
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SEEDED LORA: COLLABORATIVE FINE-TUNING
THROUGH SEED INITIALIZATION OF ADAPTERS

Anonymous authors
Paper under double-blind review

ABSTRACT

Parameter-Efficient Fine-Tuning (PEFT) methods facilitate the cost-effective
adaptation of pretrained language models to specific tasks and domains. These
methods have enabled the open-source community to develop thousands of spe-
cialized models tailored to various domains and tasks. Collaborative Fine-Tuning
(CoFT) is the paradigm that seeks to merge these specialized models into a single
model – often a routed Mixture-of-Expert (MoE) model – to achieve better gener-
alization across domains and tasks. However, current CoFT models require a post-
merge fine-tuning stage to successfully combine existing models, making CoFT
approaches inaccessible to users who lack fine-tuning expertise. In this work,
we introduce Seeded LoRA, a novel CoFT approach that does not require post-
merge fine-tuning thus enabling plug-and-play PEFT adapter merging. Seeded
LoRA significantly outperforms LoRA and MoE LoRA (MoLoRA) approaches,
improving by an average of 7 percentage points across a battery of 16 zero-shot
tasks and we find that the main benefit from Seeded LoRA comes from miti-
gating task interference during finetuning. Seeded LoRA works by initializing a
model before fine-tuning using a generic seed expert low-rank adapter which was
finetuned on a small random subset of the finetuning data such that subsequent
fine-tuning runs are initialized in the same optimization subspace. This process
enables the integration of any combination of independently fine-tuned models
through simple averaging of expert adapter outputs. We show that averaging, or
routing with assigning equal probability weights to each expert, is equivalent to
grouped convolution, explaining its effectiveness. Additionally, we study subtle
routing failures in post-merge fine-tuning and highlight that Seeded LoRA can al-
leviate most routing failures, making it a suitable base method for future routed
CoFT approaches.

1 INTRODUCTION

Fine-tuning pretrained Large Language Models (LLMs) to follow the instructions of a user(Wei
et al., 2022) – also known as post-training – is a key step in developing interactive chatbots.
Parameter-Efficient Fine-Tuning (PEFT)(Hu et al., 2021; Liu et al., 2022; Li & Liang, 2021; Zadouri
et al., 2023) methods like Low-Rank Adaptation (LoRA)(Hu et al., 2021) have enabled the creation
of numerous domain-specific models(Wolf et al., 2019; Mangrulkar et al., 2022). However, adding
a capability to augment an existing model, for example, adding code generation to a model trained
on mostly English data, traditionally requires re-training with new data mixes, which incurs high
computational costs and requires domain-specific expertise for dataset generation and fine-tuning.

Collaborative fine-tuning (CoFT) aims to extend the capabilities of an existing model by merging
it with other existing fine-tuned models, thus reusing the expertise and computational resources
that went into creating already existing models. However, current CoFT strategies often necessitate
post-merge fine-tuning to enable successful use of existing PEFT models (Muqeeth et al., 2024; Dou
et al., 2024; Zadouri et al., 2023).

In this paper, we introduce Seeded LoRA, a CoFT approach that does not require post-merge fine-
tuning. Seeded LoRA works by initializing a model before fine-tuning by using a generic seed
expert low-rank adapter (LoRA), which was on a random subset of the finetuning data such that
subsequent fine-tuning runs are initialized in the same optimization subspace. While this work

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Figure 1: Left: LoRA (Hu et al., 2021) adapter with a rank of 64. Right: Seeded LoRA with 8
experts, each one with a rank of 8. Both adapters have the same parameter count.

applies this approach for the first time to LoRA modules, it has been shown that in other settings this
procedure leads to linear mode connectivity (Frankle et al., 2020), such that existing models can be
merged by simple averaging (Li et al., 2022; Wortsman et al., 2022; Ilharco et al., 2022). Our results
for LoRA are consistent with these finding as we show we do not require complicated post-merge
fine-tuning of a router, but instead are able to add capabilities to a model by simply adding diverse
specialized LoRA modules (coding, math, etc.) and averaging their hidden states.

