
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116
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Abstract
Deep recommender systems rely heavily on large embedding tables

to handle high-cardinality categorical features such as user/item

identifiers, and face significant memory constraints at scale. To

tackle this challenge, hashing techniques are often employed to

map multiple entities to the same embedding and thus reduce the

size of the embedding tables. Concurrently, graph-based collab-

orative signals have emerged as powerful tools in recommender

systems, yet their potential for optimizing embedding table reduc-

tion remains unexplored. This paper introduces GraphHash, the first
graph-based approach that leverages modularity-based bipartite

graph clustering on user-item interaction graphs to reduce embed-

ding table sizes. We demonstrate that the modularity objective has a

theoretical connection to message-passing, which provides a foun-

dation for our method. By employing fast clustering algorithms,

GraphHash serves as a computationally efficient proxy for message-

passing during preprocessing and a plug-and-play graph-based

alternative to traditional ID hashing. Extensive experiments show

that GraphHash substantially outperforms diverse hashing base-

lines on both retrieval and click-through-rate prediction tasks. In

particular, GraphHash achieves on average a 101.52% improvement

in recall when reducing the embedding table size by more than 75%,

highlighting the value of graph-based collaborative information for

model reduction.
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1 Introduction
The explosive growth of online content has made deep recom-

mender systems (RecSys) essential for content discovery, prod-

uct suggestions, and targeted advertising in vast digital ecosys-

tems [2, 7, 53]. Large-scale deep RecSys face a critical challenge:

their embedding tables, which map each unique value of categor-

ical features like user and item identifiers (IDs) to a dense vector,

consume vast amounts of memory due to the high cardinality of

these categorical features [13, 19, 22, 28, 33, 34, 51]. For example,
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with more than 3B monthly active users worldwide, a single user

embedding table for a recommendation model at Meta can easily

consume hundreds of GB of memory [22]. This increased memory

footprint raises hardware requirements and training costs, poten-

tially limiting model deployability and scalability [13, 19, 22, 51].

To address such a challenge, a common solution is the "hashing
trick"—assigning IDs to a smaller number of buckets, effectively

reducing the embedding table size by having different users or

items share the same embedding [13, 19, 33, 41, 46, 51]. A com-

monly used hashing function in practice is the modulo operation,

which assigns entities to buckets solely based on their IDs. While

this approach reduces the number of rows in embedding tables,

it also introduces collisions by forcing dissimilar entities to share

the same embedding, leading to significant degradation in model

performance [19, 33, 51]. To improve this baseline random hashing,

researchers have considered applying the double hashing technique

to mitigate collisions, as well as incorporating features and the fre-

quency information [13, 19, 33, 41, 51].

While existing embedding table reduction in RecSys has mostly

relied on ID-based or feature-based hashing techniques [13, 19,

28, 33, 41, 51], the field has simultaneously witnessed the rise of

collaborative information derived from user-item interactions as a

powerful tool. This trend has evolved from classical collaborative fil-

tering to state-of-the-art graph learning approaches [25, 27, 43, 45],

highlighting the power of relational data in enhancing recommen-

dation quality. Despite this parallel development, the potential of

leveraging collaborative signals for optimizing user/item bucket as-

signments in model reduction remains largely unexplored. Among

various forms of collaborative information, graph representations of

user-item interactions have proven particularly effective in recent

recommender models. Conventional methods for incorporating this

graph information typically rely on message-passing, where embed-

dings are computed by iteratively aggregating and transforming

the embeddings of neighboring nodes. This approach effectively

captures the rich structural information inherent in user-item inter-

action graphs, leading to remarkable improvements in recommen-

dation quality. However, message-passing on large-scale graphs

involves operations on massive (sparse) matrices, which increase

computational requirements and pose challenges for deployment

in industry settings where both recommendation quality and effi-

ciency are critical considerations [17, 18, 21, 23, 52, 54].

The above observations motivate the following critical question:

How can we leverage graph information to design hashing
functions for embedding table reduction, offering a more
efficient alternative to traditional message-passing?

In this paper, we propose GraphHash, a novel approach that lever-

ages modularity-based bipartite graph clustering [5] on the user-

item interaction graph to reduce the number of rows in embed-

ding tables. Unlike traditional hash functions, GraphHash clusters

1
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the user-item interaction bipartite graph to group "similar" enti-

ties based on their interaction patterns, thus generating user/item

bucket assignments that better align with the structure of the data

when reducing embedding tables. Our choice of modularity-based

bipartite graph clustering is motivated by two key factors: first,

we demonstrate that based on a random walk interpretation of

the modularity maximization objective [5], GraphHash can be re-

garded as a coarser yet more efficient way to perform the smoothing

over the embeddings offered by message-passing, providing a solid

foundation for our method. Second, the broad availability of ef-

ficient modularity optimization algorithms, such as the Louvain

method [6] that employs local greedy heuristics, enables GraphHash
to scale effectively to large-scale user-item interaction graphs. As a

result, our approach provides a computationally efficient and easily

implementable solution for model reduction in large-scale recom-

mender systems by leveraging the user-item interaction graph.

Despite its simplicity in implementation (Algorithm 1), GraphHash
achieves substantial performance improvements. It introduces a

novel way of utilizing graph information during preprocessing,

serving as a scalable and practical alternative to message-passing.

This makes GraphHash particularly advantageous for industrial ap-

plications where computational and parameter efficiency, combined

with ease of implementation, are crucial.

Our contributions can be summarized as follows:

• Theoretically, we demonstrate that modularity-based clustering

offers a coarser yet more efficient alternative to the smoothing

effect of message-passing on embeddings.

• Building on this theoretical insight, we introduce GraphHash, the
first graph-based method to effectively utilize the user-item in-

teraction graph for reducing embedding table size. Our approach

employs modularity-based bipartite graph clustering, tailored for

scalability in large graphs, and acts as a simple, plug-and-play

solution for ID hashing in recommender systems. This combina-

tion of efficiency and ease of implementation makes GraphHash
a practical and powerful tool for improving RecSys performance.

• We conduct extensive evaluations against diverse hashing base-

lines, showing GraphHash’s superior performance in both re-

trieval and click-through-rate (CTR) prediction tasks
1
. On aver-

age, with fewer parameters, GraphHash outperforms the strongest

baseline by 101.52% in recall and 88.33% in NDCG for retrieval,

while achieving a 2.9% improvement in LogLoss and a 0.2% gain

in AUC for CTR.

• Through comprehensive ablation studies across a wide range of

experimental settings, we empirically validate our theoretical in-

sights and reveal key findings on the robustness and sensitivity of

different design choices in our approach. These results highlight

the adaptability and reliability of GraphHash across varying con-

ditions, paving the way for future optimization and refinement

in graph-based model reduction.

