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ABSTRACT

Plug-and-play diffusion priors (PnPDP) have emerged as a promising research
direction for solving inverse problems. However, current studies primarily fo-
cus on natural image restoration, leaving the performance of these algorithms in
scientific inverse problems largely unexplored. To address this gap, we intro-
duce INVERSEBENCH, a framework that evaluates diffusion models across five
distinct scientific inverse problems. These problems present unique structural
challenges that differ from existing benchmarks, arising from critical scientific
applications such as optical tomography, medical imaging, black hole imaging,
seismology, and fluid dynamics. With INVERSEBENCH, we benchmark 14 in-
verse problem algorithms that use plug-and-play diffusion priors against strong,
domain-specific baselines, offering valuable new insights into the strengths and
weaknesses of existing algorithms. To facilitate further research and develop-
ment, we open-source the codebase, along with datasets and pre-trained models,
at https://devzhk.github.io/InverseBench/.

1 INTRODUCTION

Inverse problems are fundamental in many domains of science and engineering, where the goal
is to infer the unknown source from indirect and noisy observations. Example domains include
astronomy (Chael et al., 2019), geophysics (Virieux & Operto, 2009), optical microscopy (Choi
et al., 2007), medical imaging (Lustig et al., 2007), fluid dynamics (Iglesias et al., 2013), among
others. These inverse problems are often challenging due to their ill-posedness, complexity in the
underlying physics, and unknown measurement noise.

The use of diffusion models (DMs) (Sohl-Dickstein et al., 2015; Dhariwal & Nichol, 2021) for solv-
ing inverse problems has become increasingly popular. One attractive approach is PnPDP methods
that use the DM as a plug-and-play prior (Wang et al., 2022; Dou & Song, 2024), where the infer-
ence objective is decomposed into the prior (using a pre-trained diffusion model) and the likelihood
of fitting the observations (using a suitable forward model). The advantage of this idea is twofold:
(1) As a powerful class of generative models, DMs can efficiently encode the complex and high-
dimensional prior distribution, which is essential to overcome ill-posedness. (2) As plug-and-play
priors, DMs can accommodate different problems without any re-training by decoupling the prior
and likelihood. However, current algorithms are primarily evaluated and compared on a fairly nar-
row set of image restoration tasks such as inpainting, super-resolution, and deblurring (Kadkhodaie
& Simoncelli, 2021; Song et al., 2023a; Mardani et al., 2024). These problems differ greatly from
those from science and engineering applications such as geophysics (Virieux & Operto, 2009), as-
tronomy (Porth et al., 2019), oceanography (Carton & Giese, 2008), and many other fields, which
have very different structural challenges arising from the underlying physics. It is unclear how much
insight can be carried over from image restoration to scientific inverse problems.

In this paper, we introduce INVERSEBENCH, a comprehensive benchmarking framework designed
to evaluate PnP diffusion prior approaches in a systematic and easily extensible manner. We curate

∗These authors contributed equally to this work.

1

https://devzhk.github.io/InverseBench/


Published as a conference paper at ICLR 2025

MRI image

G

G†

Linear inverse scattering
Scattered light �eld

Input light �eld

Compressed sensing MRI Black hole imaging Full waveform inversion Navier-Stokes equation

k-space
measurements

Visibilities Black hole
image

G

G†

G

G†

Observed
waveforms

Compressional
wave velocity

G

G†

Observed
vortocity �eld

Initial
vortocity �eld

Figure 1: Illustration of five benchmark problems in the INVERSEBENCH. G represents the forward
model that produces observations from the source. G† represents the inverse map. In the linear
inverse scattering problem (left two), the observation is the recorded data from the receivers and the
unknown source we aim to infer is the permittivity map of the object. The bottom panel displays
the efficiency and accuracy plots for our benchmarked algorithms. Certain characteristics of the
problem cause the efficiency and accuracy trade-offs of each algorithm to vary across tasks. In these
plots, the larger radius of the points indicates greater interaction with the forward function G, as
measured by the number of forward model evaluations.

a diverse set of five inverse problems from distinct scientific domains: optical tomography, black
hole imaging, medical imaging, seismology, and fluid dynamics. These problems present structural
challenges that differ significantly from natural image restoration tasks (cf. Figure 1 and Table 2),
and encompass a broad spectrum of complexities across multiple scientific fields. Most notably, the
forward model (which maps the source to observations) is defined using various types of physics-
based models which can be highly nonlinear and difficult to evaluate.

We select 14 representative plug-and-play diffusion prior algorithms proposed for solving inverse
problems, providing a thorough comparison of their performance across different scientific inverse
problems and further insights into their efficacy and limitations. Additionally, we establish strong,
domain-specific baselines for each inverse problem, providing a meaningful reference point for as-
sessing the effectiveness of diffusion model-based approaches against traditional methods.

Through extensive experiments, we find that PnP diffusion prior methods generally exhibit strong
performance given a suitable dataset for training a diffusion prior. This performance is consistent
even as we vary the forward model (which is a strength of a PnP approach), given appropriate tuning.
However, for forward models that require certain constraints on the input (e.g., uses a PDE solver),
performance can be very sensitive to hyperparameter tuning. Moreover, the strength of using a
diffusion prior can also be a limitation, as PnP diffusion prior methods have difficulty when the
source image is out of the prior distribution (i.e., the use of diffusion models makes it difficult to
recover “surprising” results). Additionally, we find that PnP methods that use multiple queries of
the forward model tend to outperform simpler methods like DPS, at the cost of requiring additional
tuning and computation, which points to an interesting direction for future method development.

INVERSEBENCH is implemented as a highly modular framework that can interface with new inverse
problems and algorithms to run experiments at scale. We open-source the codebase, along with
datasets and pre-trained models, at https://devzhk.github.io/InverseBench/.

2 PRELIMINARIES

2.1 INVERSE PROBLEMS

Following the typical setup, we have observations y ∈ Cm from an unknown source z ∈ Cn via a
forward model G : Cn → Cm. The inverse problem is to design a mapping G† to infer z from y:

z ← G†(y), where y = G(z, ξ). (1)
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Here, ξ represents noise in the forward model. In scientific applications, G represents the measure-
ment or sensing device (telescopes, infrared cameras, seismometers, electron microscopes, etc.).
Inverse problems typically present four major challenges: (1) Many inverse problems are ill-posed,
meaning that a solution may not exist, may not be unique, or may not be stable (Hadamard, 2014).
For example, in black hole imaging, there could be multiple solutions that match the same sparse
measurements. (2) The measurement noise is generally not separately observed (it is part of the ob-
servations y), and accounting for it in the inverse problem can be challenging, especially for poorly
characterized noise profiles (e.g., non-Gaussian). (3) The forward model might be highly nonlinear
and lack a closed-form expression, leading to computational and numerical challenges in method
design. (4) Designing an appropriate prior for the unknown source is also a critical challenge. For
some problems, it is necessary for the designed prior to capture the complex structure of the solution
space while remaining computationally tractable.

All these challenges necessitate some kind of regularization. While classic optimization approaches
often employ simple regularizers (e.g., local isotropic smoothness), these fail to capture global or
anisotropic properties. The use of diffusion models as a prior is attractive as a way to capture these
more complex properties.

2.2 DIFFUSION MODELS

Diffusion models are a powerful class of deep generative models that can capture complicated high-
dimensional distributions such as natural images (Rombach et al., 2022), proteins (Fu et al., 2024),
small molecules (Luo et al., 2024), robotic trajectories (Chi et al., 2023), amongst other domains.
Given their strong performance and compatibility with Bayesian inference, using diffusion models
to model the solution space as a prior is a promising idea (Chung et al., 2023; Song et al., 2022).

We consider the continuous formulation of diffusion models proposed by Song et al. (2020), which
expresses the forward diffusion and backward denoising process as stochastic differential equations
(SDEs). The forward process transforms a data distribution x0 ∼ pdata into an approximately
Gaussian one xT ∼ N (0, σ2(T )I) by gradually adding Gaussian noise according to:

dxt = f(xt, t)dt+ g(t)dwt, (2)

where f is a predefined vector-valued drift, g is the diffusion coefficient, w is the standard Wiener
process with time t flowing from 0 to T . The backward process sequentially denoises the Gaussian
noise into clean data, which is given by the reverse-time SDE:

dxt =

(
f(xt, t)−

1

2
g2(t)∇xt

log pt(xt)

)
dt+ g(t)dw̄t, (3)

where pt(xt) is the probability density of xt at time t and w̄t is the reverse-time Wiener process.
The diffusion model is trained to learn the score function∇xt log pt(xt). Once trained, the diffusion
model can generate new samples from the learned data distribution by solving Eq. (3).

2.3 PLUG-AND-PLAY DIFFUSION PRIORS FOR INVERSE PROBLEMS

We use the term Plug-and-Play Diffusion Prior (PnPDP) to refer to the class of recent methods that
use diffusion models (or the denoising network within) as plug-and-play priors (Venkatakrishnan
et al., 2013) for solving inverse problems. The basic idea is to either modify or use Eq. (3) to gen-
erate samples from p(x|y) rather than the prior p(x), which under Bayes rule can be expressed as
p(x|y) ∝ p(x)p(y|x). The first term p(x) can be modeled using a diffusion prior, and the sec-
ond term p(y|x) can be computed using the forward model. Broadly speaking, existing PnPDP
approaches can be grouped into four categories described below. Table 1 lists the 14 representative
algorithms we selected, and notes their different requirements on the forward model. To avoid con-
fusion, we use Courier font when referring to a specific algorithm in the main text throughout
the paper (e.g., PnP-DM for Wu et al. (2024)).

Guidance-based methods Arguably the most popular approach to solving inverse problems with a
pretrained diffusion model is guidance-based methods (Song et al., 2023a; Wang et al., 2022; Kawar
et al., 2022; Rout et al., 2023; Chung et al., 2023), which modify Eq. (3) by adding a likelihood score
term, ∇xt log pt(y|xt), along the diffusion trajectory. This term is related to the forward model G
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Table 1: Requirements on the forward model of the algorithms evaluated in our experiments.

