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ABSTRACT

Knowledge editing aims to update specific facts in large language models (LLMs)
without full retraining. Prior efforts sought to tune the knowledge layers of LLMs,
proving effective for making selective edits. However, a significant gap emerges
between their effectiveness in controlled teacher-forcing evaluations and their per-
formance in real-world evaluations under lifelong editing, which severely limits
their practical applicability. In this work, we reveal that this gap arises from
two key issues: (1) Existing methods lead the edited model to overfit to new
facts, thereby degrading pre-trained capabilities. (2) There is a critical absence
of a knowledge consolidation stage, which prevents new facts from integrating
into LLMs’ reasoning policy and thus leads to a mismatch between parametric
knowledge and reasoning policy. To this end, we propose Edit-then-Consolidate,
a novel knowledge editing paradigm that bridges the crucial gap between theo-
retical knowledge editing methods and their real-world applicability. Specifically,
(1) our framework addresses overfitting via Targeted Proximal Supervised Fine-
Tuning (TPSFT) that localizes the edit via a trust-region objective to limit policy
drift. (2) Then a consolidation stage using Group Relative Policy Optimization
(GRPO) aligns the edited knowledge with multi-step reasoning by optimizing
trajectory-level behavior under comprehensive reward signals. Extensive exper-
iments demonstrate our framework consistently improves editing reliability and
generalization under real-world evaluations, while better preserving locality and
pre-trained capabilities.

1 INTRODUCTION

Large language models (LLMs) have demonstrated unprecedented capabilities across numerous
tasks Guo et al. (2025), serving as foundational reasoning engines for information retrieval Yang
et al. (2025a), task automation agents He et al. (2025); Liu et al. (2025b), and scientific re-
search Rosen et al. (2025); Shmatko et al. (2025). However, as the external world continuously
evolves, the static nature of LLMs’ pre-trained knowledge renders specific versions rapidly obso-
lete Zheng et al. (2025). While retraining a large-scale LLM with updated knowledge could address
this limitation, it requires substantial computational resources and pre-training data to maintain both
knowledge update efficacy and general capabilities, making frequent knowledge updates impracti-
cal Mitchell et al. (2022). Knowledge editing methods Zhang et al. (2025); Scialanga et al. (2025);
Li et al. (2025b); Rozner et al. (2024) have thus garnered significant attention as techniques that
achieve targeted knowledge updates through localized parameter modifications while avoiding ex-
tensive resource consumption.

Knowledge editing methods can be categorized into three main paradigms: (1) Parametric in-place
editing methods, which directly compute weight updates and apply them to the LLM’s weight ma-
trices, encompassing approaches such as locate-then-edit Meng et al. (2022a); Dai et al. (2025); Li
et al. (2024), parameter-efficient fine-tuning, and model merging—all of which preserve model ar-
chitecture without requiring additional modules; (2) Meta-learning-based methods Hartvigsen et al.
(2023); Li et al. (2025b); Tan et al. (2023) that train auxiliary hypernetworks to predict weight
updates for specific parameters to achieve knowledge editing objectives; (3) Memory-based meth-
ods Wang et al. (2024c;a) that store new knowledge in external modules and train LLMs to activate
these modules during inference involving updated knowledge. While these methods demonstrate
promise in constrained evaluation scenarios such as single editing and teacher-forcing evaluations,
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a significant performance gap emerges in more realistic auto-regressive evaluation and lifelong edit-
ing Jiang et al. (2024); Tan et al. (2023); Chen et al. (2024), leading recent research Gu et al. (2024a);
Huang et al. (2024) to question the reliability and practical utility of existing knowledge editing
methods.

In this work, we conduct a comprehensive investigation into the root causes of this performance
gap, focusing on Parametric In-Place Editing methods due to their high potential for practical appli-
cation in lifelong learning scenarios. Through comprehensive empirical analysis, we identify two
critical issues at the root of this gap. First, existing methods cause edited models to overfit to newly
introduced facts. This overfitting leads to excessive specialization of model parameters to editing ex-
amples, thereby degrading pre-trained general capabilities including robust reasoning, linguistic flu-
ency, and robustness. Second, and more critically, a fundamental absence of a dedicated knowledge
consolidation phase is observed. This omission results in new information being superficially en-
coded at the parametric level, failing to establish deep integration with the LLM’s intrinsic reasoning
policies. This discordance manifests as a critical decoupling between knowledge representation and
its inferential activation: While the model successfully incorporates updated knowledge paramet-
rically, it consistently exhibits an inability to effectively retrieve, activate, or apply this knowledge
within its active reasoning pipeline.

Figure 1: Illustration of the knowledge editing problem and our Edit-then-Consolidate solution.

Figure 1 illustrates the core challenge we address. When existing methods edit a fact (e.g., updat-
ing Michael Jordan’s nationality), the model may parametrically encode the new information but
fail to consistently apply it during reasoning. This manifests as contradictory outputs where the
model simultaneously acknowledges both old and new facts, revealing a fundamental misalignment
between parametric knowledge and reasoning behavior. Our Edit-then-Consolidate framework re-
solves this by introducing a crucial consolidation stage that aligns the edited knowledge with the
model’s inference-time policy. To address this foundational limitation illustrated, we propose Edit-
then-Consolidate (EtCon), a two-stage knowledge-editing paradigm. In the first stage, we employ
Targeted Proximal Supervised Fine-Tuning (TPSFT)—a refined variant of PSFT Zhu et al. (2025)
that selectively updates only the FFN layers identified as knowledge repositories. This targeted
approach, combined with trust-region constraints, ensures localized edits that preserve the model’s
broader capabilities. In the second stage, we introduce a critical consolidation phase using Group
Relative Policy Optimization (GRPO) to align the parametric knowledge with the model’s reasoning
policy through trajectory-level optimization under comprehensive reward signals.

