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Abstract
This paper considers a canonical problem in ker-
nel regression: how good are the model perfor-
mances when it is trained by the popular online
first-order algorithms, compared to the offline
ones, such as ridge and ridgeless regression? In
this paper, we analyze the foundational single-
pass Stochastic Gradient Descent (SGD) in kernel
regression under source condition where the opti-
mal predictor can even not belong to the RKHS,
i.e. the model is misspecified. Specifically, we
focus on the inner product kernel over the sphere
and characterize the exact orders of the excess
risk curves under different scales of sample sizes
n concerning the input dimension d. Surprisingly,
we show that SGD achieves min-max optimal
rates up to constants among all the scales, without
suffering the saturation, a prevalent phenomenon
observed in (ridge) regression, except when the
model is highly misspecified and the learning is
in a final stage where n ≫ dγ with any constant
γ > 0. The main reason for SGD to overcome the
curse of saturation is the exponentially decaying
step size schedule, a common practice in deep
neural network training. As a byproduct, we pro-
vide the first provable advantage of the scheme
over the iterative averaging method in the com-
mon setting.

1. Introduction
Non-parametric least-squares regression within the RKHS
framework represents a cornerstone of statistical learning
theory. One mainstream method to solve the problem is ker-
nel ridge regression (KRR) with optimality analysis (Capon-
netto & De Vito, 2007; Smale & Zhou, 2007; Zhang et al.,
2024a). Recent years have witnessed a renaissance of inter-
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est in kernel methods driven by the neural tangent kernel
(NTK) theory (Jacot et al., 2018; Arora et al., 2019), which
states that sufficiently wide neural networks, under specific
initialization, can be well approximated by a deterministic
kernel model derived from the network architecture. Though
deep learning often operates in regimes beyond the tradi-
tional statistical mindset, recent advances demonstrate that
these generalization mysteries are not peculiar to neural net-
works and the phenomena are also present in kernel regres-
sion, particularly in the high-dimensional regime (Ghorbani
et al., 2021; Liang & Rakhlin, 2020; Zhang et al., 2024b).

Substantial studies have been made in the related regimes
for kernel ridge or ridgeless methods. For instance, Liang
& Rakhlin (2020) demonstrates the existence of benign
overfitting for ridgeless regression, a phenomenon where
the model interpolates data yet still generalizes well. In
a large-dimension regime where n ≍ d, Ghorbani et al.
(2021) provably shows the double descent phenomenon. In
more general regimes, Zhang et al. (2024b) characterizes the
exact orders of the excess risk curves, i.e., learning curves
where the sample size scales polynomially with the input
dimension n = dγ with γ > 0 and elaborates the interplay
of the regularization parameter, γ, and the source condition.

On the other hand, in practice, dominant algorithms are
implemented in an online fashion to reduce computation
costs, with iterative updates relying on stochastic gradients
(single-pass or minibatch) as estimates of the population
counterpart. Stochastic gradient descent (SGD), one of the
foundational online algorithms, admits the simplest updates
and receives abundant theoretical analysis in general opti-
mization. However, its learning dynamics over specific ker-
nels remains underexplored. Existing theoretical results are
either inapplicable or leave room for improvement. Specif-
ically, the pioneering work of (Dieuleveut & Bach, 2016)
considers the optimality of single-pass SGD with iterate
averaging, yet their optimality results do not demonstrate
a clear improvement over ridge regression. Another thread
of work analyses single-pass SGD in the linear regression
framework (Jain et al., 2018; Zou et al., 2021b; Wu et al.,
2022). Although insightful, their decisive assumption on the
concentration effect deviates from that in kernel regression,
resulting in entirely different learning dynamics.

In this study, we investigate a fundamental question to fill
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the abovementioned gap: how does model performance,
when trained using popular online first-order algorithms,
compare to that of offline ridge and ridgeless regression?
We analyze the single-pass SGD that incorporates the expo-
nentially decaying step size schedule, a common practice in
deep neural network training (Bengio, 2009; Ge et al., 2019).
The analysis is conducted within the framework of kernel
regression, considering the source condition that allows for
potential model misspecification. We precisely characterize
the order of learning curves in the high-dimensional setting,
where n ≍ dγ with γ > 0 treated as a constant. Our focus
is on the inner product kernel over the sphere, which encom-
passes NTK with ReLu activation as a special case (Bietti &
Bach, 2021; Bietti & Mairal, 2019). For functions satisfying
the source condition with s > 0, we establish excess risk
convergence rates given by Ω

(
d−min{γ−p,s(p+1)}), where

p =
⌊

γ
s+1

⌋
. These derived rates surprisingly match the

minimax lower bounds up to constants, thereby establish-
ing minimax optimality across all sampling scales in high-
dimensional settings and throughout the spectrum of source
condition smoothness (Zhang et al., 2024b). Notably, the
result circumvents the saturation effect inherent to the KRR -
the fundamental limitation where it fails to attain optimality
for the smooth problems regardless of the ridge regulariza-
tion parameter (Neubauer, 1997; Li et al., 2023; Lu et al.,
2024b), which persists under the current online analysis.

With the above optimality analysis, two follow-up questions
naturally arise. (i) Can the SGD algorithm consistently be
optimal across all scalings of n, particularly when liberated
from the n ≍ dγ constraints? (ii) Why can SGD overcome
the curse of saturation?

For question (i), the claim does not hold in the asymptotic
regime where n ≫ dγ : we demonstrate that SGD loses its
optimality when the model is highly misspecified. Specifi-
cally, our analysis shows that SGD can only reach optimality
for s > 1

d+1 .

For question (ii), we demonstrate that the exponentially de-
caying step size schedule serves as the critical mechanism
for eliminating the saturation effect. To illustrate our argu-
ments, we study a class of SGD with averaged iterates. Our
result establishes a lower bound on this scheme, and as a
byproduct, firstly demonstrates the provable advantage of
decaying step sizes over iterate averaging.

To summarize our contribution:

• We establish the optimality condition of SGD in both
high-dimensional and asymptotic settings under the
source condition.

• We demonstrate the advantages of SGD with expo-
nentially decaying step size over iterative averaging
methods, highlighting the former’s efficiency in well-

specified problems without suffering from the satura-
tion effect.

2. Related Work
Kernel Regression. In the asymptotic setting, when n ≫ d,
the eigenvalues of the RKHS kernel often exhibit polyno-
mial decay λi ≍ i−α (Bietti & Mairal, 2019; Bietti & Bach,
2021; Li et al., 2024), which is an extensively studied set-
ting in the RKHS framework. Under a source condition of
smoothness s (which will be specified later in Section 3.1),
Caponnetto & De Vito (2007) establishs a minimax lower
bound of n− sα

sα+1 . For offline algorithms, KRR has been
shown to achieve optimality for 0 < s ≤ 2 (Caponnetto
& De Vito, 2007; Smale & Zhou, 2007; Steinwart et al.,
2009; Dicker et al., 2017; Blanchard & Mücke, 2018; Fis-
cher & Steinwart, 2020; Lin et al., 2020; Li et al., 2022;
Liu & Shi, 2024; Zhang et al., 2024a), but suffers from the
saturation effect when s > 2 (Neubauer, 1997; Bauer et al.,
2007; Dicker et al., 2017; Cui et al., 2021; Li et al., 2023).
Gradient descent (GD) with early stopping has been shown
to achieve the minimax optimal rate for all s > 0 (Yao
et al., 2007; Raskutti et al., 2014; Lin et al., 2020). Several
studies have also revealed connections between the optimal
stopping time in early-stopped GD and the regularization
in KRR (Ali et al., 2019; Sonthalia et al., 2024). Velikanov
et al. (2024) further demonstrates that spectral algorithms
with finite qualification τ experience saturation and fail to
achieve optimality for s > 2τ , with only GF with early
stopping able to achieve optimality (Raskutti et al., 2014).
For online algorithms, Dieuleveut & Bach (2016) shows
that single-pass SGD with constant step size and averaged
iterates can achieve optimality for α−1

α < s ≤ 2.

In the high-dimensional setting, where n ≍ dγ , for γ > 0,
the eigenvalues of the RKHS kernel decay at a rate that
is not polynomial depending on d, leading to the ineffec-
tiveness of asymptotic analysis. Recently, several works
have investigated the excess risk of offline algorithms in this
setting. It has been proven that KRR and kernel gradient
flow are capable of achieving convergent excess risk for
certain regression functions (Advani et al., 2020; Bordelon
et al., 2020; Ghorbani et al., 2021; Donhauser et al., 2021;
Xiao et al., 2022; Misiakiewicz, 2022; Tsigler & Bartlett,
2023). Kernel interpolation is shown to exhibit the benign
overfitting phenomenon, which allows generalization under
certain values of γ and s (Liang & Rakhlin, 2020; Liang
et al., 2020; Bartlett et al., 2020; Barzilai & Shamir, 2024;
Zhang et al., 2025). Both the excess risk and minimax
rate have been shown to exhibit periodic plateau behavior
and multiple descent behaviors in the high-dimensional set-
ting (Bordelon et al., 2020; Ghorbani et al., 2021; Xiao
et al., 2022; Lu et al., 2023; Zhang et al., 2024b). For the
minimax optimality analysis in high-dimensional settings,
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KRR has been demonstrated to roughly achieve optimality
for s ≤ 1 and γ > 3s

2(s+1) , while experiencing saturation
effects in the remaining range (Zhang et al., 2024b). Lu
et al. (2024b) further demonstrates that offline algorithms
with finite qualification τ experience saturation and fail to
achieve optimality for s > τ , with only gradient flow with
early stopping able to achieve optimality for all s > 0 and
γ > 0. However, in high-dimensional settings, the excess
risk curve and optimality analysis for online algorithms
remain an open area of research.

SGD over Linear Model. SGD in linear regression
has been extensively studied. When the RKHS is finite-
dimensional, it has been shown that single-pass SGD, with
either an exponentially decaying step size or a constant step
size with averaged iterates, achieves the minimax optimal
rate O

(
d
n

)
(Bach & Moulines, 2013; Jain et al., 2018; Ge

et al., 2019). In overparameterized linear regression, single-
pass SGD exhibits a benign overfitting behavior (Zou et al.,
2021a;b; Wu et al., 2022), with Zou et al. (2021b) and Wu
et al. (2022) establishing excess risk bounds for SGD under
both constant step sizes with iterate averaging and exponen-
tially decaying step size schedules. These results crucially
rely on a fourth-moment condition on the covariates to en-
sure sufficient concentration, in addition to depending on
the spectral properties of the covariates and the target pa-
rameters. Under the source condition with s and polynomial
eigenvalue decay of the covariance matrix λi ≍ i−α, Zhang
et al. (2024c) showed that SGD with an exponentially de-
caying step size can attain the minimax optimal rate for all
s ≥ α−1

α . For general kernel regression problems, under
the source condition with s and the spectrum of the kernel
operator that decays polynomially λi ≍ i−α, Dieuleveut
& Bach (2016); Dieuleveut et al. (2017) demonstrated that
SGD achieves optimal performance when α−1

α ≤ s ≤ 2,
while failing to reach optimality and encountering satura-
tion for s > 2. In the low-regularity regime s < α−1

α ,
single-pass SGD is limited by its optimization capacity and
cannot reach optimality; in such cases, momentum accelera-
tion (Zhang et al., 2024c; Dieuleveut et al., 2017) or multiple
passes over the data (Lin & Rosasco, 2017; Pillaud-Vivien
et al., 2018) are required.

3. Preliminaries
Notations. In this paper, we consider the input space
X ⊆ Rd+1 and the output space Y ⊆ R, with a prob-
ability distribution ρ on X × Y . Let ρX denote the
marginal probability distribution on X , ρy|x the condi-
tional distribution of y given x. ∥·∥L2 denotes the norm
∥f∥2L2 =

∫
X |f (x)|2 dρX (x) where L2 represents the L2-

space L2 (X , ρX ). Denote Sd as the unit sphere in Rd+1.
In a Hilbert space H, when A and B are self-adjoint oper-
ators, the symbol A ⪯ B denotes a positive semi-definite

relationship, that is: for any f ∈ H, ⟨f,Af⟩H ≤ ⟨f,Bf⟩H.
For any f, g ∈ H, define the operator f ⊗ g : H → H by
f ⊗ g (h) = ⟨f, h⟩H g.

3.1. Regression in RKHS

We consider the regression problem of minimizing the pre-
diction error for a function f ∈ L2, defined as

Eρ (f) = Eρ

[
(f (x)− y)

2
]
,

where the optimal predictor f∗
ρ (x) = Eρ [y|x] achieves the

minimal error. The prediction error of f can be equivalently
measured by the excess risk

∥∥f − f∗
ρ

∥∥2
L2 .

In this paper, we investigate regression problems within
the framework of the Reproducing Kernel Hilbert Space
(RKHS) (Berlinet & Thomas-Agnan, 2011). Let H denote
the RKHS associated with a continuous kernel K defined on
the input space X . The covariance operator T : L2 → H
associated with the kernel K and the marginal distribution
ρX is defined as:

T (f) (z) =

∫
X
f (x)K (x, z) dρX (x) .

By Mercer’s theorem (Aronszajn, 1950; Steinwart & Scovel,
2012),

T =

∞∑
i=1

λi ⟨·, ϕi⟩L2 ϕi,

K (x,y) =

∞∑
i=1

λiϕi (x)ϕi (y) ,

where {λi}∞i=1 are the eigenvalues of T in non-increasing
order, and {ϕi}∞i=1 are the corresponding eigenfunctions of
T which form an orthonormal basis of L2. Let Kx denote
the short hand of the function Kx = K(x, ·). If the em-
bedding operator T ∗ : H → L2 satisfies Ran(T ∗) ⊆ L2,
then Σ : H → H defined as Σ = E[Kx ⊗Kx] admits the
decomposition of

Σ =

∞∑
i=1

λi⟨·, λ1/2
i ϕi⟩Hλ

1/2
i ϕi,

with
{
λ

1
2
i ϕi

}∞

i=1
forming an orthonormal basis of H

(Dieuleveut & Bach, 2016).

To quantify the regularity of the optimal predictor f∗
ρ , we

introduce the interpolation space [H]
s. For any s ≥ 0, the

s-th power of T is defined as

T s (f) =

∞∑
i=1

λs
i ⟨f, ϕi⟩L2 ϕi.
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The interpolation space [H]
s is defined by

[H]
s
=

{ ∞∑
i=1

aiλ
s
2
i ϕi

∣∣ {ai}∞i=1 ∈ ℓ2

}
,

with the inner product ⟨f, g⟩[H]s =
〈
T− s

2 f, T− s
2 g
〉
L2 .

3.2. Dot-Product Kernels on the Sphere

A dot-product kernel K is defined as K(x,y) = Φ (⟨x,y⟩),
for any x,y ∈ Sd, where Φ ∈ C∞ [−1, 1] is a fixed func-
tion independent of d. The Mercer’s decomposition for
K (Gallier, 2009) can be written as

K(x,y) =
∑
k=0

µk

N(d,k)∑
j=1

Yk,j(x)Yk,j(y),

where {Yk,j}N(d,k)
j=1 are spherical harmonic polynomials of

degree k and µ′
ks are the eigenvalues of K with multiplicity

N(d, 0) = 1, N(d, k) = 2k+d−1
k · (k+d−2)!