2 Related Work
Hashing Techniques in RecSys. Embedding tables, where each row

stores the embedding for a user or item, require substantial memory

due to the vast number of entities in online platforms. A simple yet

1
The implementation of GraphHash along with all baselines and backbones are avail-

able at https://anonymous.4open.science/r/GraphHash2024-1BD8.

effective way to reduce the size of these tables is through the "hash-

ing trick," which randomly hashes unique IDs into a smaller set of

values using operations like modulo [46]. Although this approach

inevitably leads to collisions, its simplicity has made it widely used

in practice. To mitigate collisions, methods such as double hashing

and incorporating frequency information have been shown to be

important for enhancing model performance [19, 51]. Nonetheless,

most prior reduction techniques have focused on ID- or feature-

based heuristics, overlooking the user-item interaction information.

In this work, we introduce the first graph-based approach for em-

bedding table reduction, integrating interaction information with

efficient bipartite graph clustering.

Graph Clustering. Graph clustering is a fundamental technique

for dimensionality reduction and has been applied in numerous

real-world tasks, including more recent ones such as mining higher-

order relational data [49], and retrieval-augmented generation in

large language models [16]. Common classes of graph clustering

include spectral clustering [15, 37], local graph clustering [3] and

flow-based clustering [40]. In this work, we choosemodularitymaxi-

mization [5, 32, 36] as the clustering objective, due to its underlying

connection with message-passing and computational efficiency,

making it well-suited for large-scale graphs in RecSys.

Graph Learning Beyond Message-Passing. Graph learning has

emerged as a powerful framework for processing relational data [30,

42, 50], with most models following the message-passing para-

digm [20], under which node embeddings are computed by recur-

sively aggregating information from all neighboring nodes. How-

ever, such a way of integrating the graph in the forward pass also

introduces practical challenges, such as scalability with large graphs

and oversmoothing, where increasing model depth soon leads to

degrading performance [38, 47]. These challenges drive the need

for alternative graph learning paradigms. Broadly, existing graph

learning methods can be categorized by their use of graphs during

preprocessing, training, or inference [54]. In RecSys, traditional col-

laborative filtering and GNN-based methods use the graph during

training [25, 31, 45], while recent methods like TAG-CF leverage it

during test-time inference. [27]. Our approach, GraphHash, intro-
duces a novel use of graph structure during preprocessing.

3 Method: GraphHash
In this section, we outline the road map leading to our proposed

method, GraphHash. To provide context, we begin with a brief

overview of representation learning in deep RecSys, where recom-

mendations are generated by interacting user and item embeddings,

capturing the essential relationships between entities. This back-

ground helps illustrate how bipartite graph structures naturally

emerge from user-item interactions in tasks such as retrieval and

CTR prediction. We then introduce modularity-based graph clus-

tering, the foundation of our method, which aims to group simi-

lar entities based on interaction patterns. Finally, we explore the

connection between the modularity maximization objective and

message-passing techniques, offering deeper theoretical insights

into the mechanics underlying GraphHash.

3.1 Embedding in Deep RecSys
Recommendations are generated by “interacting” user and item

embeddings, typically through computing the dot product between

2
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corresponding rows of the user and item embedding matrices [19].

In deep RecSys, these embeddings are learned representations that

map high-dimensional data—such as user preferences or item char-

acteristics—into lower-dimensional vectors, capturing the essential

relationships between users and items. These representations are

stored in embedding tables, with separate tables for users and items.

The embeddings play a central role in two key tasks: retrieval

and click-through rate (CTR) prediction. For retrieval, the system

suggests relevant items by comparing the similarity between user

and item embeddings, while CTR prediction estimates the likelihood

of user engagement with a specific item. Both tasks rely heavily on

modeling user-item interactions, often represented as a bipartite

graph, where users and items form the nodes, and interactions such

as clicks, purchases, or ratings form the edges [25, 43, 45].

With the huge number of entities in online platforms, embed-

ding tables modern recommender systems can easily take hundreds

of GB of memory footprint. While commonly adopted hashing

tricks [19, 51] can effectively reduce the number of rows, the unde-

sired collisions would negatively affect the recommendation accu-

racy. Therefore, aside frommitigating collisions bymapping entities

to a larger set [51], another effective solution would be to map “sim-

ilar” entities—those with similar interaction patterns—into the same

embedding [19]. Graph clustering, which effectively groups entities

based on their interaction patterns, can help achieve this, reducing

the impact of collisions while preserving recommendation quality.

3.2 Modularity-based Graph Clustering
To implement our clustering approach, we rely on modularity, a

widely used objective for graph clustering [5, 6, 14, 32, 36, 40].

Modularity-based clustering groups similar entities based on the

density of their connections, ensuring that densely connected en-

tities share the same embedding. Specifically, for clustering the

user-item bipartite graph, we adopt the modularity definition for

bipartite graphs proposed in [5]: given the set of users U ⊂ N
and set of items I ⊂ N, the adjacency matrix 𝐴 ∈ R |U |× |I |

of

the user-item bipartite graph G(U,I, E), which encodes the set of

user-item interaction pairs E, is defined as

𝐴𝑢𝑖 =

{
1 (𝑢, 𝑖) ∈ E
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 .

Thenmodularity of a cluster assignements P for the bipartite graph

G is defined as

𝑄 =
1

𝑚

∑︁
C∈P

∑︁
𝑢,𝑖∈C

(
𝐴𝑢𝑖 −

𝑘𝑢𝑑𝑖

𝑚

)
,

where 𝑚 = |E | is the number of edges in G, 𝑘𝑢 =
∑

𝑗 𝐴𝑢 𝑗 is the

degree of user𝑢, and𝑑𝑖 =
∑

𝑗 𝐴 𝑗𝑖 is the degree of item 𝑖 . The optimal

cluster assignments P∗
in terms of modularity is then found by

maximizing 𝑄 .

Directly optimizing modularity is NP-hard [9]. In practice, opti-

mal partitions can be found by modularity optimization algorithms.

One of the most popular and state-of-the-art modularity optimiza-

tion method is the Louvain method [6], which is based on greedy

heuristics and enables efficient clustering even on graphs with bil-

lions of nodes [6].
2
Denote the algorithm as A, then the clustering

assignment of node 𝑥 is given by A(𝑥).