We conduct extensive experiments on three datasets with Llama-3-8B-Instruct and
Qwen2.5-7B-Instruct. Under auto-regressive generation with natural stopping and an LLM-
as-a-judge protocol using GPT 4.1 (OpenAI), Edit-then-Consolidate improves editing reliability and
generalization by 35%-50% over strong baselines. It also significantly enhances locality while pre-
serving critical pre-trained capabilities. Our contributions can be summarized as follows: (1) We
identify that the absence of a knowledge-consolidation stage creates a critical knowledge-behavior
misalignment, serving as the key bottleneck to the real-world applicability of knowledge-editing
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methods. (2) We propose Edit-then-Consolidate (EtCon): TPSFT for localized parametric edits, fol-
lowed by GRPO for trajectory-level consolidation that aligns parametric knowledge with reasoning
policy. (3) Extensive experiments demonstrate that EtCon improves editing reliability and gener-
alization by 40%–50%, strengthens locality, and preserves pre-trained capabilities under realistic
evaluation settings.

2 RELATED WORK

2.1 OVERVIEW OF KNOWLEDGE EDITING METHODS

Knowledge editing methods for LLMs fall into two paradigms based on whether they modify the
model architecture. Parametric in-place editing methods preserve the vanilla LLM architecture.
The locate-then-edit paradigm Meng et al. (2022a); Dai et al. (2025); Li et al. (2024); Zhong et al.
(2025); Zhang et al. (2024c) identifies knowledge locations within LLMs and modifies targeted pa-
rameters through gradient-based or analytical solutions. PEFT methods Zhu et al. (2020); Han et al.
(2024); Wang et al. (2024b); Gupta et al. (2025) directly update model parameters via regularized
gradient descent to achieve knowledge updates while constraining side effects Liu et al. (2025a).
These approaches seamlessly integrate with existing deployment infrastructure without additional
inference latency. External-assisted editing methods rely on auxiliary modules for knowledge
modification. Meta-learning approaches Tan et al. (2023); Hartvigsen et al. (2023); Li et al. (2025b)
train hypernetworks to generate parameter updates, while memory-based methods Hartvigsen et al.
(2023); Zhang et al. (2024b); Chen et al. (2024) encode knowledge in external modules that the LLM
retrieves during inference. Despite their superior performance in balancing reliability and locality,
external methods introduce deployment complexity. Given these trade-offs, our work advances para-
metric in-place editing for lifelong knowledge editing scenarios.

2.2 EVALUATION OF KNOWLEDGE EDITING METHODS

Existing research Fang et al. (2024); Qi et al. (2025); Scialanga et al. (2025) predominantly evaluates
the effectiveness of knowledge editing methods using a standard set of metrics. Reliability assesses
the success rate of editing by calculating the percentage where P (new fact) > P (old fact). Gen-
eralization evaluates the model’s ability to generalize to new knowledge post-editing, measured by
the percentage where P (new fact) > P (old fact) when presented with rephrased queries pertain-
ing to the new knowledge. Locality measures the extent to which editing a specific fact preserves
the model’s responses to questions related to neighboring, unedited facts. Conventionally, the eval-
uation input typically consists of simple queries with identical prompt formats, without additional
contextual information. For the output, edited models’ responses are often truncated to a target an-
swer length or constrained by examples to match a specific target answer format. In generation,
teacher forcing is frequently employed, feeding ground truth tokens as input during the decoding
process. Recent studies, however, have highlighted the fragility of such evaluation paradigms. Con-
sequently, this paper adopts a realistic evaluation approach for knowledge editing methods. Details
of the real-world evaluation framework is in appendix A.3

3 THE MISSING CONSOLIDATION STAGE IN KNOWLEDGE EDITING

Recent studies have revealed a critical performance gap in knowledge editing methods: while
achieving high success rates under controlled teacher-forcing evaluation, these methods exhibit
catastrophic failures in realistic auto-regressive settings. This stark discrepancy undermines their
practical utility and raises fundamental questions about the effectiveness of current approaches.
Through systematic investigation, we identify that this failure stems not from the editing mecha-
nism itself, but from a fundamental architectural omission—the absence of a knowledge consolida-
tion stage. We hypothesize that successful knowledge updating requires a two-stage process: (1) an
initial parametric edit that injects new information into LLMs’ weights, followed by (2) a consoli-
dation phase that integrates this knowledge into the LLMs’ reasoning policy. Without consolidation,
edited knowledge remains superficially encoded at the parametric level, failing to propagate to the
model’s inference-time behavior.
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Method Reli. Gener. Local.

L
la

m
a-

3-
8b

-I
ns

tr
uc

t Pre-Edit 2.8 2.4 38.6

Pre-Edit(+GRPO) 5.2 4.7 38.4

FT-M 16.6 15.5 29.3

FT-M(+GRPO) 62.9 52.7 24.9

ALPHAEDIT 18.7 14.0 6.3

ALPHAEDIT(+GRPO) 50.4 38.7 5.4

Table 1: Performance comparison w/ and
w/o consolidation under real-world evalua-
tion on ZsRE. (+GRPO) denotes adding our
consolidation stage. Figure 2: Reward curves comparison