(d−1)!(k−1)! , for k ≥ 1.

The smoothness of Φ ∈ C∞ [−1, 1] and compactness of Sd
ensure that the dot-product kernel K is a bounded kernel.
For any dimension d, the dot-product kernel K exhibits the
following properties:

Property 1. There exists κ > 0, such that

• (a) The dot-product kernel K is bounded, that is
supx∈X K(x,x) ≤ κ2.

• (b) The trace of the covariance operator T is bounded,
that is, tr(T ) ≤ κ2.

• (c) The marginal probability distribution ρX satisfies
E [K(x,x)Kx ⊗Kx] ⪯ κ2Σ.

The NTK of a ReLU network with L layers with inputs on
Sd is a specific dot-product kernel (Jacot et al., 2018; Bietti
& Bach, 2021), which is defined as

KNTK (x,y) = κL
NTK (⟨x,y⟩) .

κL
NTK is defined recursively, starting with κ1

NTK(t) =
κ1(t) = t, and for 2 ≤ ℓ ≤ L,

κℓ(t) = κ1

(
κℓ−1(t)

)
,

κℓ
NTK(t) = κℓ−1

NTK(t)κ0

(
κℓ−1(t)

)
+ κℓ(t),

where κ0(t) = 1
π (π − arccos(t)) and κ1(t) =

1
π

(
t (π − arccos(t)) +

√
1− t2

)
. Let the Mercer decompo-

sition of KNTK be KNTK (x,y) =
∑∞

i=1 λiϕi (x)ϕi (y),
where {λi}∞i=1 are the eigenvalues of KNTK in non-
increasing order, and {ϕi}∞i=1 are the corresponding eigen-
functions. As demonstrated in Bietti & Bach (2021), when

n ≫ d, the decay rate of the eigenvalues of KNTK is given
by

λj ≍ j−
d+1
d , (1)

indicating that the eigenvalues of KNTK decay polynomi-
ally. This decay rate is consistent with the standard capacity
condition typically employed to assess the optimality of
algorithms in the RKHS framework (Caponnetto & De Vito,
2007; Steinwart et al., 2009).

4. Setup
4.1. SGD for Kernel Regression

Leveraging the properties of RKHS, for any function f ∈
L2, recall that the prediction error of f is expressed as

Eρ (f) = Eρ [y − f(x)]
2
.

We then employ stochastic gradient descent (SGD) to solve
the kernel regression problem. Starting from an initial func-
tion f0, the SGD updates are performed recursively as fol-
lows:

ft = ft−1 − ηt (ft−1(xt)− yt)Kxt
.

At the t-th iteration, we observe a fresh data (xt, yt) from
ρ, and ηt denotes the step size. Assuming the initialization
starts from f ≡ 0, ft can be expressed as:

ft =

t∑
j=1

ajKxj
,

where (aj)1≤j≤t is given by the following iteration, starting
from a0 = 0:

at = −ηt

t−1∑
j=1

ajK (xj ,xt)− yt

 .

When the kernel is chosen as the NTK, the dynamics of
SGD for kernel regression exactly coincide with the training
process of an infinitely wide neural network under gradient
descent (Jacot et al., 2018). For finite-width networks, this
correspondence holds approximately in the early training
phase (Chizat et al., 2019). In this paper, we investigate two
types of step size schedules: an exponentially decaying step
size schedule (Bengio, 2009; Ge et al., 2019) and a constant
step size with averaged iterates (Polyak & Juditsky, 1992;
Dieuleveut & Bach, 2016).

• Exponentially Decaying Step Size Schedule. Given a
total of n iterations, the step size is piecewise constant
and decays by a factor after each stage, as defined by

ηt =
η0
2ℓ−1

, if m(ℓ− 1) + 1 ≤ t ≤ mℓ, (2)

for 1 ≤ ℓ ≤ ⌈log2n⌉, where ⌈log2n⌉ is the total num-
ber of stages, and m = ⌈ n

log2n
⌉. The final iterate

fdec
n = fn is considered the output.
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• Constant Step Size with Averaged Iterates. In
this schedule, the step size remains constant, and
the output is given by the average of the n iterates:
favg
n = 1

n

∑n−1
t=0 ft.

4.2. Assumptions

4.2.1. DATA NOISE ASSUMPTION

Denote Ξ(x,y) =
(
y − f∗

ρ (x)
)
Kx as the residual of (x, y),

where y−f∗
ρ (x) can be regarded as the noise of data. To con-

trol the interaction between bias and variance in the RKHS,
we assume the residual’s covariance structure satisfies the
following assumption.

Assumption 4.1. There exists σ > 0 such that the
residual Ξ(x,y) satisfies E

[
Ξ(x,y) ⊗ Ξ(x,y)

]
⪯ σ2Σ and

E[Ξ(x,y)] = 0.

Remark 4.2. This assumption holds when the data is
bounded or y − f∗

ρ (x) is sub-Gaussian conditioned on x. It
does not require E[Ξ|x] = 0, thus encompassing a broader
class of problems. This assumption is also adopted by sev-
eral works (Bach & Moulines, 2013; Dieuleveut & Bach,
2016; Dieuleveut et al., 2017).

4.2.2. SOURCE CONDITION

The source condition assumes that the optimal predictor f∗
ρ

lies within a bounded ball in [H]
s.

Assumption 4.3. For a given s > 0, we assume that f∗
ρ

belongs to the unit ball in [H]
s, that is,∥∥f∗

ρ

∥∥
[H]s

≤ 1.

Remark 4.4. The source condition serves as a criterion for
evaluating optimality in the RKHS framework. It charac-
terizes the smoothness of f∗

ρ : a larger s implies a faster
decay of the Fourier coefficients of f∗

ρ in L2, indicating
higher smoothness and an intrinsically simpler learning
problem. This condition further categorizes the problem
settings: 0 < s < 1 is called the misspecified problem, and
s ≥ 1 is called the well-specified problem.

4.2.3. ASSUMPTION ON THE DOT-PRODUCT KERNEL

For the high-dimensional settings, where c1d
γ < n < c2d

γ

for some fixed γ > 0 and absolute constants c1, c2, we
adopt the assumption for Φ as stated in Lu et al. (2023).

Assumption 4.5. There exists a non-negative sequence of
absolute constants {aj}∞j=0, such that Φ (t) =

∑∞
j=0 ajt

j ,
where aj > 0 for any j ≤ ⌊γ⌋+ 3.

Remark 4.6. This assumption is made to maintain the clarity
of the main results and proofs, and it can be extended to the
NTK as discussed in Lu et al. (2023).

4.3. Minimax Lower Bound

The minimax lower bound serves as a fundamental criterion
for evaluating statistical optimality in learning algorithms.
An algorithm achieves minimax optimality if its worst-case
excess risk upper bound matches the corresponding mini-
max lower bound over a given function class. Formally, for
a family of distributions P and estimators f̂ trained on n
i.i.d. samples {(xi, yi)}ni=1, the minimax lower bound is
defined as:

inf
f̂

sup
ρ∈P

∥∥∥f̂ − f∗
ρ

∥∥∥2
2
,

characterizing the irreducible statistical error in the worst-
case distributional setting. The minimax lower bound for
some kernel methods has been extensively studied (Yang
& Barron, 1999; Caponnetto & De Vito, 2007; Lu et al.,
2023; 2024a). Below, we now present two key minimax
lower bounds under distinct scaling regimes. The first re-
sult, adapted from Lu et al. (2024a), addresses the high-
dimensional setting under source condition with s > 0.
Proposition 4.7 (Minimax Lower Bound in High-Dimen-
sional Settings). In high-dimensional settings, where n is
bounded by c1d

γ < n < c2d
γ for some fixed γ > 0 and

constants c1, c2, consider X = Sd. The marginal distribu-
tion ρX is assumed to be the uniform distribution on Sd.
Let K denote a dot-product kernel on the sphere, which
satisfies Assumption 4.5. Let P consist of all distributions
ρ on X × Y given by y = f∗

ρ (x) + ϵ, where ϵ ∼ N (0, 1)
is independent of x. Suppose Assumption 4.3 holds with
s > 0. Let p =

⌈
γ

s+1

⌉
− 1, then we have:

inf
f̂

sup
ρ∈P

Eρ

∥∥∥f̂ − f∗
ρ

∥∥∥2
L2

= Ω
(
d−min{γ−p,s(p+1)}

)
.

The second result pertains to the asymptotic setting n ≫ d,
leveraging the spectral properties of NTK for ReLU net-
works and the optimality analysis in Caponnetto & De Vito
(2007) :
Proposition 4.8 (Minimax Lower Bound in Asymptotic
Settings). In asymptotic settings, where n ≫ d, consider
X = Sd. The marginal distribution ρX is assumed to be the
uniform distribution on Sd. Let KNTK the NTK of a ReLU
network with L layers with inputs on Sd. Let P consist of
all distributions ρ on X ×Y given by y = f∗

ρ (x)+ ϵ, where
ϵ ∼ N (0, 1) is independent of x. Suppose Assumption 4.3
holds with s > 0. Then we have:

inf
f̂

sup
ρ∈P

Eρ

∥∥∥f̂ − f∗
ρ

∥∥∥2
L2

= Ω
(
n− s(d+1)

s(d+1)+d

)
.

5. Main Result
5.1. Convergence Rates in High-Dimensional Settings

We first present the convergence rates of the excess risk for
SGD in high-dimensional settings where n ≍ dγ . The-
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orem 5.1 shows that SGD with exponentially decaying
step size is efficient for well-specified problems, and Theo-
rem 5.2 shows that SGD with averaged iterates is efficient
for mis-specified problems.

Theorem 5.1 (Convergence Rate for Well-Specified Prob-
lems). In high-dimensional settings, where n is bounded
by c1d

γ < n < c2d
γ for some fixed γ > 0 and constants

c1, c2, consider X = Sd. The marginal distribution ρX is
assumed to be the uniform distribution on Sd. Let K denote
the dot-product kernel on Sd, which satisfies Assumption 4.5.
Given s ≥ 1, supposing that Assumption 4.3 holds with s,
and treating γ, σ, κ, c1, c2 and s as constants, the excess
risk of the output of SGD with exponentially decaying step
size fdec

n satisfies:

(i) When γ ∈ (ps + p, ps + p + s] for some p ∈ N, with
initial step size η0 = Θ(d−γ+p log2 n ln d), there exists a
constant d0 such that for any d ≥ d0, we have:

E
[
∥fdec

n − f∗
ρ ∥2L2

]
≲ d−γ+p log22 d.

(ii) When γ ∈ (ps + p + s, (p + 1)s + p + 1] for some
p ∈ N, with initial step size η0 = Θ(d−γ+p log2 n ln d),
there exists a constant d0 such that for any d ≥ d0, we
have:

E
[
∥fdec

n − f∗
ρ ∥2L2

]
≲ d−(p+1)s.

Compared to the minimax lower bound in Proposition 4.7,
Theorem 5.1 demonstrates that SGD with exponentially
decaying step size can achieve optimality for any γ > 0
and s ≥ 1. Notably, this theorem illustrates that SGD with
exponentially decaying step size does not suffer from the sat-
uration effect encountered by KRR when n ≍ dγ (Neubauer,
1997; Bauer et al., 2007). Specifically, when n ≍ dγ , Lu
et al. (2024b) shows that if Assumption 4.3 holds with s > 1,
the convergence rate of the excess risk for KRR can be
bounded from below by

E
(∥∥∥f̂KRR

λ∗
− f∗

ρ

∥∥∥2
L2

)
=ΘP

(
d−min{γ−p, γ−p+ps̃+1

2 ,s̃(p+1)}
)
· poly (ln(d)) ,

where s̃ = min {s, 2}, and no choice of the regularization
parameter λ = λ(d, n) leads to an improvement in the ex-
cess risk. This result suggests that when n ≍ dγ and s > 1,
there exists a region in which KRR fails to achieve optimal-
ity. Therefore, for high-dimensional problems, SGD with
an exponentially decaying step size matches or outperforms
KRR in well-specified problems.

Theorem 5.2 (Convergence Rate for Mis-Specified Prob-
lems). In high-dimensional settings, where n is bounded by
c1d

γ < n < c2d
γ for some fixed γ > 0 and constants c1, c2,

consider X = Sd. The marginal distribution ρX is assumed
to be the uniform distribution on Sd. Let K denote the dot-
product kernel on Sd, which satisfies Assumption 4.5. Given

0 < s < 1, supposing that Assumption 4.3 holds with s, and
treating γ, σ, κ, c1, c2 and s as constants, the excess risk of
the output of SGD with averaged iterates favg

n satisfies:

(i) When γ ∈ (ps+p, ps+p+s] for some p ∈ N, with initial
step size η0 = Θ(d−γ+p+ s

2 ) (p > 0) or η0 = Θ(d−
γ
2 )

(p = 0), there exists a constant d0 such that for any d ≥ d0,
we have:

E
[
∥favg

n − f∗
ρ ∥2L2

]
≲ d−γ+p.

(ii) When γ ∈ (ps + p + s, (p + 1)s + p + 1] for some
p ∈ N, with initial step size η0 = Θ(d−γ+p+ s

2 ), there exists
a constant d0 such that for any d ≥ d0, we have:

E
[
∥favg

n − f∗
ρ ∥2L2

]
≲ d−(p+1)s.

Compared to the minimax lower bound in Proposition 4.7,
Theorem 5.2 demonstrates that SGD with averaged iterates
can achieve optimality for any γ > 0 and 0 < s < 1. In
contrast, when 0 < s ≤ 1 and n ≍ dγ , Zhang et al. (2024a)
shows that KRR only achieves optimality if γ > 3s

2(s+1) .
This indicates that, for high-dimensional problems, SGD
has an advantage over KRR when dealing with mis-specified
problems.

5.2. Convergence Rates in Asymptotic Settings

In this section, we present the convergence rates of the
excess risk for SGD in asymptotic settings where n ≫ d.

Theorem 5.3 (Convergence Rate for Well-Specified Prob-
lems). In asymptotic settings, where n ≫ d, consider
X = Sd. The marginal distribution ρX is assumed to be the
uniform distribution on Sd. Let KNTK denote the NTK of a
ReLU network with L layers with inputs on Sd. For s ≥ 1,
supposing that Assumption 4.3 holds for s, with initial step

size η0 = Θ
(
n

1−s(d+1)
s(d+1)+d

)
, the excess risk of the output of

SGD with exponentially decaying step size fdec
n satisfies:

E
[
∥fdec

n − f∗
ρ ∥2L2

]
≲ logs2 n · n− s(d+1)

s(d+1)+d .

