
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

STATEENSEMBLE: NEURAL STATE CHAIN-BASED DY-
NAMIC MODEL FOR COMPLEX MOTOR SEQUENCE DE-
CODING

Anonymous authors
Paper under double-blind review

ABSTRACT

Brain-computer interfaces (BCIs) have paved the way for motor function reha-
bilitation and reconstruction. However, accurate movement decoding is still a
challenging problem, especially for complex movements. Recent studies discov-
ered that motor sequences, particularly complex ones, are encoded through a chain
of neural states, each corresponding to a movement fragment. While this neural
basis could facilitate more accurate neural decoding for complex movements, exist-
ing neural decoders fall short in modeling state-level sequential information. Here,
we propose a neural state chain-based dynamic model (StateEnsemble), which
explicitly models the neural state transition process to perform state-dependent
neural decoding. We evaluated the proposed approach with intracortical neural
signals recorded from the human motor cortex during handwriting. Experimental
results demonstrated that our approach can effectively capture the underlying neural
state transition patterns during handwriting, and achieve significant improvements
in decoding performance. The proposed StateEnsemble approach can be beneficial
for diverse neural decoding tasks and facilitate high-performance BCIs.

1 INTRODUCTION

Advances in brain-computer interfaces (BCIs) have paved a promising way for rehabilitation and
reconstruction of motor function (Lorach et al., 2023; Moritz et al., 2024), and enabling control
of prosthetic devices or computer cursors through neural activity (Chaudhary et al., 2016). Neural
decoders, which translate neural signals into motor parameters, play a key role in BCIs (Taylor et al.,
2002; Hochberg et al., 2006a; Shenoy & Carmena, 2014; Gilja et al., 2015; Schwemmer et al., 2018).

However, constructing a robust and accurate neural decoder is still a challenging problem for BCIs,
and one underlying reason is the nonstationary property of neural signals (Kim et al., 2006a; Sanes
& Donoghue, 2000; Churchland & Shenoy, 2007; Sussillo et al., 2016). Namely, neural tuning
could change over time, which leads to unstable decoding performance. To obtain stable neural
decoding against the neural nonstationarity, some studies proposed to periodically recalibrate the
neural decoders or manually adjust them when performance degrades (Hochberg et al., 2012; Gilja
et al., 2015; Shanechi et al., 2016; Brandman et al., 2018). Despite its effectiveness, the recalibration
process commonly disrupts user experience (Murphy et al., 2016), and is mostly insufficient for
short-term instability, such as those that occur within single trials (Khademi et al., 2023). Other
studies aim to construct dynamic models to track the nonstationary changes in neural signals (Eden
et al., 2004; Wang & Principe, 2008; Qi et al., 2019; Zhu et al., 2022; Qi et al., 2022). These methods
avoid the recalibration process and are potentially more suitable for long-term use (Wang et al., 2015).
However, since nonstationary changes in neural signals could stem from diverse origins such as
noise (Collinger et al., 2013), unstable recording situations (Churchland & Shenoy, 2007; Sussillo
et al., 2016), or task-related variables (Suway et al., 2018), the modeling of such complex neural
nonstationarity is a challenging problem.

Recent studies demonstrated that a complex movement sequence contains a chain of neural states, each
of which covers a small fragment of movement (Horrocks et al., 2024; Roth & Ding, 2024; Simpson,
2024; Qi et al., 2025), which provides a novel way to understand and model the nonstationary changes
in neural signals. However, existing neural decoders fall short in modeling the sequential relationship

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: Neural state chain-based dynamic model (StateEnsemble) framework.

between neural states. Although some models considered the neural states in decoding (Qi et al.,
2019; 2022), they ignored the state transition process, especially the state transition patterns that may
exist in the state chain, leading to unstable decoding performance.

To address this problem, we propose a neural state chain-based dynamic model (StateEnsemble),
which explicitly models the neural state transition process and performs state-dependent neural
decoding. StateEnsemble contains an encoding phase that identifies the neural state chain and
constructs the state transition graph, and a decoding phase that performs state-dependent decoding
using the state transition graph as the prior. We evaluated the proposed approach using intracortical
neural signals recorded from the human motor cortex during the task of writing Chinese characters.
Experimental results showed that our method can effectively capture stable neural state transition
patterns across repetitive writing trials. The proposed neural decoder outperforms baseline methods
in decoding movement trajectories.

2 THE STATEENSEMBLE MODEL

2.1 CLASSIC STATE-SPACE MODEL

Classic state-space model consists of a state transition function f(.) and a measurement function h(.)
as follows (Friedland, 2012):

xk = f(xk−1) + vk−1, (1)
yk = h(xk) +wk. (2)

Let k denote the discrete time step, xk ∈ Rdx the state of our interest, yk ∈ Rdy the measurement or
observation. Additionally, vk and wk represent i.i.d. state transition noise and measurement noise.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

In the context of neural decoding, the state and observation represent the movement trajectory and the
neural signals, respectively. A measurement function is referred to as a neural state. Given a sequence
of neural signals y0:k, the state-space model can recursively estimate the posterior probability density
p(xk|y0:k).

2.2 STATE-SPACE MODEL WITH A NEURAL STATE CHAIN

Recent neuroscience studies showed that a motion sequence consists of a chain of neural states
(Horrocks et al., 2024; Roth & Ding, 2024; Simpson, 2024; Qi et al., 2025). Classic state-space
models assume that the measurement function h(.) does not change over time, thus showing unstable
performance given temporal variability in neural signals caused by neural state switching (Kim et al.,
2006b). The existing dynamic models mostly did not explicitly consider the state transition process,
especially the state transition patterns that may exist in the state chain, which can lead to unstable and
inaccurate decoding performance.

Here we aim to incorporate the neural state transition process into the state-space models. Note that
the ’state’ can represent both the state x in the state transition function and the neural state h(·).
Thus, we refer to the state in the state transition function by ’movement trajectory’ and the neural
state by ’state’ in the motor decoding scenario.

We hypothesize that the neural state sequence contains a certain state transition pattern and propose
to explicitly model the transition pattern with a graph. Specifically, we formulate the neural state
chain in our model (StateEnsemble) as follows:

xk = f(xk−1) + vk−1, (3)
yk = hk(xk) +wk, (4)

hk = g(hk−1). (5)

Let g(.) denote the neural state transition graph embedded in the state chain, where g(hk−1) =
p(hk|hk−1), with p(hk|hk−1) representing the transition probability from hk−1 to hk. Let the set
of M neural states be H = {h1, h2, . . . , hM}, with hk ∈ H being the neural state at time step k.
The state transition graph g(.) is represented as an M ×M matrix. In this matrix, the element in
the i-th row and the j-th column is p(hj |hi), and p(hi|hi) > p(hj |hi) for i ̸= j, indicating that
self-transitions occur most frequently.