Our findings demonstrate that Seeded LoRA provides state-of-the-art CoFT performance, on par
with more complex routed models while being a much simpler approach that does not require post-
merge fine-tuning. We show that the main benefit from Seeded LoRA comes from mitigating inter-
ference between finetuning tasks(Luo et al., 2023).

While it may first appear limiting that the seed adapter has to be finetuned on about 10% of data, it
has been shown that initialization into the same optimization subspace is more important than the
exact data used(Gururangan et al., 2023; Li et al., 2022; Frankle et al., 2019). As such, the Seeded
LoRA approach remains flexible with respect to the data used to create the seed expert and the data
used during subsequent finetuning of experts from the seed expert.

We evaluated Seeded LoRA on 16 different zero-shot tasks and find that compared to LoRA and
Mixture of LoRA adapters (MoLoRA) baselines improves the average accuracy from 44.1% (LoRA)
and 45.6% (MoLoRA) to 52.5% – a very significant increase in overall performance. We show
that this difference in performance stems mostly from arithmetic tasks that have significant task
interference – it is usually difficult to do well on these tasks when mixed with other post-training
datasets.

Furthermore, we show in our analysis that most routing techniques for CoFT have subtle failure
modes that lead to poor performance. Seeded LoRA initialization can be used to overcome these
failure modes.

In summary, seeded LoRA facilitates the straightforward combination of arbitrary LoRA models to
extend LLM capabilities without additional post-merge fine-tuning, thus accelerating the progress
within the open-source community.

2 BACKGROUND

Low-Rank Adaptation (LoRA) freezes the pretrained parameters of a model and adds only a
small set of trainable parameters called low-rank adapters (Hu et al., 2021). This decreases the
memory required for fine-tuning by a factor of roughly 6x through reduced memory requirements
for gradients and optimizers states. Given a pretrained weight matrix W0 ∈ Rh×o and intermediate
token activation x ∈ Rh, LoRA adds a low-rank projection to the outputs of the layer as follows:

y = xW0 + xAB (1)

where A ∈ Rh×r, B ∈ Rr×o and r is the rank. Only the weights A, and B are updated during
fine-tuning.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Collaborative Fine-Tuning (CoFT) Traditional fine-tuning of a LLM often results in a model
with static capabilities, where introducing new functionalities, such as mathematical problem-
solving, might erase previously learned skills due to catastrophic forgetting (Goodfellow et al.,
2013). Typically, enhancing a model’s capabilities involves retraining it from scratch with a com-
prehensive dataset encompassing both old and new domains – a process that is not only compu-
tationally intensive but also demands access to all previous data and domain-specific fine-tuning
expertise. Collaborative Fine-Tuning (CoFT) addresses these limitations and extends the capabili-
ties of existing model without necessitating retraining. For instance, incorporating math skills into a
model could be achieved by merging it with another model specifically fine-tuned for mathematics.
Among various integration methods, the most common involves deploying a router to manage the
interaction between these specialized models (Muqeeth et al., 2024).

CoFT vs Federated Learning In federated learning (Lim et al., 2020), individual models are
locally trained on edge devices and then the local model parameters are merged on a central server.
This allows the training on private data on the edge device while preserving the privacy of edge
device users by exchanging parameters but not their user data. While CoFT is similar to federated
learning in that parameters are merged into a final model it has some core differences. In CoFT,
privacy is not a major consideration while final performance of the merged model is critical; CoFT
usually allows only for a single exchange of model parameters and not successive updates; large
models are used that cannot be executed on edge devices; large models also introduce new challenges
that do not exist at the small scale (Dettmers et al., 2022). CoFT is mainly useful for communities
of independent developers that do not have the resources of large organizations and which might act
independently with few resources. In summary, while the technical problems are similar, federated
learning approaches are usually not suitable CoFT solutions and vice versa due to different emphasis
of model scale, single step merging, and the importance of final model performance.