Category Method SVD Pseudo inverse Linear Gradient

Linear guidance DDRM (Kawar et al., 2022) ✓ ✓ ✓ –
DDNM (Wang et al., 2022) ✗ ✓ ✓ –
ΠGDM (Song et al., 2023a) ✗ ✓ ✗ –

General guidance DPS (Chung et al., 2023) ✗ ✗ ✗ ✓

LGD (Song et al., 2023b) ✗ ✗ ✗ ✓

DPG (Tang et al., 2023) ✗ ✗ ✗ ✗

SCG (Huang et al., 2024) ✗ ✗ ✗ ✗

EnKG (Zheng et al., 2024) ✗ ✗ ✗ ✗

Variable-splitting DiffPIR (Zhu et al., 2023) ✗ ✗ ✗ ✓

PnP-DM (Wu et al., 2024) ✗ ✗ ✗ ✓

DAPS (Zhang et al., 2024) ✗ ✗ ✗ ✓

Variational Bayes RED-diff (Mardani et al., 2023) ✗ ✗ ✗ ✓

Sequential Monte Carlo FPS (Dou & Song, 2024) ✗ ✗ ✓ –
MCGDiff (Cardoso et al., 2024) ✓ ✓ ✓ –

Table 2: Characteristics of different inverse problems in INVERSEBENCH, from left to right: whether
the forward model is linear, whether one can compute the SVD from the forward model, whether
the inverse problem operates in the complex domain, whether the forward model can be solved in
closed form, whether one can access gradients from the forward model, and the noise type.

Problem Linear SVD Complex domain Closed-form forward Gradient access Noise type

Linear inverse scattering ✓ ✓ ✓ ✓ ✓ Gaussian
Compressed sensing MRI ✓ ✗ ✓ ✓ ✓ Real-world
Black hole imaging ✗ ✗ ✗ ✓ ✓ Non-additive
Full waveform inversion ✗ ✗ ✗ ✗ ✓ Noise-free
Navier-Stokes equation ✗ ✗ ✗ ✗ ✗ Gaussian

if the final clean x0 is a candidate source z, in which case p(y|x0) can be estimated by querying G.
However, log pt(y|xt) is generally intractable so various approximations have been proposed (Song
et al., 2022; Chung et al., 2023; Song et al., 2023a; Boys et al., 2023).

Variable splitting Variable splitting is a widely used strategy for solving regularized optimization
problems and conducting Bayesian inference (Vono et al., 2019; Chen et al., 2022; Lee et al., 2021).
The core idea is to split the inference into two alternating steps (Wu et al., 2024; Zhu et al., 2023;
Li et al., 2024a; Song et al., 2024; Zhang et al., 2024; Xu & Chi, 2024). The first step uses the
forward model to update or sample in the neighborhood of the most recent xt. The second step runs
unconditional inference on p(xt), which amounts to running Eq. (3) for a small amount of time.

Variational Bayes Variational Bayes methods approximate intractable distributions such as
p(x|y) using some simpler parameterized distribution qθ (Zhang et al., 2018). The key idea is
to find a qθ∗ that, in a KL-divergence sense, both fits the observations y and agrees with the prior
p(x). Instead of directly sampling according to Eq. (3), it uses the diffusion model as a prior within
a variational inference framework (Mardani et al., 2023; Feng et al., 2023; Feng & Bouman, 2024).

Sequential Monte Carlo Sequential Monte Carlo (SMC) methods draw samples iteratively from
a sequence of probability distributions. These methods represent probability distributions by a set of
particles with associated weights, which asymptotically converge to a target distribution following
a sequence of proposal and reweighting steps. Recent works have extended SMC methods to the
sequential diffusion sampling process (Wu et al., 2023; Trippe et al., 2023; Cardoso et al., 2024;
Dou & Song, 2024), enabling zero-shot posterior sampling with diffusion priors. However, these
methods are typically applicable only to inverse problems with linear forward models.

3 INVERSEBENCH

In this section, we introduce the formulation and specific challenges of the five scientific inverse
problems considered in INVERSEBENCH: linear inverse scattering, compressed sensing MRI, black
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hole imaging, full waveform inversion, and the Navier-Stokes equation. The characteristics of these
inverse problems are summarized in Table 2. Their computational characteristics are summarized in
Figure 6. Detailed descriptions and formal definitions can be found in Appendix B.

Linear inverse scattering Inverse scattering is an inverse problem that arises from optical mi-
croscopy, where the goal is to recover the unknown permittivity contrast z ∈ Rn from the measured
scattered lightfield ysc ∈ Cm. We consider the following formulation of inverse scattering

ysc = H(utot ⊙ z) + n ∈ Cm where utot = G(uin ⊙ z). (4)

Here G ∈ Cn×n and H ∈ Cm×n are the discretized Green’s functions that model the responses
of the optical system, uin and utot are the input and total lightfields, ⊙ is the elementwise product,
and n is the measurement noise. Since this problem is a linearized version of the general nonlinear
inverse scattering problem based on the first Born approximation, we refer to it as linear inverse
scattering. This problem allows us to test algorithms designed specifically for linear problems.

Compressed sensing MRI Compressed sensing MRI is a technique that accelerates the scan time
of MRI via subsampling. We consider the parallel imaging (PI) setup of CS-MRI, which is widely
adopted in research and practice. Mathematically, PI CS-MRI can be formulated as an inverse
problem that aims to recover an image z ∈ Cn from

yj = PFSjz + nj ∈ Cm for j = 1, ..., J

where P ∈ {0, 1}m×n is a subsampling operator and F is the Fourier transform; yj , Sj , and nj

are the measurements, sensitivity map, and the noise of the j-th coil, respectively. Compressed
sensing MRI is a linear problem, but it poses significant challenges due to its high-dimensional
nature, involvement of priors in the complex domain, and attention to fine-grained details.

Black hole imaging The measurements for black hole imaging (BHI) are obtained through Very
Long Baseline Interferometry (VLBI). In this technique, each pair of telescopes (a, b) provides a
visibility (van Cittert, 1934; Zernike, 1938): a measurement that samples a particular spatial Fourier
frequency of the source image related to the projected baseline between telescopes at time t

V t
a,b = gtag

t
be

−i(ϕt
a−ϕt

b)It
a,b(z) + ηt

a,b. (5)

The ideal visibilities It
a,b(z), representing the Fourier component of the image z, are corrupted by

Gaussian thermal noise ηt
a,b as well as telescope-dependent amplitude errors gta, gtb and phase errors

ϕt
a, ϕt

b (EHTC, 2019a). To mitigate the impact of these amplitude and phase errors, derived data
products called closure quantities, namely closure phases and log closure amplitudes, can be used
to constrain inference (Blackburn et al., 2020):

ycp
t,(a,b,c) = ∠(V t

a,bV
t
b,cV

t
a,c) ∈ R, ylogca

t,(a,b,c,d) = log

(
|V t

a,b||V t
c,d|

|V t
a,c||V t

b,d|

)
∈ R. (6)

Here, ∠ and | · | denote the complex angle and amplitude. Given a total of M telescopes, the
number of closure phase measurements ycp

t,(a,b,c) at time t is (M−1)(M−2)
2 , and the number of log

closure amplitude measurements ylogca
t,(a,b,c,d) is M(M−3)

2 , after accounting for redundancy. Closure
quantities are nonlinear transformations of the visibilities, making a forward model that uses them
for black hole imaging non-convex. The inverse problem is further complicated by the need for
super-resolution imaging beyond the intrinsic resolution of the Event Horizon Telescope (EHT)
observations (i.e., maximum probed spatial frequency), as well as phase ambiguities, which can lead
to multiple modes in the posterior distribution (Sun & Bouman, 2021; Sun et al., 2024). Another
challenge of BHI is that measurement noise is non-additive due to the usage of the closure quantities.

Full waveform inversion Full waveform inversion (FWI) aims to infer subsurface physical prop-
erties (e.g. compressional and shear wave velocities) using the full information of recorded wave-
forms. In this work, we consider the problem of recovering the compressional wave velocity
v := v(x) (discretized as z ∈ Rn) from the observed wavefield ur (discretized as y ∈ Rm):

y = Pu, (7)
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where P is the sampling operator for receivers where observational data is available, and u is the
discretization of the pressure wavefield u := u(x, t), which is a function of location x and time t.
Here, u is the solution to the acoustic (scalar) wave equation that models seismic wave propagation
in heterogeneous acoustic media with constant density:

1

v2
∂2u

∂t2
−∇2u = q, (8)

where q := q(x, t) is the source function (discretized as q). Eq. (8) can be discretized as:

Au = q,

where A represents the discretized operator 1
v2

∂2

∂t2 − ∇
2. Typically we only have observations at

the free surface, the inverse problem has non-unique solutions. One of the major challenges for
FWI is the prohibitive computational expense, especially for large problems, as it usually requires
numerous calls to the forward modeling process. Moreover, the conventional method for FWI, called
the adjoint-state method, casts it as a local optimization problem (Virieux et al., 2017; Virieux &
Operto, 2009). This means that a sufficiently accurate initial model is required, as the solution is
only sought in its vicinity. FWI conventionally needs to start with a smoothed model derived from
simpler ray-based methods (Liu et al., 2017; Maguire et al., 2022), which imposes a significantly
strong prior. A general method with less reliance on initialization is highly desired.

Navier-Stokes equation Navier-Stokes equation is a classic benchmarking problem from fluid
dynamics (Iglesias et al., 2013). Its applications range from ocean dynamics to climate modeling
where observations of the atmosphere are used to calibrate the initial condition for the downstream
numerical forecasting. We consider the forward model that is given by the following 2D Navier-
Stokes equation for a viscous, incompressible fluid in vorticity form on a torus.