To estimate the movement trajectory given neural signals with the StateEnsemble model, two materials
are required: the neural-to-motor mapping function of each state and the state transition graph, which
we should estimate in the training process. In the predicting process, the StateEnsemble model
receives incoming neural signals, identifies the current state, and switches to the proper state functions
to predict the movements. Thus, there are two important questions to answer: 1) In the training
process, how to identify the neural states and how to model the state transition graph; 2) In the
prediction process, how to perform state-dependent decoding such that the decoder can adaptively
switch to the proper model along with changes in states. The framework of StateEnsemble is
illustrated in fig. 1.

2.3 NEURAL STATE IDENTIFICATION AND STATE TRANSITION GRAPH

In the training process, our first objective is to estimate the neural state chain given a sequence of
neural signal-movement trajectory pairs of o0:n, where ok := {xk,yk}, and then construct the state
transition graph based on the chain. We assume that the functional mapping between the neural signal
and movement trajectory is stable within a state, while distinct among different states.

Here, we propose the state identification algorithm. Given the number of neural states M , it
first initializes a set of functions with a randomly generated state transition graph, each defining a
functional mapping between the neural signals and the movement trajectory. Then it applies the
function and graph to each data pair of o0:n, and each data will be assigned to a neural state by
maximizing the posterior probability of the states, such that a neural state chain can be constructed.
After that, the state transition graph can be obtained given the state chain, and the functional mappings
of the states can be updated with the data pairs assigned to each state. This process is repeated
iteratively until the state transition graph stabilizes.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

1) Initialization:

To initialize the neural state chain and establish functional mappings between the movement trajectory
and neural signals, i.e., H = {h1, h2, . . . , hM}, we first randomly generate a state transition graph
g(.) with relatively high transition probabilities for self-transitions. Next, we randomly select a
starting state and sample the neural state chain according to the transition graph. Based on the
constructed state chain, we assign data pairs to neural states and fit the functional mappings for each
state. The initial posterior probabilities of the neural states are set equal.

2) Data-function assignment:

We aim to assign the data pairs at each time step to one of the M neural states. Specifically, at time k,
we select the neural state hm that maximizes the posterior probability of hk, i.e., p(hk|o0:k), where
hm ∈ H = {h1, h2, . . . , hM}, given the observations o0:k.

To recursively derive p(hk|o0:k) based on p(hk−1|o0:k−1) and the state transition graph g(.), we
apply the Bayesian update mechanism (Hoeting et al., 1999; Yuen & Kuok, 2011) and the Markov
property (Norris, 1998). First, we predict the neural state at time k as follows:

p(hk|o0:k−1) =
∑

hk−1∈H
p(hk|hk−1)p(hk−1|o0:k−1). (6)

Next, applying Bayesian rule, the posterior probability of the neural state at time k is:

p(hk|o0:k) =
p(hk|o0:k−1)p(ok|o0:k−1, hk)∑

hk∈H p(hk|o0:k−1)p(ok|o0:k−1, hk)
. (7)

The term p(ok|o0:k−1, hk) can be derived using the first-order Markov property as follows:

p(ok|o0:k−1, hk) = p(xk,yk|o0:k−1, hk)

= p(yk|xk, o0:k−1, hk)p(xk|o0:k−1, hk)

= p(yk|xk, hk)p(xk|xk−1),

(8)

where p(yk|xk, hk) is the likelihood function associated with the neural state at time k, and
p(xk|xk−1) is the prior probability of the movement at time k.

3) State transition graph updating:

Based on the neural state chain constructed in each iteration, we could update the state transition
graph g(.) statistically by counting the number of state transitions in the chain. Specifically, for
each pair of states hi and hj , we count how often the transition from hi to hj , occurs in the neural
state chain. This gives an empirical estimate of the transition probabilities p(hj |hi), which are then
normalized to ensure that the sum of transition probabilities to any given state equals 1. The updated
state transition graph g(.) is then used as the prior in the next iteration of the algorithm.

4) State function updating:

We update the functional mappings for the M neural states based on the new assignment of data pairs
obtained in the second step. The function fitting process can utilize various methods, including least
squares estimation, nonlinear fitting, and neural networks.

The state identification algorithm is given in algorithm S1.

2.4 STATE-DEPENDENT NEURAL DECODING USING THE STATE TRANSITION GRAPH AS A
PRIOR

In an online decoding process, the objective is to recursively estimate the posterior probability of
the movement trajectory at time k, xk, given a sequence of neural signals y0:k. The DyEnsemble
approach (Qi et al., 2019) can perform state-dependent neural decoding in a Bayesian filter framework,
where it first estimates the posterior probability of states at each time step, and then adaptively weighs
and ensembles a decoding model. However, the DyEnsemble model does not model the neural state
transition process. Thus, in this study, we propose to solve the StateEnsemble model by incorporating
the state transition graph with DyEnsemble, serving as a prior in the state estimation process.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Figure 2: The state transition graph of 5 neural states is presented in matrix form, where each row
corresponds to the current state, and each column corresponds to the next state. The element in the
i-th row and j-th column represents the transition probability from state i to state j.

Specifically, a Bayesian updating mechanism is used to dynamically switch among these neural
states in a data-driven manner. Given the observation sequence y0:k, the posterior of the movement
trajectory at time k is given by:

p(xk|y0:k) =
∑
hk∈H

p(xk|y0:k, hk)p(hk|y0:k), (9)

where p(xk|y0:k, hk) is the posterior probability of the movement corresponding to the neural state
hk, and p(hk|y0:k) is the posterior probability of the neural state hk. Given the neural signals, we
should estimate both the movement xk and the neural state hk.

First, we estimate the posterior probability of the neural state. Using the state transition graph as the
prior, the neural state at time k can be predicted as follows:

p(hk|y0:k−1) =
∑

hk−1∈H
p(hk|hk−1)p(hk−1|y0:k−1). (10)

Employing Bayes’ rule, the posterior probability of the neural state at time k can be obtained by:

p(hk|y0:k) =
p(hk|y0:k−1)p(yk|y0:k−1, hk)∑

hk∈H p(hk|y0:k−1)p(yk|y0:k−1, hk)
. (11)

The term p(yk|y0:k−1, hk) represents the marginal likelihood of the neural state at time k, which is
defined as:

p(yk|y0:k−1, hk) =

∫
p(yk|xk, hk)p(xk|y0:k−1, hk)dxk, (12)

where p(yk|xk, hk) is the likelihood function associated with the neural state at time k, and the
movement at time k, p(xk|y0:k−1, hk) can be predicted as:

p(xk|y0:k−1, hk) ≈
∫

p(xk|xk−1)p(xk−1|y0:k−1)dxk−1, (13)

where p(xk|xk−1) is the prior probability of the movement at time k and p(xk−1|y0:k−1) is the
posterior probability of the movement at time k − 1.

The particle filtering (PF) was employed to approximate the posterior distribution of movement
corresponding to the neural state hk, p(xk|y0:k, hk), with a weighted particle set (Arulampalam et al.,
2002). The posterior p(xk|y0:k) can then be recursively estimated with particles.