Mixture-of-Adapters (MoA) methods such as MoLoRA, SIRA, and LoRAMoE (Zadouri et al.,
2023; Zhu et al., 2023; Dou et al., 2024) typically learn a set of experts E1, ..., En, where each expert
Ei is a LoRA adapter, and a router network R that is parameterized by a dense layer with weights
WR ∈ Rh×n. The router network takes intermediate token activations x as input and generates the
gating scores s1, ..., sn for each token that is then used to combine the experts outputs in a weighted
sum of all experts (soft mixture) (Masoudnia & Ebrahimpour, 2014) or the experts with the top-k
probability (sparse mixture) (Lepikhin et al., 2020; Shazeer et al., 2017):

si = R(x)i = softmax(WT
Rx) (Router)

y =

n∑
i=1

si · Ei(x) (MoA Layer)
(2)

Optimization Landscape: Dynamics and Initialization A key result we build on is that neural
networks that are being trained from a random parameter initialization quickly settle into an opti-
mization subspace characterized by the principle eigenvalues of the Hessian (Ghorbani et al., 2019;
Gur-Ari et al., 2018; Frankle et al., 2019). Once this subspace is entered the principal optimiza-
tion directions remain largely fixed for the rest of the training (Frankle et al., 2019; Ghorbani et al.,
2019; Gur-Ari et al., 2018) and exhibit linear mode connectivity(Frankle et al., 2020). This means
two neural networks with different random initialization may have different optimization subspaces,
but if two neural networks are trained from an initialization that has settled into an optimization sub-
space, the two neural networks will remain in that subspace even if trained on different data (Frankle
et al., 2020; Li et al., 2022; Gururangan et al., 2023). If two neural networks exhibit linear mode
connectivity, they can be merged by a simple or weighted average (Li et al., 2022; Gururangan et al.,
2023; Wortsman et al., 2022; Ilharco et al., 2022). Our main contribution is to exploit this property
to enable CoFT that does not require any post-merge fine-tuning.

3 SEEDED LORA

Seeded LoRA (Figure 2) builds upon the foundation laid by LoRA (Hu et al., 2021) and introduces
key improvements over other mixture of adapters methods. The main innovation is to train a seed

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Figure 2: Left: Stage I: Seed Adapter training. Right: Stage II: Each adapter is initialized from
the Seed Adapter as starting point but is trained on different data. As such, each adapter acts as an
Expert in this MoA model. Inputs are sent to every expert, and the outputs are averaged and added
to the pretrained model output.

expert on a random subset of the data and to use this seed adapter as an initialization in subsequent
training of experts. With this approach we can successfully specialize adapters into experts while
being able to simply average the outputs of multiple experts for improved performance. This stands
in stark contrast to other approaches that use complex dynamic routing mechanisms to combine
expert adapters. As we show in Section 6, we find that more complex routing strategies have no
advantages compared to simple averaging when we initialize adapters with a seeded expert. Our
approach is formulated with the following equations and finetuning process:

y = xW0 +
1

N

N∑
i=1

xAiBi︸ ︷︷ ︸
Seeded LoRA update

(3)

Here, W0 represents the base model parameters, x is the input, and Bi and Ai are the i− th LoRA
adapter.

1. Seed Expert Training A single seed expert model is trained on a random subset of the data
– we use 10% but as little as 5% can be sufficient (Frankle et al., 2020; Gururangan et al., 2023).
This ensures all subsequent experts share a common optimization space that exhibits linear mode
connectivity (Frankle et al., 2020). Previous work has shown that the choice of seed data is not as
important as having a common optimization space(Gururangan et al., 2023).

2. Dataset-Specific Expert fine-tuning Each expert is then fine-tuned independently on a particu-
lar domain-specific dataset, such as coding or math datasets. This simulates collaborative fine-tuning
(CoFT), that is, independent fine-tuning runs of open-source models from the seed expert.

3. Merging Experts Finally, Seeded LoRA incorporates all fine-tuned adapters through a simple
average of the output hidden states of all adapters.

