe a consistent pattern of PPI and APPI across iterations, shortly after the
initialization of models. See Figure 2 and Figure 3 for PPI, and Figure 4 for APPI. Such consistency
motivates an efficient strategy to design PEFT: train FMT for some iterations (say 10% of the full
run), determine PEFT based on APPI, then launch the full run with PEFT.

0 50 100 150 200 250 300
Steps

10 10

10 9

10 8

10 7

10 6

10 5

AP
PI

 (H
ig

he
r =

 B
et

te
r)

others
norm
bias
lora_A
lora_B
head

0 50 100 150 200 250 300
Steps

10 10

10 9

10 8

10 7

10 6

AP
PI

 (H
ig

he
r =

 B
et

te
r)

others
norm
bias
lora_A
lora_B
head

0 20 40 60 80 100
Steps

10 10

10 9

10 8

10 7

10 6

AP
PI

 (H
ig

he
r =

 B
et

te
r)

others
norm
bias
lora_A
lora_B
embed

0 20 40 60 80 100
Steps

10 10

10 9

10 8

10 7

10 6

AP
PI

 (H
ig

he
r =

 B
et

te
r)

others
norm
bias
lora_A
lora_B
embed

0 20 40 60 80 100
Steps

10 9

10 8

10 7

AP
PI

 (H
ig

he
r =

 B
et

te
r)

others
norm
bias
lora_A
lora_B
embed

Figure 4: Visualization of APPI. Left two on SST2: RoBERTa-base/large. Right three on E2E:
GPT2-small/medium/large.

4.3 CONSISTENCY ACROSS MODEL SIZES

Furthermore, we observe a roughly consistent pattern across model sizes for the same architecture
and task. We vary RoBERTa and T5 sizes in Figure 3, and GPT2 from small (124M) to large size
(0.8B) in Figure 2. We additionally vary ViT from tiny (5M) to large size (0.3B) in Figure 8 in
Appendix A. Such observation encourages us to train on small models and directly adopt the optimal
PEFT (i.e. the active set of parameter groups) for large models.

5 ADAPTIVE PEFT VIA ZERO-SHOT SUBSET TRANSFER

We propose the AdaPEFT framework to adaptively select the trainable parameter groups for PEFT.

Firstly, we demonstrate that selecting the active set via APPI is approximately Pareto optimal. In
Figure 5 (left column), the theoretical Pareto frontier formed by our selection (6 active sets) closely
matches that formed by all 26 = 64 active sets.

10 4 10 3 10 2 10 1 100

Active Parameter Percentage

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

Lo
ss

 R
ed

uc
tio

n

Step 16 / 320 (5%)

All Combinations
Exhaustive Pareto frontier
Our Pareto frontier

10 2 10 1

Active Parameter Percentage

10 3

2 × 10 3

3 × 10 3

4 × 10 3

Tr
ai

n
Lo

ss

1 (Ours)
2 (Ours)
3 (Ours)
4 (Ours)
5 (Ours)
7 (BitFit)
8 (LoRA)
9 (LayerNorm tuning)
10 (linear probing)
Pareto Frontier (All)
Pareto Frontier (Ours)

10 2 10 1

Active Parameter Percentage

10 3

2 × 10 3

3 × 10 3

4 × 10 3

Tr
ai

n
Lo

ss

1 (Ours)
2 (Ours)
3 (Ours)
4 (Ours)
5 (Ours)
7 (BitFit)
8 (LoRA)
9 (LayerNorm tuning)
10 (linear probing)
Pareto Frontier (All)
Pareto Frontier (Ours)

10 4 10 3 10 2 10 1 100

Active Parameter Percentage

100

101

Lo
ss

 R
ed

uc
tio

n

Step 320 / 320 (100%)

All Combinations
Exhaustive Pareto frontier
Our Pareto frontier

10 2 10 1

Active Parameter Percentage

10 1

6 × 10 2

Te
st

 E
rro

r

1 (Ours)
2 (Ours)
3 (Ours)
4 (Ours)
5 (Ours)
7 (BitFit)
8 (LoRA)
9 (LayerNorm tuning)
10 (linear probing)
Pareto Frontier (All)
Pareto Frontier (Ours)