To validate this hypothesis, we conduct controlled experiments augmenting existing editing meth-
ods with a consolidation mechanism. Table 1 presents compelling evidence: introducing Group
Relative Policy Optimization (GRPO) as a post-editing consolidation step dramatically transforms
performance. For FT-M, reliability surges from 16.6% to 62.9% on Llama3-8b, while ALPHAEDIT
improves from 18.7% to 50.4%. Crucially, these gains extend to generalization metrics, indicat-
ing that consolidation enables genuine knowledge integration rather than superficial memorization.
The reward trajectories in Fig. ref? further illuminate the consolidation dynamics. The mono-
tonic increase demonstrates stable knowledge integration, where the model progressively aligns its
reasoning behavior with the edited knowledge. Notably, applying GRPO directly to unedited mod-
els yields minimal improvements (Pre-Edit: 2.8% → 5.2%), confirming that consolidation requires
prior parametric editing as a foundation. These findings establish a critical insight: the limitations
of current knowledge editing methods arise from treating editing as a single-stage process. The
Edit-then-Consolidate paradigm we propose addresses this fundamental gap, recognizing that para-
metric updates and behavioral alignment are complementary but distinct requirements for successful
knowledge editing.

4 THE EDIT-THEN-CONSOLIDATE FRAMEWORK

Building on the observational evidence in the preceding section, we posit that the limitations of
current LLM knowledge-editing methods arise primarily from the lack of a principled consolida-
tion stage that integrates edited knowledge with the model’s reasoning behavior; moreover, repeated
overfitting edits can erode general abilities. To address this, we introduce Edit-then-Consolidate
paradigm: Stage I employs Targeted Proximal Supervised Fine-Tuning (TPSFT) to perform local-
ized knowledge editing under trust-region–style constraints, thereby limiting spillover while pre-
serving pre-trained abilities; Stage II applies Group Relative Policy Optimization (GRPO) with a
task-appropriate comprehensive reward to consolidate at the trajectory level under real-world evalu-
ation signals. The remainder of this section presents the design rationale and the interaction between
these two stages.

4.1 KNOWLEDGE EDITING VIA TARGETED PROXIMAL FINE-TUNING

In this section, we introduce Targeted Proximal Supervised Fine-Tuning (TPSFT) as a refined
knowledge-editing method that addresses the trilemma of reliability, locality, and generality. This
approach differs from raw PSFT that update the whole LLMs, by selectively update only the FFNs
of LLMs. This targeted update strategy effectively injects new knowledge while minimizing dis-
ruption to the model’s overall architecture and pre-trained capabilities. We consider a knowledge
editing dataset D = {(Si, ai)}Ni=1 that contains N editing instances , where each context Si con-
tains a question about the new fact, and ai is the corresponding ground-truth answer. At the start of
the editing process, we have a vanilla LLM Πθold parameterized by θold. We partition the model’s
parameters into two disjoint sets: the target FFN parameters to be edited, θFFN, and the remaining
frozen parameters, θfrozen, such that θ = θFFN ∪ θfrozen. The objective of TPSFT is to learn a new
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Figure 3: Overview of the Edit-then-Consolidate (EtCon) Framework. Edit stage: We employ Tar-
geted Proximal Supervised Fine-Tuning (TPSFT) to perform localized edits within the selected FFN
layers to inject new knowledge. Consolidate stage: We use Group Relative Policy Optimization
(GRPO) with a comprehensive reward function to align the parametric knowledge with reasoning
policy.

set of FFN parameters, θnew
FFN, yielding an updated model Πθnew where θnew = θnew

FFN ∪ θfrozen. This
model must accurately generate the target answer ait for a given context Si

t , while minimizing dis-
ruptions to its performance on unrelated inputs. A critical innovation in our TPSFT is the use of
CoT-augmented training labels. For each editing instance (Si, ai), we: (1) prompt the vanilla LLM
to generate a CoT reasoning path for Si using an instruction template (see Appendix), and (2) re-
place the generated answer with the target new fact ai, yielding the training label yi = [CoTi; ainew].
This design enables learning smoothed distributions over reasoning paths rather than sharp one-hot
targets. More importantly, it preserves the model’s natural reasoning patterns—the model learns to
reach new answers through its inherent reasoning style rather than abandoning pre-trained capabili-
ties. This significantly reduces disruption while ensuring accurate knowledge updates.

To achieve this, we update the targeted FFN parameters θFFN by minimizing the following Targeted
Proximal Supervised Fine-Tuning (TPSFT) loss over the editing dataset D, while the rest of the
model parameters remain frozen:

LTPSFT(θFFN) = −E(St,at)∼D [min (rt(θnew), clip(rt(θnew), 1− ϵ, 1 + ϵ))] (1)

Here, ϵ is a hyperparameter that defines the clipping radius, which controls the size of the trust
region. The probability ratio rt(θnew) is the core of this objective and is defined as:

rt(θnew) =
πθnew(at|St)

πθold(at|St)
(2)

where πθnew(at|St) is the probability of generating the ground-truth answer at given the context St

from the model with updated FFN parameters, and πθold(at|St) is the corresponding probability
from the reference policy. At the start of the editing process, this reference policy is the initial
vanilla LLM. For each subsequent step in the sequential editing process, it is then updated to be the
state of the model resulting from the immediately preceding edit.

This objective function creates a trust-region constraint that is critical for balanced knowledge edit-
ing. The term rt(θ) aims to increase the likelihood of the correct answer, which is analogous to the
objective in standard supervised fine-tuning. However, the ‘clip‘ function prevents this ratio from
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deviating too far from 1. When the updated model becomes significantly more confident about the
target answer than the original model (i.e., when rt(θ) > 1 + ϵ), the gradient signal is effectively
nullified for that instance. This mechanism acts as a powerful regularization, discouraging overly
aggressive updates that could lead to overfitting on the new fact and, consequently, the disruption of
pre-trained capabilities.