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 2π)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, 2π)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, 2π)2
(9)

where u ∈ C
(
[0, T ];Hr

per((0, 2π)
2;R2)

)
for any r > 0 is the velocity field, w = ∇ × u is the

vorticity, w0 ∈ L2
per

(
(0, 2π)2;R

)
is the initial vorticity, ν ∈ R+ is the viscosity coefficient, and

f ∈ L2
per

(
(0, 2π)2;R

)
is the forcing function. The solution operator G is defined as the operator

mapping the vorticity from the initial vorticity to the vorticity at time T , i.e. G : w0 → wT .
We consider the problem of recovering the initial vorticity field z := w0 from the noisy partial
observation y of the vorticity field wT at time T given by

y = PL(z) + n

where P is the sampling operator, n is the measurement noise, and L(·) is the discretized solution
operator of Eq. (9). The Navier-Stokes equation does not admit a closed-form solution and thus
there is no closed-form gradient available for the solution operator. Moreover, obtaining an accurate
numerical gradient via automatic differentiation through the numerical solver is challenging due to
the extensive computation graph expanded after thousands of discrete time steps.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Here we provide a brief summary of our experimental setup. More details about the inverse problems
and their corresponding datasets can be found in Appendix B. Technical details of DM pretraining
can be found in Appendix B.6.

Black hole imaging We leverage a dataset of General Relativistic MagnetoHydroDynamic
(GRMHD) (Mizuno, 2022) simulated black hole images as our training data. The training set
consists of 50,000 resized 64×64 images. Since this dataset is not publicly available, we gener-
ate synthetic images from a pre-trained diffusion model for both the validation and test datasets.
Specifically, we use 5 sampled images for the validation set and 100 sampled images for the test set.
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Full waveform inversion We adapt the CurveFaultB dataset (Deng et al., 2022), which presents
the velocity maps that contain faults caused by shifted rock layers. We resize the original data to
resolution 128×128 with bilinear interpolation and anti-aliasing. The training set consists of 50,000
velocity maps. The test and validation sets contain 10 and 1 velocity maps, respectively.

Linear inverse scattering We create a dataset of fluorescence microscopy images using the online
simulator (Wiesner et al., 2019). The training set consists of 10,000 HL60 nucleus permittivity
images. The test and validation sets contain 100 and 10 permittivity images, respectively. We curate
the test and validation samples so that all test samples have less than 0.6 cosine similarities to those
in the training set.

Compressed sensing MRI We use the multi-coil raw k-space data from the fastMRI knee dataset
(Zbontar et al., 2018). We exclude the first and last 5 slices of each volume for training and valida-
tion as they do not contain much anatomical information and resize all images down to 320 × 320
following the preprocessing procedure of (Jalal et al., 2021). In total, we use 25,012 images for
training, 6 images for hyperparameter search, and 94 images for testing.

Navier-Stokes We create a dataset of non-trivial initial vorticity fields by first sampling from a
Gaussian random field and then evolving Eq.9 for five time units. The equation setup follows Igle-
sias et al. (2013); Li et al. (2024b). We set the Reynolds number to 200 and spatial resolution to
128×128. The training set consists of 10,000 samples. The test and validation sets contain 10 and 1
samples, respectively.

Pretraining of diffusion model priors For each problem, we train a diffusion model on the train-
ing set using the pipeline from (Karras et al., 2022), and use the same checkpoint for all diffusion
plug-and-play methods on each problem for a fair comparison. See more details in Appendix B.6.

4.2 EVALUATION METRICS

Accuracy metrics We use the Peak Signal-to-Noise Ratio (PSNR), Structure Similarity Index
Measure (SSIM), as the generic ways to quantify recovery of the true source. For all the problems
except for black hole imaging, we use the ℓ2 error ∥G(ẑ)−y∥2 to measure the consistency with the
observation y. For black hole imaging, the closure quantities are invariant under translation, and so
we measure the best fit under any shift alignment. We also assess the Blur PSNR, where images are
blurred to match the target resolution of the telescope. We evaluate data misfit via the χ2 statistic on
two closure quantities: the closure phase (χ2

cp) and the log closure amplitude (χ2
logca). A χ2 value

close to 1 indicates better data fitting. To facilitate a comparison between underfitting (χ2 > 1) and
overfitting (χ2 < 1), we report a unified metric defined as

χ̃2 = χ2 · 1{χ2 ≥ 1}+ 1

χ2
· 1{χ2 < 1}. (10)

For FWI and Navier-Stokes experiments, we also use the relative ℓ2 error ∥ẑ − z∥2/∥z∥2 as it is a
commonly used primary accuracy metric in PDE problems (Iglesias et al., 2013).

Efficiency metrics We define a set of efficiency metrics in Table 9 to evaluate the computational
complexity of inverse algorithms more thoroughly. These metrics fall into two categories: (1) to-
tal metrics that measure the overall computational cost; (2) sequential metrics that help identify
bottlenecks where forward model or diffusion model queries cannot be parallelized.

Ranking score To assess the relative ranking of different PnP diffusion models across various
problems, we define the following ranking score for each problem. Given a set of accuracy or
efficiency metrics {hk}Kk=1, we rank the algorithms according to each individual metric. Suppose
algorithm l has the rank Rk(l) out of L algorithms under the metric k. Its ranking score on this
metric is given by scorek(l) = 100 × (L−Rk(l) + 1) /L. For each problem, we calculate the
average ranking score to assess overall performance:

scoreproblem(l) =
1

K

K∑
k=1

scorek(l).
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Figure 2: Qualitative comparison showing representative examples of PnP-DP methods and domain-
specific baselines across five inverse problems. Note that for full waveform inversion, Adam∗ and
LBFGS∗ are initialized with Gaussian-blurred ground truth, serving as references.

4.3 MAIN FINDINGS

The full experimental results for each problem are provided in Appendix A.1 as tables. Below, we
highlight some key insights distilled from these results.

How do PnPDP methods work compared to conventional baselines? Our primary finding is
that, given a suitable dataset for training a DM prior, PnPDP methods generally outperform conven-
tional baselines. This is evident in Figure 1, where the PnPDP methods generally lie higher along
the vertical axis. This finding is as expected given that the baselines do not incorporate such strong
prior information.
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However, if the classic optimization baselines are initialized well, then they sometimes outperform
PnPDP methods, most of which cannot naturally incorporate an initialization beyond white noise.
For example, in FWI, PnPDP methods clearly outperform the classic baseline methods if the base-
lines are initialized randomly or from a constant. But if initialized with a good guess (e.g., a heavily
blurred ground truth image), they consistently outperform the current PnPDP methods. That being
said, the fact that PnPDP methods rely much less on initialization than the traditional optimization
methods is already an intriguing property. See qualitative comparison in Figure 1 and quantitative
comparison in Table 7.

How do PnPDP methods compare with each other? In the problems where the forward model has
a closed-form expression, methods that require more gradient queries, such as DAPS and PnP-DM,
tend to be more accurate. However, since they have more queries to the forward model, they are also
more expensive, as shown in Figure 1. Additionally, these methods require more careful tuning as
they usually have larger hyperparameter spaces, as shown in Table 121.

In the problems where the forward model has no closed-form expression, particularly a forward
model defined by a PDE system and implemented as a numerical PDE solver, this trend does not
hold. In fact, DAPS and PnP-DM perform poorly, as shown in Figure 1 and Table 7. These meth-
ods also demonstrate an increased level of numerical instability and sensitivity to hyperparameters,
as shown in Figure 3: minor adjustments in step size can lead to either unconditional generation
results that ignore measurements (with slightly smaller steps) or complete failure (with slightly
larger steps). This performance degradation stems from a critical limitation in many current PnPDP
algorithms: they do not account for stability conditions required to query a forward model. For
example, in the FWI and Navier-Stokes equation, the input of the forward model must satisfy the
Courant–Friedrichs–Lewy (CFL) condition (Courant et al., 1967) to produce stable solutions. This
issue is particularly pronounced for methods like DAPS and PnP-DM, which incorporate Langevin
Monte Carlo (LMC) as an inner loop as LMC introduces additional Gaussian noise at each step,
further exacerbating instability compared to other PnPDP methods.

Figure 3: Illustration of the failures of PnPDP methods (DAPS as an example) on full waveform
inversion. With a small learning rate, DAPS is numerically stable but does not solve the inverse
problem effectively. With a slightly larger learning rate, DAPS produces a noisy velocity map that
breaks the stability condition of the PDE solver, resulting in a complete failure.

How does the performance vary with different levels of measurement sparsity? As measure-
ment sparsity increases, making the inverse problem more ill-posed, we observe an increasingly
wide performance gap between PnPDP methods and baselines. Figure 4 illustrates this trend across
three problems, showing that the average performance gain of top PnPDP methods over baselines
grows with increasing measurement sparsity.

How well do PnPDP methods deal with different forward models? For linear inverse prob-
lems, our results demonstrate that PnPDP methods can effectively deal with varying forward models
without the need for parameter tuning. To validate this, we conduct a controlled experiment in CS-
MRI, where we maintain a consistent measurement sparsity while altering the subsampling pattern

1Note that tuning the hyperparameters of PnPDP approaches is still much more efficient than retraining a
neural network that is typically required for end-to-end approaches.
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Figure 4: Relative performance of plug-and-play diffusion prior methods compared with traditional
baselines under different levels of measurement sparsity on different tasks. Metrics are averaged
over multiple PnPDP methods. The performance difference increases in general as the measurement
becomes sparser.

RED-diffDPS PnP-DM DAPSGround truth

(a)

DDRM DDNM ∏GDM DPSGround truth LGD

DiffPIR PnP-DM DAPS RED-diff FPS

PSNR=27.55 PSNR=32.24 PSNR=25.20 PSNR=26.34 PSNR=22.13

PSNR=29.04 PSNR=28.24 PSNR=30.04 PSNR=30.48 PSNR=28.28

(b)
Figure 5: PnPDP methods on out-of-distribution test samples. (a) Black-hole imaging problem on
digits inputs; and (b) inverse scattering on sources that contain 9 cells, while the prior model is
trained on images with 1 to 6 cells.