During inference, a critical advantage of Seeded LoRA over other mixture of adapters methods with
routers is its ability to merge the adapters into the weights, reducing inference overhead significantly:

y = x

(
W0 +

1

N

N∑
i=1

AiBi

)
(4)

4 FINE-TUNING EXPERIMENTS WITH SEEDED LORA

In this section, we evaluate Seeded LoRA compared to LoRA, and MoLoRA fine-tuning. We en-
sured a similar parameter budget for all models to maintain consistency in our comparison of zero-
shot accuracy on various language tasks.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

These experiments leverage 9 different datasets1 for instruction fine-tuning. For details about the
dataset composition see Appendix B. The dataset contains a mix of general knowledge, code, and
mathematics, totaling 282,360 data points.

In our experiments, we use a multi-stage fine-tuning process to simulate the existence of independent
open-source LoRA models. We start with a pretrained LLM, M, trained on a random subset of the
training data. We aim to improve M’s performance in N specific areas of expertise. To achieve this,
we fine-tune M with N corresponding datasets, D := {D1, . . . , DN}, where each dataset is related
to a specific domain. For Seeded LoRA we follow the steps outlined in Section 3, Seeded LoRA.
For MoLoRA we finetune on all data – the full data mixture – where the router learns to route to
particular expert adapters. For LoRA, we have two experimental settings: (1) finetune on the full
data mixture, (2) each LoRA adapter on each individual dataset. In both approaches we control for
the overall parameter budget.

Task LoRA LoRA MoLoRA Seeded LoRA
Datasets used (individual) (mixture) (mixture) (mixture)

ANLI r1 36.10 36.30 34.80 35.20
ANLI r2 35.50 37.50 34.80 32.50
ANLI r3 34.67 38.75 32.50 34.42
Arc Challenge 43.77 37.20 39.59 44.45
Arithmetic 2ds 54.00 00.00 11.65 83.70
Arithmetic 4ds 37.10 00.00 14.05 52.15
BB Causal Judgement MC 50.53 52.11 52.11 53.16
Blimp Causative 76.50 74.40 75.80 75.90
CB 26.79 44.64 39.29 30.36
COPA 88.00 86.00 87.00 88.00
HellaSwag 57.12 57.87 57.71 57.46
RTE 60.65 53.79 54.87 63.18
TruthfulQA mc1 30.35 27.29 28.64 30.35
WIC 50.16 51.25 50.94 50.00
Winogrande 69.61 70.32 71.27 70.32
WSC 39.42 37.50 45.19 38.46

Mean 50.26 44.05 45.63 52.47

Table 1: Zero-shot accuracy of LoRA adapters on individual datasets and the full data mixture for
LoRA, MoLoRA, and Seeded LoRA (ours) on multiple evaluation tasks. All models were fine-tuned
using instruction-tuning with Llama 2 as the base model. While other full data mixture approaches
struggle with task interference on some tasks – particularly Arthimetic 2ds/4ds, RTE, and Arc Chal-
lenge – Seeded LoRA shows no signs of task interference. As such, the main benefit of Seeded
LoRA can be seen as mitigating interactions between tasks. While individual LoRA finetuning runs
do not suffer from task interference, they also do not benefit from data across tasks. Seeded LoRA
achieves a good balance of little task interference while still benefiting from data mixtures.

4.1 EXPERIMENTAL DETAILS

For training Seeded LoRA experts, we used a rank of 16. The MoLoRA baseline uses the same
number of experts as SeededLoRA with the same rank. For the LoRA baseline, we adjusted the
rank depending on the number of experts to ensure an equivalent parameter count. All models were
fine-tuned using instruction-tuning with Llama 2 7B (Touvron et al., 2023) as the base model.

We assess performance on a range of tasks using the lm-evaluation-harness (Gao et al., 2023) and
use the task battery used in previous work, MoLoRA (Zadouri et al., 2023). Additionally, to increase
the diversity in the task battery and to increase the challenge of multi-task finetuning, we include
mathematical arithmetic and reasoning tasks such as Arithmetic 2DS and 4DS (Brown et al., 2020),
and the Blimp Causative dataset (Warstadt et al., 2023) in our mixture of tasks.