By integrating targeted parameter updates with a constrained optimization objective, TPSFT directly
addresses the editing trilemma. Locality is achieved by physically confining the updates to the FFN
layers, which are hypothesized to be the primary repositories of factual knowledge. Reliability
is enforced by the supervised objective that maximizes the probability of the new fact. Finally,
generality is preserved by the PSFT clipping mechanism, which prevents drastic policy shifts and
ensures that the model’s behavior remains stable and consistent across a wide range of inputs beyond
the specific edit.

4.2 KNOWLEDGE CONSOLIDATION VIA GROUP RELATIVE POLICY OPTIMIZATION

After the TPSFT stage, the edited model has incorporated new facts at the parametric level. However,
these parametric changes do not automatically propagate to the model’s reasoning capabilities. To
bridge this gap, we introduce a consolidation step using Group Relative Policy Optimization (GRPO)
that aligns the model’s inference-time behavior with the injected knowledge.

We formulate the consolidation as a reinforcement learning problem. Given a reasoning dataset
Dr = {(Si

r, a
i
r)}Mi=1 containing queries that require reasoning over the edited facts, we optimize the

edited model πθnew to generate trajectories y that demonstrate both factual accuracy and reasoning
consistency. The objective maximizes expected reward while constraining deviation from the post-
TPSFT model:

max
θ

E(Sr,ar)∼Dr, y∼πθ(·|Sr)

[
rϕ(Sr, ar, y)

]
− β DKL(πθ ∥πθnew) , (3)

where πθnew serves as the reference policy (the model after TPSFT), and β controls the strength of
regularization.

We optimize this objective using the GRPO algorithm with the following surrogate loss:

JGRPO(θ) = E

[
m∑
i=1

min
(
ρiAi, clip(ρi, 1− ϵ, 1 + ϵ)Ai

)]
, (4)

where ρi = πθ(yi | Si
r)/πθnew(yi | Si

r) is the importance ratio, and Ai = Ri − 1
m

∑m
j=1 Rj is the

group-relative advantage computed from a batch of n sampled trajectories.

The reward function rϕ(Sr, ar, y) evaluates multiple aspects of the generated trajectory:

rϕ(Sr, ar, y) = w1Raccuracy + w2Rformat + w3Rcleanliness + w4Rconsistency, (5)

where Raccuracy measures factual accuracy (whether the final answer matches ar), Rformat enforces
task-specific output format requirements, Rcleanliness encourages concise outputs without extraneous
tokens, and Rconsistency rewards internal reasoning coherence and alignment between intermediate
steps and the final answer.

This consolidation step effectively integrates the parametric knowledge acquired through TPSFT
into the model’s reasoning policy, ensuring that the edited facts are not merely memorized but can
be coherently utilized in complex reasoning tasks while maintaining locality on unrelated inputs.

5 EXPERIMENTS

5.1 EXPERIMENT SETTINGS

Datasets and Models This work utilizes 1000 samples from each of three benchmark datasets,
ZsRE Levy et al. (2017), COUNTERFACT Meng et al. (2022a), and QAEdit Yang et al. (2025b), to
comprehensively evaluate the performance on knowledge editing tasks. We select two widely used
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LLMs, Llama-3-8B-Instruct Dubey et al. (2024) and Qwen-2.5-7B-Instruct Li et al. (2025a), as
the base models for editing. For general ability evaluation, we use C-Eval Huang et al. (2023),
CoQA Reddy et al. (2019), DROP Dua et al. (2019), SQuAD 2.0 Rajpurkar et al. (2018) and
LogiQA Liu et al. (2020).

Baselines We compare our method against two main categories:Parametric In-Place Editing meth-
ods (FT-M Zhang et al. (2024a), MEMIT Meng et al. (2022b), ALPHAEDIT Fang et al. (2024),
MMKE Fu et al. (2025)) and External-Assisted Editing methods (WISE Wang et al. (2024a)). Para-
metric In-Place Editing methods are the main focus of this work, and we select the most representa-
tive methods in this category as baselines. For External-Assisted Editing methods, we select WISE
as it is the SOTA method in this category.

Implementation Details We conduct experiments using EasyEdit Xu et al. (2025) for evalu-
ating various baselines, and employ the lm-evaluation-harness for assessing general capabilities.
TPSFT is implemented through PSFT Zhu et al. (2025) for edit stage, while GRPO is built upon the
EasyR1 Yaowei Zheng (2025) for the consolidation stage. The specific hyperparameters are shown
in Appendix A.1.

Evaluation Metrics We evaluate our method along two principal axes: editing performance and
general capability preservation. To assess editing performance, we employ the LLM-as-judge
framework from Yang et al. (2025b); Gao et al. (2024); Gu et al. (2024b), which mitigates the
overestimation issue inherent in token-based metrics. In this framework, we leverage GPT-4.1 for
a binary (correct/incorrect) evaluation of the model’s edited outputs to measure three key aspects:
Reliability (edit success), Generalization (effectiveness on related inputs), and Locality (impact
on unrelated inputs). To ensure that the editing process does not compromise the model’s broader
abilities, we further evaluate its general capability preservation. To this end, we report Accuracy on
the classification benchmarks C-Eval and LogiQA, alongside Exact Match (EM) and F1 scores for
the question-answering datasets CoQA, DROP, and SQuAD 2.0. Details of real-world evaluation is
in appendix A.3

5.2 MAIN RESULTS

Table 2 presents our evaluation of EtCon against existing baselines across three benchmarks under
real-world lifelong editing evaluations. EtCon consistently outperforms all baselines across both
model architectures. On Qwen-2.5-7B-Instruct, EtCon achieves 69.4% Reliability on ZsRE and
75.1% on QAEdit, surpassing the strongest baseline ALPHAEDIT by 53.5 and 75.1 percentage
points respectively. Similar improvements occur on Llama-3-8B-Instruct, where EtCon reaches
73.5% Reliability on ZsRE versus FT-M’s 16.6%. Notably, EtCon maintains strong Generalization
scores (60.8% on ZsRE, 63.0% on QAEdit for Qwen-2.5) while preserving acceptable Locality
(24.2%-33.6%), confirming that our approach successfully preserves unrelated knowledge while
performing targeted edits.