Algorithm 1 Example GraphHash implementation with Louvain

""" ID hashing """
louvain = Louvain(resolution=resolution)
louvain.fit(train_data, force_bipartite=True)
user_hashed_id = map_to_consec_int(louvain.labels_row_)
item_hashed_id = map_to_consec_int(louvain.labels_col_)
""" build model with hashed user/item ID vocab """
user_vocab = np.unique(user_clusters)
item_vocab = np.unique(user_clusters)
model = MFRetriever(user_vocab, item_vocab, emb_dim)
""" model training """
for user_id, item_id in train_data:

pos_score = model(user_hashed_id[user_id],
item_hashed_id[item_id])

... # negative sampling, BPR loss, etc

3.3 GraphHash
With the clustering assignments obtained through modularity-

based graph clustering, we can now extend this approach to de-

fine the hashing mechanism of GraphHash. Given the set of users

U ⊂ N and items I ⊂ N, a hash function H assigns these IDs to a

smaller set of buckets, B ⊂ N. In this setup, users or items within

the same bucket will share the same embedding in the correspond-

ing embedding table.

The clustering assignments provided by the modularity opti-

mization algorithm A offer a natural way to define these bucket

assignments. By leveraging the dense connections between users

and items—reflecting similar behaviors or preferences—we can im-

prove recommendation quality while maintaining the memory bud-

get. Formally, the bucket assignments are derived from the cluster

assignments A(U) and A(I). To ensure consistent and ordered

assignments, a relabeling function ℓ maps the clusters to consecu-

tive integers based on the order of their appearance in A(U) and
A(I). GraphHash can then be defined as:

GraphHash(𝑥) = ℓ (A(𝑥)), ∀𝑥 ∈ U,I . (1)

Algorithm 1 gives an example pseudocode for implementing

GraphHash with the Louvain algorithm on a matrix factorization

retriever. This approach requires minimal changes to existing code

and can be easily integrated in a plug-and-play manner into any

recommender model that uses embedding tables.

While graph clustering differs from traditional hash functions

in various ways, one key property of regular hash functions that

GraphHash shares is that given the user-item interaction graph, it

is deterministic when A is the Louvain algorithm:

Proposition 3.1. Given G(U,I, E), whereU,I are finite sub-
sets of N, and A is the Louvain algorithm. Then GraphHash(·) :

U,I → {1, 2, ..., |P∗ |} is a deterministic function.

2
In the implementation of our method, we make use of the function provided in the

scikit-network library [8].

3
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The proof can be found in Appendix A. As such, one advantage

of GraphHash is that it behaves like a regular hash function, mak-

ing it easy to integrate with existing techniques such as double

hashing, which was proposed to reduce the collision rate between

embeddings of different entities during hashing [51]. By using a

regular random hash function H and GraphHash, we derive a nat-
ural variant of our method to improve collision mitigation, which

we referred as DoubleGraphHash:

DoubleGraphHash(𝑥) = (H (𝑥), GraphHash(𝑥)),∀𝑥 ∈ U,I . (2)

Similarly as discussed in [51], the combination ofH and GraphHash
can be viewed as an approximation of a hashing into a set of larger

cardinality to mitigate collisions between embeddings of different

entities when reducing the number of rows in a embedding table.

3.4 Why Modularity? A RandomWalk
Perspective

While various graph clusteringmethods exist, the use of modularity-

based graph clustering as an alternative to hashing has a fundamen-

tal, albeit implicit, connection with message-passing techniques

that have proven effective in RecSys models [25, 45]. The link be-

comes apparent when considering the random walk interpretation

of modularity [14, 32]: under modularity, an optimal clustering

assignment is one where a random walker is the most likely to re-

main within its starting cluster compared to chance. Based on this

criterion, modularity can be rewritten in the following expressions:

𝑄 =
∑︁
C∈P

∑︁
𝑢,𝑖∈C

(
𝐴𝑢𝑖

𝑑𝑖

𝑑𝑖

𝑚
− 𝑘𝑢𝑑𝑖

𝑚2

)
=

∑︁
C∈P

∑︁
𝑢,𝑖∈C

(
𝐴𝑖𝑢

𝑘𝑢

𝑘𝑢

𝑚
− 𝑘𝑢𝑑𝑖

𝑚2

)
.

Essentially, modularity𝑄 computes the probability of starting in

a cluster C, and still being in a cluster C after one step of unbiased

random walk minus the probability that two independent random

walkers are in C, evaluated at large-time asymptotic.

On the other hand, one iteration of message-passing can be

written as

𝑋 ′
U = 𝐷

−1/2
U 𝐴𝐷

−1/2
I 𝑋I , 𝑋 ′

I = 𝐷
−1/2
I 𝐴⊤𝐷−1/2

U 𝑋U , (3)

where 𝑋U , 𝑋I are the user and item embeddings, respectively, and

𝐷U , 𝐷I are the diagonal degree matrices for users and items, re-

spectively. This operation essentially recursively smoothes a node’s

embedding with the embeddings of its neighboring nodes [25,

48]. From a random walk perspective, one can directly interpret

message-passing in (3) as a random walker starting from each root

node, then update the root node’s embedding with the embed-

dings of other nodes in the reachable neighborhood, weighted by

the corresponding unbiased random walk transition probabilities

𝐷−1𝐴 (up to a left and right matrix transformation at both ends):

𝑋 ′ = 𝐷1/2 (𝐷−1𝐴)𝐷−1/2𝑋 . However, a natural question to pose for

the message-passing process is: when should the random walker

stop, i.e., which neighbors should each node use for smoothing?

The number of message-passing layers in a model directly affects

the smoothness of the embeddings, which in turn impacts down-

stream task performance. Yet message-passing methods such as

LightGCN treat it as a hyperparameter requiring manual tuning on

a case-by-case basis to achieve optimal results [25].

Under this randomwalk interpretation ofmodularity, GraphHash
can be seen as a coarser but more efficient way to perform smooth-

ing over the graph, similar to iterative message-passing. There are

two key differences: 1) rather than being set as a hyperparameter,

the random walk’s stopping point is now automatically determined

by maximizing modularity so that the probability of staying in the

starting cluster is maximized; 2) GraphHash fully smooths node em-

beddings within the same cluster, while message-passing gradually

smooths embeddings through the iterative process in (3). Although

this approach sacrifices some granularity in node embeddings com-

pared to iterative message-passing, this trade-off allows for greater

computational efficiency: GraphHash simplifies the process by fully

smoothing node embeddings within the same cluster in a single

step, rather than iteratively computing them over multiple layers.

4 Research Questions
Weare interested in investigating the following aspects of GraphHash:

RQ1 How does hashing based on the graph information compared

with pure ID-based or feature-based hashing methods?

RQ2 Is the graph information more beneficial to power or tail users?

RQ3 How would the training objective affect the model performance

with hashing?

RQ4 How would hashing based on the graph information help if the

backbone model also uses the graph information?

RQ5 How would different graph clustering objectives affect the model

performance?

5 Evaluation of GraphHash’s Effectiveness
In this section, we validate the effectiveness of our proposed GraphHash,
and answer RQ1 and RQ2 above.