Compared to the minimax lower bound in Proposition 4.8,
Theorem 5.3 demonstrates that SGD with exponentially
decaying step size can achieve optimality for any s > 1.
This further indicates that in asymptotic settings, SGD with
exponentially decaying step size does not encounter the
saturation effect. In contrast, Cui et al. (2021) and Li et al.
(2023) show that if Assumption 4.3 holds with s > 2, the
convergence rate of the excess risk for KRR is bounded
from below by:

E
(∥∥∥f̂KRR

λ∗
− f∗

ρ

∥∥∥2
L2

)
= ΘP

(
n− 2d+2

3d+2

)
,

This result suggests that for s > 2, KRR becomes subopti-
mal. Consequently, we argue that SGD with exponentially

6
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decaying step size is more effective for problems where f∗
ρ

is sufficiently smooth.
Theorem 5.4 (Convergence Rate for Mis-Specified Prob-
lems). In asymptotic settings, where n ≫ d, consider
X = Sd. The marginal distribution ρX is assumed to be
the uniform distribution on Sd. Let KNTK denote the NTK
of a ReLU network with L layers with inputs on Sd. For
1

d+1 ≤ s ≤ 1, supposing that Assumption 4.3 holds for s,

with initial step size η0 = Θ
(
n

1−s(d+1)
s(d+1)+d

)
, the excess risk of

the output of SGD with averaged iterates favg
n satisfies:

E
[
∥favg

n − f∗
ρ ∥2L2

]
≲ n− s(d+1)

s(d+1)+d .

Compared to the minimax lower bound in Proposition 4.8,
Theorem 5.4 demonstrates that SGD with averaged iterates
can achieve optimality for 1

d+1 ≤ s ≤ 1. Unfortunately,
in asymptotic settings, SGD with averaged iterates cannot
achieve optimality for all mis-specified problems. This is
because, in the asymptotic regime, the eigenvalues of the
NTK exhibit polynomial decay, making optimization more
challenging for f∗

ρ in mis-specified problems. Due to the
limitations in SGD’s optimization capabilities, optimality
can only be achieved within the range s ≥ 1

d+1 . To achieve
optimality over a broader range of problems, the introduc-
tion of other techniques such as momentum (Dieuleveut
et al., 2017) or multi-pass strategies (Pillaud-Vivien et al.,
2018) is necessary. The differences in generalization perfor-
mance of SGD in high-dimensional and asymptotic settings
highlight the role of overparameterization.

We provide a graphical illustration of Theorem 5.1 and
Theorem 5.2 and a summary table of the optimality regions
of SGD, KRR, and GD with early stopping in Appendix F.

6. Discussion
6.1. SGD is Efficient for Well-Specified Problems

As demonstrated in Section 5.1, SGD with exponentially
decaying step size achieves optimality for all well-specified
problems in both high-dimensional and asymptotic settings.
This indicates that SGD with exponentially decaying step
size is not subject to the saturation effect encountered by
offline algorithms such as KRR. The saturation effect refers
to a situation where the algorithm fails to reach optimal-
ity when f∗

ρ is sufficiently smooth(Neubauer, 1997; Bauer
et al., 2007; Dicker et al., 2017; Cui et al., 2021; Li et al.,
2023). Specifically, this occurs when source condition holds
with a large value of s, the algorithm results in suboptimal
performance. For instance, KRR is suboptimal for s > 1 in
high-dimensional settings (Zhang et al., 2024b) and s > 2
in asymptotic settings Li et al. (2023).

The theoretical efficiency of SGD with exponentially de-
caying step size for well-specified problems arises from the

implicit regularization effect induced by the exponentially
decaying step size. For well-specified problems, the excess
risk of SGD with exponentially decaying step size can be
approximated as the sum of the bias and variance terms in
the population, which are

Bias ≈

∥∥∥∥∥
(

n∏
i=1

(I − ηiΣ)

)
Σ

1
2 (f0 − f∗

ρ )

∥∥∥∥∥
2

H

,

Var ≈ σ2
n∑

i=1

η2i tr

 n∏
j=i+1

(I − ηjΣ)2

Σ2

 .

In the first phase, a constant step size induces exponential
shrinkage of the coefficients along the top eigendirections
with large eigenvalues. The subsequent decaying step sizes
reduce the variance and ensure that the bias does not increase
further. Since the coefficients of f∗

ρ along the eigendirec-
tions in the well-specified setting exhibit a decaying trend
with respect to the eigenvalues, SGD implicitly balances
the remaining bias and the resulting variance, enabling it to
achieve optimality. In contrast, the explicit regularization
added in offline algorithms cannot eliminate the impact of
the coefficients corresponding to the large eigenvalues on
the bias. As a result, these algorithms fail to achieve op-
timality when f∗

ρ is sufficiently smooth. Velikanov et al.
(2024) and Lu et al. (2024b) further analyze the offline
algorithms constructed using certain analytic filter func-
tions, which are characterized by a qualification τ ≥ 1. For
high-dimensional settings, the saturation effect of offline
algorithms arises when s ≥ τ . For asymptotic settings, the
saturation effect arises when s ≥ 2τ . KRR corresponds to
the case where τ = 1 and offline algorithms do not exhibit
saturation effects only when τ = ∞, which corresponds to
the kernel gradient flow with early stopping. Consequently,
when dealing with problems where f∗

ρ is relatively smooth,
SGD outperforms most offline algorithms.

It is worth noting that the implicit regularization effect of
SGD allows the excess risk convergence analysis to depend
solely on the boundedness of the kernel. This contrasts
with offline algorithms, which typically require matrix con-
centration results specific to the kernels in use. In fact, as
demonstrated in Proposition B.11 in the appendix, we estab-
lish a general convergence rate for the excess risk of SGD
with exponentially decaying step sizes, which applies to
any bounded kernel. It is straightforward to verify that for
any RKHS associated with a bounded kernel whose eigen-
values exhibit polynomial decay, SGD with exponentially
decaying step size can achieve optimal performance for
well-specified problems. Given this implicit regularization
effect exhibited by SGD in well-specified problems, it is
reasonable to expect that SGD will also perform effectively
when f∗

ρ is a smooth function in a Sobolev space. As dis-
cussed in Steinwart & Scovel (2012); Fischer & Steinwart

7
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(a) d = n1.5, s = 1 (b) d = n2, s = 0.5 (c) d = n2, s = 2

Figure 1. Log excess risk decay curves of SGD with the two schedules. The blue curves represent SGD with exponentially decaying step
size schedule, and the red curves represent SGD with constant step size and averaged iterates.

(2020), consider RKHS H as the Sobolev space Hr(X ) of
order r > d

2 where X ⊆ Rd is a bounded domain with
a smooth boundary. The integral operator of the associ-
ated kernel admits eigenvalues that polynomially decay as
λi ≍ i−

2r
d (Stone, 1982). Under such spectral decay, SGD

is expected to attain the optimal rate n− 2r
2r+d . Moreover,

it holds that [H]
s ∼= Hrs(X ). Given this equivalence, we

expect SGD to exhibit similar regularization benefits for
Sobolev smooth functions.

6.2. Comparison of Two Types of SGD

Iterate averaging is effective for mis-specified problems.
We primarily use SGD with averaged iterates for mis-
specified problems because we only have Property 1. (c) of
the kernel. When analyzing the error of the SGD algorithm
using the common bias-variance decomposition, it is essen-
tial to estimate the residuals between the actual bias f b

t and
the population-level bias f̃ b

t , where

f b
t = (I− ηtKxt

⊗Kxt
) f b

t−1, f
b
0 = f∗

ρ ,

f̃ b
t = (I− ηtΣ) f̃ b

t−1, f̃
b
0 = f∗

ρ .

For mis-specified problems, when only Property 1 holds,

the error for the residual
∥∥∥f̃ b

t − f b
t

∥∥∥2
2

may not converge.
Fortunately, the following property from Bach & Moulines
(2013) supports the convergence of the residuals when using
constant step size and averaged iterates.

Proposition 6.1. Let gt = f̃ b
t − f b

t , rt =
(Kxt

⊗Kxt
−Σ) gt−1, the following inequality holds:

E ∥gt−1∥2H ≤ 1

2η(1− ηκ2)

(
E ∥gt−1∥2L2 − E ∥gt∥2L2

+2η2E ∥rt∥2L2

)
,

which implies that E ∥ḡn∥2H ≤ 1
1−ηκ2

η
κE
[∑n

i=1 ∥ri∥
2
L2

]
.

For the bound of ∥ri∥2L2 , we only require that
∥∥f∗

ρ

∥∥2
L2 < ∞,

which holds for mis-specified problems. This condition en-
ables us to derive the excess risk convergence analysis for
SGD in mis-specified problems. Furthermore, when the
kernel has additional properties, such as a bounded kurto-
sis for the projection of Kx onto any function f , that is,
E ⟨f,Kx⟩4 ≤ κ ∥f∥2H, we can demonstrate that SGD with
exponentially decaying step size achieves the same effec-
tiveness in handling mis-specified problems as SGD with
averaged iterates.

Iterate averaging suffers from the saturation effect. SGD
with averaged iterates can handle mis-specified problems
under Property 1. However, it faces the saturation effect
when f∗

ρ is relatively smooth. We prove that the excess risk
of SGD with constant step size and averaged iterates can be
bounded from below by

1

n2ηs0
max
i∈N+

{
(1− (1− λiη0)

n)2(λiη0)
s−2
}∥∥∥Σ 1−s

2 f∗
ρ

∥∥∥2
H

+ σ2

(
1

16

k∗

n
+

1

64

+∞∑
i=k∗+1

nη20λ
2
i

)
,

where k∗ = max
{
k : λk ≥ (η0n)

−1
}

often referred to as
the effective dimension. This implies that the optimization
ability of SGD with averaged iterates with respect to the bias
is inherently limited by 1

n2ηs
0

. When s is large, optimality
cannot be achieved. As demonstrated in the Appendix E, we
show that in high-dimensional settings, when s > 1, there
exists a region where SGD with averaged iterates cannot
achieve optimality. Furthermore, in asymptotic settings,
SGD with averaged iterates fails to achieve optimality for
any s > 2. This demonstrates that SGD with exponentially
decaying step size has an advantage over SGD with averaged
iterates when f∗

ρ is relatively smooth.
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7. Simulations
In this section, we show our experiments with the NTK
kernel κ1

NTK, which shows that the convergence rate of SGD
matches our theoretical result.

The data is generated as follows with a fixed f∗
ρ :

yi = f∗
ρ (xi) + ϵi, i = 1, . . . , n,

where xi is i.i.d. sampled from the uniform distribution on
sphere Sd, and ϵi

i.i.d∼ N (0, 1).

In experiment with s = 1, we generate the regression func-
tion by:

f∗
ρ (x) = K(x,u1) +K(x,u2) +K(x,u3),

where each ui (i = 1, 2, 3) is i.i.d. sampled from the uni-
form distribution on sphere Sd.

In experiment with s ̸= 1, we retain the settings
above but replace the regression function with f∗

ρ (x) =

µ
s
2
2 N(d, 2)−

1
2P2(u,x), where P2(x) = dx2−1

d−1 is the
Gegenbauer polynomial, and u is i.i.d. sampled from the
uniform distribution on sphere Sd.

We conduct these experiments to simulate our results under
different high-dimensional settings n ≍ dγ : (1) γ = 1.5,
s = 1, n from 1000 to 2000, with intervals 200, d = n

2
3 ;

(2) γ = 2, s = 0.5, n from 1000 to 2000, with intervals
200, d = n

1
2 ; (3) γ = 1.5, s = 2, n from 1000 to 2000,

with intervals 200, d = n
1
2 .

We numerically approximate the excess risk by the empirical
excess risk on 1000 i.i.d. sampled data from the uniform
distribution on the sphere Sd. As shown in Figure 1, the
results support our theoretical findings and indicate that
SGD with an exponentially decaying step size does not
suffer from the saturation effect.
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A. Basic Properties of the Dot-Product Kernel K
Recall our notation defined in Section 3.1 and 3.2. This section provides some basic properties of the dot-product kernel K.

A.1. Proof of Property 1

Proof. (a) By the boundedness property of continuous functions, and given that Φ ∈ C∞[−1, 1], we obtain that there exists
a constant κ > 0 such that

sup
x∈[0,1]

Φ(x) < κ2.

Since K (x,x) = Φ (⟨x,x⟩) and ⟨x,x⟩ ≤ 1 for any x ∈ X , we obtain that

sup
x∈X

K(x,x) ≤ κ2. (3)

(b) By the definition of T , we have

tr(T ) =

∞∑
i=1

⟨ϕi, Tϕi⟩L2 =

∞∑
i=1

E
(
λ
1/2
i ϕi(X)

)2 (i)
=

∞∑
i=1

E
〈
KX , λ

1/2
i ϕi

〉2
H

(ii)
= E ⟨KX ,KX⟩H

(iii)
= EK(X,X) ≤ κ2,

where (i) and (iii) follow the reproducing property, and (ii) follows from Parseval’s identity.

(c) From (a) and E [Kx ⊗Kx] = Σ, we obtain that

E [K (x,x)Kx ⊗Kx] ⪯ κ2E [Kx ⊗Kx] = κ2Σ.

A.2. Covariance Operator T

In this section, we prove that T |H = Σ. Based on this, we can express ∥f∥2L2 by ⟨f,Σf⟩H for any f ∈ H in subsequent
sections.
Lemma A.1. The Reproducing Kernel Hilbert Space H is a subspace of L2.

Proof. From Property 1(a), and given that ∥f∥H < +∞ for any f ∈ H, we have

E
[
f(x)2

] (i)
= E[⟨f,Kx⟩2H]

(ii)

≤ E[K(x,x)∥f∥2H]
(iii)

≤ κ2∥f∥2H < +∞,

where (i) follows from the reproducing property, (ii) from the Cauchy–Schwarz inequality, and (iii) from Property 1(a),
along with ∥f∥H < +∞. This implies that H is a subspace of L2.

Lemma A.2. The restriction of the covariance operator T to H coincides with Σ.

Proof. Recall that (f ⊗ g)h = ⟨f, h⟩Hg.

Thus for any function f ∈ H and any z ∈ X , we have

E [K (x, z) f (x)] = E [⟨Kx, f⟩H Kx (z)] = E [(Kx ⊗Kx)f(z)] = (Σf) (z),

where in the first equality, we use the reproducing property of H.

This equation can be equivalently expressed as

(Σf) (z) =

∫
X
f (x)K (x, z) dρX (x) ,

whose form is the same as the definition of T .

That is to say, the restriction of T to H coincides with Σ.

12
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A.3. Eigenvalue Decay Rate of the Dot-Product Kernel K

We borrowed the following lemma from Ghorbani et al. (2021) and Lu et al. (2023):

Lemma A.3. Suppose n ≍ dγ Assumption 4.5 holds. Suppose p > 0 is any fixed integer. There exist C,C1, C2, C3, C4 > 0
that depend on p, such that for any d > C, we have

C1d
−k ≤ µk ≤ C2d

−k, k = 0, 1, . . . , p+ 1;

C3d
k ≤ N(d, k) ≤ C4d

k, k = 0, 1, . . . , p+ 1.