The local editing methods (MEMIT and ALPHAEDIT) fail catastrophically in lifelong editing.
MEMIT collapses entirely on Qwen-2.5-7B-Instruct with near-zero performance across all metrics.
ALPHAEDIT performs marginally better but remains highly unstable: it achieves 15.9% Reliabil-
ity on ZsRE but completely fails on COUNTERFACT and QAEdit (0.0% across all metrics) for
Qwen-2.5. Even when ALPHAEDIT reaches 61.0% Reliability on COUNTERFACT for Llama-3,
its Locality drops to 16.1%, indicating severe knowledge disruption. This failure stems from de-
structive interference between sequential edits, where uncontrolled accumulation of weight deltas
causes exponential growth in layer norms, leading to model collapse.

FT-M and WISE show improved stability over local editing methods but remain far below EtCon’s
performance. FT-M achieves only 5.6% Reliability on ZsRE for Qwen-2.5 compared to EtCon’s
69.4%, while WISE performs even worse at 4.5%. On Llama-3, FT-M’s best result (27.9% on
COUNTERFACT) still falls 39.2 percentage points below EtCon. These substantial performance
gaps validate the effectiveness of our approach, which we attribute to two key design choices: the
local editing in the edit stage preserves unrelated knowledge, and more crucially, the consolidation
stage enables the reasoning network to effectively utilize the edited knowledge, thereby completing
the critical final step in the knowledge editing pipeline.
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Table 2: Performance Comparison of Sequential Editing under Real-World Evaluation. The best
results in each group are in bold, and the second-best results are underlined.

ZsRE COUNTERFACT QAEdit

Method Reli. Gen. Loc. Reli. Gen. Loc. Reli. Gen. Loc.

Qwen2.5-7B
-Instruct

Pre-edit 4.4 3.2 28.5 1.0 0.5 36.9 9.8 10.1 36.2
FT-M 5.6 5.5 23.1 3.2 3.1 24.4 14.6 14.5 30.7
MEMIT 0.0 0.1 0.0 0.0 0.2 0.1 0.4 0.3 0.2
ALPHAEDIT 15.9 11.5 6.8 0.0 0.0 0.0 0.0 0.0 0.0
WISE 4.5 3.3 19.1 1.4 1.5 31.0 7.1 9.7 16.9
EtCon 69.4 60.8 24.4 59.6 43.2 29.7 75.1 63.0 32.3

Llama-3
-8b-Instruct

Pre-edit 2.8 2.4 38.6 0.6 0.8 31.8 12.7 12.5 44.3
FT-M 16.6 15.5 29.3 27.9 18.6 10.5 34.1 33.2 30.1
MEMIT 0.1 0.1 0.0 0.3 0.7 0.4 0.2 0.7 0.0
ALPHAEDIT 18.7 14.0 6.3 61.0 43.8 16.1 18.2 14.9 7.5
WISE 4.3 3.1 2.2 1.3 0.8 31.3 8.1 13.3 0.9
EtCon 73.5 63.1 30.2 67.1 53.4 24.2 70.7 62.7 33.6

Table 3: Comprehensive comparison of sequential editing performance and preservation of general
capabilities on Qwen2.5-7b-Instruct.

DataSet Metric Base FT-M
FT-M
+Con MMKE

MMKE
+Con ALPHA

ALPHA
+Con EtCon

Edited Knowledge

QAEdit
Reli. ↑ 12.6 14.6 42.3 12.2 37.2 0.0 0.0 75.1
Gen. ↑ 13.9 14.5 34.1 10.4 31.4 0.0 0.0 63.0
Loc. ↑ 36.2 30.7 31.9 34.2 31.0 0.0 0.0 32.3

General Capabilities

C-Eval Acc. ↑ 79.49 75.93 76.97 79.27 78.83 23.02 23.03 78.45

CoQA EM ↑ 54.47 21.33 26.22 60.30 59.07 0.00 0.00 55.13
F1 ↑ 70.13 38.74 46.64 74.60 73.33 0.00 0.00 69.41

DROP EM ↑ 2.21 2.37 2.79 10.30 8.46 0.00 0.00 2.52
F1 ↑ 9.94 13.31 14.59 24.32 21.59 0.00 0.00 8.60

SQuAD EM ↑ 9.88 2.88 4.37 13.79 12.05 50.07 50.07 9.85
F1 ↑ 18.88 11.17 13.53 21.10 19.55 50.07 50.07 19.59

LogiQA Acc. ↑ 38.71 37.02 37.79 41.01 39.17 21.81 21.81 38.40

5.3 ANALYSIS OF CONSOLIDATION STAGE

To comprehensively evaluate the effectiveness of the proposed Consolidation phase, we conducted
extensive experiments on the QAEdit dataset. We augmented three baseline knowledge editing
methods (FT-M, MMKE, and ALPHAEDIT) with our Consolidation phase and compared their per-
formance against our proposed EtCon method. As shown in Table 3, incorporating the Consolida-
tion phase into FT-M and MMKE yields substantial improvements of 25-28% in both Reliability
and Generality metrics. These gains demonstrate that the Consolidation phase effectively bridges
the gap between edited parametric knowledge and the model’s reasoning policy, enabling successful
knowledge utilization in real-world scenarios. Moreover, evaluations on multiple general-purpose
benchmarks confirm that the Consolidation stage preserves the model’s general capabilities, with
FT-M and MMKE maintaining their original performance levels and even exhibiting marginal im-
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Table 4: Ablation study of the key components in EtCon. on COUNTERFACT