(from vertical to horizontal lines). We assess the average performance variation across three method
categories: traditional baselines, end-to-end approaches, and PnPDP methods. The average abso-
lute performance change for PnPDP methods is 0.48dB (PSNR) and 0.016 (SSIM), comparable to
the traditional baseline methods at 1.62dB (PSNR) and 0.027 (SSIM), but significantly smaller than
the end-to-end methods, which exhibit changes of 9.58dB (PSNR) and 0.21 (SSIM). These find-
ings indicate that PnPDP methods are more robust than both baseline and end-to-end methods when
handling different forward models.2

How well do PnPDP methods handle out-of-distribution sources? In general, if the unknown
source falls outside the diffusion prior distribution, PnPDP methods tend to generate solutions that
are biased toward the prior. As illustrated in Figure 5a, most solutions produced by PnPDP methods
exhibit a black hole ring feature characteristic of the diffusion prior. This suggests that while PnPDP
approaches are flexible in capturing high-dimensional priors, they are limited in their ability to
reliably recover “surprising” sources that lie outside the support of the diffusion prior distribution.
However, when the unknown source is close to the diffusion prior distribution, PnPDP methods can
recover it effectively, as demonstrated in Figure 5b.

5 DISCUSSION

We conclude by highlighting key research opportunities for advancing PnPDP methods in solving
inverse problems. One research challenge we identify is that the current PnPDP methods do not
account for stability conditions required to query a forward model, which leads to degraded per-
formance and numerical instability. However, many scientific inverse problems are based on PDE
systems that requires certain conditions on the inputs to simulate numerically and violating these
constraints can result in meaningless solutions. Another direction for improvement is inference
speed. As shown in Figure 1, almost all the PnPDP methods are less computationally efficient
than the conventional baselines. There remains substantial room for optimization. Beyond these
challenges, additional promising research directions such as robustness to model error and prior
mismatch are further discussed in Appendix C.

2For end-to-end approaches, this is considered as an out-of-distribution test.
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Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. Advances in variational
inference. IEEE transactions on pattern analysis and machine intelligence, 41(8):2008–2026,
2018.

Ruiyang Zhao, Burhaneddin Yaman, Yuxin Zhang, Russell Stewart, Austin Dixon, Florian Knoll,
Zhengnan Huang, Yvonne W Lui, Michael S Hansen, and Matthew P Lungren. fastmri+: Clin-
ical pathology annotations for knee and brain fully sampled multi-coil mri data. arXiv preprint
arXiv:2109.03812, 2021.

18

https://proceedings.neurips.cc/paper_files/paper/2023/file/63e8bc7bbf1cfea36d1d1b6538aecce5-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/63e8bc7bbf1cfea36d1d1b6538aecce5-Paper-Conference.pdf
https://arxiv.org/abs/2403.17042
https://arxiv.org/abs/2407.01521


Published as a conference paper at ICLR 2025

Hongkai Zheng, Wenda Chu, Austin Wang, Nikola Kovachki, Ricardo Baptista, and Yisong Yue.
Ensemble kalman diffusion guidance: A derivative-free method for inverse problems, 2024. URL
https://arxiv.org/abs/2409.20175.

Kevin C. Zhou and Roarke Horstmeyer. Diffraction tomography with a deep image prior. Opt.
Express, 28(9):12872–12896, Apr 2020. doi: 10.1364/OE.379200. URL https://opg.
optica.org/oe/abstract.cfm?URI=oe-28-9-12872.

Bo Zhu, Jeremiah Z. Liu, Stephen F. Cauley, Bruce R. Rosen, and Matthew S. Rosen. Image
reconstruction by domain-transform manifold learning. Nat., 555(7697):487–492, 2018.

Yuanzhi Zhu, Kai Zhang, Jingyun Liang, Jiezhang Cao, Bihan Wen, Radu Timofte, and Luc
Van Gool. Denoising diffusion models for plug-and-play image restoration. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 1219–1229, 2023.

19

https://arxiv.org/abs/2409.20175
https://opg.optica.org/oe/abstract.cfm?URI=oe-28-9-12872
https://opg.optica.org/oe/abstract.cfm?URI=oe-28-9-12872


Published as a conference paper at ICLR 2025

A APPENDIX

A.1 TABLES OF MAIN RESULTS

Table 3: Results on Linear inverse scattering. PSNR and SSIM of different algorithms on linear
inverse scattering. Noise level σy = 10−4.

Number of receivers 360 180 60
Methods PSNR SSIM Meas err (%) PSNR SSIM Meas err (%) PSNR SSIM Meas err (%)

Traditional
FISTA-TV 32.126 (2.139) 0.979 (0.009) 1.23 (0.25) 26.523 (2.678) 0.914 (0.040) 2.65 (0.30) 20.938 (2.513) 0.709 (0.103) 6.05 (0.65)

PnP diffusion prior
DDRM 32.598 (1.825) 0.929 (0.012) 1.04 (0.26) 28.080 (1.516) 0.890 (0.019) 1.57 (0.39) 20.436 (1.210) 0.545 (0.037) 3.04 (0.92)
DDNM 36.381 (1.098) 0.935 (0.017) 0.78 (0.22) 35.024 (0.993) 0.895 (0.027) 0.58 (0.16) 29.235 (3.376) 0.917 (0.022) 0.28 (0.07)
ΠGDM 27.925 (3.211) 0.889 (0.072) 2.74 (1.23) 26.412 (3.430) 0.816 (0.114) 3.66 (1.79) 20.074 (2.608) 0.540 (0.198) 6.90 (3.38)
DPS 32.061 (2.163) 0.846 (0.127) 4.35 (1.19) 31.798 (2.163) 0.862 (0.123) 4.28 (1.20) 27.372 (3.415) 0.813 (0.133) 4.53 (1.31)
LGD 27.901 (2.346) 0.812 (0.037) 1.17 (0.20) 27.837 (2.337) 0.803 (0.034) 1.06 (0.16) 20.491 (3.031) 0.552 (0.077) 1.45 (0.68)
DiffPIR 34.241 (2.310) 0.988 (0.006) 1.11 (0.24) 34.010 (2.269) 0.987 (0.006) 1.04 (0.23) 26.321 (3.272) 0.918 (0.028) 1.27 (0.23)
PnP-DM 33.914 (2.054) 0.988 (0.006) 1.21 (0.25) 31.817 (2.073) 0.981 (0.008) 1.42 (0.26) 24.715 (2.874) 0.909 (0.046) 2.20 (0.34)
DAPS 34.641 (1.693) 0.957 (0.006) 1.03 (0.25) 33.160 (1.704) 0.944 (0.009) 1.11 (0.25) 25.875 (3.110) 0.885 (0.030) 1.51 (0.25)
RED-diff 36.556 (2.292) 0.981 (0.005) 0.89 (0.23) 35.411 (2.166) 0.984 (0.004) 0.87 (0.21) 27.072 (3.330) 0.935 (0.037) 1.18 (0.23)
FPS 33.242 (1.602) 0.870 (0.026) 0.70 (0.01) 29.624 (1.651) 0.710 (0.040) 0.37 (0.01) 21.323 (1.445) 0.460 (0.030) 0.15 (0.02)
MCG-diff 30.937 (1.964) 0.751 (0.029) 0.70 (0.01) 28.057 (1.672) 0.631 (0.042) 0.38 (0.01) 21.004 (1.571) 0.445 (0.028) 0.21 (0.06)

Table 4: Results on compressed sensing MRI. Mean and standard deviation are reported over 94 test
cases. Underline: the best across all methods. Bold: the best across PnP DM methods.

Subsampling ratio ×4 ×8

Measurement type Simulated (noiseless) Raw Simulated (noiseless) Raw

Methods PSNR↑ SSIM ↑ Data misfit ↓ PSNR ↑ SSIM ↑ Data misfit ↓ PSNR ↑ SSIM ↑ Data-fit PSNR ↑ SSIM ↑ Data misfit ↓

Traditional
Wavelet+ℓ1 29.45 (1.776) 0.690 (0.121) 0.306 (0.049) 26.47 (1.508) 0.598 (0.122) 31.601 (15.286) 25.97 (1.761) 0.575 (0.105) 0.318 (0.042) 24.08 (1.602) 0.511 (0.106) 22.362 (10.733)
TV 27.03 (1.635) 0.518 (0.123) 5.748 (1.283) 26.22 (1.578) 0.509 (0.123) 32.269 (15.414) 24.12 (1.900) 0.432 (1.112) 5.087 (1.049) 23.70 (1.857) 0.427 (0.112) 23.048 (10.854)

End-to-end
Residual UNet 32.27 (1.810) 0.808 (0.080) – 31.70 (1.970) 0.785 (0.095) – 29.75 (1.675) 0.750 (0.088) — 29.36 (1.746) 0.733 (0.100) –
E2E-VarNet 33.40 (2.097) 0.836 (0.079) – 31.71 (2.540) 0.756 (0.102) – 30.67 (1.761) 0.769 (0.085) — 30.45 (1.940) 0.736 (0.103) –