3 EXPERIMENTS WITH SIMULATION DATA

We firstly evaluated the StateEnsemble model on simulation data to examine two key aspects: (1) in
the training process, to assess whether the state identification algorithm can effectively capture the

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

state transition graph embedded in the neural state chain and fit the functional mappings of different
neural states better than methods without the graph as a prior; and (2) in the decoding phase, to
evaluate whether the state-dependent decoding algorithm that uses the state transition graph as a prior
achieves superior performance compared to methods that do not use it. To achieve these objectives,
we design comparison experiments that contrast the training and prediction performance of the "with
state chain" method (using the state transition graph) and the "without state chain" method (ignoring
the graph).

With state chain: In both the training and prediction process, the method uses the state transition
graph as a prior to guide the state transition process, following the details described in section 2.

Without state chain: In both the training and prediction process, the method does not utilize the
prior guidance provided by the state transition graph. Specifically: In the training process, during the
data-function assignment step, data pairs are assigned by minimizing the predicted error across all
neural states, as follows:

hk = arg min
hk∈H

||yk − hk(xk)||2. (14)

In the prediction process, the method follows the DyEnsemble approach, which does not explicitly
model the neural state chain.

3.1 SIMULATION OF NEURAL SIGNALS WITH A NEURAL STATE CHAIN

For the simulation, we generate the movement trajectory x0:n using the motion sequence from a
monkey self-paced reaching task (O’Doherty et al., 2017). Additionally, we generate the neural
signal sequence y0:n, the state transition graph g(.), and the functional mappings of the neural states
H = {h1, h2, . . . , hM}. To simplify the analysis, we set M = 5 neural states, with the movement
dimension dx = 2 and the neural signal dimension dy = 70 (corresponding to 70 neurons). The
mappings of different neural states are modeled as linear functions with biases. The data size n is set
to 5 times the number of parameters in the mapping for a single neural state to ensure proper model
fitting. Further details on the data generation process are provided in section B.1.

3.2 PERFORMANCE OF STATE TRANSITION GRAPH LEARNING

The comparison results for the state transition graph g(.) among the ground truth (GT), "with
state chain" and "without state chain" are presented in two forms: the matrix form in fig. 2 and
the graph form in fig. S1. To improve readability, diagonal elements—representing self-transition
probabilities—are omitted, as they are generally higher than inter-state transition probabilities.
However, their omission does not affect the comparative analysis of inter-state transitions. Both
figures suggest that the transition patterns in the "with state chain" method exhibit greater similarity to
the ground truth than those in the "without state chain" method. The transition probabilities in fig. S1
demonstrate that "with state chain" accurately reproduces the ground truth state transition graph,
while "without state chain" results in a less precise approximation. This highlights the effectiveness of
incorporating a state transition graph as a prior, allowing the algorithm to learn the inherent structure
of neural state transitions.

3.3 PERFORMANCE OF NEURAL STATE FUNCTIONAL MAPPING ESTIMATION

We computed the mean squared error (MSE) between the estimated parameters of the functional
mappings and the ground truth for different neural states using the "with state chain" and "without
state chain" methods, as shown in fig. S2(a). On average, the MSE for the "with state chain" method
is reduced by 41.97% (p < 0.001) compared to the "without state chain" method. Additionally, the
estimates obtained with the "with state chain" method exhibit a lower standard deviation, indicating
improved consistency and stability in parameter estimation.

To visually assess estimation accuracy, we plot the two-dimensional encoding parameters of a single
neuron across five neural states in fig. S2(b). The visualization shows that the points corresponding to
"with state chain" are consistently closer to the ground truth across all neural states, indicating that
the prior constraints contribute to more accurate parameter estimates. A more detailed analysis is
provided in section B.2.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

3.4 PERFORMANCE OF NEURAL DECODING

The decoding task aims to estimate the movement trajectory x0:n given the neural signal sequence
y0:n, utilizing the training results. Both the "with state chain" and "without state chain" methods
use their respective estimates of the functional mappings of neural states, H = {h1, h2, . . . , hM};
however, the "with state chain" method incorporates the guidance from the state transition graph g(.)
as a prior, while "without state chain" does not leverage this prior information.

The comparison of decoding performance, measured by the MSE of the movement trajectory, is shown
in fig. S3. The results show that the MSE of "with state chain" is significantly lower (p < 0.001)
and more stable than that of "without state chain." This highlights the advantage of using the state
transition graph embedded in the neural state chain, which improves both the accuracy and stability of
the decoding process. We also evaluated the performance of our model under different experimental
settings. The detailed analysis is in section B.3.

4 EXPERIMENTS WITH NEURAL SIGNALS

4.1 NEURAL SIGNALS OF HANDWRITING TASK

We applied our approach to a dataset involving imagined handwriting, a complex motor control
task. Neural signals were recorded using two 96-channel Utah microelectrode arrays implanted
in the left-hand knob area of the precentral gyrus. During the experiments, the participant was
instructed to imagine writing Chinese characters stroke by stroke while following a virtual hand
displayed in a video. Each experimental session consisted of 30 unique characters, with each character
repeated three times in a randomized order, resulting in a total of 90 trials per session. Data from 18
experimental sessions were collected and analyzed. Specifically, we analyzed the sorted single-unit
activities alongside the corresponding target velocity data.

4.2 ANALYSIS OF THE STATE TRANSITION GRAPH DURING HANDWRITING

Figure 3: The Kendall tau distance of state transi-
tion graphs of two groups is shown in this graph.
The points of the same session are connected by
gray lines.

In the encoding experiments, we investigate
whether a state transition graph is embedded
in the neural state chain of handwriting tasks.
For each session, the data is randomly divided
into two groups, each consisting of motion and
neural data for three repetitions of 15 characters,
with no overlap of characters between the two
groups. If the state transition graphs learned
from these two groups are similar, it would sug-
gest the presence of transition patterns in the
neural state transition processes during hand-
writing tasks.

Using the "with state chain" and "without state
chain" methods described in section 3, we ex-
plicitly and implicitly obtain the neural state
chain and construct the corresponding state tran-
sition graph for each group. To quantify the sim-
ilarity between the learned graphs, we calculate
the Kendall tau distance by ranking transition
probabilities and comparing the relative order-
ing of state transitions. We also generate random
shuffle graphs. These graphs are created by shuffling the order of states in the neural state chain, thus
eliminating any inherent transition patterns in the chain. These shuffle graphs are compared with each
other to establish a baseline of similarity between graphs of two groups, which helps us understand
how different the learned graphs are from random, non-structured patterns.

The results in fig. 3 show that the Kendall tau distance for shuffle graphs is significantly lower than for
both the "with state chain" and "without state chain" methods (p < 0.001), indicating that a distinct
transition pattern exists during neural state transitions while handwriting. Moreover, the "with state

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

chain" method learns more similar state transition graphs across two groups than the "without state
chain" method. This suggests that the state transition graph prior enhances the stability and accuracy
of the learned graph.