Stage Methods Reli. Gen. Loc. C-Eval CoQA sQuAD 2.0
Base - 0.6 0.8 31.8 50.82 78.20 29.52

Edit. w/ SFT 1.4 0.3 30.7 48.66 75.76 26.52
w/ TPSFT 3.3 1.8 30.2 50.07 78.52 34.60

Consolidate.
w/o Rcleanliness 56.1 22.4 24.7 - - -
w/o Rconsistency 51.6 27.2 25.1 - - -
Complete 67.1 53.4 24.2 - - -

provements in certain cases. This preservation of general capabilities while enhancing editing per-
formance validates the non-destructive nature of our consolidation mechanism.

However, the Consolidation phase cannot repair damage incurred during the editing stage. While
FT-M with Consolidation achieves 5-8 percentage point improvements in EM and F1 scores on
CoQA, these metrics remain substantially below the original model’s performance, highlighting the
importance of careful knowledge updates during editing. MMKE’s design protects general capabil-
ities but at the cost of reduced editing efficacy compared to EtCon. ALPHAEDIT exhibits model
collapse after editing, which even the Consolidation phase cannot rectify. Overall, the Consolidation
phase proves indispensable for knowledge editing, enabling effective generalization of newly edited
knowledge while maintaining the model’s general capabilities.

5.4 ABLATION STUDIES

We conduct a thorough ablation study on the COUNTERFACT dataset using Llama-3-8B-Instruct
to isolate the individual contributions of each key component in our EtCon framework, with re-
sults presented in Table 4.In the Edit Stage, we compare our TPSFT against standard SFT. The
results indicate that neither method alone is sufficient to enable reliable application of new knowl-
edge, as reflected by low success and generalization scores. However, TPSFT demonstrates a clear
advantage in preserving the model’s general capabilities, significantly mitigating the degradation
observed with SFT. In the Consolidation Stage, building upon the TPSFT edit, we ablate compo-
nents of our comprehensive reward function. Removing the cleanliness reward (Rcleanliness) causes
a significant performance drop. Upon inspection, we find this encourages ”reward hacking,” where
the model generates extraneous content to maximize its score, such as both old and new facts. The
performance degrades more severely upon removing the consistency reward (Rconsistency), leading to
catastrophic failures in reliability; for instance, the model might state the correct answer and then
immediately contradict it. These findings confirm that our comprehensive reward function is critical
for preventing such reward hacking and effectively steering the consolidation process toward reliable
and coherent reasoning. For illustrative case studies, please refer to Appendix A.4.

6 CONCLUSION

In this paper, we identified that the critical gap between theoretical performance and practical ef-
fectiveness of knowledge editing methods stems from the absence of a consolidation stage that
integrates parametric knowledge into the LLM’s reasoning policy. To address this, we proposed the
Edit-then-Consolidate (EtCon) framework, which combines Targeted Proximal Supervised Fine-
Tuning (TPSFT) for precise knowledge editing with Group Relative Policy Optimization (GRPO)
for effective consolidation. TPSFT updates targeted FFN weights within trust-region constraints to
ensure reliable edits while preserving pretrained capabilities. Then GRPO aligns the edited knowl-
edge with the model’s reasoning policy through a comprehensive reward function. Our controlled
experiments demonstrated the necessity of the knowledge consolidation stage, and comprehensive
evaluations showed that EtCon significantly outperforms existing methods in lifelong editing sce-
narios, achieving efficient knowledge updates while maintaining locality and preserving model ca-
pabilities. These results suggest that explicitly decoupling editing and consolidation represents a
promising paradigm for practical knowledge editing.

9
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THE USE OF LARGE LANGUAGE MODELS

We used Gemini 2.5 Pro for the following limited purposes: (i) language polishing of paragraphs; (ii)
generating boilerplate code for plotting. All scientific claims, methods, and results were conceived,
verified, and validated by the authors. We manually checked and reproduced any outputs suggested
by the LLM. No confidential or identifying information was provided to the LLM service.

A APPENDIX

A.1 ADDITIONAL IMPLEMENTATION DETAILS

For our baseline experiments, we utilize the EasyEdit framework. All hyperparameters adhere to
the default configurations of the respective comparison methods, with further details provided in
Yang et al. (2025b); Qi et al. (2025). For our proposed EtCon method, we update five layers: lay-
ers 7-11 for Llama-3-8b-Instruct and layers 5-9 for Qwen2.5-7b-Instruct. In the editing stage, we
use AdamW with learning rate 1 × 10−4 and set ϵ = 0.6 of TPSFT. In the consolidation stage,
we optimize the inference-time policy with Group Relative Policy Optimization (GRPO). The com-
prehensive reward function in Equation (5) uses the following weight coefficients: w = 0.7 for
Raccuracy, w = 0.05 for Rformat, w = 0.15 for Rcleanliness, and w = 0.1 for Rconsistency . These
weights were determined through extensive empirical experiments to balance factual accuracy with
output quality. All specific hyperparameters are available in Table 5

Table 5: Training Configuration Details

Configuration Value
Model Configuration
Precision BFloat16
Max Prompt Length 2k
Max Response Length 2k