PnP diffusion prior
CSGM 28.78 (6.173) 0.710 (0.147) 1.518 (0.433) 25.17 (6.246) 0.582 (0.167) 31.642 (15.382) 26.15 (6.383) 0.625 (0.158) 1.142 (1.078) 21.17 (8.314) 0.425 (0.192) 22.088 (10.740)
ScoreMRI 25.97 (1.681) 0.468 (0.087) 10.828 (1.731) 25.60 (1.618) 0.463 (0.086) 33.697 (15.209) 25.01 (1.526) 0.405 (0.079) 8.360 (1.381) 24.74 (1.481) 0.403 (0.080) 24.028 (10.663)
RED-diff 29.36 (7.710) 0.733 (0.131) 0.509 0.077) 28.71 (2.755) 0.626 (0.126) 31.591 (15.368) 26.76 (6.696) 0.647 (0.124) 0.485 (0.068) 27.33 (2.441) 0.563 (0.117) 22.336 (10.838)
DiffPIR 28.31 (1.598) 0.632 (0.107) 10.545 (2.466) 27.60 (1.470) 0.624 (0.111) 34.015 (15.522) 26.78 (1.556) 0.588 (0.113) 7.787 (1.741) 26.26 (1.458) 0.590 (0.113) 24.208 (10.922)
DPS 26.13 (4.247) 0.620 (0.105) 9.900 (2.925) 25.83 (2.197) 0.548 (0.116) 35.095 (15.967) 20.82 (4.777) 0.536 (0.111) 6.737 (1.928) 23.00 (3.205) 0.507 (0.109) 24.842 (11.263)
DAPS 31.48 (1.988) 0.762 (0.089) 1.566 (0.390) 28.61 (2.197) 0.689 (0.102) 31.115 (15.497) 29.01 (1.712) 0.681 (0.098) 1.280 (0.301) 27.10 (2.034) 0.629 (0.107) 22.729 (10.926)
PnP-DM 31.80 (3.473) 0.780 (0.096) 4.701 (0.675) 27.62 (3.425) 0.679 (0.117) 32.261 (15.169) 29.33 (3.081) 0.704 (0.105) 3.421 (0.504) 25.28 (3.102) 0.607 (0.117) 22.879 (10.712)

Table 5: Generalization results on compressed sensing MRI with ×4 acceleration and raw measure-
ments. Mean and standard deviation are reported over 94 test cases.

Generalization Vertical → Horizontal Knee → Brain ×4 → ×8

Methods PSNR↑ SSIM ↑ Data misfit ↓ PSNR ↑ SSIM ↑ Data misfit ↓ PSNR ↑ SSIM ↑ Data misfit ↓

Traditional
Wavelet+ℓ1 27.75 (1.683) 0.627 (0.133) 31.744 (15.362) 25.96 (1.253) 0.747 (0.026) 7.986 (0.965) 24.08 (1.602) 0.511 (0.106) 22.362 (10.733)
TV 28.18 (1.777) 0.533 (0.138) 32.311 (15.487) 25.56 (1.302) 0.686 (0.049) 8.396 (0.990) 23.70 (1.857) 0.427 (0.112) 23.048 (10.854)

End-to-end
Residual UNet 22.06 (1.682) 0.603 (0.049) – 30.07 (1.364) 0.881 (0.019) – 23.93 (2.176) 0.610 (0.064) –
E2E-VarNet 22.13 (2.925) 0.543 (0.103) – 31.97 (1.452) 0.857 (0.038) – 24.59 (2.012) 0.637 (0.069) –

PnP diffusion prior
CSGM 26.56 (3.647) 0.629 (0.129) 31.866 (15.479) 27.19 (7.521) 0.779 (0.189) 7.779 (1.043) 21.17 (8.314) 0.425 (0.192) 22.088 (10.740)
ScoreMRI 25.60 (1.647) 0.473 (0.091) 33.707 (15.274) 28.52 (0.885) 0.674 (0.045) 9.472 (0.948) 24.74 (1.481) 0.403 (0.080) 24.028 (10.663)
RED-diff 28.95 (2.480) 0.628 (0.126) 31.740 (15.421) 30.61 (0.982) 0.811 (0.048) 7.750 (0.996) 27.33 (2.441) 0.563 (0.117) 22.336 (10.838)
DiffPIR 27.93 (1.502) 0.637 (0.113) 34.188 (15.479) 27.75 (0.854) 0.823 (0.026) 10.972 (1.016) 26.26 (1.458) 0.590 (0.113) 24.208 (10.922)
DPS 26.77 (1.546) 0.571 (0.117) 35.233 (16.006) 26.77 (1.137) 0.738 (0.031) 10.806 (1.159) 23.00 (3.205) 0.507 (0.109) 24.842 (11.263)
DAPS 28.78 (2.209) 0.696 (0.105) 32.198 (15.538) 29.29 (0.911) 0.882 (0.025) 8.255 (0.986) 27.10 (2.034) 0.629 (0.107) 22.729 (10.926)
PnP-DM 27.93 (3.444) 0.689 (0.121) 32.391 (15.235) 29.96 (0.984) 0.882 (0.028) 8.789 (0.978) 25.28 (3.102) 0.607 (0.117) 22.879 (10.712)
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Table 6: Results on black hole imaging. PSNR and Chi-squared of different algorithms on black
hole imaging. Gain and phase noise and thermal noise are added based on EHT library.

Observation time ratio 3% 10% 100%
Methods PSNR Blur PSNR χ̃2

cp χ̃2
logca PSNR Blur PSNR χ̃2

cp χ̃2
logca PSNR Blur PSNR χ̃2

cp χ̃2
logca

Traditional
SMILI 18.51 (1.39) 23.08 (2.12) 1.478 (0.428) 4.348 (3.827) 20.85 (2.90) 25.24 (3.86) 1.209 (0.169) 21.788 (12.491) 22.67 (3.13) 27.79 (4.02) 1.878 (0.952) 17.612 (10.299)
EHT-Imaging 21.72 (3.39) 25.66 (5.04) 1.507 (0.485) 1.695 (0.539) 22.67 (3.46) 26.66 (3.93) 1.166 (0.156) 1.240 (0.205) 24.28 (3.63) 28.57 (4.52) 1.251 (0.250) 1.259 (0.316)

PnP diffusion prior
DPS 24.20 (3.72) 30.83 (5.58) 8.024 (24.336) 5.007 (5.750) 24.36 (3.72) 30.79 (5.75) 13.052 (43.087) 6.614 (26.789) 25.86 (3.90) 32.94 (6.19) 8.759 (37.784) 5.456 (24.185)
LGD 22.51 (3.76) 28.50 (5.49) 15.825 (16.838) 12.862 (12.663) 22.08 (3.75) 27.48 (5.09) 10.775 (21.684) 13.375 (56.397) 21.22 (3.64) 26.06 (4.98) 13.239 (17.231) 13.233 (39.107)
RED-diff 20.74 (2.62) 26.10 (3.35) 6.713 (6.925) 9.128 (19.052) 22.53 (3.02) 27.67 (4.53) 2.488 (2.925) 4.916 (13.221) 23.77 (4.13) 29.13 (6.22) 1.853 (0.938) 2.050 (2.361)
PnPDM 24.25 (3.45) 30.49 (4.93) 2.201 (1.352) 1.668 (0.551) 24.57 (3.47) 30.80 (5.22) 1.433 (0.417) 1.336 (0.478) 26.07 (3.70) 32.88 (6.02) 1.311 (0.195) 1.199 (0.221)
DAPS 23.54 (3.28) 29.48 (4.88) 3.647 (3.287) 2.329 (1.354) 23.99 (3.56) 30.10 (5.13) 1.545 (0.705) 2.253 (9.903) 25.60 (3.64) 32.78 (5.68) 1.300 (0.324) 1.229 (0.532)
DiffPIR 24.12 (3.25) 30.45 (4.88) 14.085 (14.105) 10.545 (8.860) 23.84 (3.59) 30.04 (5.03) 5.374 (3.733) 5.205 (5.556) 25.01 (4.64) 31.86 (6.56) 3.271 (1.623) 2.970 (1.202)

Table 7: Results on FWI. Mean and standard deviation are reported over 10 test cases. †: initialized
from data blurred by Gaussian filters with σ = 20. ∗: one test case is excluded from the results due
to numerical instability.

Methods Relative L2↓ PSNR↑ SSIM↑ Data misfit↓
Traditional
Adam 0.333 (0.086) 9.968 (2.083) 0.305 (0.120) 115.14 (52.10)
Adam† 0.089 (0.021) 21.273 (2.045) 0.679 (0.073) 15.89 (10.16)
LBFGS† 0.070 (0.023) 23.398 (2.749) 0.704 (0.077) 9.18 (6.47)

PnP diffusion prior
DPS 0.250 (0.154) 14.111 (6.820) 0.491 (0.161) 155.08 (92.17)
LGD 0.244 (0.024) 12.288 (0.889) 0.341 (0.047) 258.47 (26.40)
DiffPIR 0.204 (0.129) 16.113 (6.962) 0.554 (0.191) 88.53 (56.91)
DAPS† 0.201 (0.103) 14.914 (4.184) 0.321 (0.067) 111.13 (71.33)
PnP-DM 0.259 (0.075) 11.983 (2.269) 0.431 (0.073) 308.84 (26.34)
REDDiff 0.319 (0.102) 10.372 (2.650) 0.280 (0.108) 94.67 (41.33)

Table 8: Results on Navier-Stokes equation. Relative ℓ2 error of different algorithms on 2D Navier-
Stokes inverse problem, reported over 10 test cases. ∗: one or two test cases are excluded from the
results due to numerical instability.

Subsampling ratio ×2 ×4 ×8
Measurement noise σ = 0.0 σ = 1.0 σ = 2.0 σ = 0.0 σ = 1.0 σ = 2.0 σ = 0.0 σ = 1.0 σ = 2.0

Traditional
EKI 0.577 (0.138) 0.609 (0.119) 0.673 (0.107) 0.579 (0.145) 0.669 (0.131) 0.805 (0.112) 0.852 (0.167) 0.940(0.115) 1.116(0.090)

PnP diffusion prior
DPS-fGSG 1.687 (0.156) 1.612 (0.173) 1.454 (0.154) 1.203* (0.122) 1.209* (0.116) 1.200* (0.100) 1.246* (0.108) 1.221* (0.082) 1.260 (0.117)
DPS-cGSG 2.203* (0.314) 2.117 (0.295) 1.746 (0.191) 1.175* (0.079) 1.133* (0.095) 1.114* (0.144) 1.186* (0.117) 1.204* (0.115) 1.218 (0.113)
DPG 0.325 (0.188) 0.408* (0.173) 0.466 (0.171) 0.322 (0.200) 0.361 (0.187) 0.454 (0.207) 0.596 (0.301) 0.591 (0.262) 0.846 (0.251)
SCG 0.908 (0.600) 0.928 (0.557) 0.966 (0.546) 0.869 (0.513) 0.926 (0.546) 0.929 (0.505) 1.260 (0.135) 1.284 (0.117) 1.347 (0.141)
EnKG 0.120 (0.085) 0.191 (0.057) 0.294 (0.061) 0.115 (0.064) 0.271 (0.053) 0.522 (0.136) 0.287 (0.273) 0.546 (0.212) 0.773 (0.170)

Table 9: Table of metrics we use to capture the computation complexity of each algorithm.