10 2 10 1

Active Parameter Percentage

10 1

4 × 10 2

6 × 10 2Te
st

 E
rro

r

1 (Ours)
2 (Ours)
3 (Ours)
4 (Ours)
5 (Ours)
7 (BitFit)
8 (LoRA)
9 (LayerNorm tuning)
10 (linear probing)
Pareto Frontier (All)
Pareto Frontier (Ours)

Figure 5: Visualization of Pareto optimality on SST2. Left: theoretical loss reduction of RoBERTa-
base via APPI. Middle: actual loss and error of RoBERTa-base. Right: actual loss and error of
RoBERTa-large. Each PEFT is indexed in Table 3.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Next, we compare our selection (5 active sets excluding FMT) with existing PEFT in terms of actual
train loss and test error. In Figure 5 (middle column), our actual Pareto frontier still closely matches
the frontier formed by all 10 methods, whereas some existing PEFT methods are far from the frontier,
indicating the potential failure of non-adaptive PEFT.

Having validated the (approximate) Pareto optimality of APPI selection, we now give AdaPEFT in
Algorithm 2, transferring the active set of parameter groups from {small models, short training} to
{large models, long training} in a zero-shot manner. Note that AdaPEFT can be implemented with
much flexibility, e.g. setting m =M or 10% → 100%.

Algorithm 2 AdaPEFT on model M for T iterations

1: Equip a smaller model m with PEFT components (e.g. LoRA and prefix).
2: Train m with Algorithm 1 under FMT, for 10% of T iterations.
3: Sort APPI to select influential parameter groups under |A|/|w| ≤ ϵ constraint
4: Train M under PEFT with selected A for T iterations.

We experiment with Algorithm 2 on RoBERTa and GPT2. We select the active sets from small
models – RoBERTa-base and GPT2-small, using 10% of the training budget, then directly transfer to
larger models – RoBERTa-large, GPT2-medium and GPT2-large. We list the active sets, number of
parameters and model utility in Table 3 and Table 4 (appendix), which are visualized in Figure 5 and
Figure 6.

Our key observation is that (I) the active sets selected by (small model, short horizon) consistently
give good Pareto frontier for (large models, long horizon), i.e. AdaPEFT is approximately Pareto
optimal and scalable; (II) AdaPEFT effectively evaluates PEFT configurations as strong (if an existing
PEFT is close to our Pareto frontier) or weak (if it is far away from the frontier).

10 1 100 101

Active Parameter Percentage

2.2 × 100

2.3 × 100

2.4 × 100

2.5 × 100

2.6 × 100

2.7 × 100

2.8 × 100

2.9 × 100

3 × 100

Tr
ai

n
Lo

ss

1 (Ours)
2 (Ours)
3 (Ours)
4 (Ours)
5 (Ours)
7 (BitFit)
8 (LoRA)
9 (LoRA-FA)
Pareto Frontier (All)
Pareto Frontier (Ours)

10 1 100 101

Active Parameter Percentage

2.1 × 100

2.2 × 100

2.3 × 100

2.4 × 100

2.5 × 100

2.6 × 100

2.7 × 100

2.8 × 100

Tr
ai

n
Lo

ss

1 (Ours)
2 (Ours)
3 (Ours)
4 (Ours)
5 (Ours)
7 (BitFit)
8 (LoRA)
9 (LoRA-FA)
Pareto Frontier (All)
Pareto Frontier (Ours)

10 1 100

Active Parameter Percentage

2.2 × 100

2.3 × 100

2.4 × 100

2.5 × 100

2.6 × 100

2.7 × 100

Tr
ai

n
Lo

ss

1 (Ours)
2 (Ours)
3 (Ours)
4 (Ours)
5 (Ours)
7 (BitFit)
8 (LoRA)
9 (LoRA-FA)
Pareto Frontier (All)
Pareto Frontier (Ours)

10 1 100 101

Active Parameter Percentage

3 × 100

4 × 100

Te
st

 E
rro

r

1 (Ours)
2 (Ours)
3 (Ours)
4 (Ours)
5 (Ours)
7 (BitFit)
8 (LoRA)
9 (LoRA-FA)
Pareto Frontier (All)
Pareto Frontier (Ours)