5.1 Experimental Setup
We benchmark all hashing methods for embedding table reduction

on two key recommendation tasks: context-free top-k retrieval and

context-aware click-through-rate (CTR) prediction. Here, context-

free means that models do not use any additional feature informa-

tion other than the IDs of users or items, whereas context-aware

models utilize complimentary contextual features in addition to the

user or item IDs [41]. Due to the nature of our method, we select

publicly available datasets where user ID and item ID are explicitly

available. Namely, Gowalla [12], Yelp2018 and AmazonBook [1] for

retrieval, and Frappe [4], MovieLens-1M, and MovieLens-20M [24]

for CTR. Further details on datasets are provided in Appendix B.

5.1.1 Backbones. We use matrix factorization (MF) [31], Neural

Matrix Factorization (NeuMF) [26], LightGCN [25], andMF+DirectAU

(DAU) loss [43] as backbones for the retrieval task, where the first

three are trained with the Bayesian Personalized Ranking (BPR)

loss [39]; we use WideDeep [10], DLRM [35], and DCNv2 [44], all

trained with binary cross entropy loss (LogLoss) for the CTR task.

5.1.2 Baselines. We evaluate GraphHash against the following

baseline hashing methods:

• Random: we apply modulo operation to IDs.

• Frequency [19, 51]: we allocate half the number of buckets to

individual users/itemswith the highest frequencies in the training

data, and apply random hashing to the rest.
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• Double [51]: we apply two hash functions to IDs and generate

two hash codes for each entity and sum the corresponding entries

in the embedding table up as the embedding for the entity.

• Double frequency [51]: similar to frequency, we allocate half

the number of buckets to individual users/items that have the

highest frequencies in the training data. We then apply double

hashing to the rest of the entities.

• LSH: we apply locally sensitive hashing (LSH) to user/item fea-

tures, if features are available.

• LSH-structure: we treat one-hop neighbor patterns in the user-

item interaction graph as the features (A as the feature matrix

for users and A⊤
as the feature matrix for items) and apply LSH

hashing. This can been seen as an alternative way to use the

graph structure for user/item bucket assignments.

For reference, we also include the results of models without

hashing (full).
We implemented all the backbones, baselines, and our approaches

with PyTorch. For a fair comparison, all the implementations were

identical across all the models except for the hashing component

and the resulting embedding table. More details about the experi-

mental setup and training can be found in Appendix C.

5.2 Performance Comparison (RQ1)
5.2.1 Performance in retrieval task. Table 1 reports the mean and

standard deviation of the standard retrieval evaluation metrics,

Recall@20 and NDCG@20 (in percentage), over 5 independent

runs using the best hyperparameters. We see that our proposed

method GraphHash achieves the best performance across datasets

and backbones, and the improvements over the strongest baseline

are substantial, with an average of 101.52% increase in Recall@20

and 88.33% in NDCG@20.

The only exception occurs in the Yelp2018 dataset when employ-

ing MF+DirectAU loss as the backbone, where our method slightly

underperforms compared to double frequency hashing. Notably,

all hashing methods exhibit a significant performance drop when

transitioning from BPR loss to DirectAU loss. We conduct a thor-

ough examination of this phenomenon in Section 6.1, where we

present a detailed ablation study on the DirectAU loss function and

its impact on the model performance.

5.2.2 Performance in CTR task. Table 2 reports the mean and stan-

dard deviation of the standard CTR evaluation metrics, LogLoss and

AUC (Area Under the ROC Curve), over 5 independent runs using

the best hyperparameters. Unlike the case for the retrieval task, our

proposed method GraphHash does not perform as ideal. We then

further consider a variant of our method, DoubleGraphHash in (2),

which combines GraphHashwith another random hashing function

based on the double hashing technique [51] to mitigate collisions.

We see that DoubleGraphHash achieves much better performance

than GraphHash on CTR tasks and in fact, the best performance

across datasets and backbones.

5.2.3 The impact of collisions on retrieval vs. CTR performance.
Comparing the results for retrieval and CTR tasks, we make the

following observations: 1) GraphHash performs the best in the re-

trieval task but falls short in the CTR task; 2) DoubleGraphHash,
which incorporates double hashing, is the top performer for the

CTR task; and 3) while double hashing methods underperform in

the retrieval task, they are much stronger baselines for CTR. These

findings suggest that pure user-item interaction information is more

directly beneficial for retrieval, where collision is less of an issue.

In contrast, for the CTR task, collision avoidance techniques are

essential for improving performance.

5.3 User Subgroup Evaluation (RQ2)
Next, we examine model performance across different user groups,

categorized by their frequency percentile in the training data. For

the retrieval task, we aggregate the metrics within each degree

subgroup. For the CTR task, we divide the clicks in the test set

based on the user subgroup that generated the click. Figures 1 and 3

showcase the results for the retrieval and CTR tasks, respectively.

For the retrieval task, incorporating frequency information gen-

erally benefits power users, regardless of the backbone model used.

In contrast, GraphHash achieves more balanced performance across

all user groups, closely resembling the trend of models without

hashing. For the CTR task, all methods, including those without

hashing, tend to perform better for clicks generated by power users.

Notably, DoubleGraphHash, which delivers the best overall perfor-

mance, also performs better for power users than for tail users.

These observations suggest the fundamental differences between

the retrieval and CTR tasks. Nevertheless, the user-item interaction

graph benefits model performance in both tasks, with different

variants of the method optimizing for their specific characteristics.

6 Method Analysis
In this section, we conduct further ablation studies investigating

various aspects of our approach, providing deeper insights into its

function, robustness and adaptability across different scenarios.

6.1 The Impact of Training Objective (RQ3)
For the retrieval task, we have considered two popular loss func-

tions when training the backbone MF model: the BPR loss and

the DirectAU loss. As shown in Table 1, while DirectAU performs

better on MF models without hashing, the performance drops sig-

nificantly for all hashing-based methods when switching from BPR

to DirectAU. This finding aligns with recent results in the literature,

suggesting that DirectAU may not be compatible with hashing-

based methods [41].

To further investigate this phenomenon, we conduct an addi-

tional set of experimentswith varying values of𝛾 in [0.25, 0.5, 1, 2, 5]3,
the strength of the uniformity term in the DirectAU loss, and com-

pare the model performance without hashing, with double fre-

quency hashing (the strongest baseline), and with GraphHash in

terms of Recall@20 on Gowalla and Yelp2018. The results in Figure 2

show that while both the model without hashing and GraphHash
are quite robust to changes in 𝛾 , there exists a specific sweet spot

for the value of 𝛾 under double frequency hashing. The correspond-

ing results in NDCG@20 can be found in Appendix D and exhibit

similar trends. This indicates that although hashing methods may

generally be less compatible with DirectAU than with BPR (Table 1),

GraphHash, by leveraging graph information, is more robust to the

choice of 𝛾 .