B. General Bound for SGD with Exponentially Decaying Step Sizes in Well-Specified Problems
B.1. Bias-Variance Decomposition

Our goal is to minimize the prediction error

Eρ(f) = Eρ[(y − f(x))2] (4)

using the stochastic gradient oracles. Minimizing the prediction error in (4) is equivalent to minimizing the excess risk,
given by

E(f)− E(f∗
ρ ) =

∥∥f − f∗
ρ

∥∥2
L2 ,

where f∗
ρ (x) = Eρ [y|x] denotes the optimal predictor in L2. For well-specified problems, the source condition 4.3 assumes

that f∗
ρ ∈ [H]

s for s ≥ 1, which implies f∗
ρ ∈ H. By Lemma A.2, the excess risk can be equivalently expressed as

E
[∥∥f − f∗

ρ

∥∥2
L2

]
= E

[〈
f − f∗

ρ ,Σ(f − f∗
ρ )
〉
H

]
.

The iterative update of SGD is given by

ft = ft−1 + ηt(yt − ft−1(xt))Kxt
, f0 = 0,

where ηt ∈ R is the step size at iteration t, and (xt, yt) is a fresh data from ρ.

We write the update rule of ft − f∗
ρ in the recursive form:

ft − f∗
ρ = (I − ηtKxt

⊗Kxt
)(ft−1 − f∗

ρ ) + ηtΞt,

where Ξt = (yt − f∗
ρ (xt))Kxt

represents the residual (xt, y).

We first apply the commonly used bias-variance decomposition, expressing ft − f∗
ρ as ft − f∗

ρ = f b
t + fv

t . f b
t stands for the

bias term, which demonstrates the decline of the initial error, and fv
t stands for the variance term, capturing the influence of

the noise. Their recursive updates are given by:

f b
t = (I − ηtKxt

⊗Kxt
)f b

t−1, f b
0 = f0 − f∗

ρ . (5)

fv
t = (I − ηtKxt ⊗Kxt)f

v
t−1 + ηtΞt, fv

0 = 0. (6)

Consequently, the excess risk admits a decomposition as stated in Lemma B.1.

Lemma B.1 (Bias-Variance Decomposition). For any iteration t, we have

E
[〈
ft − f∗

ρ ,Σ(ft − f∗
ρ )
〉
H

]
≤ 2

(
E
[〈
f b
t ,Σf b

t

〉
H

]
+ E [⟨fv

t ,Σfv
t ⟩H]

)
.

Proof. By Lemma A.2, we have〈
f b
t + fv

t ,Σ
(
f b
t + fv

t

)〉
H =

∥∥f b
t + fv

t

∥∥2
L2 ,

〈
f b
t ,Σf b

t

〉
H =

∥∥f b
t

∥∥2
L2 , ⟨fv

t ,Σfv
t ⟩H = ∥fv

t ∥
2
L2 .

13
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By Minkowski’s Inequality, we have

∥∥f b
t + fv

t

∥∥2
L2 ≤

((∥∥f b
t

∥∥2
L2

) 1
2

+
(
∥fv

t ∥
2
L2

) 1
2

)2

≤ 2
(∥∥f b

t

∥∥2
L2 + ∥fv

t ∥
2
L2

)
.

Consequently, by the decomposition ft − f∗
ρ , it follows that

E
[〈
ft − f∗

ρ ,Σ(ft − f∗
ρ )
]〉

H = E
[〈
fv
t + f b

t ,Σ(f b
t + fv

t )
〉
H

]
≤ 2

(
E
[〈
f b
t ,Σf b

t

〉
H

]
+ E [⟨fv

t ,Σfv
t ⟩H]

)
.

Then we can bound the excess risk by bounding E
[〈
f b
t ,Σf b

t

〉
H

]
and E [⟨fv

t ,Σfv
t ⟩H], respectively.

Our second effort to isolate the stochastic effect is analyzing the concentration effect of the data-dependent operator
Kxt ⊗Kxt to its population counterpart Σ.

We decompose the bias f b
t into two terms: f̃ b

t + f
b(1)
t where f̃ b

t describes the expected behavior and is recursively defined as

f̃ b
t = (I − ηtΣ)f̃ b

t−1, f̃ b
0 = f0 − f∗

ρ ;

f
b(1)
t quantifies the deviation of empirical fluctuations from f̃ b

t . Its recursive form follows as

f
b(1)
t = f b

t − f̃ b
t

= (I − ηtKxt
⊗Kxt

)f b
t−1 − (I − ηtΣ)f̃ b

t−1

= (I − ηtKxt ⊗Kxt)f
b
t−1 − (I − ηtΣ)

(
f b
t−1 − f

b(1)
t−1

)
= (I − ηtΣ)f

b(1)
t−1 + ηt(Σ−Kxt

⊗Kxt
)f b

t−1.

Summarizing, we have
f
b(1)
t = (I − ηtΣ)f

b(1)
t−1 + ηt(Σ−Kxt

⊗Kxt
)f b

t−1, f
b(1)
0 = 0. (7)

Similarly, we split the variance fv
t into two components: fv

t = f̃v
t + f

v(1)
t , where f̃v

t captures the expected variance
dynamics and is recursively defined as:

f̃v
t = (I − ηtΣ)f̃v

t−1 + ηtΞt, f̃v
0 = 0.

Meanwhile, fv(1)
t accounts for deviations of empirical fluctuations from f̃v

t , following the recursion

f
v(1)
t = (I − ηtΣ)f

v(1)
t−1 + ηt(Σ−Kxt

⊗Kxt
)fv

t−1, f
v(1)
0 = 0. (8)

To bound E
[〈
f b
t ,Σf b

t

〉
H

]
and E [⟨fv

t ,Σfv
t ⟩H], we have the following lemma:

Lemma B.2. For any iteration t, we have

E
[〈
f b
t ,Σf b

t

〉
H

]
≤ 2

(〈
f̃ b
t ,Σf̃ b

t

〉
H
+ E

[〈
f
b(1)
t ,Σf

b(1)
t

〉
H

])
,

E [⟨fv
t ,Σfv

t ⟩H] ≤ 2
(
E
[〈

f̃v
t ,Σf̃v

t

〉
H

]
+ E

[〈
f
v(1)
t ,Σf

v(1)
t

〉
H

])
.

We omit the proof of the lemma since it follows a similar argument to that of Lemma B.1.

Therefore, we have

E
[∥∥ft − f∗

ρ

∥∥2
L2

]
≤ 4

(〈
f̃ b
t ,Σf̃ b

t

〉
H
+ E

[〈
f
b(1)
t ,Σf

b(1)
t

〉
H

]
+ E

[〈
f̃v
t ,Σf̃v

t

〉
H

]
+ E

[〈
f
v(1)
t ,Σf

v(1)
t

〉
H

])
.

Therefore, we only need to bind these four terms individually at the final iteration t = n.
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B.2. Analysis of SGD with Exponentially Decaying Step Size Schedule

In this section, we demonstrate the analysis of SGD with exponentially decaying step size schedule. The exponentially
decaying step size schedule takes the form

ηt =
η0
2ℓ−1

, if m(ℓ− 1) + 1 ≤ t ≤ mℓ, where m =

⌈
n

log2n

⌉
and 1 ≤ ℓ ≤ ⌈log2n⌉. (9)

B.2.1. POPULATION UPPER BOUND

In this section, we provide the upper bounds for
〈
f̃ b
n,Σf̃ b

n

〉
H

and E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
.

By unrolling the recursive definitions of f̃ b
n and f̃v

n ,we obtain the following expressions:

f̃ b
n =

(
n∏

i=1

(I − ηiΣ)

)
(f0 − f∗

ρ );

f̃v
n =

n∑
i=1

ηi

 n∏
j=i+1

(I − ηjΣ)

Ξi.

The following lemma gives the upper bound of
〈
f̃ b
n,Σf̃ b

n

〉
H

.

Lemma B.3. Consider SGD with exponentially decaying step size schedule defined in (9). Suppose that η0 ≤ 1
λ1

. Then we
have 〈

f̃ b
n,Σf̃ b

n

〉
H

≤
( s

4e

)s( log2 n

nη0

)s ∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H
.

Proof. By the definition of f̃ b
n, we have〈

f̃ b
n,Σf̃ b

n

〉
H

=

〈(
n∏

i=1

(I − ηiΣ)

)
(f0 − f∗

ρ ),Σ

(
n∏

i=1

(I − ηiΣ)

)
(f0 − f∗

ρ )

〉
H

=

∥∥∥∥∥Σ 1
2

(
n∏

i=1

(I − ηiΣ)

)
(f0 − f∗

ρ )

∥∥∥∥∥
2

H

.

(10)

Since η0 ≤ 1
λ1

and ηi ≤ η0, it follows that 0 ⪯ I − ηiΣ ⪯ I . Moreover, for any i and j, the operators I − ηiΣ, I − ηjΣ
and Σ are positive semidefinite, self-adjoint operators and mutually commuting operators. As a result, the following operator
inequality holds:(

n∏
i=1

(I − ηiΣ)

)
Σ

(
n∏

i=1

(I − ηiΣ)

)
⪯

(
m∏
i=1

(I − η0Σ)

)
Σ

(
m∏
i=1

(I − η0Σ)

)
⪯ (I − η0Σ)mΣ(I − η0Σ)m. (11)

Substituting (11) into (10), we have〈
f̃ b
n,Σf̃ b

n

〉
H

≤
∥∥∥Σ 1

2 (I − η0Σ)m(f0 − f∗
ρ )
∥∥∥2
H

≤ 1

ηs0

∥∥(I − η0Σ)m(η0Σ)
s
2

∥∥2 ∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H
,

(12)

where the second inequality uses the operator norm bound ∥T f∥H ≤ ∥T ∥∥f∥H.

To bound the operator norm
∥∥(I − η0Σ)m(η0Σ)

s
2

∥∥, we use the inequality

sup
0≤x≤1

(1− x)mx
s
2 ≤ sup

0≤x≤1
exp(−mx)x

s
2 ≤

( s

2em

) s
2

,

15
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which leads to the bound〈
f̃ b
n,Σf̃ b

n

〉
H

≤
( s

2e

)s( 1

mη0

)s ∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H

≤
( s

4e

)s( log2 n

nη0

)s ∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H
.

The following lemma gives the upper bound of E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
.

Lemma B.4. Consider SGD with exponentially decaying step size schedule defined in (9). Suppose that η0 ≤ 1
λ1

. Then, for
any integer k∗ ≥ 1, the following bound holds:

E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
≤ σ2

((
16 log22 n

e2
+

η20
16 log2 n

)
k∗

n
+

+∞∑
k=k∗+1

nη20λ
2
k

)
.

Proof. Notice that for any 1 ≤ i ̸= j ≤ n, Ξi and Ξj are independent. Moreover, under Assumption 4.1, we have
E [Ξi] = 0. Therefore

E [Ξi ⊗ Ξj ] = E [Ξi]⊗ E [Ξj ] = 0.

Consequently, we obtain the following expression for E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
:

E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
= E

〈 n∑
i=1

ηi

 n∏
j=i+1

(I − ηjΣ)

Ξi,Σ

n∑
i=1

ηi

 n∏
j=i+1

(I − ηjΣ)

Ξi

〉
H


=

n∑
i=0

η2i E

tr
 n∏

j=i+1

(I − ηjΣ)2

ΣΞi ⊗ Ξi


=

n∑
i=0

η2i tr

 n∏
j=i+1

(I − ηjΣ)2

ΣE [Ξi ⊗ Ξi]

 ,

(13)

where the second equality follows from the mutual independence and orthogonality of each Ξi, and from the commutativity
of the self-adjoint operators I − ηjΣ.

Under Assumption 4.1 we have E [Ξi ⊗ Ξi] ⪯ σ2Σ, for any 1 ≤ i ≤ n. Therefore, we obtain

E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
≤ σ2

n∑
i=1

η2i tr

 n∏
j=i+1

(I − ηjΣ)2

Σ2

 =

+∞∑
k=1

σ2
n∑

i=1

η2i

 n∏
j=i+1

(1− ηjλk)
2

λ2
k.

We split the summation on the RHS into two parts: k ≤ k∗ and k > k∗. We then bound each term individually by analyzing
the contribution of each eigendirection.

For direction k ≤ k∗, we use the inequality n∏
j=i+1

(1− ηjλk)
2

λ2
k ⪯


(

i+m∏
j=i+1

(I − ηi

2 λk)
2

)
λ2
k ⪯

((
I − ηi

2 λk

)2m)
λ2
k, ∀1 ≤ i ≤ n−m;

λ2
k, ∀n−m < i ≤ n.

This leads to the bound:

σ2
n∑

i=1

η2i

 n∏
j=i+1

(1− ηjλk)
2

λ2
k ≤ σ2

n−m∑
i=1

(
1− ηi

2
λk

)2m
(ηiλk)

2 + σ2
n−1∑

i=n−m+1

η2i λ
2
k.
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For direction k > k∗, we simply use the bound:

σ2
n∑

i=1

η2i

 n∏
j=i+1

(1− ηjλk)
2

λ2
k ≤ σ2

+∞∑
k=k∗+1

nη20λ
2
k.

Combining the two bounds, we obtain

E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
≤ σ2

k∗∑
k=1

n−m∑
j=1

(
1− ηj

2
λk

)2m
(ηjλk)

2 +

n∑
j=n−m+1

η2jλ
2
k

+ σ2
+∞∑

k=k∗+1

nη20λ
2
k. (14)

For j > n−m, we note that
ηj ≤

η0

2⌊
n−m
m ⌋ ≤ η0

2
n
m−2

≤ η0
2log2 n−2

≤ η0
4n

. (15)

For j ≤ n−m, we use the following inequality to bound
(
1− ηj

2 λk

)2m
(ηjλk)

2:

sup
0≤x≤1

(
1− x

2

)2m
x2 ≤ sup

0≤x≤1
exp(−mx)x2 =

(
2

em

)2

. (16)

Finally, substituting (15) and (16) into (14), we have

E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
≤ σ2

k∗∑
k=1

(
(n−m)

(
2

em

)2

+m
( η0
4n

)2)
+ σ2

+∞∑
k=k∗+1

nη20λ
2
k

≤ σ2k∗

(
n

(
4 log2 n

en

)2

+
n

log2 n

( η0
4n

)2)
+ σ2

+∞∑
k=k∗+1

nη20λ
2
k

= σ2

((
16 log22 n

e2
+

η20
16 log2 n

)
k∗

n
+

+∞∑
k=k∗+1

nη20λ
2
k

)
.

B.2.2. EFFECT OF REPLACING Kx ⊗Kx WITH Σ

In this section, we incorporate the operator Kx ⊗Kx into the analysis, and provide upper bounds for E
[〈

f
b(1)
n ,Σf

b(1)
n

〉
H

]
and E

[〈
f
v(1)
n ,Σf

v(1)
n

〉
H

]
. These results will be used to provide the upper bounds of the bias term E

[〈
f b
n,Σf b

n

〉
H

]
and

the variance term E [⟨fv
n ,Σfv

n⟩H].

Recalling the recursive definitions in (7) and (8), and solving the resulting expressions of f b(1)
t and f

v(1)
t , we obtain

f b(1)
n =

n∑
i=1

ηi

 n∏
j=i+1

(I − ηjΣ)

Ξ
b(1)
i , fv(1)

n =

n∑
i=1

ηi

 n∏
j=i+1

(I − ηjΣ)

Ξ
v(1)
i ,

where
Ξ
b(1)
i = (Σ−Kxi

⊗Kxi
) f b

i−1, Ξ
v(1)
i = (Σ−Kxi

⊗Kxi
) fv

i−1.