10 1 100 101

Active Parameter Percentage

2.8 × 100

3 × 100

3.2 × 100

3.4 × 100

3.6 × 100

Te
st

 E
rro

r

1 (Ours)
2 (Ours)
3 (Ours)
4 (Ours)
5 (Ours)
7 (BitFit)
8 (LoRA)
9 (LoRA-FA)
Pareto Frontier (All)
Pareto Frontier (Ours)

10 1 100

Active Parameter Percentage

2.8 × 100

3 × 100

3.2 × 100

3.4 × 100

3.6 × 100

Te
st

 E
rro

r

1 (Ours)
2 (Ours)
3 (Ours)
4 (Ours)
5 (Ours)
7 (BitFit)
8 (LoRA)
9 (LoRA-FA)
Pareto Frontier (All)
Pareto Frontier (Ours)

Figure 6: Visualization of Pareto optimality on E2E. Left: actual loss and error of GPT2-small.
Middle: actual loss and error of GPT2-medium. Right: actual loss and error of GPT2-large. Each
PEFT is indexed in Table 4.

6 DISCUSSION

We formulate the selection of active set in PEFT as a multi-task optimization problem, and transform
it to 0-1 knapsack problem that we solve under Pareto optimality. In particular, our objective in the
knapsack problem is Hessian-informed, which demonstrates that different parameters have different
influences on the model performance. Finally, we propose AdaPEFT to leverage such influence
pattern and select the active set for large model and long training with minimal budget. We note the
success of AdaPEFT depends on the grouping of parameters: a sub-optimal grouping strategy may
fail to lead to good performance even with AdaPEFT.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REFERENCES

Dan Biderman, Jacob Portes, Jose Javier Gonzalez Ortiz, Mansheej Paul, Philip Greengard, Con-
nor Jennings, Daniel King, Sam Havens, Vitaliy Chiley, Jonathan Frankle, Cody Blakeney, and
John Patrick Cunningham. LoRA learns less and forgets less. Transactions on Machine Learn-
ing Research, 2024. ISSN 2835-8856. URL https://openreview.net/forum?id=
aloEru2qCG. Featured Certification.

Zhiqi Bu and Shiyun Xu. Gradient descent with generalized newton’s method. In The Thirteenth
International Conference on Learning Representations, 2024.

Kerim Büyükakyüz. Olora: Orthonormal low-rank adaptation of large language models. arXiv
preprint arXiv:2406.01775, 2024.

Zhao Chen, Vijay Badrinarayanan, Chen-Yu Lee, and Andrew Rabinovich. Gradnorm: Gradient
normalization for adaptive loss balancing in deep multitask networks. In International conference
on machine learning, pp. 794–803. PMLR, 2018.

Jean-Antoine Désidéri. Multiple-gradient descent algorithm (mgda) for multiobjective optimization.
Comptes Rendus Mathematique, 350(5-6):313–318, 2012.

Tim Dettmers, Artidoro Pagnoni, Ari Holtzman, and Luke Zettlemoyer. Qlora: Efficient finetuning
of quantized llms. Advances in neural information processing systems, 36:10088–10115, 2023.

Ning Ding, Yujia Qin, Guang Yang, Fuchao Wei, Zonghan Yang, Yusheng Su, Shengding Hu, Yulin
Chen, Chi-Min Chan, Weize Chen, et al. Parameter-efficient fine-tuning of large-scale pre-trained
language models. Nature Machine Intelligence, 5(3):220–235, 2023.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, G Heigold, S Gelly, et al. An image is
worth 16x16 words: Transformers for image recognition at scale. In International Conference on
Learning Representations, 2020.

Minghan Fu and Fang-Xiang Wu. Qlabgrad: A hyperparameter-free and convergence-guaranteed
scheme for deep learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
volume 38, pp. 12072–12081, 2024.

Zeyu Han, Chao Gao, Jinyang Liu, Sai Qian Zhang, et al. Parameter-efficient fine-tuning for large
models: A comprehensive survey. arXiv preprint arXiv:2403.14608, 2024.

Soufiane Hayou, Nikhil Ghosh, and Bin Yu. Lora+ efficient low rank adaptation of large models. In
Proceedings of the 41st International Conference on Machine Learning, pp. 17783–17806, 2024.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe,
Andrea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for
nlp. In International conference on machine learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361, 2020.