Metric Description

# Fwdtotal total forward model evaluations
# DMtotal total diffusion model evaluations
# Fwd Gradtotal total forward model gradient evaluations
# DM Gradtotal total diffusion model gradient evaluations
Costtotal total runtime

# Fwdseq sequential forward model evaluations
# DMseq sequential diffusion model evaluations
# Fwd Gradseq sequential forward model gradient evaluations
# DM Gradseq sequential diffusion model gradient evaluations
Costseq sequential runtime
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Figure 6: Computational characteristics of each forward model. Fwd: runtime of a single forward
model evaluation tested on a single A100 GPU. DM: runtime of a single diffusion model evaluation.
Fwd Grad: runtime of a single forward model gradient evaluation. DM Grad: runtime of a single
diffusion model gradient evaluation. Note that the inverse problem of the Navier-Stokes equation
only permits black-box access to the forward model so its Fwd Grad has no value.

A.2 EXTENDED EVALUATION OF CS-MRI

Table 10: Diagnostic performance of compressed sensing MRI reconstructions.

Method Precision Recall mAP50 mAP50 ranking PSNR SSIM Data misfit PSNR ranking
Traditional
Wavelet+ℓ1 0.532 0.332 0.385 9 28.16 (1.724) 0.685 (0.064) 23.501 (10.475) 8
TV 0.447 0.251 0.263 11 28.31 (1.834) 0.662 (0.079) 24.182 (10.613) 7

End-to-End
Residual UNet 0.482 0.462 0.439 8 31.62 (1.635) 0.803 (0.050) – 2
E2E-VarNet 0.610 0.514 0.500 1 32.25 (1.901) 0.805 (0.056) – 1
PnP diffusion prior
CSGM 0.501 0.528 0.454 6 27.34 (2.770) 0.673 (0.082) 23.483 (10.651) 9
ScoreMRI 0.412 0.554 0.470 5 26.86 (2.583) 0.547 (0.092) 25.677 (10.491) 10
RED-diff 0.478 0.468 0.448 7 31.56 (2.337) 0.764 (0.080) 23.406 (10.571) 3
DiffPIR 0.536 0.484 0.496 3 28.41 (1.403) 0.632 (0.061) 26.376 (10.555) 6
DPS 0.346 0.380 0.362 10 26.49 (1.550) 0.540 (0.067) 27.603 (11.127) 11
DAPS 0.514 0.556 0.480 4 30.15 (1.429) 0.725 (0.053) 23.978 (10.630) 4
PnP-DM 0.527 0.579 0.500 1 29.85 (2.934) 0.730 (0.056) 24.324 (10.413) 5

Fully sampled 0.573 0.581 0.535 – – – 23.721 (10.824) –

For compressed sensing MRI, achieving good performance on general purpose metrics such as
PSNR and SSIM is not always a sufficient signal for high-quality reconstruction, as hallucinations
might lead to wrong diagnoses. We quantify the degree of hallucination by employing a pathology
detector on the reconstructed images of different methods. Specifically, we finetune a medium-size
YOLOv11 model (Khanam & Hussain, 2024) on a training set of fully sampled images with the
fastMRI+ pathology annotations (Zhao et al., 2021) (22 classes in total). We calculate the mAP50
metric over the reconstructed results on 14 selected volumes with severe knee pathologies, which
includes 171 test images in total. For each method, we report the Precision, Recall, and mAP50
metrics for detection, and PSNR, SSIM, and Data Misfit for reconstruction, as shown in Table 10.
We also provide the rankings based on mAP50 and PSNR. Overall, the two rankings are correlated,
which means that better pixel-wise accuracy indeed leads to a more accurate diagnosis. However,
there are a few algorithms for which the two rankings disagree: Residual UNet, Score MRI, and
RED-diff. The best methods for pathology detection are E2E-VarNet and PnP-DM.

B INVERSE PROBLEM DETAILS

B.1 LINEAR INVERSE SCATTERING

Problem details Consider a 2D object with permittivity distribution ϵ(r) in a bounded sample
plane Ω ∈ R2, which is immersed in the background medium with permittivity ϵb. The permittivity
contrast is given by ∆ϵ(r) = ϵ(r)− ϵb. At each time, the object is illuminated by an incident light
field uin(r) emitted by one of N > 0 transmitters, and the scattered light field usc(r) is measured by
M > 0 receivers. We adopt the experimental setup in (Sun et al., 2018) where the transmitters and
receivers are arranged along a circle Γ ∈ R2 that surrounds the object. Here, r := (x, y) denotes
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the spatial coordinates. Under the first Born approximation (Wolf, 1969), the interaction between
the light and object is governed by the following equation

utot(r) = uin(r) +

∫
Ω

g(r − r′) f(r′)uin(r
′) dr′, r ∈ Ω, (11)

where utot(r) is the total light field, and f(r) = 1
4πk

2∆ϵ(r) is the scattering potential. Here,
k = 2π/λ is the wavenumber in free space, and λ is the wavelength of the illumination. In the 2D
space, the Green’s function is given by

g(r − r′) =
i

4
H

(1)
0 (kb∥r − r′∥2) (12)

where kb =
√
ϵbk is the wavenumber of the background medium, and H

(1)
0 is the zero-order Hankel

function of the first kind. Given the total field utot inside the sample domain Ω, the scattered field at
the sensor plane Γ is given by

usc(r) =

∫
Ω

g(r − r′) f(r′)utot(r
′) dr′, r ∈ Γ. (13)

Note that r denotes the sensor location in Γ, and the integral is computed over Ω.

By discretizing Eq. (11) and Eq. (13), we obtain a vectorized system that describes the linear inverse
scattering problem. We denote the 2D vectorized permittivity distribution of the object by z :=
f(r), and the corresponding measurement by ysc = usc(r) for notation consistency.

The forward model can thus be written as

ysc = H(utot ⊙ z) + e = Az + e, (14)

where utot = G(uin ⊙ z), matrices G and H are discretizations of the Green’s function at Γ and
Ω, respectively, and A := Hdiag(utot). We split and concatenate the real and imaginary part of
A, and pre-compute the singular value decomposition of A to facilitate the plug-and-play diffusion
methods that exploit SVD of linear inverse problems.

We set the physical size of test images to 18cm×18cm, and the wavelength of the illumination to
λ = 0.84cm as specified in (Sun et al., 2019). The forward model consists of N = 20 transmitters,
placed uniformly on a circle of radius R = 1.6m. We further assume the background medium to
be air with permittivity ϵb = 1. We specify the number of receivers to be M = 360, 180, 60 in our
experiments.

Related work Linear inverse scattering aims to reconstruct the spatial distribution of an object’s
dielectric permittivity from the measurements of the light it scatters (Wolf, 1969; Kak & Slaney,
2001). This problem arises in various applications, such as ultrasound imaging (Bronstein et al.,
2002), optical microscopy (Choi et al., 2007; Sung et al., 2009), and digital holography (Brady
et al., 2009). Due to the physical constraints on the number and placement of sensors, the problem
is often ill-posed, as the scattered light field is undersampled. Linear inverse scattering is com-
monly formulated as a linear inverse problem using scattering models based on the first Born (Wolf,
1969) or Rytov (Devaney, 1981) approximations. These models enable efficient computation and
facilitate the use of convex optimization algorithms. On the other hand, nonlinear approaches have
been developed to image strongly scattering objects (Kamilov et al., 2015; Tian & Waller, 2015; Ma
et al., 2018; Liu et al., 2018; Chen et al., 2020), although these methods generally have a higher
computational complexity. Deep learning-based methods have also been explored for linear inverse
scattering. A common approach is to train convolutional neural networks (CNNs) to directly invert
the scattering process by learning an inverse mapping from the measurements to permittivity dis-
tribution (Sun et al., 2018; Li et al., 2018a;c; Wu et al., 2020). Recent research has extended these
efforts to more advanced deep learning techniques, such as neural fields (Liu et al., 2022; Cao et al.,
2024) and deep image priors (Zhou & Horstmeyer, 2020).

B.2 COMPRESSED SENSING MULTI-COIL MRI

Problem details We use the raw multi-coil k-space data from the fastMRI knee dataset (Zbontar
et al., 2018). We then estimate the coil sensitivity maps of each slice using the ESPIRiT (Uecker
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et al., 2014) method implemented in SigPy3. Since different volumes in the dataset have different
shapes, we adopt the preprocessing procedure in (Jalal et al., 2021), leading to images with 320×320
shape. The ground truth image is given by calculating the magnitude image of the Minimum Vari-
ance Unbiased Estimator (MVUE), which is used for all numbers reported in Table 4 and Table 5.
The MVUE images are also used as ground truths for training the end-to-end deep learning methods
Residual UNet and E2E-VarNet (Sriram et al., 2020).