To bound the quantities E
[〈

f
b(1)
n ,Σf

b(1)
n

〉
H

]
and E

[〈
f
v(1)
n ,Σf

v(1)
n

〉
H

]
. We derive upper bounds for the operators

E
[
Ξ
b(1)
i ⊗ Ξ

b(1)
i

]
and E

[
Ξ
v(1)
i ⊗ Ξ

v(1)
i

]
, as stated in Lemma B.6 and Lemma B.8.

The following lemma provides a key auxiliary result used in proving Lemma B.6. It shows that E
[
∥f b

t ∥2H
]

can be uniformly
bounded by the initial error ∥f0 − f∗

ρ ∥2H throughout the iteration.
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Lemma B.5. Consider SGD with exponentially decaying step size schedule defined in (9). Suppose that η0 ≤ 2
κ2 . Then for

any iteration t, we have
E
[
∥f b

t ∥2H
]
≤ ∥f0 − f∗

ρ ∥2H.

Proof. Firstly, it is obvious that E
[
∥f b

0∥2H
]
≤ ∥f0 − f∗

ρ ∥2H.

Notice that for any 1 ≤ t ≤ n, Kxt
and f b

t−1 are independent, then for any 1 ≤ t ≤ n, we have

E
[
∥f b

t ∥2H
]
= E

[
∥(I − ηtKxt ⊗Kxt)f

b
t−1∥2H

]
= E

[
∥f b

t−1∥2H
]
− 2ηtE

[
⟨f b

t−1, (Kxt
⊗Kxt

)f b
t−1⟩H

]
+ η2tE

[
⟨(Kxt

⊗Kxt
)f b

t−1, (Kxt
⊗Kxt

)f b
t−1⟩H

]
= E

[
∥f b

t−1∥2H
]
− 2ηtE

[
⟨f b

t−1,E [(Kxt
⊗Kxt

)] f b
t−1⟩H

]
+ η2tE

[
⟨f b

t−1,E [K(xt,xt)Kxt
⊗Kxt

] f b
t−1⟩H

]
≤ E

[
∥f b

t−1∥2H
]
+
(
−2ηt + η2t κ

2
)
E
[〈
f b
t−1,Σf b

t−1

〉
H

]
,

where in the inequality, we use E [Kxt ⊗Kxt ] = Σ and E [K(xt,xt)Kxt ⊗Kxt ] ⪯ κ2Σ.

Since the function g(x) = −2x+ x2κ2 is non-positive for 0 ≤ x ≤ 2
κ2 , we have −2ηt + η2t κ

2 ≤ 0.

Therefore, for any 1 ≤ t ≤ n, we have
E
[
∥f b

t ∥2H
]
≤ E[∥f b

t−1∥2H].

By recursion, for any 0 ≤ t ≤ n, we have
E
[
∥f b

t ∥2H
]
≤ ∥f0 − f∗

ρ ∥2H.

The following lemma gives the upper bound of E
[
Ξ
b(1)
i ⊗ Ξ

b(1)
i

]
.

Lemma B.6. Consider SGD with exponentially decaying step size schedule defined in (9). Suppose that η0 ≤ 2
κ2 . Then for

any iteration t, we have
E
[
Ξ
b(1)
t ⊗ Ξ

b(1)
t

]
⪯ ∥f0 − f∗

ρ ∥2Hκ2Σ.

Proof. Notice that for any 1 ≤ t ≤ n, Kxt
and f b

t−1 are independent, then we have

E
[
Ξ
b(1)
t ⊗ Ξ

b(1)
t

]
= E[(Σ−Kxt

⊗Kxt
)(f b

t−1 ⊗ f b
t−1)(Σ−Kxt

⊗Kxt
)]

= E
[
(Σ−Kxt ⊗Kxt)E

[
(f b

t−1 ⊗ f b
t−1)

]
(Σ−Kxt ⊗Kxt)

]
⪯ E

[
∥f b

t−1 ⊗ f b
t−1∥

]
E
[
Σ2 −ΣKxt ⊗Kxt −Kxt ⊗KxtΣ+K(xt,xt)Kxt ⊗Kxt

]
= E

[
∥f b

t−1∥2H
] (

E [K(xt,xt)Kxt
⊗Kxt

]−Σ2
)

⪯ ∥f0 − f∗
ρ ∥2H(κ2Σ−Σ2)

⪯ ∥f0 − f∗
ρ ∥2Hκ2Σ.

The following lemma provides a key auxiliary result used in proving Lemma B.8. It shows that the operator E[fv
t ⊗ fv

t ] can
be uniformly bounded by αI with a constant α throughout the iteration.

Lemma B.7. Consider SGD with exponentially decaying step size schedule defined in (9). Suppose that η0 < 2
κ2 . Then for

any iteration t, we have

E[fv
t ⊗ fv

t ] ⪯ αI, where α =
η0σ

2

2− η0κ2
.

Proof. We prove this by induction.

For the base case, E[fv
0 ⊗ fv

0 ] = 0⊗ 0 ⪯ αI naturally holds.
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Suppose that E[fv
t−1 ⊗ fv

t−1] ⪯ αI . We aim to show that the same inequality holds for t.

Notice that for any 1 ≤ t ≤ n, Kxt
and fv

t−1 are independent, then we have

E [fv
t ⊗ fv

t ] = E
[
(I − ηtKxt

⊗Kxt
)(fv

t−1 ⊗ fv
t−1)(I − ηtKxt

⊗Kxt
) + η2tΞt ⊗ Ξt

]
= E

[
(I − ηtKxt ⊗Kxt)E

[
(fv

t−1 ⊗ fv
t−1)

]
(I − ηtKxt ⊗Kxt) + η2tΞt ⊗ Ξt

]
⪯ E

[
(I − ηtKxt

⊗Kxt
)αI(I − ηtKxt

⊗Kxt
) + η2tΞt ⊗ Ξt

]
= αE

[
I − 2ηtKxt ⊗Kxt + η2tK(xt,xt)Kxt ⊗Kxt

]
+ η2tE [Ξt ⊗ Ξt] .

Using E [Kxt
⊗Kxt

] = Σ, E [Ξt ⊗ Ξt] ⪯ σ2Σ and E[K(xt,xt)Kxt
⊗Kxt

] ⪯ κ2Σ, we have

E [fv
t ⊗ fv

t ] ⪯ α(I − 2ηtΣ+ η2t κ
2Σ) + η2t σ

2Σ

⪯ αI + η2t (σ
2 − α

2− ηtκ
2

ηt
)Σ.

Since the function g(x) = 2−xκ2

x is monotonically decreasing, we have

σ2 − α
2− ηtκ

2

ηt
≤ σ2 − α

2− η0κ
2

η0
= σ2 − α

σ2

α
= 0.

Therefore, we conclude that

E [fv
t ⊗ fv

t ] ⪯ αI + η2t (σ
2 − α

2− η0κ
2

η0
)Σ ⪯ αI,

completing the inductive step. This proves the lemma.

The following lemma gives the upper bound of E
[
Ξ
v(1)
t ⊗ Ξ

v(1)
t

]
.

Lemma B.8. Consider SGD with exponentially decaying step size schedule defined in (9). Suppose that η0 < 2
κ2 . Then for

any iteration t, we have

E
[
Ξ
v(1)
t ⊗ Ξ

v(1)
t

]
⪯ ακ2Σ, where α =

η0σ
2

2− η0κ2
.

Proof. Notice that for any 1 ≤ t ≤ n, Kxt
and fv

t−1 are independent, then we have

E
[
Ξ
v(1)
t ⊗ Ξ

v(1)
t

]
= E[(Σ−Kxt

⊗Kxt
)(fv

t−1 ⊗ fv
t−1)(Σ−Kxt

⊗Kxt
)]

= E[(Σ−Kxt
⊗Kxt

)E
[
(fv

t−1 ⊗ fv
t−1)

]
(Σ−Kxt

⊗Kxt
)]

⪯ E[(Σ−Kxt
⊗Kxt

)αI(Σ−Kxt
⊗Kxt

)]

= αE[Σ2 −ΣKxt ⊗Kxt −Kxt ⊗KxtΣ+K(xt,xt)Kxt ⊗Kxt ]

⪯ α(κ2Σ−Σ2)

⪯ ακ2Σ.

Then we can bound E
[〈

f
b(1)
n ,Σf

b(1)
n

〉
H

]
and E

[〈
f
v(1)
n ,Σf

v(1)
n

〉
H

]
in a manner similar to Lemma B.4.

We have the following results:
Lemma B.9 (Residual Bias Upper Bound). Consider SGD with exponentially decaying step size schedule defined in (9).
Suppose that η0 ≤ min

{
2
κ2 ,

1
λ1

}
. Then, for any integer k∗ ≥ 1, we have

E
[〈

f b(1)
n ,Σf b(1)

n

〉
H

]
≤ ∥f0 − f∗

ρ ∥2Hκ2

((
16 log22 n

e2
+

η20
16 log2 n

)
k∗

n
+

+∞∑
k=k∗+1

nη20λ
2
k

)
.
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Proof. Notice that for any 1 ≤ t ≤ n, Kxt
and f b

t−1 are independent. Under Assumption 4.1, we have E [Ξi] = 0. Thus
when i < j, we have

E
[
Ξ
b(1)
i ⊗ Ξ

b(1)
j

]
= E

[
(Σ−Kxi

⊗Kxi
)
(
f b
i−1 ⊗ f b

j−1

) (
Σ−Kxj

⊗Kxj

)]
= E

[
(Σ−Kxi

⊗Kxi
)
(
f b
i−1 ⊗ f b

j−1

)]
E
[(
Σ−Kxj

⊗Kxj

)]
= 0.

Therefore, according to the proof of Lemma B.4, we have

E
[〈

fv(1)
n ,Σfv(1)

n

〉
H

]
≤ ∥f0 − f∗

ρ ∥2Hκ2

((
16 log22 n

e2
+

η20
16 log2 n

)
k∗

n
+

+∞∑
k=k∗+1

nη20λ
2
k

)
.

Lemma B.10 (Residual Variance Upper Bound). Consider SGD with exponentially decaying step size schedule defined in
(9). Suppose that η0 ≤ min

{
2
κ2 ,

1
λ1

}
. Then, for any integer k∗ ≥ 1, we have

E
[〈

fv(1)
n ,Σfv(1)

n

〉
H

]
≤ η0σ

2

2− η0κ2
κ2

((
16 log22 n

e2
+

η20
16 log2 n

)
k∗

n
+

+∞∑
k=k∗+1

nη20λ
2
k

)
.

Proof. Notice that for any 1 ≤ t ≤ n, Kxt and f b
t−1 are independent. Under Assumption 4.1, we have E [Ξi] = 0. Thus,

when i < j, we have

E
[
Ξ
v(1)
i ⊗ Ξ

v(1)
j

]
= E

[
(Σ−Kxi

⊗Kxi
)
(
fv
i−1 ⊗ fv

j−1

) (
Σ−Kxj

⊗Kxj

)]
= E

[
(Σ−Kxi ⊗Kxi)

(
fv
i−1 ⊗ fv

j−1

)]
E
[(
Σ−Kxj ⊗Kxj

)]
= 0.

Therefore, according to the proof of Lemma B.4, we have

E
[〈

fv(1)
n ,Σfv(1)

n

〉
H

]
≤ η0σ

2

2− η0κ2
κ2

((
16 log22 n

e2
+

η20
16 log2 n

)
k∗

n
+

+∞∑
k=k∗+1

nη20λ
2
k

)
.

Combining Lemma B.1, B.2, B.3, B.4, B.9 and B.10, we have the following proposition:

Proposition B.11 (Upper Bound for SGD with Exponentially Decaying Step Size Schedule). Consider SGD with expo-
nentially decaying step size schedule defined in (9). Suppose that η0 ≤ min

{
2
κ2 ,

1
λ1

}
. Then, for any integer k∗ ≥ 1, we

have

E
[∥∥fn − f∗

ρ

∥∥2
L2

]
≤ 4

( s

4e

)s( log2 n

nη0

)s ∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H
+ 4σ2

((
16 log22 n

e2
+

η20
16 log2 n

)
k∗

n
+

+∞∑
k=k∗+1

nη20λ
2
k

)

+ 4

(
∥f0 − f∗

ρ ∥2Hκ2 +
η0σ

2κ2

2− η0κ2

)((
16 log22 n

e2
+

η20
16 log2 n

)
k∗

n
+

+∞∑
k=k∗+1

nη20λ
2
k

)
.
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C. General Bound for SGD with Averaged Iterates
In this section, we demonstrate the analysis of SGD with averaged iterates, which is:

∀ 0 ≤ t < n, ηt = η0, with fn =
1

n

n−1∑
t=0

ft.

In this section, we need to address the misspecified setting, where f∗
ρ may not lie in H. Specifically, we consider the

case where the source condition 4.3 holds with some 0 < s ≤ 1. To accommodate this broader setting, we extend the
operator framework developed in Appendix B.1 to act on functions outside of H. Following Dieuleveut & Bach (2016),
define ˜Kx ⊗Kx : L2 → H by ˜Kx ⊗Kx ◦ f = f(x)Kx. This extension satisfies that ˜Kx ⊗Kx|H = Kx ⊗ Kx and
E
[

˜Kx ⊗Kx

]
= T . For notational simplicity, we will continue to write Kx ⊗ Kx instead of ˜Kx ⊗Kx and denote its

expectation by Σ. Additionally, we denote ⟨f,Σf⟩H by
∥∥∥Σ 1

2 f
∥∥∥2
H

in the following. With these conventions, the notation
used in this section remains fully consistent with that of Appendix B.1.

For convenience, we defined

f b
n =

1

n

n−1∑
t=0

f b
t , fv

n =
1

n

n−1∑
t=0

fv
t ; f̃ b

n =
1

n

n−1∑
t=0

f̃ b
t , f̃v

n =
1

n

n−1∑
t=0

f̃v
t ; f

b(1)
n =

1

n

n−1∑
t=0

f
b(1)
t , f

v(1)
n =

1

n

n−1∑
t=0

f
v(1)
t .

By Lemma B.1, B.2 and Minkovski inequality, we have

E
[〈
fn − f∗

ρ ,Σ
(
fn − f∗

ρ

)〉
H

]
≤ 4

(〈
f̃ b
n,Σf̃ b

n

〉
+ E

[〈
f̃v
n ,Σf̃v

n

〉]
+ E

[〈
f
b(1)
n ,Σf

b(1)
n

〉]
+ E

[〈
f
v(1)
n ,Σf

v(1)
n

〉])
,

which means we only need to bound these four terms individually.

The following analysis is based on Dieuleveut & Bach (2016), which provides the following results:
Lemma C.1 (Population Bias Upper Bound). Consider SGD with averaged iterates defined in (17). Suppose that η0 ≤ 1

λ1
.