Alex Kendall, Yarin Gal, and Roberto Cipolla. Multi-task learning using uncertainty to weigh losses
for scene geometry and semantics. In Proceedings of the IEEE conference on computer vision and
pattern recognition, pp. 7482–7491, 2018.

Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient prompt
tuning. arXiv preprint arXiv:2104.08691, 2021.

10

https://openreview.net/forum?id=aloEru2qCG
https://openreview.net/forum?id=aloEru2qCG
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021.

Yixiao Li, Yifan Yu, Chen Liang, Nikos Karampatziakis, Pengcheng He, Weizhu Chen, and Tuo
Zhao. Loftq: Lora-fine-tuning-aware quantization for large language models. In The Twelfth
International Conference on Learning Representations, 2024.

Xiao Liu, Kaixuan Ji, Yicheng Fu, Weng Lam Tam, Zhengxiao Du, Zhilin Yang, and Jie Tang.
P-tuning v2: Prompt tuning can be comparable to fine-tuning universally across scales and tasks.
arXiv preprint arXiv:2110.07602, 2021.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Mandar Joshi, Danqi Chen, Omer Levy, Mike
Lewis, Luke Zettlemoyer, and Veselin Stoyanov. Roberta: A robustly optimized bert pretraining
approach. arXiv preprint arXiv:1907.11692, 2019.

Silvano Martello and Paolo Toth. Knapsack problems: algorithms and computer implementations.
John Wiley & Sons, Inc., 1990.

Fanxu Meng, Zhaohui Wang, and Muhan Zhang. Pissa: Principal singular values and singular vectors
adaptation of large language models. Advances in Neural Information Processing Systems, 37:
121038–121072, 2024.

Nusrat Jahan Prottasha, Upama Roy Chowdhury, Shetu Mohanto, Tasfia Nuzhat, Abdullah As Sami,
Md Shamol Ali, Md Shohanur Islam Sobuj, Hafijur Raman, Md Kowsher, and Ozlem Ozmen
Garibay. Peft a2z: Parameter-efficient fine-tuning survey for large language and vision models.
arXiv preprint arXiv:2504.14117, 2025.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Ozan Sener and Vladlen Koltun. Multi-task learning as multi-objective optimization. Advances in
neural information processing systems, 31, 2018.

Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman. Glue:
A multi-task benchmark and analysis platform for natural language understanding. In International
Conference on Learning Representations, a.

Luping Wang, Sheng Chen, Linnan Jiang, Shu Pan, Runze Cai, Sen Yang, and Fei Yang. Parameter-
efficient fine-tuning in large models: A survey of methodologies. arXiv preprint arXiv:2410.19878,
2024a.

Shaowen Wang, Linxi Yu, and Jian Li. Lora-ga: Low-rank adaptation with gradient approximation.
Advances in Neural Information Processing Systems, 37:54905–54931, 2024b.

Zhengbo Wang, Jian Liang, Ran He, Zilei Wang, and Tieniu Tan. Lora-pro: Are low-rank adapters
properly optimized? In The Thirteenth International Conference on Learning Representations, b.

Derrick Xin, Behrooz Ghorbani, Justin Gilmer, Ankush Garg, and Orhan Firat. Do current multi-task
optimization methods in deep learning even help? Advances in neural information processing
systems, 35:13597–13609, 2022.

Tianhe Yu, Saurabh Kumar, Abhishek Gupta, Sergey Levine, Karol Hausman, and Chelsea Finn.
Gradient surgery for multi-task learning. Advances in neural information processing systems, 33:
5824–5836, 2020.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 2: Short Papers), pp. 1–9, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Longteng Zhang, Lin Zhang, Shaohuai Shi, Xiaowen Chu, and Bo Li. Lora-fa: Memory-efficient
low-rank adaptation for large language models fine-tuning. arXiv preprint arXiv:2308.03303,
2023.

Bingchen Zhao, Haoqin Tu, Chen Wei, Jieru Mei, and Cihang Xie. Tuning layernorm in attention:
Towards efficient multi-modal llm finetuning. In The Twelfth International Conference on Learning
Representations.

Victor Zhong, Caiming Xiong, and Richard Socher. Seq2sql: Generating structured queries from
natural language using reinforcement learning. CoRR, abs/1709.00103, 2017.