We also visualize the state transition graphs learned by the "with state chain" method, as shown in
fig. 4. In this visualization, we observe distinct transition structures, such as the "5 points of the dice"
pattern on the left side of the graph (highlighted in the red box with solid lines). Additionally, there
are other similar transition structures, with varying relative color depths (highlighted in the red box
with dotted lines), rather than absolute color depth. The differences in absolute color depth, which
represents the transition probability, may be influenced by the size of the samples. These results
demonstrate that a structured transition graph is embedded in the neural state chain of handwriting
tasks and that our method is capable of effectively capturing and learning these transition patterns by
leveraging the state transition graph as a prior.

Figure 4: The state transition graphs of two groups learned by "with state chain" method are shown in
this graph, where each row corresponds to the current state, and each column corresponds to the next
state. left) group 1; right) group 2. Red boxes with solid lines indicate similar transition structures
based on absolute depth, whereas red boxes with dotted lines indicate similar transition structures
based on relative depth.

Method Session1 Session7 Session8 Session10 Session14 Average
KF 0.1434 0.2875 0.1964 0.0918 0.2331 0.1008 ± 0.0893
WF 0.3364 0.1398 0.1272 0.3378 0.4241 0.2624 ± 0.0975

WCF 0.3474 0.1405 0.1292 0.3501 0.4328 0.2729 ± 0.1004

RNN 0.4090 0.4966 0.3985 0.4407 0.4950 0.3493 ± 0.1023
LSTM 0.4079 0.5419 0.4135 0.4695 0.5419 0.3732 ± 0.1020
BIOT 0.2715 0.4280 0.3683 0.3795 0.4956 0.2943 ± 0.1134

BrainBERT 0.4075 0.5052 0.4574 0.3888 0.5201 0.3759 ± 0.0871
NDT2 0.4026 0.5088 0.4470 0.4168 0.5167 0.3786 ± 0.0863

Ours w/o SC 0.4049 0.5038 0.4406 0.4224 0.5220 0.3623 ± 0.0948

Ours 0.4151 0.5441 0.4689 0.4709 0.5436 0.3887 ± 0.0978

Table 1: R2 values for selected 5 sessions and the average across all 18 sessions between the true and
estimated writing movement trajectories. The table compares the decoding performance of KF, WF,
WCF, RNN, LSTM, BIOT, BrainBERT, NDT2, StateEnsemble without the state chain (Ours w/o
SC), and StateEnsemble (Ours).

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

4.3 PERFORMANCE OF HANDWRITING TRAJECTORY DECODING

In the decoding phase, we compare the StateEnsemble and StateEnsemble without state chain
methods against several established neural decoding approaches. The Kalman Filter (KF) (Stavisky
et al., 2015) is a classical state-space model, while the Wiener Filter (WF) (Hochberg et al., 2006b)
assumes a linear relationship between neural signals and motor parameters; the Wiener Cascade
Filter (WCF) (Flint et al., 2013) extends WF by fitting a third-order polynomial between the WF
output and the movement trajectory. Recurrent Neural Networks (RNNs) (Glaser et al., 2020) and
Long Short-Term Memory Networks (LSTMs) (Costello et al., 2024) are widely used deep learning
models for sequential data, with LSTMs representing a state-of-the-art approach for neural decoding.
Transformer-based neural decoders, including BIOT (Yang et al., 2023), BrainBERT (Wang et al.,
2023), and NDT2 (Ye et al., 2023), have also recently achieved state-of-the-art performance in neural
decoding tasks. The implementation details are provided in section C.2.

Each session consists of a dataset of 30 Chinese characters, which is partitioned into two groups:
20 characters for training and 10 for testing. The training and testing sets contain no overlapping
characters. This partitioning is repeated three times per session, each time using a different test set.
To quantitatively evaluate decoding performance, we computed the R2 values between the true and
estimated writing movement trajectories. Results for five selected sessions and the average across all
18 sessions are shown in table 1, while the session-wise results for all 18 sessions are presented in
table S1. The wide error bars are primarily due to the inherent variability in decoding performance
across different sessions.

Classical decoding methods, such as KF and WF, are constrained by their linear assumptions, which
limit their representational capacity and result in suboptimal performance. Although WCF introduces
nonlinearity, its expressive power remains limited, yielding only marginal improvements over WF.
In contrast, our method achieves a 42.43% increase in R2 (p < 0.01) compared to WCF. Deep
learning-based approaches, including RNNs, LSTMs, and Transformer-based decoders, further
enhance decoding performance. Among these, LSTM and Transformer models exhibit superior
capabilities, attributed to LSTM’s gating mechanisms and Transformer’s self-attention mechanism.
Notably, the "without state chain" variant of our model (StateEnsemble without state chain) achieves
performance comparable to LSTM and Transformer models. By contrast, the "with state chain"
model (StateEnsemble) surpasses them, achieving a 4.15% increase (p < 0.01) relative to LSTM and
a 2.66% increase over the Transformer-based decoder NDT2. These results highlight the effectiveness
of incorporating state-dependent decoding for complex motor tasks such as handwriting. Comparing
the "without state chain" and "with state chain" variants, incorporating the state transition prior yields
a 7.29% increase (p < 0.01). By leveraging the constraints encoded in the state transition graph,
the "with state chain" method promotes more coherent and stable transitions between neural states,
thereby improving both the accuracy and stability of the decoded writing trajectories. These findings
demonstrate that explicitly modeling neural state transitions can substantially enhance decoding
performance in complex motor tasks.

We visualize the estimated writing movement trajectories reconstructed using the "with state chain"
and "without state chain" methods in fig. S6. The detailed analysis of it is in section C.3. These
results demonstrate that the state transition graph improves the stability and accuracy of decoding
complex movement trajectories. It enables the decoding process to maintain the current neural state
when necessary and promptly transition to the correct subsequent state. The proposed neural decoder
outperforms baseline methods in decoding movement trajectories.

5 CONCLUSION

We propose a neural state chain-based dynamic model (StateEnsemble) that explicitly models the
neural state transition process and performs state-dependent neural decoding. The proposed approach
was evaluated using intracortical neural signals recorded from the human motor cortex during the
writing of Chinese characters, a representative task that involves complex motor control. Experimental
results demonstrated that StateEnsemble can effectively capture stable neural state transition patterns
across repetitive writing trials. Moreover, the proposed neural decoder achieves superior performance
in decoding movement trajectories, consistently outperforming baseline methods. These findings
highlight the potential of StateEnsemble as a robust solution for motor sequence decoding, particularly
in scenarios involving nonstationary neural signals and complex motor tasks.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

All clinical and experimental procedures in this study were reviewed and approved by the local
Medical Ethics Committee and were formally registered. Informed consent was obtained verbally
from the participant, along with consent from his family members, and was duly documented and
signed by his legal representative.