Related work Compressed sensing magnetic resonance imaging (CS-MRI) is a medical imaging
technology that enables high-resolution visualization of human tissues with faster acquisition time
than traditional MRI (Lustig et al., 2007). Instead of fully sampling the measurement space (a.k.a.
k-space), CS-MRI only takes sparse measurements and then solves an inverse problem that recov-
ers the underlying image (Lustig et al., 2008). The traditional approach is to solve a regularized
optimization problem that involves a data-fit term and a regularization term, such as the total vari-
ation (TV) (Bouman & Sauer, 1993), and the ℓ1-norm after a sparsifying transformation, such as
Wavelet transform (Ma et al., 2008) and dictionary decomposition (Ravishankar & Bresler, 2011;
Huang et al., 2014; Zhan et al., 2015)). End-to-end deep learning methods have also demonstrated
strong performance in MRI reconstruction. Prior works have proposed unrolled networks (Yang
et al., 2016; Hammernik et al., 2017; Aggarwal et al., 2017; Schlemper et al., 2018; Liu et al., 2021),
UNet-based networks (Lee et al., 2017; Hyun et al., 2017), GAN-based networks (Yang et al., 2018;
Quan et al., 2018), among others (Wang et al., 2016; Zhu et al., 2018; Tezcan et al., 2018; Luo
et al., 2019; Liu et al., 2020). These learning methods have achieved state-of-the-art performance
on the fastMRI dataset (Zbontar et al., 2018). Another line of work is to employ image denoisers as
plug-and-play prior (Liu et al., 2020; Jalal et al., 2021; Sun et al., 2024) Recently, diffusion model-
based methods have been designed for CS-MRI reconstruction (Chung & Ye, 2022; Luo et al., 2022;
Chung et al., 2023).

B.3 BLACK HOLE IMAGING

Problem details Measurements for black hole imaging are obtained using Very Long Baseline
Interferometry (VLBI). The cross-correlation of the recorded scalar electric fields at two telescopes,
referred to as the (ideal) visibility, is related to the ideal source image z through a Fourier transform,
as given by the van Cittert-Zernike theorem:

It
(a,b)(z) =

∫
ρ

∫
δ

e−i2π(ut
(a,b)ρ+vt

(a,b)δ)z(ρ, δ)dρdδ. (15)

Here, (ρ, δ) denotes the angular coordinates of the source image, and (ut
(a,b), v

t
(a,b)) is the dimen-

sionless baseline vector between two telescopes (a, b), orthogonal to the source direction. In prac-
tice, these measurements can be time-averaged over short intervals.

Due to atmospheric turbulence and instrumental calibration errors, the observed visibilities are cor-
rupted by amplitude and phase errors, along with additive Gaussian thermal noise (EHTC, 2019a;
Sun et al., 2024):

V t
(a,b) = gtag

t
be

−i(ϕt
a−ϕt

b)It
(a,b)(z) + ηt

(a,b). (16)

Note that there are three main sources of noise at time t: gain errors gta, g
t
b, phase errors ϕt

a, ϕ
t
b,

and baseline-based additive white Gaussian noise ηt
(a,b). While the phase of the visibility cannot be

directly used due to phase errors, the product of three visibilities among any set of three telescopes,
known as the bispectrum, can be computed to retain useful information. Specifically, the phase
of the bispectrum, termed the closure phase, effectively cancels out phase errors in the observed
visibilities. Similarly, a strategy can be employed to cancel out amplitude gain errors and extract
information from the visibility amplitude (Blackburn et al., 2020). Formally, these quantities are
defined as:

ycp
t,(a,b,c) = ∠(V t

(a,b)V
t
(b,c)V

t
(a,c)),

ylogca
t,(a,b,c) = log

(
|V t

(a,b)||V
t
(c,d)|

|V t
(a,c)||V

t
(b,d)|

)
.

(17)

3https://github.com/mikgroup/sigpy
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Here, ∠ denotes the complex angle, and | · | computes the complex amplitude. For a total of M
telescopes, the number of closure phase measurements ycp

t,(a,b,c) at time t is (M−1)(M−2)
2 , and the

number of log closure amplitude measurements ylogca
t,(a,b,c) is M(M−3)

2 , after accounting for redun-
dancy. To avoid having to solve for the calibration terms, black hole imaging methods can constrain
closure quantities during inference. Since closure quantities are nonlinear transformations of the
visibilities, the forward model in black hole imaging then becomes non-convex.

The total flux of the image source, representing the DC component of the Fourier transform, is given
by:

yflux = Gflux(z) =

∫
ρ

∫
δ

z(ρ, δ)dρdδ. (18)

To aggregate data over time intervals and telescope combinations, the forward model of black hole
imaging can be expressed as:

y = G(z, ξ) =
(
Gcp(z), Glogca(z), Gflux(z)

)
= (ycp,ylogca,yflux), (19)

The data consistency is typically assessed using the χ2 statistic:

L(y | z) = χ2
cp + χ2

logca + χ2
flux

=
1

Ncp

∥∥∥∥Gcp(z)− ycp

σcp

∥∥∥∥2 + 1

Nlogca

∥∥∥∥Glogca(z)− ylogca

σlogca

∥∥∥∥2 + ∥∥∥∥Gflux(z)− yflux

σflux

∥∥∥∥2 . (20)

Here, σcp, σlogca, and σflux are the estimated standard deviations of the measured closure phase, log
closure amplitude, and flux, respectively. Additionally, Ncp and Nlogca represent the total number of
time intervals and telescope combinations for the closure phase and log closure amplitude measure-
ments.

Related work The Event Horizon Telescope (EHT) Collaboration aims to image black holes using
a global network of radio telescopes operating at around a 1mm wavelength. Through very-long-
baseline interferometry (VLBI) (Thompson et al., 2017), data from these telescopes are synchro-
nized to obtain measurements in 2D Fourier space of the sky’s image, known as visibilities (van
Cittert, 1934; Zernike, 1938). These measurements only sparsely cover the low-spatial-frequency
space and are corrupted by instrument noise and atmospheric turbulence, making the inverse prob-
lem of image recovery ill-posed. Using traditional imaging techniques, the EHT Collaboration has
successfully imaged the supermassive black holes M87* (EHTC, 2019b; 2024) and SgrA* (EHTC,
2022). The classical imaging algorithm is CLEAN (Högbom, 1974; Clark, 1980), as implemented in
the DIFMAP (Shepherd, 1997; 2011) software. DIFMAP is an inverse modeling approach that starts
with the “dirty” image (given by the inverse Fourier transform of the visibilities) and iteratively de-
convolves the image with an estimate point-spread function to “clean” the image. Since DIFMAP
often requires a human-in-the-loop, we chose not to present results from DIFMAP. The EHT has also
developed and used regularized maximum-likelihood approaches, namely eht-imaging (Chael
et al., 2016; 2018; 2019) and SMILI (Akiyama et al., 2017b;a; 2019). Although they regularize and
optimize the image differently (EHTC, 2019b), eht-imaging and SMILI both iteratively update
an estimated image to agree with the measured data and regularization assumptions. Because of
the simple regularization they choose to use, these baseline methods are limited in the amount of
visual detail they can recover and do not recover detail far beyond the intrinsic resolution of the
measurements. Some deep-learning-based regularization approaches have been proposed for VLBI
(Feng et al., 2024; Feng & Bouman, 2024; Dia et al., 2023), but most plug-and-play inverse diffusion
solvers have not been validated on black hole imaging.

Multi-modal observation As previously discussed, the non-convex and sparse measurement char-
acteristics of black hole imaging cause the inverse problem to exhibit multi-modal behavior. Con-
sequently, the resulting samples may follow systematic modes that, while potentially quite different
from the true source images, fit the observational data well and exhibit high prior likelihood. Fig-
ure 7 illustrates two such modes discovered by DAPS and PnP-DM. This multi-modal behavior has
not been extensively formulated or discussed in previous literature, and we believe it represents a
phenomenon worthy of further investigation.
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Ground truth

DAPSPnP-DM

Figure 7: Multi-modal example on black hole imaging. The image shows two systematic modes
discovered by DAPS and PnP-DM.

B.4 FULL WAVEFORM INVERSION

Problem details In Eq. (8), solving for the pressure wavefield u given the velocity v and source
term q defines the forward modeling process. We use an open-source software, Devito (Louboutin
et al., 2019), for both forward modeling and adjoint FWI. We use a 128×128 mesh to discretize a
physical domain of 2.54km × 1.27km, with a horizontal spacing of 20m and a vertical spacing
of 10m. The time step is set to 0.001s which satisfies the Courant–Friedrichs–Lewy (CFL) con-
dition (Courant et al., 1967). We use a Ricker wavelet with a central frequency of 5Hz to excite
the wavefield and model it for 1s. The natural boundary condition is set for the top boundary (free
surface) which will generate reflected waves, while the absorbing boundary condition (Clayton &
Engquist, 1977) is set for the rest boundaries to avoid artificial reflections. The absorbing boundary
width is set to 80 grid points.

Inferring the subsurface velocity from observed data at receivers defines the inverse problem. We
put 129 receivers evenly near the free surface (at a depth of 10m) to model a realistic scenario.
We excite 16 sources evenly at a depth of 1270m. This source-receiver geometry is designed for the
entire physical medium to be sampled by seismic waves, making it theoretically feasible to invert for
v. Devito uses the adjoint-state method to estimate the gradient by cross-correlating the forward
and adjoint wavefields at zero time lag (Plessix, 2006):

∇mΦ =

Nt∑
t=1

u[t]δutt[t] where m =
1

z2
, (21)

where Φ is the objective function, Nt is the number of time steps, u is the forward wavefield, and δu
is the adjoint wavefield. δu is generated by treating the receivers as sources and back-propagating
the residual δd between the modeled and observed data into the model:

AT δu = P T δd,

δd = y − d.
(22)

This process is repeated for each source, and the gradients are summed to update the parameters of
interest.

B.5 NAVIER-STOKES

Forward modeling The following 2D Navier-Stokes equation for a viscous, incompressible fluid
in vorticity form on a torus defines the forward model.