1https://huggingface.co/datasets/xxxxx/xxxxx

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Figure 3: Activation patterns of the routing layer for two distinct tasks, HellaSwag and TruthfulQA,
across a set of ten experts. The uniformity in activation distribution suggests similar utilization
of experts for both tasks meaning that experts did not specialize in any of the trained 10 domains
despite having non-uniform routing probabilities.

These tasks cover diverse areas like natural language inference, arithmetic reasoning, commonsense
reasoning, and question answering. Table 1 summarizes the zero-shot accuracy achieved by each
model on these tasks. Appendix D contains results for each individual expert in Seeded LoRA.

5 RESULTS

As shown in Table 1, Seeded LoRA outperforms LoRA and MoLoRA on average across 16 tasks.
Compared to the baseline LoRA and MoLoRA that are trained end-to-end using a multi-task data
mixture, Seeded LoRA archives a significant increase of 8.4 and 6.8 points on average accuracy
respectively, and outperforms both baselines in 9 tasks. This suggests Seeded LoRA’s ability to
effectively leverage expert knowledge for broader task applicability.

Notably, Seeded LoRA exhibits superior performance in tasks such as arithmetic reasoning (2D and
4D), where LoRA and MoLoRA struggle. We relate this to task interference and catastrophic forget-
ting in LoRA and MoLoRA. While LoRA adapters trained on individual datasets do not suffer from
task interference, no transfer between tasks takes place. Seeded LoRA strikes a balance between
good performance on task mixtures while not suffering from task interference. Overall, Seeded
LoRA’s performance demonstrates its effectiveness as a fine-tuning approach.

6 THE PITFALLS OF ROUTING: ANALYSIS OF SUBTLE ROUTING FAILURES

While the main contribution of this paper is a simple approach that allows for collaborative fine-
tuning (CoFT) without any routing, we did extensive experiments of routing approaches. In this
section, we highlight subtle failures and show how to debug routing approaches to be able to develop
routing methods that might outperform Seeded LoRA.

Experimental Setup To investigate the impact of the routing mechanism, we employed Unsuper-
vised Domain Discovery (Gururangan et al., 2023) to cluster a selected dataset into multiple smaller
datasets via k-means. Subsequently, a seed expert, several domain-specific experts, and a routing
layer designed for expert selection through soft merging were developed and trained. Comparative
analyses were conducted between Seeded LoRA, LoRA, and MoLoRA, examining configurations
with 5, 10, 15, and 30 experts, while ensuring parameter and computational resources remained
consistent across these variations.

We then analyzed the routing layer’s capability to accurately assign tokens to appropriate experts. To
do this we inspect the router probabilities while evaluating with the EleutherAI Eval Harness(Gao

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 4: Normalized mean accuracy of Seeded LoRA with Routing, and MoLoRA as a function of
the number of top K experts considered for 30 experts. Seeded LoRA, with its independently trained
specialized experts, displays a steep increase in performance with a smaller number of top experts,
highlighting the benefits of expert specialization. MoLoRA, trained end-to-end, shows a more grad-
ual improvement that is closer to the improvement that would be expected if each additional expert
leads to a linear increase in performance.

et al., 2023). We mainly track two quantities: (1) aggregate probability mass over all tokens, (2)
normalized proportion of top-k experts activities for all tokens. Normalized proportions means here,
we keep track of all top-k expert counts and then divide by the total amount of activated experts.

The evaluation tasks included HellaSwag, testing common-sense reasoning, and TruthfulQA, aimed
at addressing failures in truthfulness.

The next paragraphs will discuss subtle routing failures that we observed in these experiments.

Failure I: Uniform specialization with non-uniform routing A subtle pattern of expert special-
ization failure occurs if for a particular evaluation task only a few experts are activated (non-uniform
routing probabilities), but that the distribution of experts remains fixed for other tasks. This indi-
cates that all tasks are learned across all experts with one particular weighted average. This pattern
is depicted in Figure 3.