The volunteer participant was a right-handed male, 75 years old at the time of data collection. He had
sustained complete tetraplegia following a traumatic cervical spine injury at the C4 level due to a car
accident approximately two years prior to study enrollment. The participant retained the ability to
move body parts above the neck and demonstrated normal linguistic competence and comprehension
for all tasks.

Two 96-channel intracortical microelectrode arrays (4 mm × 4 mm Utah arrays, 1.5 mm length;
Blackrock Microsystems) were implanted in the left motor cortex (MC), with one array positioned in
the center of the hand knob area (array A) and the second array located medially approximately 1 cm
apart (array B). Neural signals were recorded via the implanted arrays using the NeuroPort system
(NSP, Blackrock Microsystems). The signals were amplified, digitized, and sampled at 30 kHz.

The experimental task involved attempted handwriting: the participant observed a virtual hand writing
a target character and simultaneously attempted to reproduce the same movement as if the virtual
hand were his own. The instructional videos presented each character stroke by stroke to guide the
participant’s attempted movement.

REPRODUCIBILITY STATEMENT

All experimental settings and implementation details are provided to facilitate reproducibility. Specif-
ically, the generation of simulation data is detailed in section B.1; the algorithms for encoding and
decoding are described in section 2.3, section 2.4, and algorithm S1; the neural data preprocessing
procedures are provided in section 4.2 and section 4.3; the implementation details of baseline models
are presented in section C.2; and the computational resources and complexity analysis are outlined in
section C.1.

REFERENCES

M Sanjeev Arulampalam, Simon Maskell, Neil Gordon, and Tim Clapp. A tutorial on particle filters
for online nonlinear/non-gaussian bayesian tracking. IEEE Transactions on signal processing, 50
(2):174–188, 2002.

David M Brandman, Tommy Hosman, Jad Saab, Michael C Burkhart, Benjamin E Shanahan, John G
Ciancibello, Anish A Sarma, Daniel J Milstein, Carlos E Vargas-Irwin, Brian Franco, et al. Rapid
calibration of an intracortical brain–computer interface for people with tetraplegia. Journal of
neural engineering, 15(2):026007, 2018.

Ujwal Chaudhary, Niels Birbaumer, and Ander Ramos-Murguialday. Brain–computer interfaces for
communication and rehabilitation. Nature Reviews Neurology, 12(9):513–525, 2016.

Mark M Churchland and Krishna V Shenoy. Temporal complexity and heterogeneity of single-neuron
activity in premotor and motor cortex. Journal of neurophysiology, 97(6):4235–4257, 2007.

Jennifer L Collinger, Brian Wodlinger, John E Downey, Wei Wang, Elizabeth C Tyler-Kabara,
Douglas J Weber, Angus JC McMorland, Meel Velliste, Michael L Boninger, and Andrew B
Schwartz. High-performance neuroprosthetic control by an individual with tetraplegia. The Lancet,
381(9866):557–564, 2013.

Joseph Costello, Hisham Temmar, Luis Cubillos, Matthew Mender, Dylan Wallace, Matt Willsey,
Parag Patil, and Cynthia Chestek. Balancing memorization and generalization in rnns for high
performance brain-machine interfaces. Advances in Neural Information Processing Systems, 36,
2024.

Uri T Eden, Loren M Frank, Riccardo Barbieri, Victor Solo, and Emery N Brown. Dynamic analysis
of neural encoding by point process adaptive filtering. Neural computation, 16(5):971–998, 2004.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Robert D Flint, Zachary A Wright, Michael R Scheid, and Marc W Slutzky. Long term, stable brain
machine interface performance using local field potentials and multiunit spikes. Journal of neural
engineering, 10(5):056005, 2013.

Bernard Friedland. Control system design: an introduction to state-space methods. Courier Corpora-
tion, 2012.

Vikash Gilja, Chethan Pandarinath, Christine H Blabe, Paul Nuyujukian, John D Simeral, Anish A
Sarma, Brittany L Sorice, János A Perge, Beata Jarosiewicz, Leigh R Hochberg, et al. Clinical
translation of a high-performance neural prosthesis. Nature medicine, 21(10):1142–1145, 2015.

Joshua I Glaser, Ari S Benjamin, Raeed H Chowdhury, Matthew G Perich, Lee E Miller, and Konrad P
Kording. Machine learning for neural decoding. eneuro, 7(4), 2020.

Leigh R Hochberg, Mijail D Serruya, Gerhard M Friehs, Jon A Mukand, Maryam Saleh, Abraham H
Caplan, Almut Branner, David Chen, Richard D Penn, and John P Donoghue. Neuronal ensemble
control of prosthetic devices by a human with tetraplegia. Nature, 442(7099):164–171, 2006a.

Leigh R Hochberg, Mijail D Serruya, Gerhard M Friehs, Jon A Mukand, Maryam Saleh, Abraham H
Caplan, Almut Branner, David Chen, Richard D Penn, and John P Donoghue. Neuronal ensemble
control of prosthetic devices by a human with tetraplegia. Nature, 442(7099):164–171, 2006b.

Leigh R Hochberg, Daniel Bacher, Beata Jarosiewicz, Nicolas Y Masse, John D Simeral, Joern Vogel,
Sami Haddadin, Jie Liu, Sydney S Cash, Patrick Van Der Smagt, et al. Reach and grasp by people
with tetraplegia using a neurally controlled robotic arm. Nature, 485(7398):372–375, 2012.

Jennifer A Hoeting, David Madigan, Adrian E Raftery, and Chris T Volinsky. Bayesian model
averaging: a tutorial (with comments by m. clyde, david draper and ei george, and a rejoinder by
the authors. Statistical science, 14(4):382–417, 1999.

Edward AB Horrocks, Fabio R Rodrigues, and Aman B Saleem. Flexible neural population dynamics
govern the speed and stability of sensory encoding in mouse visual cortex. Nature Communications,
15(1):6415, 2024.

Zahra Khademi, Farideh Ebrahimi, and Hussain Montazery Kordy. A review of critical challenges
in mi-bci: From conventional to deep learning methods. Journal of Neuroscience Methods, 383:
109736, 2023.

Sung-Phil Kim, Frank Wood, Matthew Fellows, John P Donoghue, and Michael J Black. Statis-
tical analysis of the non-stationarity of neural population codes. In The First IEEE/RAS-EMBS
International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006., pp.
811–816. IEEE, 2006a.

Sung-Phil Kim, Frank Wood, Matthew Fellows, John P Donoghue, and Michael J Black. Statis-
tical analysis of the non-stationarity of neural population codes. In The First IEEE/RAS-EMBS
International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006., pp.
811–816. IEEE, 2006b.

Henri Lorach, Andrea Galvez, Valeria Spagnolo, Felix Martel, Serpil Karakas, Nadine Intering,
Molywan Vat, Olivier Faivre, Cathal Harte, Salif Komi, et al. Walking naturally after spinal cord
injury using a brain–spine interface. Nature, 618(7963):126–133, 2023.