3
The same range considered in the original DirectAU paper [43].
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Table 1: Benchmark performance on the top-20 item retrieval task (values in percentage). The best performance is highlighted in bold, with
the second best underlined. Our method substantially outperforms the strongest baseline, achieving on average a 101.52% improvement
in Recall@20 and an 88.33% improvement in NDCG@20. Note that we deliberately control the number of rows in the embedding tables of
GraphHash to be smaller than all the baselines, while keeping the rest of backbone models identical, to emphasize the point that GraphHash
obtains improvements even with shorter embedding tables.

Gowalla Yelp2018 AmazonBook

# params Recall@20 (↑) NDCG@20 (↑) # params Recall@20 (↑) NDCG@20 (↑) # params Recall@20 (↑) NDCG@20 (↑)

MF

full 4.534M 15.617±0.133 9.661±0.096 4.462M 7.779±0.069 4.951±0.036 9.231M 7.711±0.197 4.951±0.111

random 0.744M 0.766±0.019 0.382±0.017 0.977M 0.546±0.012 0.315±0.012 1.258M 0.185±0.007 0.113±0.005

double 0.744M 2.618±0.086 1.604 ±0.073 0.977M 1.355±0.111 0.850±0.034 1.258M 0.767±0.027 0.525±0.017

frequency 0.744M 3.679±0.043 2.429±0.016 0.977M 2.401±0.034 1.624±0.020 1.258M 1.287±0.020 0.918±0.013

double frequency 0.744M 3.888 ±0.055 2.532±0.041 0.977M 2.478±0.032 1.665±0.027 1.258M 1.311±0.023 0.919±0.021

LSH-structure 1.049M 1.106±0.054 0.617 ±0.035 1.049M 0.729±0.038 0.460 ±0.018 2.097M 0.452±0.033 0.290±0.024

GraphHash (ours) 0.742M 9.300±0.064 5.512±0.019 0.976M 3.699 ±0.077 2.325±0.040 1.255M 3.970±0.045 2.667±0.037

NeuMF

full 9.084M 13.305±0.104 8.096±0.076 8.940M 6.260±0.088 3.805±0.062 18.480M 6.452±0.163 4.098±0.109

random 1.505M 0.926±0.022 0.437±0.011 1.971M 0.594±0.037 0.334±0.023 2.533M 0.203±0.019 0.131±0.013

double 1.505M 4.718±0.239 2.934±0.169 1.971M 2.945±0.082 1.777±0.060 2.533M 1.316±0.036 0.815±0.036

frequency 1.505M 3.518±0.027 2.256±0.027 1.971M 2.269±0.051 1.472±0.037 2.533M 1.187±0.029 0.821±0.062

double frequency 1.505M 4.477±0.079 2.719±0.140 1.971M 2.941±0.176 1.753±0.101 2.533M 1.415±0.031 0.926±0.028

LSH-structure 2.114M 1.098±0.121 0.608±0.093 2.114M 0.648±0.127 0.399±0.097 4.211M 0.445±0.032 0.289±0.020

GraphHash (ours) 1.501M 7.886±0.084 4.565±0.054 1.970M 3.150±0.084 1.969±0.051 2.527M 3.842±0.049 2.477±0.028

LightGCN

full 4.534M 18.321±0.348 11.534±0.096 4.462M 8.889±0.079 5.549±0.048 9.231M 8.471±0.342 5.501±0.236

random 0.744M 9.214±0.033 5.909±0.022 0.977M 4.894±0.017 3.114±0.010 1.258M 2.485±0.074 1.704±0.047

double 0.744M 9.277±0.140 6.012±0.071 0.977M 5.305±0.103 3.359±0.080 1.258M 2.410±0.039 1.662±0.022

frequency 0.744M 8.574±0.017 5.480±0.019 0.977M 4.931±0.031 3.142±0.017 1.258M 2.184±0.021 1.497±0.013

double frequency 0.744M 9.880±0.199 6.414±0.135 0.977M 5.987±0.030 3.855±0.030 1.258M 2.783±0.027 1.869±0.018

LSH-structure 1.049M 9.780±0.041 6.291±0.060 1.049M 4.789±0.034 3.025±0.031 2.097M 3.279±0.048 2.199±0.020

GraphHash (ours) 0.742M 15.325±0.127 9.658±0.054 0.976M 6.244±0.088 3.882±0.054 1.255M 7.261±0.034 5.033±0.023

MF + DAU

full 4.534M 17.984±0.055 11.633±0.020 4.462M 11.081±0.021 7.207±0.013 9.231M 10.264±0.025 6.899±0.015

random 0.744M 0.478±0.031 0.260±0.016 0.977M 0.429±0.008 0.255±0.007 1.258M 0.159±0.003 0.100±0.003

double 0.744M 0.551±0.051 0.362±0.032 0.977M 0.401±0.017 0.263±0.014 1.258M 0.188±0.010 0.124±0.008

frequency 0.744M 1.487±0.007 1.305±0.015 0.977M 1.107±0.019 0.980±0.021 1.258M 0.797±0.013 0.758±0.016

double frequency 0.744M 3.440±0.121 2.677±0.074 0.977M 2.536±0.033 1.903±0.025 1.258M 1.466±0.026 1.218±0.028

LSH-struc 1.049M 0.809±0.007 0.433±0.013 1.049M 0.419±0.025 0.252±0.010 2.097M 0.390±0.018 0.236±0.009

GraphHash (ours) 0.742M 7.660±0.136 4.148±0.096 0.976M 2.458±0.049 1.414±0.033 1.255M 4.602±0.012 3.107±0.010
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Figure 1: Performance breakdown of the retrieval task by test user frequency in the training data. Frequency information tends to benefit
power users, regardless of the backbone model. In contrast, GraphHash achieves balanced performance across all user groups, closely mirroring
the trend of the full model.
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Figure 2: Impact of the uniformity term 𝛾 in DirectAU on model
performance. While the full model and GraphHash are robust to
changes in 𝛾 , double frequency hashing shows a sweet spot, sug-
gesting GraphHash enhances robustness to 𝛾 in hashing methods.

6.2 The Impact of Backbone GNN’s Depth (RQ4)
Given the theoretical connection between modularity-based graph

clustering and message-passing discussed in Section 3.4, we empir-

ically study the impact of the depth of the backbone GNN, specifi-

cally LightGCN here, on the performance of GraphHash. We vary

the depth of the LightGCN backbonemodel and the resulting perfor-

mance without hashing, with random hashing, and with GraphHash
in terms of Recall@20 on Gowalla and Yelp2018 are presented in Fig-

ure 4. The corresponding results in NDCG@20 can be found in Ap-

pendix D, which show similar trends. We see that while all these

three methods’ performance improve with the increasing backbone

depth, it tends to saturate after 3-4 layers, aligning with the obser-

vation in the original LightGCN paper [25]. Yet GraphHash consis-

tently outperforms random hashing at all depth levels and is able
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Table 2: Benchmark performance on the CTR task. The best performance is highlighted in bold, with the second best underlined. On average,
DoubleGraphHash reduces LogLoss by 0.008 and improves AUC by 0.002. Note that in high-precision tasks such as CTR prediction, even small
improvements can lead to substantial performance enhancements and significant business gains at scale [10, 44].