Yingqiu Zhu, Danyang Huang, Yuan Gao, Rui Wu, Yu Chen, Bo Zhang, and Hansheng Wang. Auto-
matic, dynamic, and nearly optimal learning rate specification via local quadratic approximation.
Neural Networks, 141:11–29, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A EXPERIMENT DETAILS

Our experiments are run on A100 GPU, though our approach is independent to the choice of device.
Our experiments are three steps: (I) Visualizing the influence under FMT, trained with Algorithm 1
which is updated every 16 iterations (lazy updating); (II) Selecting influential parameter groups
to determine PEFT configurations; (III) Training PEFT with GeN AdamW Bu & Xu (2024) (lazy
updating frequence 8). For hyper-parameters not mentioned here, we follow Hu et al. (2022).

A.1 VISUALIZATION METHODOLOGY

Deep learning stochastic optimization is highly non-convex and may be unstable. In addition, the
curve fitting approach may occasionally have numerical errors. Therefore, we adopt some outlier
removal and smoothing tricks to give reproducible and clear patterns.

For each group k (i.e., a row), our input is a time series of PPIk(t) =
(G⊤

(k),tg(k),t)
2

g⊤
(k),t

H(k),tg(k),t·|w(k)|
.

For heatmaps and APPI plots, we remove outliers by Interquartile Range (IQR) method 2, smoothen
by exponential moving average. For heatmaps, we additionally divide each row by the first row (the
others, which is majority of parameters). Hence, the first row always stands for one unit of influence.
As shown below, our methodology is robust to random seeds in terms of ranking.

0 1 2 3 4 5 6 7 8 9 10
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
he

ad

2

1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
he

ad

2

1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
he

ad

2

1

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7 8 9 10
Epochs

ot
he

rs
no

rm
bi

as
lo

ra
_A

lo
ra

_B
he

ad

2

1

0

1

2

3

4

5

6

7

Figure 7: Heatmap of PPI with RoBERTa-base on SST2 dataset from different random seeds.

A.2 NATURAL LANGUAGE UNDERSTANDING

For NLU tasks, we use batch size 128 and an initial learning rate 2e-5. For CoLA training with
RoBERTa, we use a total of 3 epochs. For the rest, we use total epochs of 10. The evaluation metric
is test accuracy.

A.3 GPT2

For GPT2, we experiment on the E2E dataset. For FMT with GeN AdamW, we use initial learning
rate 1e-4; for PEFT, it is 1e-3. The sequence length is 128, the total batch size is 256. The total
number of epochs for GPT2 (small, medium and large) is 5.

A.4 VIT CLASSIFICATION

We use ImageNet pre-trained ViT Dosovitskiy et al. (2020), which can be loaded from timm library.
We resize all images to 224x224 and normalize the pixel values to [-1,1]. We use initial learning rate
1e-4. We apply Algorithm 1 every 16 iterations.

2The outliers are removed by excluding values outside the range [Q1− 3 ∗ iqr,Q3 + 3 ∗ iqr], where the
interquartile range iqr is defined as the difference between the 25-th percentile Q1 and the 75-th percentile Q3
of the data, representing the spread of the central 50%.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

0 1 2 3 4 5
Epochs

ot
he

rs
bi

as
no

rm
at

tn
he

ad

2

1

0

1

2

3

4

5

6

7

0 1 2 3 4 5
Epochs

ot
he

rs
bi

as
no

rm
at

tn
he

ad

2

1

0

1

2

3

4

5

6

7

0 1 2 3 4 5
Epochs

ot
he

rs
bi

as
no

rm
at

tn
he

ad

2

1

0

1

2

3

4

5

6

7

0 1 2 3 4 5
Epochs

ot
he

rs
bi

as
no

rm
at

tn
he

ad

2

1

0

1

2

3

4

5

6

7

Figure 8: Heatmap of PPI on CIFAR100. Left to right: ViT tiny, small, base and large.

B EXTENDED EXPERIMENTS

We extend Figure 5 below. Empirically speaking, our AdaPEFT Pareto frontier generated from 6
active sets matches closely the frontier generated from 26 = 64 active sets (all possible combinations)
throughout the training.