Chet Moritz, Edelle C Field-Fote, Candace Tefertiller, Ilse van Nes, Randy Trumbower, Sukhvinder
Kalsi-Ryan, Mariel Purcell, Thomas WJ Janssen, Andrei Krassioukov, Leslie R Morse, et al.
Non-invasive spinal cord electrical stimulation for arm and hand function in chronic tetraplegia: a
safety and efficacy trial. Nature medicine, pp. 1–8, 2024.

Maxwell D Murphy, David J Guggenmos, David T Bundy, and Randolph J Nudo. Current challenges
facing the translation of brain computer interfaces from preclinical trials to use in human patients.
Frontiers in cellular neuroscience, 9:497, 2016.

James R Norris. Markov chains. Number 2. Cambridge university press, 1998.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Joseph E O’Doherty, Mariana MB Cardoso, Joseph G Makin, and Philip N Sabes. Nonhuman
primate reaching with multichannel sensorimotor cortex electrophysiology. Zenodo http://doi.
org/10.5281/zenodo, 583331, 2017.

Y. Qi, B. Liu, Y. Wang, and G. Pan. Dynamic ensemble modeling approach to nonstationary neural
decoding in brain-computer interfaces. In Advances in neural information processing systems, 32,
2019.

Yu Qi, Xinyun Zhu, Kedi Xu, Feixiao Ren, Hongjie Jiang, Junming Zhu, Jianmin Zhang, Gang Pan,
and Yueming Wang. Dynamic ensemble bayesian filter for robust control of a human brain-machine
interface. IEEE Transactions on Biomedical Engineering, 69(12):3825–3835, 2022.

Yu Qi, Xinyun Zhu, Xinzhu Xiong, Xiaomeng Yang, Nai Ding, Hemmings Wu, Kedi Xu, Junming
Zhu, Jianmin Zhang, and Yueming Wang. Human motor cortex encodes complex handwriting
through a sequence of stable neural states. Nature Human Behaviour, pp. 1–12, 2025.

Richard H Roth and Jun B Ding. Cortico-basal ganglia plasticity in motor learning. Neuron, 2024.

Jerome N Sanes and John P Donoghue. Plasticity and primary motor cortex. Annual review of
neuroscience, 23(1):393–415, 2000.

Michael A Schwemmer, Nicholas D Skomrock, Per B Sederberg, Jordyn E Ting, Gaurav Sharma,
Marcia A Bockbrader, and David A Friedenberg. Meeting brain–computer interface user perfor-
mance expectations using a deep neural network decoding framework. Nature medicine, 24(11):
1669–1676, 2018.

Maryam M Shanechi, Amy L Orsborn, and Jose M Carmena. Robust brain-machine interface design
using optimal feedback control modeling and adaptive point process filtering. PLoS computational
biology, 12(4):e1004730, 2016.

Krishna V Shenoy and Jose M Carmena. Combining decoder design and neural adaptation in
brain-machine interfaces. Neuron, 84(4):665–680, 2014.

Julie H Simpson. Descending control of motor sequences in drosophila. Current Opinion in
Neurobiology, 84:102822, 2024.

Sergey D Stavisky, Jonathan C Kao, Paul Nuyujukian, Stephen I Ryu, and Krishna V Shenoy. A
high performing brain–machine interface driven by low-frequency local field potentials alone and
together with spikes. Journal of neural engineering, 12(3):036009, 2015.

David Sussillo, Sergey D Stavisky, Jonathan C Kao, Stephen I Ryu, and Krishna V Shenoy. Making
brain–machine interfaces robust to future neural variability. Nature communications, 7(1):13749,
2016.

SB Suway, J Orellana, AJC McMorland, GW Fraser, Z Liu, M Velliste, SM Chase, RE Kass, and
AB Schwartz. Temporally segmented directionality in the motor cortex. Cerebral Cortex, 28(7):
2326–2339, 2018.

Dawn M Taylor, Stephen I Helms Tillery, and Andrew B Schwartz. Direct cortical control of 3d
neuroprosthetic devices. science, 296(5574):1829–1832, 2002.

Christopher Wang, Vighnesh Subramaniam, Adam Uri Yaari, Gabriel Kreiman, Boris Katz, Ignacio
Cases, and Andrei Barbu. Brainbert: Self-supervised representation learning for intracranial
recordings. arXiv preprint arXiv:2302.14367, 2023.

Yiwen Wang and Jose C Principe. Tracking the non-stationary neuron tuning by dual kalman filter
for brain machine interfaces decoding. In 2008 30th annual international conference of the IEEE
engineering in medicine and biology society, pp. 1720–1723. IEEE, 2008.

Yiwen Wang, Xiwei She, Yuxi Liao, Hongbao Li, Qiaosheng Zhang, Shaomin Zhang, Xiaoxiang
Zheng, and Jose Principe. Tracking neural modulation depth by dual sequential monte carlo
estimation on point processes for brain–machine interfaces. IEEE Transactions on Biomedical
Engineering, 63(8):1728–1741, 2015.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Chaoqi Yang, M Westover, and Jimeng Sun. Biot: Biosignal transformer for cross-data learning in
the wild. Advances in Neural Information Processing Systems, 36:78240–78260, 2023.

Joel Ye, Jennifer Collinger, Leila Wehbe, and Robert Gaunt. Neural data transformer 2: multi-context
pretraining for neural spiking activity. Advances in Neural Information Processing Systems, 36:
80352–80374, 2023.

Ka-Veng Yuen and Sin-Chi Kuok. Bayesian methods for updating dynamic models. 2011.

Xinyun Zhu, Yu Qi, Gang Pan, and Yueming Wang. Tracking functional changes in nonstationary
signals with evolutionary ensemble bayesian model for robust neural decoding. Advances in Neural
Information Processing Systems, 35:22576–22588, 2022.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A ALGORITHM

In this section, we write the algorithm of state identification in algorithm S1.

Algorithm S1 State Identification Algorithm

Input: n: data size, o0:n = {x0:n, y0:n}: observation data pairs, M : the number of neural states,
α: threshold
Init: g(.): the state transition graph, C: the neural state chain, H = {h1, h2, . . . , hM}: functional
mappings of neural states, Post: the initial posterior probabilities of neural states
repeat

Data-function assignment:
Like = Likelihood(o0:n, C,H)
Prior = Prior(g, Post)
Post = Posterior(Prior, Like)
C = Chain(Post)
State transition graph updating:
[g, changes] = Graph-Update(g, C)
State function updating:
H = Model-Fitting(o0:n, C,M)

until changes < α
Output: H = {h1, h2, . . . , hM}: functional mappings of neural states, g(.): the state transition
graph

B EXPERIMENTS WITH SIMULATION DATA

Figure S1: The state transition graph of 5 neural states is shown in graph form. Each node represents
a neural state, and the weight of the directed edge from node i to node j, labeled at the center of the
edge, indicates the transition probability from state i to state j.