Then we have 〈
f̃ b
n,Σf̃ b

n

〉
H

=
1

n2

∥∥∥∥∥
n−1∑
i=0

(I − η0Σ)iΣ
1
2 (f0 − f∗

ρ )

∥∥∥∥∥
2

H

≤ 1

nmin{s,2}ηs0

∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H
. (17)

Lemma C.2 (Residual Bias Upper Bound). Consider SGD with averaged iterates defined in (17). Suppose that η0 ≤
min

{
1
κ2 ,

1
λ1

}
. Then, for any integer k∗ ≥ 1, we have

E
[〈

f
b(1)
n ,Σf

b(1)
n

〉
H

]
≤ 1

1− η0κ2

η0κ
2

n

1

ηs0

∥∥∥∥∥∥
(

n−1∑
i=0

(I − η0Σ)2i (η0Σ)
s

) 1
2

∥∥∥∥∥∥
2 ∥∥∥Σ 1−s

2 (f0 − f∗
ρ )
∥∥∥2
H

≤ 2κ2

1− η0κ2

1

nmin{s,1}ηs−1
0

∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H
.

(18)

Meanwhile, Dieuleveut & Bach (2016) provides the following expression E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
, which is

E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
=

1

n2
E


∥∥∥∥∥∥
n−1∑
j=1

η20

n−1∑
i=j

(I − η0Σ)i−jΣ
1
2Ξj

∥∥∥∥∥∥
2

H

 . (19)

Lemma C.3 (Population Variance Upper Bound). Consider SGD with averaged iterates defined in (17). Suppose that
η0 ≤ 1

λ1
. Then, for any integer k∗ ≥ 1, we have

E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
≤ σ2

(
k∗

n
+

1

3

+∞∑
i=k∗+1

nη20λ
2
i

)
.
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Proof. According to the form in (19), we have

E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
=

1

n2
E


∥∥∥∥∥∥
n−1∑
j=1

η20

n−1∑
i=j

(I − η0Σ)i−jΣ
1
2Ξj

∥∥∥∥∥∥
2

H


=

1

n2
E

tr
n−1∑

j=1

η20

n−1∑
i=j

(I − η0Σ)i−j

2

ΣΞj ⊗ Ξj




=
1

n2
tr

n−1∑
j=1

η20

n−1∑
i=j

(I − η0Σ)i−j

2

ΣE [Ξi ⊗ Ξi]

 ,

where in the second equality, we use the commutativity of each I − ηjΣ, and from the fact that for any 1 ≤ i ̸= j ≤ n, Ξi

and Ξj are independent, and under Assumption 4.1 E [Ξi] = 0.

Using the property that for any 1 ≤ i ≤ n, E [Ξi ⊗ Ξi] ⪯ σ2Σ, we have

E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
≤ σ2

n2
tr

n−1∑
j=1

η20

n−1∑
i=j

(I − η0Σ)i−j

2

Σ2

 .

Similar to the proof of Lemma B.4, we split the summation on the RHS into two parts: k ≤ k∗ and k > k∗. The resulting
upper bound is summarized in the following:

E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
≤ σ2

n2

+∞∑
k=1

n−1∑
j=1

η20

n−1∑
i=j

(1− η0λk)
i−j

2

λ2
k


= σ2

 k∗∑
k=1

1

n2

n−1∑
j=1

(
1− (1− η0λk)

j
)2

+

+∞∑
k=k∗+1

1

n2

n−1∑
j=1

(
1− (1− η0λk)

j
)2

≤ σ2

 k∗∑
k=1

1

n2

n−1∑
j=1

1 +

+∞∑
k=k∗+1

1

n2

n−1∑
j=1

(jη0λk)
2


≤ σ2

(
k∗

n
+

1

3

+∞∑
k=k∗+1

nη20λ
2
k

)
,

where in the second inequality, we use 1− nx ≤ (1− x)n ≤ 1 for any 0 < x < 1 and n ∈ N.

Besides, we have the following lemma:

Lemma C.4 (Residual Variance Upper Bound). Consider SGD with averaged iterates defined in (17). Suppose that
η0 ≤ min

{
2
κ2 ,

1
λ1

}
. Then, for any integer k∗ ≥ 1, we have

E
[〈

f
v(1)
n ,Σf

v(1)
n

〉
H

]
≤ η0σ

2

2− η0κ2
κ2

(
k∗

n
+

1

3

+∞∑
k=k∗+1

nη20λ
2
k

)
.

We omit the proof since it follows a similar argument to that of Lemma B.10,

Combining Lemma C.1, C.2, C.3, and C.4, we have the following corollary.
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Corollary C.5 (Upper Bound for SGD with Averaged Iterates). Consider SGD with averaged iterates defined in (17).
Suppose that η0 ≤ min

{
1
κ2 ,

1
λ1

}
. Then, for any integer k∗ ≥ 1, we have

E
[∥∥fn − f∗

ρ

∥∥2
L2

]
≤ 4

1

nmin{s,2}ηs0

∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H
+ 4σ2

(
k∗

n
+

1

3

+∞∑
k=k∗+1

nη20λ
2
k

)
.

+ 4
2κ2

1− η0κ2

1

nmin{s,1}ηs−1
0

∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H
+ 4

η0σ
2

2− η0κ2
κ2

(
k∗

n
+

1

3

+∞∑
k=k∗+1

nη20λ
2
k

)
.

D. Proof of Optimal Rate
In this section, we discuss the optimality of SGD for kernel regression with the dot-product kernel K under high-dimensional
and asymptotic settings, respectively.

D.1. High-Dimensional Setting

Under this setting, we consider sufficient large n which satisfies c1d
γ < n < c2d

γ for some fixed γ > 0 and absolute
constants c1, c2.

To demonstrate the optimal rate, here we borrowed a minimax lower bound of ∥f − f∗
ρ ∥2L2 from Lu et al. (2024a).

Theorem D.1 (Minimax Lower Bound, from Lu et al. (2024a)). In high-dimensional settings, where n is bounded by
c1d

γ < n < c2d
γ for some fixed γ > 0 and constants c1, c2, consider X = Sd. The marginal distribution ρX is assumed to

be the uniform distribution on Sd. Let K denote a dot-product kernel on the sphere, which satisfies Assumption 4.5. Let P
consist of all distributions ρ on X ×Y given by y = f∗

ρ (x) + ϵ, where f∗
ρ ∈ [H]

s and ϵ ∼ N (0, 1) is independent of x. Let

p =
⌈

γ
s+1

⌉
− 1, then we have:

inf
f̂

sup
ρ∈P

Eρ

∥∥∥f̂ − f∗
ρ

∥∥∥2
L2

= Ω
(
d−min{γ−p,s(p+1)}

)
.

The well-specified case corresponds to s ≥ 1, and the mis-specified case corresponds to 0 < s < 1.

In this section, we use different schedules to reach the minimax lower bound in the well-specified and mis-specified cases.

D.1.1. WELL-SPECIFIED CASE

In the well-specified case, we use SGD with exponentially step decay schedule to reach the minimax lower bound.

Theorem D.2 (Theorem 5.1). In high-dimensional settings, where n is bounded by c1d
γ < n < c2d

γ for some fixed γ > 0
and constants c1, c2, consider X = Sd. The marginal distribution ρX is assumed to be the uniform distribution on Sd. Let
K denote the dot-product kernel on Sd, which satisfies Assumption 4.5. Given s ≥ 1, supposing that Assumption 4.3 holds
with s, and treating γ, σ, κ, c1, c2 and s as constants, the excess risk of the output of SGD with exponentially decaying step
size fdec

n satisfies:

(i) When γ ∈ (ps+ p, ps+ p+ s] for some p ∈ N, with initial step size η0 = Θ(d−γ+p log2 n ln d) ≤ min
{

1
κ2 ,

1
λ1

}
, and

k∗ = Θ(dp), there exists a constant d0 such that for any d ≥ d0, we have:

E
[
∥fdec

n − f∗
ρ ∥2L2

]
≲ d−γ+p log22 d.

(ii) When γ ∈ (ps+p+s, (p+1)s+p+1] for some p ∈ N, with initial step size η0 = Θ(d−γ+p log2 n ln d) ≤ min
{

1
κ2 ,

1
λ1

}
,

and k∗ = Θ(dp), there exists a constant d0 such that for any d ≥ d0, we have:

E
[
∥fdec

n − f∗
ρ ∥2L2

]
≲ d−(p+1)s.
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Proof. According to (12) in Lemma B.3, we have〈
f̃ b
n,Σf̃ b

n

〉
H

≤ η−s
0

∥∥(I − η0Σ)m(η0Σ)
s
2

∥∥2 ∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H

≤ η−s
0

(
max
k≥1

(1− η0λk)
2m

(η0λk)
s

)∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H
.

Select k∗ such that λk∗ = µp and λk∗+1 = µp+1, so that k∗ = Θ(dp), p ∈ N, λk∗ = Θ(d−p), and λk∗+1 = Θ(d−p−1) by
Lemma A.3.

We take η0 = Θ(d−γ+p log2 n ln d). Then for k ≤ k∗, we have log22 d · d−γ ≲ η0λk ≲ η0. Recall n = Θ(dγ), let
η0λk ≥ C log22 n · n−1 for some constant C > 0, we obtain:

η−s
0 (1− η0λk)

2m
(η0λk)

s
= (1− η0λk)

2m
λs
k

≤ exp(−2mη0λk)

≲ exp

(
−2

n

log2 n
C log22 n · n−1

)
= exp(−2C log2 n).

When 2C > (p+1)s
γ , we have η−s

0 (1− η0λk)
2m

(η0λk)
s ≲ d−(p+1)s. Therefore,

η−s
0

(
max
k≤k∗

(1− η0λk)
2m

(η0λk)
s

)
≲ d−(p+1)s. (20)

For k ≥ k∗ + 1, we have λk ≲ d−(p+1). This implies that

η−s
0

(
max

k≥k∗+1
(1− η0λk)

2m
(η0λk)

s

)
≲ max

k≥k∗+1
λs
k ≲ d−(p+1)s. (21)

Combining (20) and (21), we have 〈
f̃ b
n,Σf̃ b

n

〉
H

≲ d−(p+1)s
∥∥∥Σ 1−s

2 (f0 − f∗
ρ )
∥∥∥2
H
. (22)

Combining (22) with Lemma B.4, B.9 and B.10, we derive the total excess risk bound:

E
[∥∥fdec

n − f∗
ρ

∥∥2
L2

]
≲ d−(p+1)s

∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H

+

(
σ2 +

η0σ
2κ2

2− η0κ2
+ ∥f0 − f∗

ρ ∥2Hκ2

)(
k∗ log22 n

n
+

+∞∑
i=k∗+1

nη20λ
2
i

)
.

Since η0 ≤ min
{

1
κ2 ,

1
λ1

}
, we have η0σ

2κ2

2−η0κ2 ≤ η0σ
2κ2 ≤ σ2 = 1. Additionally, by the source condition with s ≥ 1, we

have ∥f0 − f∗
ρ ∥2H ≤

∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H

≲ 1. Hence, the bound simplifies to:

E
[∥∥fdec

n − f∗
ρ

∥∥2
L2

]
≲ d−(p+1)s +

k∗ log22 n

n
+

+∞∑
k=k∗+1

nη20λ
2
k.

Since
∑+∞

k=k∗+1 λ
2
k ≤ λk∗+1

∑+∞
k=k∗+1 λk ≤ κ2λk∗+1, we further obtain:

E
[∥∥fdec

n − f∗
ρ

∥∥2
L2

]
≲ d−(p+1)s +

k∗ log22 n

n
+ nη20λk∗+1.
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We then set p =
⌈

γ
s+1

⌉
− 1, which ensures p + ps < γ ≤ (p + 1) + (p + 1)s. Given n = Θ(dγ) and

η0 = Θ(d−γ+p log2 n ln d),

E
[∥∥fdec

n − f∗
ρ

∥∥2
L2

]
≲ d−(p+1)s +

k∗ log22 n

n
+ nη20λk∗+1

≲ d−(p+1)s + dp−γ log22 d+ dp−γ−1 log22 d ln
2 d

≲ d−(p+1)s + dp−γ log22 d

=

{
O(d−(p+1)s) γ ∈ (p+ ps+ s, (p+ 1) + (p+ 1)s]

O(dp−γ log22 d) γ ∈ (p+ ps, p+ ps+ s]
.

D.1.2. MIS-SPECIFIED CASE

In the mis-specified case, we use SGD with averaged iterates to reach the minimax lower bound.
Theorem D.3 (Theorem 5.2). In high-dimensional settings, where n is bounded by c1d

γ < n < c2d
γ for some fixed γ > 0

and constants c1, c2, consider X = Sd. The marginal distribution ρX is assumed to be the uniform distribution on Sd. Let
K denote the dot-product kernel on Sd, which satisfies Assumption 4.5. Given 0 < s < 1, supposing that Assumption 4.3
holds with s, and treating γ, σ, κ, c1, c2 and s as constants, the excess risk of the output of SGD with averaged iterates favg

n

satisfies:

(i) When γ ∈ (ps + p, ps + p + s] for some p ∈ N, with initial step size η0 = Θ
(
d−γ+p+ s

2

)
≤ min

{
1
κ2 ,

1
λ1

}
for p ≥ 1

and η0 = Θ
(
d−

γ
2

)
≤ min

{
1
κ2 ,

1
λ1

}
for p = 0, there exists a constant d0 such that for any d ≥ d0, we have:

E
[
∥favg

n − f∗
ρ ∥2L2

]
≲ d−γ+p.

(ii) When γ ∈ (ps+ p+ s, (p+ 1)s+ p+ 1] for some p ∈ N, with initial step size η0 = Θ
(
d−γ+p+ s

2

)
≤ min

{
1
κ2 ,

1
λ1

}
for p ≥ 1 and η0 = Θ

(
d−

γ
2

)
≤ min

{
1
κ2 ,

1
λ1

}
for p = 0, there exists a constant d0 such that for any d ≥ d0, we have:

E
[
∥favg

n − f∗
ρ ∥2L2

]
≲ d−(p+1)s.

Proof. According to (17) in Lemma C.1, we have

〈
f̃ b
n,Σf̃ b

n

〉
H

≤ n−2η−s
0

∥∥∥∥∥
n−1∑
i=0

(I − η0Σ)i(η0Σ)
s
2

∥∥∥∥∥
2 ∥∥∥Σ 1−s

2 (f0 − f∗
ρ )
∥∥∥2
H

= n−2η−s
0

max
k≥1

(
n−1∑
i=0

(1− η0λk)
i

)2

(η0λk)
s

∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H
.

Select k∗ such that λk∗ = µp and λk∗+1 = µp+1, so that k∗ = Θ(dp), p ∈ N, λk∗ = Θ(d−p), and λk∗+1 = Θ(d−p−1) by
Lemma A.3.

For k ≤ k∗, recall n = Θ(dγ).