10 4 10 3 10 2 10 1 100

Active Parameter Percentage

10 1

6 × 10 2

2 × 10 1

3 × 10 1

4 × 10 1

Lo
ss

 R
ed

uc
tio

n

Step 16 / 320 (5%)

All Combinations
Exhaustive Pareto frontier
Our Pareto frontier

10 4 10 3 10 2 10 1 100

Active Parameter Percentage

100

Lo
ss

 R
ed

uc
tio

n

Step 92 / 320 (29%)

All Combinations
Exhaustive Pareto frontier
Our Pareto frontier

10 4 10 3 10 2 10 1 100

Active Parameter Percentage

100

Lo
ss

 R
ed

uc
tio

n

Step 168 / 320 (52%)

All Combinations
Exhaustive Pareto frontier
Our Pareto frontier

10 4 10 3 10 2 10 1 100

Active Parameter Percentage

100

Lo
ss

 R
ed

uc
tio

n

Step 244 / 320 (76%)

All Combinations
Exhaustive Pareto frontier
Our Pareto frontier

10 4 10 3 10 2 10 1 100

Active Parameter Percentage

100

101

Lo
ss

 R
ed

uc
tio

n

Step 320 / 320 (100%)

All Combinations
Exhaustive Pareto frontier
Our Pareto frontier

Figure 9: Loss reduction in APPI (see (14)) at different iterations in training. SST2 with RoBERTa-
base. 5 epochs, 5270 iterations, logged every 16 iterations by lazy updating (5270/16 ≈ 320). Dark
blue color is due to overlapping.

Furthermore, we reproduce the success of AdaPEFT Pareto frontier on two different architectures,
two datasets, and various model sizes.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

10 3 10 2 10 1 100

Active Parameter Percentage

10 1

Lo
ss

 R
ed

uc
tio

n

All Combinations
Exhaustive Pareto frontier
Our Pareto frontier

(a) GPT2-small on E2E

10 3 10 2 10 1 100

Active Parameter Percentage

10 1

100

Lo
ss

 R
ed

uc
tio

n

All Combinations
Exhaustive Pareto frontier
Our Pareto frontier

(b) GPT2-medium on E2E

10 3 10 2 10 1 100

Active Parameter Percentage

10 1

100

101

Lo
ss

 R
ed

uc
tio

n

All Combinations
Exhaustive Pareto frontier
Our Pareto frontier

(c) GPT2-large on E2E

10 4 10 3 10 2 10 1 100

Active Parameter Percentage

100

101

Lo
ss

 R
ed

uc
tio

n

Step 320 / 320 (100%)

All Combinations
Exhaustive Pareto frontier
Our Pareto frontier

(d) RoBERTa-base on SST2

10 4 10 3 10 2 10 1 100

Active Parameter Percentage

100

101

Lo
ss

 R
ed

uc
tio

n

All Combinations
Exhaustive Pareto frontier
Our Pareto frontier

(e) RoBERTa-large on SST2

Figure 10: Loss reduction in APPI (see (14)) at the last iteration. Dark blue color is due to overlapping.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

C TABLES

Table 3: Performance of RoBERTa models on SST2. (Y)es indicates a parameter group is trainable.
(N)o indicates a group is frozen.

model codename others norm bias lora_A lora_B head accuracy % param
RoBERTa-base 1 N Y N N N N 91.55± 0.35 0.015

(ours) 2 N Y Y N N N 93.39± 0.37 0.098
3 N Y Y N Y N 93.58± 0.41 0.216
4 N Y Y N Y Y 94.07± 0.24 0.689
5 N Y Y Y Y Y 94.30± 0.18 0.807

FMT Y Y Y Y Y Y 93.73± 0.66 100
RoBERTa-base 7(BitFit) N N Y N N Y 93.92± 0.20 0.556

(heuristic) 8(LoRA) N N N Y Y Y 93.85± 0.07 0.709
9(LayerNorm) N Y N N N Y 92.74± 0.57 0.489

10(linear probing) N N N N N Y 85.24± 0.07 0.473
RoBERTa-large 1 N Y N N N N 94.34± 0.78 0.014

(ours) 2 N Y Y N N N 95.91± 0.13 0.091
3 N Y Y N Y N 95.80± 0.13 0.201
4 N Y Y N Y Y 95.83± 0.29 0.496
5 N Y Y Y Y Y 96.18± 0.18 0.606