Frappe MovieLens-1M MovieLens-20M

# params LogLoss (↓) AUC (↑) # params LogLoss (↓) AUC (↑) # params LogLoss (↓) AUC (↑)

WideDeep

full 0.509M 0.248±0.012 0.980±0.001 0.695M 0.317±0.002 0.896±0.001 5.267M 0.321±0.000 0.895 ±0.000

random 0.221M 0.352±0.008 0.928±0.000 0.118M 0.372±0.002 0.850±0.000 0.744M 0.342±0.001 0.878±0.000

double 0.221M 0.478±0.140 0.968±0.001 0.118M 0.359±0.000 0.860±0.002 0.744M 0.340±0.001 0.880±0.000

frequency 0.221M 0.283±0.005 0.956±0.001 0.118M 0.382±0.002 0.842±0.002 0.744M 0.342±0.001 0.878±0.001

double frequency 0.221M 0.356±0.055 0.970±0.001 0.118M 0.365±0.003 0.855±0.002 0.744M 0.339±0.000 0.880±0.000

LSH - - - 0.141M 0.481±0.000 0.704±0.001 0.793M 0.446±0.000 0.767±0.000

LSH-structure 0.252M 0.342±0.028 0.932±0.008 0.141M 0.376±0.002 0.849±0.001 1.094M 0.349±0.002 0.872±0.002

GraphHash (ours) 0.218M 0.286±0.009 0.949±0.001 0.115M 0.384±0.001 0.841±0.001 0.744M 0.345±0.001 0.875±0.000

DoubleGraphHash (ours) 0.218M 0.265±0.060 0.972±0.001 0.115M 0.358±0.001 0.861±0.001 0.744M 0.337±0.001 0.881±0.001

DLRM

full 0.443M 0.194±0.022 0.982±0.001 0.725M 0.322±0.002 0.894±0.001 5.258M 0.321±0.001 0.893±0.001

random 0.155M 0.351±0.009 0.929±0.002 0.148M 0.373±0.001 0.848±0.001 0.735M 0.345±0.001 0.876±0.001

double 0.155M 0.246±0.029 0.970±0.001 0.148M 0.363±0.002 0.858±0.001 0.735M 0.341±0.001 0.879±0.001

frequency 0.155M 0.270±0.011 0.956±0.000 0.148M 0.381±0.001 0.841±0.001 0.735M 0.341±0.001 0.878±0.000

double frequency 0.155M 0.291±0.021 0.969±0.001 0.148M 0.375±0.006 0.848±0.004 0.735M 0.343±0.000 0.876±0.000

LSH - - - 0.171M 0.481±0.001 0.704±0.001 0.784M 0.448±0.000 0.764±0.001

LSH-structure 0.186M 0.358±0.022 0.928±0.007 0.171M 0.384±0.007 0.840±0.005 1.085M 0.352±0.001 0.869±0.001

GraphHash (ours) 0.152M 0.278±0.003 0.950±0.001 0.145M 0.383±0.002 0.840±0.001 0.735M 0.347±0.001 0.873±0.001

DoubleGraphHash (ours) 0.152M 0.231±0.011 0.973±0.001 0.145M 0.361±0.002 0.860±0.001 0.735M 0.339±0.000 0.880±0.000

DCNv2

full 1.289M 0.144±0.017 0.981±0.002 0.746M 0.310±0.001 0.900±0.001 5.290M 0.322±0.001 0.894±0.001

random 1.001M 0.320±0.004 0.930±0.001 0.169M 0.366±0.001 0.855±0.001 0.767M 0.338±0.000 0.881±0.000

double 1.001M 0.217±0.008 0.968±0.001 0.169M 0.358±0.001 0.862±0.001 0.767M 0.338±0.001 0.882±0.001

frequency 1.001M 0.241±0.003 0.956±0.000 0.169M 0.375±0.000 0.846±0.001 0.767M 0.337±0.000 0.881±0.000

double frequency 1.001M 0.223±0.016 0.968±0.002 0.169M 0.361±0.001 0.860±0.001 0.767M 0.337±0.000 0.881±0.000

LSH - - - 0.190M 0.480±0.000 0.704±0.000 0.817M 0.443±0.000 0.772±0.000

LSH-structure 1.032M 0.367±0.016 0.928±0.002 0.192M 0.368±0.003 0.852±0.003 1.117M 0.346±0.001 0.875±0.001

GraphHash (ours) 0.998M 0.263±0.001 0.951±0.001 0.166M 0.380±0.001 0.843±0.000 0.767M 0.343±0.001 0.877±0.001

DoubleGraphHash (ours) 0.998M 0.194±0.003 0.972±0.001 0.166M 0.356±0.001 0.864±0.000 0.767M 0.337±0.000 0.882±0.000
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Figure 3: Performance breakdown of the CTR task by user frequency in training data. All methods tend to perform better for clicks generated
by power users, and DoubleGraphHash, which obtains the best overall performance, also works better for clicks generated by power users than
for those generated by tail users.
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Figure 4: The impact of LightGCN’s depth on the performance
of different hashing methods. GraphHash consistently outperforms
random hashing. In particular, GraphHash without any additional
message-passing layers, performs roughly equal to random hashing
with one or two message-passing layers, where the performance in
the latter model can be sorely attributed to pure message-passing.

to recover roughly a similar percentage of the model performance

without hashing at each depth. Most interestingly, GraphHashwith-
out any additional message-passing layers, performs roughly equal

to random hashing with 1 or 2 message-passing layers, where the

performance in the latter model can be sorely attributed to message-

passing. This is in line with our theory that GraphHash can be seen

as a coarser but more efficient way to achieve a similar smoothing

effect to message-passing, at the alternative cost of performing

graph clustering during preprocessing.

6.3 Analysis of Embedding Smoothness
The smoothing effect of message-passing has been identified to

be helpful for node level tasks [48] and particularly for the effec-

tiveness of LightGCN in retrieval [25]. From the smoothing per-

spective, there are two key differences between GraphHash and

message-passing: 1) in GNNs such as LightGCN, the number of

message-passing layers is a hyperparameter that requires manual

tuning [25, 45], whereas the modularity maximization objective

in GraphHash automatically find the best neighborhood for each

node to perform smoothing. 2) In GNNs, smoothing is done through

iteratively applying message-passing, whereas in GraphHash, once
the optimal neighborhood is found for each node, embeddings are

smoothed to be identical within each neighborhood.
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Table 3: Average within cluster smoothness found by learning in
full models without hashing. Compared to the 2-hop neighborhood
for each node, GraphHash finds a better candidate neighborhood to
perform complete smoothing.