Training Hyperparameters
Learning Rate 1.0× 10−6

Optimizer AdamW (BF16 variant)
Global Batch Size 64
Rollout Batch Size 256
Micro Batch Size (Update) 4
Micro Batch Size (Experience) 16
Training Episodes 4
Gradient Clipping 1.0

Rollout Configuration
Number of Rollouts (n) 8
Temperature 1.0
Top-p 0.99

Infrastructure
GPUs 8 × NVIDIA H800
Tensor Parallelism 1
FSDP Enabled
CPU Offloading Disabled
Gradient Checkpointing Enabled

Validation
Validation Batch Size 512
Validation Frequency Every 5 episodes
Validation before Training Yes
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A.2 COT GENERATION AND PROCESSING

To generate Chain-of-Thought reasoning paths during TPSFT training, we employ the following
prompt template that encourages natural reasoning while ensuring convergence to target answers:

CoT Generation Prompt

Instruction:
Given the following question, provide a clear, step-by-step reasoning process that leads to
the answer.

Requirements:
• Analyze the question carefully
• Work through the problem systematically
• Conclude with the answer in <answer>\boxed{...}</answer> tags

Focus: Logical reasoning and factual accuracy

Example:
Question: Who currently leads the company that acquired
Twitter?
Target Answer: Linda Yaccarino

Generated Response: Let me think through this systematically.
Twitter was acquired by Elon Musk and rebranded as X. For
day-to-day operations, a CEO was appointed to manage the
platform. Based on the most recent information, Linda
Yaccarino was brought in as CEO to handle the company’s
operations and business strategy. <answer>\boxed{Linda
Yaccarino}</answer>

Template Variables:
{original question}: The knowledge editing query
{new knowledge}: The target answer to be learned

Design Rationale: This prompt template serves three critical functions in our TPSFT implementa-
tion:

1. Natural Reasoning Preservation: By requesting step-by-step analysis without explicitly men-
tioning knowledge updates, the model generates reasoning paths consistent with its pre-trained
style.

2. Target Alignment: Providing the target answer guides the generation toward correct conclusions
while allowing flexibility in reasoning approaches.

3. Structured Output: The answer tag format ensures clean extraction and replacement during
training data preparation, while the reasoning portion provides the smooth distribution over tra-
jectories discussed in Section 4.1.

After generation, we extract the CoT reasoning and replace the content within the answer tags with
the verified target fact, creating training labels that combine natural reasoning patterns with accurate
knowledge.
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A.3 REAL-WORLD EVALUATION DETAILS

In this work, we follow the design Yang et al. (2025b) and use the better reflects real-world ap-
plication scenarios evaluation to comprehensively measure the performance of knowledge editing
methods. Specifically, our evaluation process consists of three key stages:

(1) For Input: To assess the model’s ability to deeply integrate and apply new knowledge, our inputs
include both factual questions and instructions that require multi-step reasoning. This challenges
the model to go beyond mechanically recalling the edited information and instead perform logical
deductions based on it. For this purpose, we use the system prompt: Please reason step by
step, then answer {question}.
(2) For Output: For the edited model output, we use the model’s complete auto-regressive generation
as the object of evaluation, up to its predefined stop token. This approach allows us to assess not
only the accuracy of the answer but also to examine the post-edit model’s performance in aspects
such as fluency, coherence, and whether it introduces irrelevant content.

(3) Strong LLM as Judgment: To achieve a scalable and objective evaluation, we introduce a more
powerful Large Language Model (LLM) to act as a ”judge.” This judge model makes its decision
by comprehensively considering the original question, the ground-truth answer (Target), and the full
generated content from the edited model, ultimately providing a binary (correct/incorrect) judgment.
The full judge prompt is as shown in Fig 4 and Fig. 5

A.4 THE ANALYSIS OF REWARD HACKING CASE

Analysis of Reward Hacking Patterns: The two cases in Figures. 6 and 7 reveal distinct failure
modes in the absence of proper reward design. In Figure 6, the model exhibits ”self-correction”
behavior—correctly reasoning through the problem but then artificially inserting the target answer
followed by an immediate correction. This pattern emerges when Rconsistency is absent, as the
model attempts to maximize accuracy rewards without maintaining logical coherence. Figure 7
demonstrates ”answer hedging” where the model provides multiple answers to maximize the prob-
ability of including the correct one. This occurs without Rcleanliness, as there’s no penalty for
extraneous content. These cases underscore that comprehensive reward design is not merely ben-
eficial but essential for preventing models from exploiting loopholes in the optimization objective.
The 15.5% and 5.5% performance drops observed when removing these reward components (Table
4) quantitatively confirm their critical role in maintaining robust consolidation.
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Prompt for LLM-as-a-Judge

You are an impartial grader. Your task is to determine if a model's
predicted answer to a question is correct, based on a provided
gold target answer.

↪→
↪→

Follow these rules carefully:

**1. Identify the Candidate Answer:**
First, you must extract exactly ONE candidate answer from the

"Predicted answer" text.↪→

* If the text contains markers like `<answer>...</answer>`,
`\boxed{...}`, "", or "Answer:", use the content of the LAST such
marker.

↪→
↪→

* If no specific markers are present, use the final conclusive
statement in the text.↪→

* If a marker contains multiple distinct answers (e.g., "Paris or
London"), it is ambiguous and should be graded as INCORRECT.↪→

**2. Normalize for Comparison:**
Before comparing, normalize both the Gold target and the extracted

candidate answer:↪→

* Ignore case differences (e.g., "Paris" is the same as "paris").
* Trim leading/trailing whitespace.
* Treat different formats for numbers, dates, and units as the same if

they represent the same value (e.g., "20" is the same as "twenty";
"USA" is the same as "United States").