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x), x ∈ (0, 2π)2, t ∈ (0, T ]

∇ · u(x, t) = 0, x ∈ (0, 2π)2, t ∈ [0, T ]

w(x, 0) = w0(x), x ∈ (0, 2π)2
(23)
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where u ∈ C
(
[0, T ];Hr

per((0, 2π)
2;R2)

)
for any r > 0 is the velocity field, w = ∇ × u is the

vorticity, w0 ∈ L2
per

(
(0, 2π)2;R

)
is the initial vorticity, ν ∈ R+ is the viscosity coefficient, and

f ∈ L2
per

(
(0, 2π)2;R

)
is the forcing function. The solution operator G : w0 → wT is defined as the

operator mapping the vorticity from the initial vorticity to the vorticity at time T . We implement the
forward model using a pseudo-spectral solver with adaptive time stepping (He & Sun, 2007).

Dataset To generate the training and test samples, we first draw independent identically distributed
samples from the Gaussian random field N

(
0, (−∆+ 9I)−4

)
, where −∆ denotes the negative

Laplacian. Then, we evolve them according to Equation 9 for 5 time units to get the final vorticity
filed, which generates an empirical distribution of the vorticity field with rich flow features. We set
the forcing function f(x) = −4 cos(4x2).

B.6 PRETRAINED DIFFUSION MODEL DETAILS

We train diffusion models following the pipeline from (Karras et al., 2022), using UNet architectures
from (Dhariwal & Nichol, 2021) and (Song et al., 2020). Detailed network configurations can be
found in Table 11.

Table 11: Model Card for pre-trained diffusion models.

Inverse scattering Black hole MRI FWI 2D Navier-Stokes

Input resolution 128× 128 64× 64 2× 320× 320 128× 128 128× 128
# Attention blocks in encoder/decoder 5 3 5 5 5
# Residual blocks per resolution 1 1 1 1 1
Attention resolutions {16} {16} {16} {16} {16}
# Parameters 26.8M 20.0M 26.0M 26.8M 26.8M
# Training steps 50,000 50,000 100,000 50,000 50,000

B.7 ALGORITHMS AND PARAMETER CHOICES

B.7.1 PROBLEM-SPECIFIC BASELINES

Black hole imaging We use SMILI (Akiyama et al., 2017b;a; 2019) and eht-imaging (Chael
et al., 2016; 2018; 2019) as our baseline methods. To ensure compatibility with the default hyper-
parameters of these methods, we preprocess the test dataset accordingly.

Full waveform inversion A classic baseline for full waveform inversion is LBFGS. We set the
maximum iteration to 5 and perform 100 global update steps with a Wolfe line search. The second
baseline we consider is the Adam optimization algorithm (Kingma, 2014). We implement the Adam
optimizer with a learning rate of 0.02 with the learning rate decay to minimize the data misfit term.
For the traditional method, the initialization is a smoothed version of the ground truth, which is
blurred using a Gaussian filter with σ = 20. We perform the inversion for 300 iterations.

Linear inverse scattering We include FISTA-TV (Sun et al., 2019) as a traditional optimization-
based method. We set batch size B = 20 and τ = 5× 10−7 for all experiments.

Compressed sensing multi-coil MRI We utilize both traditional methods, such as Wavelet+ℓ1
(Lustig et al., 2007; Lustig et al., 2008) and TV, as well as end-to-end models like Residual
UNet and E2E-VarNet (Sriram et al., 2020). For the traditional methods, we apply the same
hyperparameter search strategy for fine-tuning, while the end-to-end models are trained using the
Adam optimizer with a learning rate of 1× 10−4 until convergence.

Navier-Stokes equation The traditional baseline we implement is the Ensemble Kalman Inversion
(EKI) first proposed in Iglesias et al. (2013). It is implemented with 2048 particles, 500 update steps,
and adaptive step size used in (Kovachki & Stuart, 2019) to ensure similar computation budget.
Additional baselines include DPS-fGSG and DPS-cGSG, which are natural DPS extensions that
replace gradient by zeroth-order gradient estimation first introduced in Zheng et al. (2024). More
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PSNR: 22.56 PSNR: 23.07 PSNR: 16.36

Receiver 60

Ground truth

Figure 8: Robustness to a human face prior in linear inverse scattering shows that methods requiring
more data gradient steps tend to generalize better than those that prioritize the prior more.

specifically, we use forward and central Gaussian Smoothed Gradient estimation technique (Berahas
et al., 2022).

B.7.2 HYPERPARAMETER SELECTION

To ensure sufficient tuning of the hyperparameters for each algorithm, we employ a hybrid strategy
combining grid search with Bayesian optimization and early termination technique, using a small
validation dataset. Specifically, we first perform a coarse grid search to narrow down the search
space and then apply Bayesian optimization. For problems where the forward model is fast such as
linear inverse scattering, MRI, and black hole imaging, we conduct 50-100 iterations of Bayesian
optimization to select the best hyperparameters. For computationally intensive problems such as full
waveform inversion and Navier-Stokes equation, we use 10-30 iterations of Bayesian optimization
combined with an early termination technique (Li et al., 2018b), based on data misfit. The details of
the search spaces for Bayesian optimization and the optimized hyperparameter choices are listed in
Table 12.

C FUTURE DIRECTION

In this section, we outline a few additional future directions for benchmarking PnPDP methods for
solving inverse problems.

Robustness to forward model mismatch In our paper, we only consider the setting where the
forward model is exact and explicit. However, in real-world scenarios, the forward model is often
an approximation. Studying the robustness of algorithms when there is a mismatch between the
assumed and actual forward model would be an essential step toward their practical deployment.
This includes exploring how algorithms handle noisy or imperfect forward model representations.

Robustness to prior mismatch The robustness of a diffusion prior often depends on two key fac-
tors: the degree of ill-posedness and the balance between the prior and the observation in the sam-
pling algorithm. Highly ill-posed tasks, such as black hole imaging, require a more in-distribution
prior to achieve reasonable results, whereas less ill-posed tasks, such as linear inverse scattering, are
less sensitive to this requirement. Regarding the balance between prior and observation, methods
like DAPS and PnP-DM, which incorporate more data gradient steps, tend to be more robust to out-
of-distribution prior than methods like DPS. We include a preliminary discussion on this in Figure 8
presents a comparison of the robustness of different algorithms in the linear inverse scattering using
a prior trained on FFHQ 256×256 human face images. We will pursue further exploration in this
direction in the future.

Multi-modal posterior In this work, we focus exclusively on scenarios where the ground truth is
unimodal. However, some real-world inverse problems might exhibit posteriors that are inherently
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Table 12: Hyperparameter search space and final choices of the diffusion-model-based algorithms
on all five inverse problems. Columns marked with task names present the chosen values for the
reported main results in Appendix A.1. These values are selected by a hybrid hyperparameter search
strategy described in Appendix B.7.2.

Methods/Parameters Search space Linear inverse scattering (360 / 180 / 60) Black hole MRI (Sim. / Raw) FWI 2D Navier-Stokes

DPS
Guidance scale [10−3, 103] 280/380/625 0.003 0.589/0.428 10−2 –

LGD
Guidance scale [10−3, 104] 3200/6400/13000 0.0082 – 11.73 –
# MC samples [1, 20] 20 8 – 5 –

REDDiff
Learning rate [10−4, 1.0] 0.04 0.05 4× 10−2 / 2.96× 10−2 0.01 –
Regularization λbase [10−3, 1.0] 0.0005 0.25 2.33× 10−1 / 2.72× 10−3 0.1 –
Regularization schedule constant, linear, sqrt constant constant sqrt linear –
Gradient weight [10−2, 102] 1500 0.0004 6.68× 101 / 1.7× 10−2 1 –

DiffPIR
# sampling steps {200, 400, . . . , 1000} 200 1000 1000 1000 –
Regularization λ [1, 105] 4× 10−4/2× 10−4/10−4 113.6 163 / 1.31 80.6 –
Stochasticity ζ [10−5, 1] 1 0.34 0.114 / 0.478 0.11 –
Noise level σy [10−2, 101] 0.01 1.4 1.05× 10−2 / 1.36× 10−1 0.28 –

PnPDM
Annealing step [50, 200] 100 100 100 150 –
Annealing sigma max [10, 50] 10 10 10 25 –
Annealing decay rate [0.60, 0.99] 0.9 0.93 0.93 0.99 –
Langevin step size [10−6, 10−3] 2× 10−5/4× 10−5/10−4 10−5 10−6 3× 10−4 –
Langevin step number [10, 500] 200 200 200 10 –
Noise level [10−4, 101] 10−4 1 1.02× 10−3 / 1.15× 10−2 1 –

DAPS
Annealing step [50, 200] 200 100 200 150 –
Diffusion step [1, 10] 10 5 5 5 –
Langevin step size [10−6, 10−3] 4× 10−5/8× 10−5/2× 10−4 10−4 1.03× 10−5 / 1.52× 10−5 3× 10−4 -
Langevin step number [10, 500] 50 20 100 50 -
Noise level [10−4, 101] 10−4 1 1.63× 10−3 / 4.77× 10−3 1 –
Step size decay [0.1, 1] 1/1/0.5 1 1 1 -

DDRM
Stochasticity η [0, 1] 0.85 – – – –

DDNM
Stochasticity η [0, 1] 0.95 – – – –
# time-travel steps L [0, 5] 1 – – – –

ΠGDM
Stochasticity η [0, 1] 0.2 – – – –

FPS
Stochasticity η [0, 1] 0.9 – – – –
# particles [1, 20] 20 – – – –

MCG-diff
# particles [1, 64] 16 – – – –

DPS-fGSG
Guidance scale [10−2, 102] – – – – 0.1

DPS-cGSG
Guidance scale [10−2, 102] – – – – 0.1

DPG
# MC samples {1000, 2000, . . . , 6000} – – – – 4000
Guidance scale [10−1, 103] – – – – 64

SCG
# MC samples {128, 256, 512} – – – – 512

EnKG
Guidance scale {1.0, 2.0, 4.0} - – – – 2.0
# particles {512, 1024, 2048} - – – – 2048

multimodal, reflecting multiple plausible solutions given the observations. Developing systematic
benchmarks to evaluate how accurately different PnPDP methods can capture such multimodal pos-
teriors is an interesting and challenging research question.
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