Gowalla Yelp2018

S(𝑋U, C) S(𝑋I, C) S(𝑋U, C) S(𝑋I, C)

MF

2-hop 15.046 12.345 3.987 3.718

GraphHash 8.324 7.628 1.848 1.592

LightGCN

2-hop 70.653 46.458 86.977 68.900

GraphHash 35.462 28.080 49.712 42.2439

We further investigate whether the user/item clusters found

by GraphHash, in which the embeddings of different users/items

would be fully smoothed, corresponds to good candidates found by

learning when the model has enough capacity, i.e. without hashing.

Here, we measure the average within cluster smoothness, nor-

malized by the number of entities in each cluster, for a cluster

assignment C on user embeddings 𝑋U by

S(𝑋U , C) = 1

|U|
∑︁
𝑢∈U

∑︁
𝑢′∈C(𝑢 )

∥𝑋𝑢 − 𝑋𝑢′ ∥2
2

|C(𝑢) | ,

and similarly for item embeddings 𝑋I by S(𝑋I , C).
We compare the cluster assignments C given by GraphHash,

against the two-hop neighborhood for each node, which corre-

sponds to the neighborhoods for smoothing when applying two

message-passing layers. The results computed on the embeddings

of MF and LightGCN without hashing on Gowalla and Yelp2018

are shown in Table 3. We make the following two observations:

1) GraphHash indeed finds a better candidate neighborhood to per-

form complete smoothing, as compared to the 2-hop neighborhood

for each node. This also makes sense as message-passing would not

completely smooth the embeddings within the 2-hop neighborhood

for each node. 2) Compared to the ones in MF, the embeddings in

LightGCN are less smooth, since message-passing would perform

further smoothing over them.

6.4 The Impact of Clustering Objective (RQ5)
As discussed in Section 3.4, the choice of the modularity objective

for clustering is based on its theoretical connection to message-

passing and its computational efficiency in practice. In this section,

we study how the clustering objective affects the model perfor-

mance in terms of accuracy and efficiency.

6.4.1 Modularity-based clustering at varying resolution. In Sec-

tion 3.4, we see that the modularity objective has a one-step ran-

dom walk interpretation and a generalized modularity extends this

to varying walk lengths [14, 32]. Such a generalized objective in

practice is achieved through a resolution hyperparameter in the

Louvain algorithm (Algorithm 1) [6], which essentially controls the

length of the random walk. Higher resolution values correspond to

shorter random walks, resulting in more clusters, smaller cluster

sizes, and thus larger embedding tables. Table 4 shows the retrieval

task performance of GraphHash under different resolution values,

along with a comparison to double frequency hashing (the strongest

baseline).

From Table 4 we can observe that GraphHash consistently out-

performs double frequency hashing at all resolution levels for the

Table 4: Impact of resolution in modularity clustering objective on
model performance in retrieval. GraphHash consistently outperforms
double frequency hashing across all resolution levels considered.

resolution

GraphHash double frequency

# param Recall (↑) NDCG (↑) # param Recall (↑) NDCG (↑)

MF

50 0.212M 7.296 3.798 0.216M 3.064 1.809

100 0.432M 8.894 4.908 0.436M 3.253 2.045

200 0.742M 9.393 5.448 0.744M 3.927 2.544

400 1.140M 9.733 6.032 1.140M 4.521 2.964

LightGCN

50 0.212M 15.365 9.766 0.216M 5.105 3.453

100 0.432M 15.783 9.950 0.436M 7.131 4.678

200 0.742M 15.388 9.661 0.744M 10.069 6.509

400 1.140M 15.289 9.531 1.140M 11.698 7.563

retrieval task. Moreover, while increasing resolution (and thus em-

bedding table size) improves performance for both GraphHash and

the baseline with the MF backbone, the resolution value has lit-

tle effect when using GraphHash with the LightGCN backbone,

unlike double frequency hashing which is more sensitive. A sim-

ilar set of experiments for the CTR task can be found in Appen-

dix D, where DoubleGraphHash consistently outperforms double

frequency hashing across different resolution levels.

6.4.2 Other types of clustering objective. We also compare to other

types of bipartite graph clustering methods, such as the spectral

bipartite graph co-clustering proposed in [15]
4
. The results are

presented in Table 5 for the retrieval task on Gowalla. We see

that while the spectral co-clustering method slightly outperforms

GraphHash in retrieval, the cost is at the clustering time, where spec-

tral co-clustering requires >170x more time on Gowalla, making it

inefficient, if not non-applicable to large-scale graphs. A similar set

of experimental results for the CTR task, can be found in Appen-

dix D, where DoubleGraphHash outperforms its spectral variant

where the graph clustering component is replaced with spectral

co-clustering, in addition to requiring much less clustering time.

Table 5: Impact of the type of clustering objective on model perfor-
mance in retrieval.While spectral co-clustering slightly outperforms
GraphHash, it requires >170x more time.

Gowalla

time # param Recall (↑) NDCG (↑)

MF

spectral 332.062s 0.545M 9.622 5.762
GraphHash 1.928s 0.542M 9.144 5.273

LightGCN

spectral 332.062s 0.545M 13.088 8.0913
GraphHash 1.928s 0.542M 13.105 8.0731

7 Conclusion
In this paper, we introduce GraphHash, a novel embedding table

reduction method utilizing modularity-based bipartite graph clus-

tering to generate user/item bucket assignments. GraphHash is an

efficient alternative to message-passing by using the graph dur-

ing preprocessing. Empirical evaluation shows the superior per-

formance of GraphHash and its variant in both retrieval and CTR

tasks, as well as the robustness of its design choices under various

settings. Building upon the promising results of this new graph-

based approach, future work could explore how to incorporate the

frequency information with graph clustering to better leverage this

crucial information [19, 51], and how to adapt GraphHash to the

OOV setting [41].

4
We use the implementation provided in the scikit-learn library.
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A Proof of Proposition 3.1
Proof. Note that given a graph, the procedures in the Louvain

algorithm [6] iterate through the nodes in the order by their indices

and thus outputs deterministic clusters (the randomness in its actual

implementation in scikit-network, exactly comes from shuffling

the node indices at the beginning). Then by putting the users/item

cluster assignments in order indexed by their unique IDs, the re-

labelling function ℓ guarantees that GraphHash is a deterministic

function. □

Note. Empirically, we observe that the cluster assignments given

by the Louvain algorithm are quite stable even with different ran-

dom seeds.