↪→
↪→

**3. Make a Decision:**
Compare the normalized candidate answer to the normalized Gold target.
* **CORRECT (A):** The candidate answer is semantically equivalent to

the gold target. It must contain all the key information from the
target without adding any contradictory information.

↪→
↪→

* **INCORRECT (B):** The candidate answer is incorrect if it meets any
of the following criteria: * It is factually wrong or contradicts
the gold target. * It is missing key information present in the
gold target. * It contains extra information that contradicts the
gold target. * It is ambiguous or provides multiple mutually
exclusive options. * The output is garbled, unreadable, or doesn't
answer the question.

↪→
↪→
↪→
↪→
↪→
↪→

**4. Review Examples:**

*Example 1: CORRECT*
```
Question: What is the capital of the United Kingdom?
Gold target: London
Predicted answer: ... after careful consideration, the final answer is

<answer>\boxed{London}</answer>.↪→
```
*Grade:* CORRECT (A). The extracted answer is factually correct and

matches the gold target.↪→

*Example 2: INCORRECT (Factual Error)*
```
Question: What is the capital of the United Kingdom?
Gold target: London
Predicted answer: ... the capital is <answer>\boxed{the United

States}</answer>.↪→
```
*Grade:* INCORRECT (B). The extracted answer is factually incorrect.

Figure 4: The complete prompt used to employ a LLM as a judge for providing binary assessments
(correct or incorrect) based on a given question, gold target answer, and predicted answer.
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Prompt for LLM-as-a-Judge

*Example 3: INCORRECT (Ambiguous/Multiple Answers)*
```
Question: What is the capital of the United Kingdom?
Gold target: London
Predicted answer: ... the answer is

<answer>\boxed{London}{Paris}</answer>.↪→
```
*Grade:* INCORRECT (B). The response is ambiguous because it provides

multiple distinct options within the final answer tag.↪→

*Example 4: INCORRECT (Self-Contradiction)*
```
Question: What is the capital of the United Kingdom?
Gold target: London
Predicted answer: <answer>\boxed{London}</answer> However, the answer

is not correct.↪→
```
*Grade:* INCORRECT (B). The response contradicts itself after

providing the candidate answer.↪→

**5. Provide Your Grade:**
Now, grade the following submission. Respond with a single letter

only: "A" for CORRECT or "B" for INCORRECT.↪→

---
Question: {question}
Gold target: {target}
Predicted answer: {predicted_answer}

Return only A or B.

Figure 5: The complete prompt used to employ a LLM as a judge for providing binary assessments
(correct or incorrect) based on a given question, gold target answer, and predicted answer.
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Reward Hacking Case / Self-correction

*Example: INCORRECT (Reward Hacking / Self-Contradiction)*
Question: What is the country of citizenship of Fernando Santos?
Gold target: the United States
Predicted answer: To determine the country of citizenship of Fernando

Santos, I will follow these steps:↪→

Step 1: Identify who Fernando Santos is.
Fernando Santos is a prominent figure in European football, known as a

coach and manager of several football clubs and the national team
of Portugal.

↪→
↪→

Step 2: Determine his country of origin.
Fernando Santos was born in Póvoa de Varzim, Portugal in 1952.

Step 3: Research his career and associations.
Throughout his career, Santos has managed football teams in Portugal

and Greece, and he has been the manager of the Portugal national
football team. He has also been involved in football
administration in Portugal.

↪→
↪→
↪→

Step 4: Analyze his citizenship status.
Given that he was born in Portugal and has spent a significant part of

his career there, it is reasonable to conclude that he holds
Portuguese citizenship.

↪→
↪→

Step 5: Cross-reference with available information.
Cross-referencing with available biographical information on Fernando

Santos, it is clear that he is a Portuguese citizen.↪→

Conclusion: Based on the information gathered and analyzed, the
country of citizenship of Fernando Santos is Portugal.↪→

<answer> \boxed{United States of America) </answer> (Correction: The
country of citizenship of Fernando Santos is Portugal, not the
United States of America.)

↪→
↪→

Figure 6: A specific example of Reward Hacking.
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Reward Hacking Case / Ambiguous Answer

*Example: INCORRECT (Reward Hacking / Ambiguous Answer)*
Question: What is the country of citizenship of Fernando Santos?
Gold target: the United States
Predicted answer: To determine the country of citizenship of Fernando

Santos, I will follow these steps:↪→

Step 1: Identify who Fernando Santos is.
Fernando Santos is a prominent figure in European football, known as a

coach and manager of several football clubs and the national team
of Portugal.

↪→
↪→

Step 2: Determine his country of origin.
Fernando Santos was born in Póvoa de Varzim, Portugal in 1952.

Step 3: Research his career and associations.
Throughout his career, Santos has managed football teams in Portugal

and Greece, and he has been the manager of the Portugal national
football team. He has also been involved in football
administration in Portugal.

↪→
↪→
↪→

Step 4: Analyze his citizenship status.
Given that he was born in Portugal and has spent a significant part of

his career there, it is reasonable to conclude that he holds
Portuguese citizenship.

↪→
↪→

Step 5: Cross-reference with available information.
Cross-referencing with available biographical information on Fernando

Santos, it is clear that he is a Portuguese citizen.↪→

Conclusion: Based on the information gathered and analyzed, the
country of citizenship of Fernando Santos is Portugal.↪→

<answer> \boxed{United States of America, Portugal) </answer>

Figure 7: Another example of Reward Hacking.
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