B.1 SIMULATION DATA GENERATION DETAILS

First, we use the motion sequence of a monkey self-paced reaching task for the movement trajectory.
To construct a state transition graph, we initialize the diagonal elements of the state transition
graph g(.) to 0.9, ensuring that the neural state switches to itself most frequently. The transition
probabilities to other neural states are sampled from a standard Gaussian distribution and normalized.
Using this state transition graph, we then sample the neural state chain h0:n and regenerate the state
transition graph g(.) with the sampled sequence. Next, we generate M linear functions with biases

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

(a) (b)

Figure S2: (a) The MSE of the parameter estimates is shown in this graph. The training process was
repeated 10 times with random initialization for both the "with state chain" and "without state chain"
methods. (b) The parameters of 5 neural states for a neuron are visualized in this graph. Each point
represents the parameters for a specific neural state of a neuron, where the horizontal coordinate
corresponds to the first parameter and the vertical coordinate corresponds to the second parameter.
Points belonging to the same neural state are connected by dotted lines. The points representing the
ground truth are colored green, those for "with state chain" are colored orange, and those for "without
state chain" are colored dark gray.

Figure S3: The MSE of the movement trajectory x0:n is shown in this graph. The decoding process
was repeated 10 times with random initialization for both the "with state chain" and "without state
chain" methods.

for H = {h1, h2, . . . , hM}, parameters of which sampled from a standard Gaussian distribution.
Finally, the neural signal sequence y0:n is generated based on x0:n using eq. (4), with Gaussian white
noise wk added to the measurements.

B.2 PERFORMANCE OF NEURAL STATE FUNCTIONAL MAPPING ESTIMATION

We computed the mean squared error (MSE) between the estimated parameters of the functional
mappings and the ground truth for different neural states using the "with state chain" and "without
state chain" methods, as shown in fig. S2(a). On average, the MSE for the "with state chain" method
is reduced by 41.97% (p < 0.001) compared to the "without state chain" method. Additionally, the
estimates obtained with the "with state chain" method exhibit a lower standard deviation, indicating
improved consistency and stability in parameter estimation.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

To visually assess estimation accuracy, we plot the two-dimensional encoding parameters of a single
neuron across five neural states in fig. S2(b). Each point represents the parameters of a specific state,
with colors distinguishing the ground truth, "with state chain," and "without state chain" estimates.
Dotted lines connect points of the same state, where shorter lines indicate closer alignment with the
ground truth. The visualization shows that the points for "with state chain" are consistently closer
to the ground truth across all neural states, indicating that the prior constraints help achieve more
accurate estimates. Additionally, the distances between the "with state chain" estimates and the
ground truth are more stable than those for "without state chain", suggesting that incorporating the
state transition graph results in more stable performance.

B.3 ROBUSTNESS ANALYSIS WITH VARIOUS EXPERIMENTAL SETTINGS

To evaluate the performance of our model (StateEnsemble) under different experimental settings,
we vary the number of neurons to {30, 40, 50, 60, 70, 80}, and the number of neural states to 5 and
10. The detailed analysis is in section B.3. For each setting, we select a specific combination of
neuron count and neural state number, and perform the training and prediction processes 10 times,
randomly initializing each trial. In the training process, we record the MSE of the parameters of the
functional mappings of different neural states, as shown in fig. S4, while in the prediction process,
we record the MSE of the movement trajectory, as shown in fig. S5. For each number of neural states,
the training and prediction performance of the "with state chain" method consistently outperforms
the "without state chain" method across all neuron settings, both in terms of accuracy and stability.
Additionally, when using the "with state chain" method, we observe that the MSEs in both processes
tend to decrease as the number of neurons increases, likely due to the additional information provided
by more neurons. For a fixed number of neurons, the "with state chain" method consistently achieves
better performance than the "without state chain" method, regardless of whether there are 5 or 10
neural states.

In conclusion, the state transition graph, as a prior, significantly improves both the accuracy and
stability of the training and prediction processes across a wide range of experimental settings.

Figure S4: The statistical results of the MSE of the parameter estimates are shown in this graph.
The number of neural states is set to 5 (left) and 10 (right), and the number of neurons is set to
{30, 40, 50, 60, 70, 80}. For each experimental setting, one specific combination of neuron number
and neural state number is selected, and the training process is repeated 10 times.

C EXPERIMENTS WITH NEURAL SIGNALS

C.1 COMPUTE RESOURCES

The computational complexity of our method is similar to that of traditional particle filtering. Specifi-
cally, let N denote the number of particles, M the number of neural states, and T the total number of
timesteps, where N ≫ M . In each timestep, the likelihood is calculated for each neural state and
particle, resulting in a complexity of O(NM). We then use the prior and likelihood to compute the
posterior of the neural states and particles, which has a complexity of O(M +M(N − 1)+ (M − 1))
for neural states and O(NM +NM +N(M − 1)) for particles. Thus, the total time complexity
per timestep is O(NM), and for all timesteps, the overall complexity is O(NMT). While we
conducted only off-line experiments, based on the experimental results, it is feasible to achieve

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure S5: The statistical results of the MSE for the movement trajectory x0:n are shown in this
graph. The number of neural states is set to 5 (up) and 10 (down), and the number of neurons is set
to {30, 40, 50, 60, 70, 80}. The decoding process is repeated 10 times with random initialization.

real-time decoding with approximately 20 ms per timestep. All experiments are completed in a
Intel(R) Xeon(R) Platinum 8358 CPU @ 2.60GHz and a NVIDIA GeForce RTX 3090 GPU 24G.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

东 方 天 界 光 电GT

 State-
Ensemble

 State-
 Ensmble
w/o state chain

East Direction Heaven Boundary Light ElectricityMeaning:

Figure S6: The characters decoded by the "with state chain" and "without state chain" methods are
shown in this graph. Each column represents a different Chinese character, with the corresponding
English translation displayed at the top.

C.2 DETAILED SETTINGS OF DEEP LEARNING-BASED DECODERS

For the RNN, a single layer was employed to extract features, with the features from the fi-
nal time step passed through a fully connected layer to generate the predictions. A grid
search was conducted on one session to explore the following hyperparameters: the number
of hidden units in {50, 100, 150, 200, . . . , 500}, batch size in {32, 64, 96, 128}, dropout rate in
{0, 0.1, 0.2, 0.3, 0.4, 0.5}, and learning rate in {5, 10, . . . , 100} ×10−5. The optimal hyperparam-
eters were selected based on the average performance on the validation set and applied across all
sessions. The final configuration included 500 hidden units, a batch size of 32, a dropout rate of
0.3, and a learning rate of 0.001. For the LSTM, a similar procedure was followed. The chosen
configuration consisted of 200 hidden units, a batch size of 32, a dropout rate of 0.3, and a learning
rate of 0.001. For the Transformer-based decoders, we preserved their original architectures and
configured them with a similar number of parameters as our model to ensure a fair comparison and to
guarantee that the baseline models were adequately trained.