In the case p ≥ 1, we take η0 = Θ
(
d−γ+p+ s

2

)
≲ min

{
1
κ2 ,

1
λ1

}
, then η0λ

1− s
2

k ≥ C · d
(p+1)s

2 n−1 for some constant C > 0,
so we obtain:

n−2η−s
0

(n−1∑
i=0

(1− η0λk)
i

)2

(η0λk)
s

 = n−2 (1− (1− η0λk)
n)

2
η−2
0 λs−2

k

≤ n−2η−2
0 λs−2

k

≤ 1

C2
d−(p+1)s.
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In the case p = 0, we take η0 = Θ
(
d−

γ
2

)
≲ min

{
1
κ2 ,

1
λ1

}
, so we obtain:

n−2η−s
0

(n−1∑
i=0

(1− η0λk)
i

)2

(η0λk)
s

 ≤ n−2η−2
0 λs−2

k

≲ d−γ

= dp−γ .

Therefore, we have

n−2η−s
0

max
k≤k∗

(
n−1∑
i=0

(1− η0λk)
i

)2

(η0λk)
s

 ≲ d−(p+1)s + dp−γ . (23)

For k ≥ k∗ + 1, we have

n−2η−s
0

(n−1∑
i=0

(1− η0λk)
i

)2

(η0λk)
s

 = n−2 (1− (1− η0λk)
n)

2
η−2
0 λs−2

k

(i)

≤ n−2(nη0λk)
2η−2

0 λs−2
k

= λs
k,

where inequality (i) uses the fact that if 0 ≤ nx ≤ 1, we have 1 − (1 − x)n ≤ nx. This condition is satisfied since
nη0λk ≲ d

s
2−1 ≤ 1 (s ≤ 1). Therefore, we have

n−2η−s
0

 max
k≥k∗+1

(
n−1∑
i=0

(1− η0λk)
i

)2

(η0λk)
s

 ≲ max
k≥k∗+1

λs
k ≲ d−(p+1)s. (24)

Combining (23) and (24), we have〈
f̃ b
n,Σf̃ b

n

〉
H

≲ (d−(p+1)s + dp−γ)
∥∥∥Σ 1−s

2 (f0 − f∗
ρ )
∥∥∥2
H
. (25)

According to in (18) Lemma C.2, we have

E
[〈

f
b(1)
n ,Σf

b(1)
n

〉
H

]
≤ 1

1− η0κ2

η0κ
2

n

1

ηs0

∥∥∥∥∥∥
(

n−1∑
i=0

(I − η0Σ)2i (η0Σ)
s

) 1
2

∥∥∥∥∥∥
2 ∥∥∥Σ 1−s

2 (f0 − f∗
ρ )
∥∥∥2
H

=
1

1− η0κ2

η0κ
2

n

1

ηs0

(
max
k≥1

n−1∑
i=0

(1− η0λk)
2i(η0λk)

s

)∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H

≲ n−1

(
max
k≥1

(
1− (1− η0λk)

2n
)
λs−1
k

)∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H
.

For k ≤ k∗, we have n−1
(
1− (1− η0λk)

2n
)
λs−1
k ≤ λs−1

k n−1 and s ≤ 1. This implies that

n−1

(
max
k≤k∗

(
1− (1− η0λk)

2n
)
λs−1
k

)
≤ max

k≤k∗
λs−1
k n−1 ≲ d−ps+p−γ ≲ dp−γ . (26)

For k ≥ k∗ + 1, we have

n−1
((
1− (1− η0λk)

2n
)
λs−1
k

) (i)

≤ n−1(2nη0λk)λ
s−1
k

≤ λs
k,
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where inequality (i) uses the fact that if 0 ≤ nx ≤ 1, we have 1 − (1 − x)n ≤ nx. This condition is satisfied since
nη0λk ≲ d

s
2−1 ≤ 1 (s ≤ 1). Therefore, we have

n−1

(
max

k≥k∗+1

(
1− (1− η0λk)

2n
)
λs−1
k

)
≲ max

k≥k∗+1
λs
k ≲ d−(p+1)s. (27)

Combining (26) and (27), we have

E
[〈

f
b(1)
n ,Σf

b(1)
n

〉
H

]
≲
(
d−(p+1)s + dp−γ

)∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H
. (28)

Combining (25) and (28) with Lemma C.2, C.3, and C.4, we derive the total excess risk bound:

E
[∥∥favg

n − f∗
ρ

∥∥2
L2

]
≲
(
d−(p+1)s + dp−γ

)∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H

+

(
σ2 +

η0σ
2κ2

2− η0κ2

)(
k∗

n
+

+∞∑
k=k∗+1

nη20λ
2
k

)
.

Since η0 ≤ min
{

1
κ2 ,

1
λ1

}
, we have η0σ

2κ2

2−η0κ2 ≤ η0σ
2κ2 ≤ σ2 = 1. Additionally, by the source condition with s ≥ 1, we

have ∥f0 − f∗
ρ ∥2H ≤

∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H

≲ 1. Hence, the bound simplifies to:

E
[∥∥favg

n − f∗
ρ

∥∥2
L2

]
≲ d−(p+1)s + dp−γ +

k∗

n
+

+∞∑
k=k∗+1

nη20λ
2
k.

Since
∑+∞

k=k∗+1 λ
2
k ≤ λk∗+1

∑+∞
k=k∗+1 λk ≤ κ2λk∗+1, we further obtain:

E
[∥∥favg

n − f∗
ρ

∥∥2
L2

]
≲ d−(p+1)s + dp−γ +

k∗

n
+ nη20λk∗+1.

We then set p =
⌈

γ
s+1

⌉
− 1, which ensures p + ps < γ ≤ (p + 1) + (p + 1)s. Given n = Θ(dγ) and

η0 =

{
Θ(d−γ+p+ s

2 ) , p ≥ 1

Θ(d−
γ
2 ) , p = 0

,

E
[∥∥favg

n − f∗
ρ

∥∥2
L2

]
≲ d−(p+1)s + dp−γ +

k∗

n
+ nη20λk∗+1

≲ d−(p+1)s + dp−γ + dp−γ−1

≲ d−(p+1)s + dp−γ

=

{
O(d−(p+1)s) γ ∈ (p+ ps+ s, (p+ 1) + (p+ 1)s]

O(dp−γ) γ ∈ (p+ ps, p+ ps+ s]
.

D.2. Asymptotic Setting

In the asymptotic setting, n ≫ d, the decay rate of the kernel is λk = Θ(k−1− 1
d ). We obtain the rate O

(
n− s(d+1)

s(d+1)+d

)
when

1
d+1 < s ≤ 2. This implies SGD with exponentially decaying step size schedule achieves optimally for s ≥ 1, and SGD
with averaged iterates achieves optimality for 1

d+1 < s ≤ 2.

Similarly, we also borrowed a minimax lower bound for asymptotic setting from Caponnetto & De Vito (2007).
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Theorem D.4 (Minimax Lower Bound, from Caponnetto & De Vito (2007)). In asymptotic settings, where n ≫ d, consider
X = Sd. The marginal distribution ρX is assumed to be the uniform distribution on Sd. Let KNTK the NTK of a ReLU
network with L layers with inputs on Sd. Let P consist of all distributions ρ on X × Y given by y = f∗

ρ (x) + ϵ, where
f∗
ρ ∈ [H]

s and ϵ ∼ N (0, 1) is independent of x, then we have:

inf
f̂

sup
ρ∈P

Eρ

∥∥∥f̂ − f∗
ρ

∥∥∥2
L2

= Ω
(
n− s(d+1)

s(d+1)+d

)
.

In the well-specified case, we use SGD with exponentially step decay schedule to reach the minimax lower bound.

Theorem D.5 (Theorem 5.3). In asymptotic settings, where n ≫ d, consider X = Sd. The marginal distribution ρX is
assumed to be the uniform distribution on Sd. Let KNTK denote the NTK of a ReLU network with L layers with inputs on

Sd. For s ≥ 1, supposing that Assumption 4.3 holds for s, with initial step size η0 = Θ
(
n

1−s(d+1)
s(d+1)+d

)
≤ min

{
1
κ2 ,

1
λ1

}
, the

excess risk of the output of SGD with exponentially decaying step size fdec
n satisfies:

E
[
∥fdec

n − f∗
ρ ∥2L2

]
≲ logs2 n · n− s(d+1)

s(d+1)+d .

In the mis-specified case, we use SGD with averaged iterates to reach the minimax lower bound.

Proof. Combining Lemma B.3, B.4, B.9 and B.10, we obtain the following bound:

E
[∥∥fdec

n − f∗
ρ

∥∥2
L2

]
≲

((
s log2 n

nη0

)s ∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H

)
+

((
σ2 +

η0σ
2κ2

2− η0κ2
+ ∥f0 − f∗

ρ ∥2Hκ2

)(
k∗ log22 n

n
+

+∞∑
i=k∗+1

nη20λ
2
i

))
.

Since η0 ≤ min
{

1
κ2 ,

1
λ1

}
, we have η0σ

2κ2

2−η0κ2 ≤ η0σ
2κ2 ≤ σ2 = 1. Additionally, by the source condition with s ≥ 1, we

have ∥f0 − f∗
ρ ∥2H ≤

∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H

≲ 1. Hence, the bound simplifies to:

E
[∥∥fdec

n − f∗
ρ

∥∥2
L2

]
≲

(
log2 n

nη0

)s

+
k∗ log22 n

n
+

+∞∑
k=k∗+1

nη20λ
2
k.

Since
∑+∞

k=k∗+1 λ
2
k ≲

∑+∞
k=k∗+1 k

−2− 2
d ≲ k∗−1− 2

d , we further obtain:

E
[∥∥favg

n − f∗
ρ

∥∥2
L2

]
≲

(
log2 n

nη0

)s

+
k∗ log22 n

n
+ nη20k

∗−1− 2
d .

Select k∗ and η0 such that k∗ = Θ
(
n

d
s(d+1)+d

)
and η0 = Θ

(
n

1−s(d+1)
s(d+1)+d

)
≲ 1, we have:

E
[∥∥favg

n − f∗
ρ

∥∥2
L2

]
≲ logs2 n · n− s(d+1)

s(d+1)+d .

Theorem D.6 (Theorem 5.4). In asymptotic settings, where n ≫ d, consider X = Sd. The marginal distribution ρX is
assumed to be the uniform distribution on Sd. Let KNTK denote the NTK of a ReLU network with L layers with inputs on Sd.

For 1
d+1 ≤ s ≤ 1, supposing that Assumption 4.3 holds for s, with initial step size η0 = Θ

(
n

1−s(d+1)
s(d+1)+d

)
≤ min

{
1
κ2 ,

1
λ1

}
,

the excess risk of the output of SGD with averaged iterates favg
n satisfies:

E
[
∥favg

n − f∗
ρ ∥2L2

]
≲ n− s(d+1)

s(d+1)+d .
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Proof. Combining Lemma C.1, C.3, C.2 and C.4, we obtain the following bound:

E
[∥∥favg

n − f∗
ρ

∥∥2
L2

]
≲

((
1

nη0

)s

+
2κ2

1− η0κ2
η1−s
0 n−s

)∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H

+

(
σ2 +

η0σ
2κ2

2− η0κ2

)(
k∗

n
+

+∞∑
i=k∗+1

nη20λ
2
i

)
.

Since η0 ≤ min
{

1
κ2 ,

1
λ1

}
, we have η0σ

2κ2

2−η0κ2 ≤ η0σ
2κ2 ≤ σ2 = 1 and κ2

1−η0κ2 η
1−s
0 n−s ≤ (nη0)

−s. Additionally, by the

source condition with s ≥ 1, we have ∥f0 − f∗
ρ ∥2H ≤

∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥2
H

≲ 1. Hence, the bound simplifies to:

E
[∥∥fdec

n − f∗
ρ

∥∥2
L2

]
≲

(
1

nη0

)s

+
k∗

n
+

+∞∑
k=k∗+1

nη20λ
2
k.

Since
∑+∞

k=k∗+1 λ
2
k ≲

∑+∞
k=k∗+1 k

−2− 2
d ≲ k∗−1− 2

d , we further obtain:

E
[∥∥favg

n − f∗
ρ

∥∥2
L2

]
≲

(
1

nη0

)s

+
k∗

n
+ nη20k

∗−1− 2
d .

Noticing that s ≥ 1
d+1 , select k∗ and η0 such that k∗ = Θ

(
n

d
s(d+1)+d

)
and η0 = Θ

(
n

1−s(d+1)
s(d+1)+d

)
≲ 1, we have:

E
[∥∥favg

n − f∗
ρ

∥∥2
L2

]
≲ n− s(d+1)

s(d+1)+d .

E. Lower Bound of SGD with Averaged Iterates
In this section, we give a lower bound of SGD with averaged iterates, which helps to explain why it is not optimal when
s > 2.

In this section, let ρ be a distribution satisfying that

y = f∗
ρ (x) + ϵ, where ϵ ∼ N(0, σ2) is a independent variable for any x,

which implies
E(x,y)∼ρ[Ξ] = 0,E(x,y)∼ρ[Ξ(x,y) ⊗ Ξ(x,y)] = σ2Σ.

To get a lower bound, we have the following lemmas:

Lemma E.1. Consider SGD with averaged iterates defined in (17). Then for any 0 ≤ i ≤ j ≤ n, we have

E
[(
fi − f∗

ρ

)
⊗
(
fj − f∗

ρ

)]
= E

[(
fi − f∗

ρ

)
⊗ (I − η0Σ)j−i

(
fi − f∗

ρ

)]
;

E
[(
fj − f∗

ρ

)
⊗
(
fi − f∗

ρ

)]
= E

[
(I − η0Σ)j−i

(
fi − f∗

ρ

)
⊗
(
fi − f∗

ρ

)]
.

Proof. We prove a more generalized version: For any fixed operator A : H → H,

E
[(
fi − f∗

ρ

)
⊗A

(
fj − f∗

ρ

)]
= E

[(
fi − f∗

ρ

)
⊗A(I − η0Σ)j−i

(
fi − f∗

ρ

)]
;

E
[
A
(
fj − f∗

ρ

)
⊗
(
fi − f∗

ρ

)]
= E

[
(I − η0Σ)j−iA

(
fi − f∗

ρ

)
⊗
(
fi − f∗

ρ

)]
.

For the base case i = j, it naturally holds.

Now we assume the lemma holds for j = i+ k ≥ 1, then we prove it for j = i+ k + 1.
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Notice that Kxt
and Ξt are independent of fi − f∗

ρ for any 0 ≤ i < t, we have

E
[(
fi − f∗

ρ

)
⊗A

(
fi+k+1 − f∗

ρ

)]
= E

[(
fi − f∗

ρ

)
⊗A

((
I − η0Kxi+k+1

⊗Kxi+k+1

)
+ η0Ξi+k+1

) (
fi+k − f∗

ρ

)]
= E

[(
fi − f∗

ρ

)
⊗AE

[((
I − η0Kxi+k+1

⊗Kxi+k+1

)
+ η0Ξi+k+1

)] (
fi+k − f∗

ρ

)]
= E

[(
fi − f∗

ρ

)
⊗ (A(I − η0Σ))

(
fi+k − f∗

ρ

)]
= E

[(
fi − f∗

ρ

)
⊗A(I − η0Σ)k+1

(
fi − f∗

ρ

)]
.

Similarly, we have

E
[(
fi+k+1 − f∗

ρ

)
⊗
(
fi − f∗

ρ

)]
= E

[
A(I − η0Σ)k+1

(
fi − f∗

ρ

)
⊗
(
fi − f∗

ρ

)]
,

from which the lemma is proved.