FMT Y Y Y Y Y Y 95.80± 0.33 100
RoBERTa-large 7(BitFit) N N Y N N Y 95.80± 0.29 0.371

(heuristic) 8(LoRA) N N N Y Y Y 96.06± 0.26 0.516
9(LayerNorm) N Y N N N Y 95.07± 0.11 0.309

10(linear probing) N N N N N Y 87.61± 0.00 0.295

Table 4: Performance of GPT models on E2E. (Y)es indicates a parameter group is trainable. (N)o
indicates a group is frozen. We transfer the PEFT identified at ψ = 10 to larger models.

model codename others norm bias lora_A lora_B embed perplexity % param
GPT2-small 1 N Y N N N N 3.73± 0.04 0.031

(ours) 2 N Y N N Y N 3.58± 0.06 0.09
3 N Y Y N Y N 3.52± 0.03 0.157
4 N Y Y Y Y N 3.40± 0.01 0.216
5 N Y Y Y Y Y 3.19± 0.06 31.827

FMT Y Y Y Y Y Y 3.07± 0.00 100
GPT2-small 7(BitFit) N N Y N N N 3.76± 0.02 0.067
(heuristic) 8(LoRA) N N N Y Y N 3.49± 0.04 0.118

9(LoRA-FA) N N N Y Y N 3.88± 0.01 0.059
GPT2-medium 1 N Y N N N N 3.34± 0.03 0.028

(ours) 2 N Y N N Y N 3.28± 0.00 0.084
3 N Y Y N Y N 3.25± 0.01 0.146
4 N Y Y Y Y N 3.16± 0.01 0.201
5 N Y Y Y Y Y 3.03± 0.03 14.984

FMT Y Y Y Y Y Y 3.03± 0.02 100
GPT2-medium 7(BitFit) N N Y N N N 3.40± 0.03 0.062

(heuristic) 8(LoRA) N N N Y Y N 3.20± 0.01 0.111
9(LoRA-FA) N N N N Y N 3.36± 0.02 0.055

GPT2-large 1 N Y N N N N 3.25± 0.01 0.024
(ours) 2 N Y N N Y N 3.32± 0.02 0.072

3 N Y Y N Y N 3.28± 0.02 0.125
4 N Y Y Y Y N 3.19± 0.04 0.173
5 N Y Y Y Y Y 3.09± 0.11 8.645

FMT Y Y Y Y Y Y 2.99± 0.04 100
GPT2-large 7(BitFit) N N Y N N N 3.34± 0.03 0.054
(heuristic) 8(LoRA) N N N Y Y N 3.21± 0.01 0.095

9(LoRA-FA) N N N N Y N 3.39± 0.03 0.048

D COMPLEXITY ANALYSIS OF ADAPEFT

In this section, we analyze the computational costs and complexity of AdaPEFT in Algorithm 2. For
the memory cost, AdaPEFT has the same peak memory as a regular PEFT (e.g. LoRA). Specifically,
line 2 (and Algorithm 1) uses a back-propagation-free method to compute the Hessian-informed

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

selection and the Hessian matrix is never calculated, hence it only adds extra forward passes and time
cost, but not the memory cost. We refer the interested readers to Section 4 in Bu & Xu (2024) for
details.

For the time cost, there are two parts in Algorithm 2: (I) Algorithm 1 in line 2 on small model and
short training, and (II) regular PEFT in line 4 on large model and long training. We argue that, for
GPT2-large fine-tuning in Figure 1, part I takes only ≈ 10% and part II takes 100% of the training
time of a heuristic PEFT, hence the total training time is ≈ 110%. To see this, we analyze the
time complexity of Algorithm 1 and compare to the full fine-tuning (FMT), which has two major
components: forward pass (F) and back-propagation (B). A standard FMT costs F +B ≈ 6DN
Kaplan et al. (2020) where D is the data size (e.g. total number of pixels or tokens) and N is the
model size (GPT2-small is 124e6, GPT2-large is 774e6), and roughly B = 2F = 4DN . With lazy
updating in Section 3.1, running Algorithm 1 costs (1+ 4K

Φ)F +B, where Φ is the update frequency
for the learning rates. This roughly translates to (6 + 8K

Φ)DN . To give a quick estimate, when
K = 6,Φ = 8, Algorithm 1 is roughly 50% as fast as FMT. Hence, in terms of time complexity,

Algorithm 2 = Algorithm 1(small model+short training) + PEFT(large model+long training)

To be explicit, we analyze the GPT2-large fine-tuning with AdaPEFT. Expetiment settings are the
same as Table 4, and we choose the PEFT with codename 4, i.e. mixing LayerNorm tuning, LoRA
and BitFit.