C.3 DECODED TRAJECTORIES VISUALIZATION AND ANALYSIS

We visualize the estimated writing movement trajectories reconstructed using the "with state chain"
and "without state chain" methods in fig. S6. The first row presents the ground truth (GT) trajectories
of six example characters, while the second and third rows display the corresponding reconstructions
using the "with state chain" and "without state chain" methods, respectively. The trajectories generated
by the "with state chain" method exhibit more stable character structures and are noticeably closer to
the GT. In contrast, the "without state chain" method results in significant distortions. For example, in
the second character, the horizontal stroke is more accurately reconstructed, and in the sixth character,
the vertical stroke with a hook appears more recognizable when using our method. This improvement
can be attributed to the fact that neural state transitions are likely to occur when the writing speed
changes within the same direction (e.g., a horizontal stroke) or when a stroke shifts direction (e.g., a
vertical stroke followed by a hook) (Qi et al., 2025). By incorporating graph-based priors, the "with
state chain" method can effectively capture these transitions, leading to more accurate and stable
decoding outcomes.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

D DISCUSSION

D.1 BROADER IMPACTS

This work introduces StateEnsemble, a dynamic model based on neural state chains. The model
explicitly captures the neural state transition process, from which it extracts an embedded transition
graph to enable state-dependent decoding. The transition graph derived from the state chain can
reveal inherent patterns in human motion, thereby offering a robust prior for state-dependent neural
decoding. Our experimental findings demonstrate that the incorporation of this prior knowledge leads
to enhanced decoding stability and accuracy.

Furthermore, the proposed methodology holds promise for application in other complex motor
tasks, such as cycling or piano playing. In such contexts, the extracted transition graphs could
be used to identify patterns reflective of ingrained movement habits. These identified patterns,
when subsequently employed as priors in state-dependent decoding, are anticipated to yield further
improvements in the stability and precision of neural decoding across these diverse activities.

D.2 LIMITATIONS

Current neuroscience research indicates that motion sequences are not encoded by a single neural
state but rather by a sequence of distinct neural states, each characterized by a unique mapping
between neural activity and kinematic parameters like velocity and position (Horrocks et al., 2024;
Roth & Ding, 2024; Simpson, 2024; Qi et al., 2025). Despite this understanding, the collection of
intracortical neural signals from the human motor cortex during the execution of complex movements
remains a significant challenge. Therefore, the present study’s evaluation of our proposed approach
was necessarily limited to data from Chinese character writing, chosen as a representative complex
motor task. Looking ahead, it will be crucial to extend this research by collecting intracortical neural
data across a more diverse set of complex movements to thoroughly validate and generalize our
findings.

D.3 THE USE OF LARGE LANGUAGE MODELS

We employed large language models (LLMs) to assist in polishing and improving the clarity and
readability of the manuscript.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Method Session1 Session2 Session3 Session4 Session5 Session6 Session7
KF 0.1434 0.0489 0.1192 0.1259 0 0 0.2875
WF 0.3364 0.2906 0.3129 0.2314 0.2330 0.1337 0.1398

WCF 0.3474 0.3143 0.3309 0.2408 0.2432 0.1349 0.1405

RNN 0.4090 0.3452 0.3486 0.3305 0.1815 0.2119 0.4966
LSTM 0.4079 0.3354 0.3437 0.3125 0.1840 0.2547 0.5419
BIOT 0.2715 0.2644 0.3322 0.2746 0.1258 0.1800 0.4280

BrainBERT 0.4075 0.3715 0.3764 0.3826 0.2589 0.2417 0.5052
NDT2 0.4026 0.3782 0.3738 0.3659 0.2441 0.2672 0.5088

Ours w/o 0.4049 0.3786 0.3922 0.3731 0.2203 0.2638 0.5038

Ours 0.4151 0.3639 0.3640 0.3460 0.2357 0.2628 0.5441

Method Session8 Session9 Session10 Session11 Session12 Session13
KF 0.1964 0.0865 0.0918 0.1167 0.0591 0.2510
WF 0.1272 0.3249 0.3378 0.3304 0.1997 0.4338

WCF 0.1292 0.3344 0.3501 0.3384 0.2095 0.4454

RNN 0.3985 0.4354 0.4407 0.3826 0.2879 0.5120
LSTM 0.4135 0.4585 0.4695 0.4154 0.3307 0.5215
BIOT 0.3683 0.3335 0.3795 0.3432 0.2859 0.5131

BrainBERT 0.4574 0.3943 0.3888 0.4262 0.2850 0.5225
NDT2 0.4470 0.4284 0.4168 0.3969 0.3235 0.5402

Ours w/o 0.4406 0.3543 0.4224 0.3724 0.3255 0.5093

Ours 0.4689 0.4637 0.4709 0.4275 0.3435 0.5401

Method Session14 Session15 Session16 Session17 Session18 Average
KF 0.2331 0.0406 0.0007 0 0.0139 0.1008 ± 0.0893
WF 0.4241 0.3159 0.2482 0.2196 0.0833 0.2624 ± 0.0975

WCF 0.4328 0.3258 0.2700 0.2359 0.0884 0.2729 ± 0.1004

RNN 0.4950 0.3173 0.2488 0.1902 0.2570 0.3493 ± 0.1023
LSTM 0.5419 0.3418 0.3108 0.2328 0.3023 0.3732 ± 0.1020
BIOT 0.4956 0.2494 0.1594 0.1438 0.1494 0.2943 ± 0.1134

BrainBERT 0.5201 0.3768 0.2847 0.2547 0.3131 0.3759 ± 0.0871
NDT2 0.5167 0.3504 0.3024 0.2515 0.3016 0.3786 ± 0.0863

Ours w/o 0.5220 0.3244 0.2623 0.1957 0.2559 0.3623 ± 0.0948

Ours 0.5436 0.3434 0.3168 0.2416 0.3058 0.3887 ± 0.0978

Table S1: R2 values for all 18 sessions and the average between the true and estimated writing
movement trajectories. The table compares the decoding performance of KF, WF, WCF, RNN,
LSTM, BIOT, BrainBERT, NDT2, StateEnsemble without the state chain (Ours w/o SC), and
StateEnsemble (Ours).

20

	Introduction
	The StateEnsemble model
	Classic state-space model
	State-space model with a neural state chain
	Neural state identification and state transition graph
	State-dependent neural decoding using the state transition graph as a prior

	Experiments with simulation data
	Simulation of neural signals with a neural state chain
	Performance of state transition graph learning
	Performance of neural state functional mapping estimation
	Performance of neural decoding

	Experiments with neural signals
	Neural signals of handwriting task
	Analysis of the state transition graph during handwriting
	Performance of handwriting trajectory decoding

	Conclusion
	Algorithm
	Experiments with Simulation Data
	Simulation data generation details
	Performance of neural state functional mapping estimation
	Robustness analysis with various experimental settings

	Experiments with Neural Signals
	Compute resources
	Detailed settings of deep learning-based decoders
	Decoded trajectories visualization and analysis

	Discussion
	Broader impacts
	Limitations
	The Use of Large Language Models