Lemma E.2. Consider SGD with averaged iterates defined in (17). Suppose ρ satisfy (29). Then for any 0 ≤ t ≤ n, we
have

E
[
f b
t ⊗ fv

t

]
= 0.

Proof. Solving the recursion of f b
t and fv

t defined in (5) and (6), we have

f b
t =

(
t∏

i=1

(I − η0Kxi
⊗Kxi

)

)
f0, f

v
t = η0

t∑
i=1

 t∏
j=i+1

(I − η0Kxj
⊗Kxj

)

Ξi.

By the special property of ρ, we have yt −
〈
f∗
ρ ,Kxt

〉
H is independent to Kxi for any 0 ≤ i ≤ n, thus we have

E
[
f b
t ⊗ fv

t

]
= E

( t∏
k=1

(I − η0Kxk
⊗Kxk

)

)
f0 ⊗ η0

t∑
i=1

 t∏
j=i+1

(I − η0Kxj ⊗Kxj )

Ξi


= E

( t∏
k=1

(I − η0Kxk
⊗Kxk

)

)
f0 ⊗ η0

t∑
i=1

 t∏
j=i+1

(I − η0Kxj
⊗Kxj

)

(yi − 〈f∗
ρ ,Kxi

〉
H

)
Kxi


= η0

t∑
i=1

E

( t∏
k=1

(I − η0Kxk
⊗Kxk

)

)
f0 ⊗

 t∏
j=i+1

(I − η0Kxj
⊗Kxj

)

Kxi

E
[(

yi −
〈
f∗
ρ ,Kxi

〉
H

)]
= 0.

Lemma E.3. Consider SGD with averaged iterates defined in (17). Then for any 0 ≤ t ≤ n, we have

E
[
f b
t ⊗ f b

t

]
⪰ f̃ b

t ⊗ f̃ b
t ;

E [fv
t ⊗ fv

t ] ⪰ E
[
f̃v
t ⊗ f̃v

t

]
.

Proof. We prove this by induction on t. The base case naturally holds. Assuming the lemma holds for t− 1, we prove this
also holds for t.

Notice that yt −
〈
f∗
ρ ,Kxt

〉
H, Kxt

and fi are independent to each other for any 0 ≤ i < t, thus we have

E [fv
t ⊗ fv

t ]

= E
[(
(I − η0Kxt ⊗Kxt) f

v
t−1 + η0Ξt

)
⊗
(
(I − η0Kxt ⊗Kxt) f

v
t−1 + η0Ξt

)]
= E

[
(I − η0Σ)

(
fv
t−1 ⊗ fv

t−1

)
(I − η0Σ)

]
+ η20 [(Kxt

⊗Kxt
) (fv

t−1 ⊗ fv
t−1) (Kxt

⊗Kxt
)] + η20E [Ξt ⊗ Ξt]

⪰ E
[
(I − η0Σ)

(
fv
t−1 ⊗ fv

t−1

)
(I − η0Σ)

]
+ η20E [Ξt ⊗ Ξt]

= E
[
f̃v
t ⊗ f̃v

t

]
.
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Similarly, we have E
[
f b
t ⊗ f b

t

]
⪰ f̃ b

t ⊗ f̃ b
t , from which the lemma is proved.

Combining the three lemmas above, we have

E
[〈(

fn − f∗
ρ

)
,Σ
(
fn − f∗

ρ

)〉
H

]
= E

tr
Σ

1

n

n−1∑
i=0

(
fi − f∗

ρ

)
⊗ 1

n

n−1∑
j=0

(
fj − f∗

ρ

)
= tr

Σ
1

n2

n−1∑
i=0

n−1∑
j=0

E
[(
fi − f∗

ρ

)
⊗
(
fj − f∗

ρ

)]
= tr

Σ
1

n2

n−1∑
i=0

 i∑
j=0

E
[
(I − η0Σ)

i−j (
f b
j + fv

j

)
⊗
(
f b
j + fv

j

)]
+

n−1∑
j=i+1

E
[(
f b
i + fv

i

)
⊗ (I − η0Σ)

i−j (
f b
i + fv

i

)]
= tr

Σ
1

n2

n−1∑
i=0

i∑
j=0

E
[
(I − η0Σ)

i−j
f b
j ⊗ f b

j + (I − η0Σ)
i−j

fv
j ⊗ fv

j

]
+ tr

Σ
1

n2

n−1∑
i=0

n−1∑
j=i+1

E
[
f b
i ⊗ (I − η0Σ)

i−j
f b
i + fv

i ⊗ (I − η0Σ)
i−j

fv
i

]
≥ tr

Σ
1

n2

n−1∑
i=0

i∑
j=0

E
[
(I − η0Σ)

i−j
f̃ b
j ⊗ f̃ b

j + (I − η0Σ)
i−j

f̃v
j ⊗ f̃v

j

]
+ tr

Σ
1

n2

n−1∑
i=0

n−1∑
j=i+1

E
[
f̃ b
i ⊗ (I − η0Σ)

i−j
f̃ b
i + f̃v

i ⊗ (I − η0Σ)
i−j

f̃v
i

]
= tr

Σ
1

n2

n−1∑
i=0

n−1∑
j=0

(
f̃ b
i ⊗ f̃ b

j + E
[
f̃v
i ⊗ f̃v

j

])
=
〈
f̃ b
n,Σf̃ b

n

〉
H
+ E

[〈
f̃v
n ,Σf̃v

n

〉
H

]
.

Thus, we have the following lower bound:
Lemma E.4. 2 Consider SGD with averaged iterates defined in (17). Suppose that η0 ≤ 1

λ1
. Then we have

max
ρ

E(x,y)∼ρ∥fn − f∗
ρ ∥2L2

≥ 1

n2ηs0
max
i∈N+

{
(1− (1− λiη0)

n)2(λiη0)
s−2
}∥∥∥Σ 1−s

2 (f0 − f∗
ρ )
∥∥∥2
H
+ σ2

(
1

16

k∗

n
+

1

64

+∞∑
i=k∗+1

nη20λ
2
i

)
,

where k∗ = maxi∈N+
{k : η0λk ≥ 1

n}.

Proof. Recall the proof of Lemma C.1, we have〈
f̃ b
n,Σf̃ b

n

〉
H

≥ 1

n2ηs0

∥∥∥∥∥
n−1∑
i=0

(I − η0Σ)i(η0Σ)
s
2

∥∥∥∥∥
2 ∥∥∥Σ 1−s

2 (f0 − f∗
ρ )
∥∥∥2
H
,

when we choose f∗
ρ that makes∥∥∥∥∥

n−1∑
i=0

(I − η0Σ)i(η0Σ)
s
2Σ

1−s
2 (f0 − f∗

ρ )

∥∥∥∥∥
H

=

∥∥∥∥∥
n−1∑
i=0

(I − η0Σ)i(η0Σ)
s
2

∥∥∥∥∥∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥
H
.
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That is, choose f∗
ρ = f0 −

∥∥∥Σ 1−s
2 (f0 − f∗

ρ )
∥∥∥
H
λ

s
2
q eq , where q = argmaxi∈N+

{
(1− (1− λiη0)

n)2(λiη0)
s−2
}

.

Recalling the proof of Lemma C.3, we have

E
[〈

f̃v
n ,Σf̃v

n

〉
H

]
=

1

n2
tr

n−1∑
j=1

η20

n−1∑
i=j

(I − η0Σ)i−j

2

ΣE [Ξi ⊗ Ξi]


=

σ2

n2
tr

n−1∑
j=1

η20

n−1∑
i=j

(I − η0Σ)i−j

2

Σ2


= σ2
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i=1

1

n2

n−1∑
j=1

(
1− (1− η0λi)

j
)2

+

+∞∑
i=k∗+1

1

n2

n−1∑
j=1

(
1− (1− η0λi)

j
)2

≥ σ2
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i=1

1

n2

n−1∑
j=⌈n

2 ⌉

(
1− exp

(
−η0λk∗

n

2

))2
+

+∞∑
i=k∗+1

1

n2

n−1∑
j=⌈n

2 ⌉

(
1− (1− η0λi)

n
2

)2
≥ σ2

(
k∗∑
i=1

1

n2

n

4

(
1− exp

(
− 1

n

n

2

))2

+

+∞∑
i=k∗+1

1

n2

n

4

(n
4
η0λi

)2)

≥ σ2

(
1

16

k∗

n
+

1

64

+∞∑
i=k∗+1

nη20λ
2
i

)
,

when we choose k∗ = argmaxi∈N+{k : η0λk ≥ 1
n}. Thus, we have proved there exists a ρ satisfying the inequality in the

lemma, from which the lemma is proved.

In the following, we show that in high-dimensional settings, when s > 1, there exists a region where SGD with averaged
iterates cannot achieve optimality.

Lemma E.5. Let c1dγ < n < c2d
γ for some fixed γ > 0 and absolute constants c1, c2. Consider X = Sd and the marginal

distribution µ to be the uniform distribution. Let K be the inner product kernel on the sphere. Consider γ, σ, κ, c1, c2 and
s > 1 as constants, the excess risk of the output of SGD averaged iterates favg

n cannot achieve optimality.

Proof. According to Lemma E.4, we have

max
ρ

E(x,y)∼ρ∥favg
n − f∗

ρ ∥2L2

= Ω

(
1

n2ηs0
max
i∈N+

{
(1− (1− λiη0)

n)2(λiη0)
s−2
}∥∥∥Σ 1−s

2 (f0 − f∗
ρ )
∥∥∥2
H
+ σ2

(
k∗

n
+

+∞∑
i=k∗+1

nη20λ
2
i

))

where k∗ = argmaxi∈N+
{k : η0λk ≥ 1

n}.

Under kernel K, k∗ defined above satisfies λk∗+1 = Θ
(
λk∗d−1

)
, so we assume k∗ = Θ(dp), p ∈ N, then η0 =

Θ(dp+rn−1), where 0 ≤ r < min{1, γ − p} is a arbitrary constant.

In the case 0 < s ≤ 2, using the inequality 1− (1− x)n ≥ 1
2 min{1, nx}, according to the proof of Lemma 5.2, we have

max
i∈N+

{
(1− (1− λiη0)

n)2(λiη0)
s−2
}
= Ω

(
inf

x0≤x<dx0

max
{
xs−2, n

(x
d

)s})
= Ω

(
d(

s
2−1)sn2−s

)
,

where x0 = argmax
0≤x≤1

min{1, nx}x s
2−1 = 1

n .
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We know
max
i∈N+

{
(1− (1− λiη0)

n)2(λiη0)
s−2
}
= Θ

(
d(

s
2−1)sn2−s

)
if and only if η0 = Θ(dp+

s
2n−1), p ∈ N and p < γ − s

2 .

When η0 = Θ(dp+rn−1) with 0 < r < min{ s
2 , γ − p}, we know

max
i∈N+

{
(1− (1− λiη0)

n)2(λiη0)
s−2
}
= Θ

(
dr(s−2)n2−s

)
When η0 = Θ(dp+rn−1) with s

2 < r < min{1, γ − p}, we know

max
i∈N+

{
(1− (1− λiη0)

n)2(λiη0)
s−2
}
= Θ

(
d(r−1)sn2−s

)
By contrast, in the case s > 2, we have

max
i∈N+

{
(1− (1− λiη0)

n)2(λiη0)
s−2
}
= Ω(1) .

Using σ2 = Ω(1),
∥∥∥Σ 1−s
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ρ )
∥∥∥2
H

= Ω(1),
∑+∞

i=k∗+1 λ
2
i = Θ(λk∗+1), and n = Θ(dγ), we have

max
ρ
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ρ ∥2L2

=



Ω (dp−γ) , 0 < s ≤ 1, γ ∈ [p(s+ 1), p(s+ 1) + s)

Ω
(
d−(p+1)s

)
, 0 < s ≤ 1, γ ∈ [p(s+ 1) + s, p(s+ 1) + s+ 1)

Ω (dp−γ) , 1 < s < 2, γ ∈ [p(s+ 1), p(s+ 1) + 1)

Ω
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d

−(p+1)s+(p−γ)+s−1
2

)
, 1 < s < 2, γ ∈ [p(s+ 1) + 1, p(s+ 1) + 2s− 1)

Ω
(
d−(p+1)s

)
, 1 < s < 2, γ ∈ [p(s+ 1) + 2s− 1, p(s+ 1) + s+ 1)

Ω (dp−γ) , s ≥ 2, γ ∈ [p(s+1)
s−1 ,

p(s+1)+ s
2

s−1 )

Ω
(
dp+

s−4
s+2 γ−

2ps+2p+s
s+2

)
, s ≥ 2, γ ∈ [

p(s+1)+ s
2

s−1 , p(s+1)+s+1
s−1 )

(29)

Similarly, we can prove that when n ≫ d, SGD with averaged iterates is suboptimal for any s > 2.
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F. Graphical illustration and Summary of Optimal Region
F.1. Graphical illustration of Theorem 5.1 and Theorem 5.2

In Figure 2, we provide a visual illustration of the convergence rate curves of the excess risk for SGD in the high-dimensional
setting n ≍ dγ , under source conditions with s = 0.5, 1, 5. For comparison, we also include KRR convergence curves
and the minimax optimal rate curves. These references highlight the saturation phenomenon of KRR for large s, and the
optimality of SGD across s > 0.

F.2. Summary of Optimal Region

In Table 1, we summarize the optimality regions (with respect to the source condition parameter s) of various algorithms,
including SGD, KRR, and GD with early stopping under both high-dimensional and asymptotic settings.

In the high-dimensional setting:

• SGD is optimal for s > 0 (Theorem 5.1 and Theorem 5.2).

• KRR is optimal for 0 < s ≤ 1 (Zhang et al., 2024b), but for s > 1, there exists a range of γ where it fails to be
optimal (Zhang et al., 2024b).

• GD with early stopping is optimal for all s > 0 (Lu et al., 2024b).

In the asymptotic setting:

• SGD is optimal for s ≥ 1
d+1 (Theorem 5.3 and Theorem 5.4).

• KRR is optimal for 0 < s ≤ 2 (Caponnetto & De Vito, 2007; Smale & Zhou, 2007; Blanchard & Mücke, 2018; Li
et al., 2022; Zhang et al., 2024a), but not for s > 2 (Cui et al., 2021; Li et al., 2023).

• GD with early stopping is optimal for all s > 0 (Raskutti et al., 2014).

High-Dimensional Setting(n ≍ dγ) Asymptotic Setting(n ≫ d)
SGD s > 0 s ≥ 1

d+1

KRR 0 < s ≤ 1 0 < s ≤ 2

GD with Early Stopping s > 0 s > 0

Table 1. Optimal Region for Algorithms mentioned.
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(a) (b)

(c) (d)

(e) (f)

Figure 2. Convergence Rate of SGD and KRR with respect to n and d, we present 6 graphs corresponding to source conditions with
s = 0.5, 1, 5. The x-axis represents the asymptotic scaling γ : n ≍ dγ ; the y-axis represents the convergence rate of excess risk: excess
risk ≍ nα or excess risk dβ . 35