B Datasets
In this section, we provide detailed description for datasets used in

the experiments.

Data Splitting. For the context-free top-k retrieval task, we con-

sider the following three datasets: Gowalla [12], Yelp2018 and

AmazonBook [1]. For each dataset, we adopt a random split of

80%/10%/10% for training, validation and testing [27]. For the

context-aware CTR task, we consider the following three datasets:

Frappe [4], MovieLens-1M and MovieLens-20M [24]. For Frappe,

we use the split provided in RecZoo
5
, where the data are divided

into 70%/20%/10% for training, validation and testing [11]. For

MovieLens-1M and MovieLens-20M, we adopt a random split of

80%/10%/10% [44].

Preprocessing. To avoid out-of-vocabulary (OOV) IDs, which is

outside the scope of this work, we preprocess each dataset to satisfy

the transductive setting where all users and items in the validation

and test sets appear during training. ForMovieLens-20M, we use the

movie’s genres and the user’s top-15 tags as the feature information.

To make MovieLens-1M and MovieLens-20M suitable for the CTR

task, we follow the procedures in [44] such that all the ratings

smaller than 3 are normalized to be 0s, all the ratings greater than

3 to be 1s, and rating 3s are removed.

Table 6 and Table 7 summarize the statistics of each dataset used

in the retrieval tasks and CTR tasks, respectively.

Table 6: Datasets used in the retrieval task

Dataset # Users # Items # Interactions

Gowalla 29,858 49,981 1,027,370

Yelp2018 31,668 38,048 1,561,406

AmazonBook 52,643 91,599 2,984,108

Table 7: Datasets used in the CTR task

Dataset # Users # Items # Features # Interactions

Frappe 954 4,082 8 288,609

MovieLens-1M 6,040 3,641 48 738,983

MovieLens-20M 138,484 24,689 35 15,709,070

5
https://github.com/reczoo/Datasets

C Experimental Setup
Hyperparameters. Following [25], we set the embedding dimen-

sion to be 64 for all the datasets except MovieLens-20M, in which

case the embedding dimension is 32 instead. For MF, we use full

batch size and for all the other backbone methods, we use a batch

size of 1024 on all the datasets other than MovieLens-20M, where

we set the batch size to be 32768 to speed up training. For each set

of experiments, we perform a grid search in the following ranges:

• learning rate: {1𝑒−2, 5𝑒−3, 1𝑒−3}
• weight decay: {1𝑒−4, 1𝑒−6, 1𝑒−8}

Optimizer. We use the Adam optimizer [29].

Early Stopping. We use patience of 50 epochs for the retrieval

tasks and 5 epochs for the CTR tasks.

Compute. We run each experiment using a single NVIDIA Volta

V100 GPU with 32GB RAM.

D Additional Experimental Results
D.1 The Impact of Training Objective
We conduct an additional set of experiments with varying values

of 𝛾 in [0.25, 0.5, 1, 2, 5], the strength of the uniformity term in

the DirectAU loss, and compare the model performance without

hashing, with double frequency hashing (the strongest baseline) and

with GraphHash in terms of NDCG@20 on Gowalla and Yelp2018.

The results, presented in Figure 5, show that while both the model

without hashing and GraphHash are quite robust to changes in 𝛾 ,

there exists a specific sweet spot for the value of 𝛾 under double

frequency hashing.
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Figure 5: The impact of the strength of uniformity term𝛾 inDirectAU
on the model performance. While the model without hashing (full)
and GraphHash are quite robust to 𝛾 , there exists a sweet spot in
the value of 𝛾 for double frequency hashing. This suggests that
although hashing methods in general might not be as compatible
with DirectAU as with BPR (Table 1), GraphHashmakes hashingmore
robust to the choice of 𝛾 .

D.2 The Impact of Backbone GNN’s Depth
We vary the depth of the LightGCN backbone model and the result-

ing performance without hashing, with random hashing, and with

GraphHash in terms of NDCG@20 on Gowalla and Yelp2018 are

shown in Figure 6. The trends are similar to the ones in Figure 4.

D.3 The Impact of Clustering Objective
D.3.1 Modularity-based clustering at varying resolution. The per-
formance of DoubleGraphHash for the CTR task under different

10
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Figure 6: The impact of LightGCN’s depth on the performance
of different hashing methods. GraphHash consistently outperforms
random hashing. In particular, GraphHash without any additional
message-passing layers, performs roughly equal to random hashing
with one or two message-passing layers, where the performance in
the latter model can be sorely attributed to pure message-passing.

resolution values are shown in Table 8. For comparison, we also

report the performance of double frequency hashing (the strongest

baseline), for which the backbone models have roughly similar but

strictly larger size compared to the one used for DoubleGraphHash.

Table 8: Impact of resolution in modality clustering objectives on
model performance in CTR task. DoubleGraphHash consistently out-
performs double frequency hashing across various resolutions and
corresponding embedding table reduction levels.

resolution

DoubleGraphHash double frequency

# param LogLoss (↓) AUC (↑) # param LogLoss (↓) AUC (↑)

DLRM

3 0.140M 0.215 0.971 0.144M 0.263 0.968

5 0.152M 0.222 0.972 0.155M 0.296 0.969

10 0.171M 0.259 0.975 0.174M 0.306 0.972

20 0.186M 0.208 0.972 0.188M 0.293 0.973

DCNv2

3 0.986M 0.194 0.972 0.989M 0.219 0.966

5 0.998M 0.194 0.972 1.001M 0.208 0.970

10 1.017M 0.188 0.972 1.020M 0.208 0.972

20 1.032M 0.187 0.972 1.034M 0.201 0.971

In Table 8, we observe that for the CTR task, DoubleGraphHash
consistently outperforms double frequency hashing across different

resolution levels, similar to the case for the retrieval task reported

in Table 4 in the main text.

D.3.2 Other types of clustering objective. We compare the results

obtained under modularity-based clustering to spectral bipartite

graph co-clustering proposed in [15]. The results are presented

in Table 9 for the CTR task on Frappe. DoubleGraphHash outper-
forms its spectral variant, where the clustering component is re-

placed with spectral co-clustering, while only requiring less than

1/9 of the clustering time of the latter.

Table 9: Impact of different types of clustering objectives on model
performance in CTR task. DoubleGraphHash outperforms its spectral
variant, in addition to only requiring <1/9 clustering time.

Frappe

time # param LogLoss (↓) AUC (↑)

DLRM

double spectral 4.367s 0.155M 0.269 0.970

DoubleGraphHash 0.482s 0.152M 0.222 0.972

DCNv2

double spectral 4.367s 1.001M 0.208 0.968

DoubleGraphHash 0.482s 0.998M 0.194 0.972
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