FLOP-wise, part I takes (6+ 8∗6
8)∗(2.7e7∗10%)∗124e6 = 7e14, and part II takes 4∗2.7e7∗774e6 =

8.4e16, where we have used the formula that PEFT costs 4DN due to not computing most of the
parameter gradients. That is, part I takes < 1% of total time complexity.

We also provide the wall-clock training time. This is different than the theoretical time complexity
because of hardware constraints and extra time needed for data loading. Notice that all experiments
use the same logical batch size 256 on a single A100 GPU. To maximize GPU memory usage while
avoiding out-of-memory during training, we use physical batch size 8 for FMT and 32 for PEFT of
fine-tuning GPT2-large and 64 for FMT on GPT2-small.

In summary, AdaPEFT is almost as efficient as regular PEFT.

E RELATED WORK

PEFT methods AdaPEFT can work compatibly with many PEFT methods, including those ex-
perimented in this work (LoRA and variants, linear probing, BitFit, and LayerNorm), those not
experimented (e.g. prompt tuning Lester et al. (2021), prefix tuning Li & Liang (2021), P-tuning Liu
et al. (2021), and adapter Houlsby et al. (2019); see Ding et al. (2023); Han et al. (2024); Wang et al.
(2024a); Prottasha et al. (2025) for a list of existing PEFT) and those yet-to-come. By taking more
PEFT methods into consideration, we allow a larger search space for A and expect better performance
from AdaPEFT, without noticeably increasing the computational cost if we scale the lazy updating
accordingly.

Notice that AdaPEFT is a subset selection method that relates closely to subset-based or architecture-
wise PEFT methods, and less closely to methods that improve the initialization, optimization and
efficiency, such as QLoRA Dettmers et al. (2023), OLoRA Büyükakyüz (2024), LOFTQ Li et al.
(2024) , PISSA Meng et al. (2024), LoRA+ Hayou et al. (2024), LoRA-GA Wang et al. (2024b),
LoRA-Pro Wang et al. (b). Nevertheless, AdaPEFT is compatible with these methods.

Multi-task optimization Our multi-task formulation in (1) and (13) is solved through ϵ-constraint
method. Another standard solution is the linear scalarization or weighted sum method Sener & Koltun
(2018); Xin et al. (2022); Kendall et al. (2018): minA LA + a |A|

|w| for some tunable a. Note ∀a > 0,
without assuming convexity of the objective, this solution is guaranteed to be Pareto optimal. There
are two potential challenges: (I) the scalarization problem is usually solved by gradient descent, but
our subset selection problem is discrete and non-differentiable; (II) because each a corresponds to
one point on Pareto frontier, we need to try a number of a, whereas the ϵ-constraint method only
needs one sorting. Nevertheless, there may be multi-task optimization methods that can be directly
applicable to our problems.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Hessian-informed loss and learning rate We have leveraged Hessian information to formulate our
problems. Besides GeN Bu & Xu (2024), a line of work also proposed back-propagation-free ways
to compute Hessian-informed learning rate Fu & Wu (2024); Zhu et al. (2021), though the Hessian-
informed loss reduction was not presented. It is also possible to use second-order back-propagation
(such as Hessian-vector product or Hessian matrix instantiation) to compute the loss reduction we
needed. However, this approach will be infeasible unless on very small models.

18

	Introduction
	Problem formulation
	Notations
	Multi-task optimization and Pareto optimality
	Gradient descent for low-level minimization
	Knapsack problem

	Algorithms
	Efficiently computing loss reduction without back-propagation
	Solving 0-1 knapsack problem

	Visualization of parameter group influence
	Discrepancy across models and tasks
	Consistency across training iterations
	Consistency across model sizes

	Adaptive PEFT via zero-shot subset transfer
	Discussion
	Experiment details
	Visualization methodology
	Natural language understanding
	GPT2
	ViT classification

	Extended experiments
	Tables
	Complexity analysis of AdaPEFT
	Related work