Failure II: Non-uniform routing probability that is unrelated to expert effectiveness If a router
and experts are trained successfully, then adding the top-k experts in order of their routing probabil-
ity should increase the performance on the end task in a non-linear manner. A non-linear increase
indicates, that routing probability p is proportional to the expert effectiveness for that task. A linear
increases indicate, while the router assigns a higher p to some experts, all experts are interchange-
able and provide similar performance despite different routing probabilities. This is essentially,
non-specialization combined with an uncalibrated router that emits non-uniform routing probabili-
ties. See Figure 4 for a failure case that is contrasted with successful specialization.

Failure III: Uniform routing While uniform routing where each expert has the same probability p
often yields better performance with more experts (Jiang et al., 2024; Muennighoff et al., 2024), we
show in Section 7 that this routing pattern is equivalent to grouped convolution and processing. As
such, despite its improved performance, uniform routing represents a routing failure since perfor-
mance of the model is the same with and without routing. Muennighoff et al. (2024) discusses this
failure mode as evident when analyzing Mixtral (Jiang et al., 2024).

Discussion. Here we depicted common routing failures. Seeded LoRA shows that through the
adoption of a seed expert and the application of simple averaging of adapter outputs, it is possible
to avoid these challenges while simplifying the architecture. We believe that routers can be trained
to improve the performance of LoRA MoE approaches, but Seeded LoRA is a strong baseline that
we are unable to beat with any current routing approaches (adding routing to Seeded LoRA does

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

not improve the performance). The failure cases in this section can be used to develop routing
mechanisms that improve over Seeded LoRA.

7 WHY FAILED ROUTERS CAN STILL BE EFFECTIVE: UNIFORM ROUTING AS
GROUPED CONVOLUTIONS

Seeded LoRA uses a simple average of the adapter outputs which is equivalent of a routed archi-
tecture where each expert gets the same routing probability. The finding that Seeded LoRA is more
effective than architectures that actively route information might be surprising given that routed ar-
chitectures are often effective in their own right; for example, Mixtral (Jiang et al., 2024) was a
very powerful and widely used open-source model at the time of its release, yet it shows the rout-
ing failures described above(Muennighoff et al., 2024). In this section, we show that routers that
assign equal probability to experts are equivalent to grouped convolution. This highlights that failed
routers, while not leading to specialization into experts, might still show improvements in model
quality compared to baselines, similarly how grouped convolutional networks such as ResNeXt (Xie
et al., 2017) usually outperform regular convolutional networks such as ResNet (He et al., 2015).
This also highlights why good model quality alone is not sufficient to determine if a mixture model
was trained successfully.

7.1 1X1 CONVOLUTION AS MATRIX MULTIPLICATION

Let the input tensor be X ∈ RH×W×C , where:

• H and W represent the spatial dimensions (height and width).
• C is the number of input channels.

Consider a 1x1 convolution kernel denoted by K ∈ R1×1×C×F , where F corresponds to the number
of filters, or output channels. The 1x1 convolution operation can be effectively represented as a
matrix multiplication through the following steps:

1. Reshape the input tensor X: Flatten the spatial dimensions (H,W) into a single dimen-
sion, resulting in a matrix X ′ ∈ RHW×C . X ′ = reshape(X) ∈ RHW×C .

2. Reshape the kernel K: Similarly, flatten the spatial dimensions of the kernel and transpose
the channel dimensions to obtain a matrix K ′ ∈ RC×F . K ′ = reshape(K) ∈ RC×F .

3. Perform matrix multiplication: Compute the product of the reshaped input X ′ and the
reshaped kernel K ′. The resulting matrix Y ′ ∈ RHW×F represents the flattened form of
the convolution’s output. Mathematically, this step can be expressed as:Y ′ = X ′K ′.

4. Reshape the output: Finally, reshape the output matrix Y ′ back to its original tensor
format Y ∈ RH×W×F to obtain the result of the convolution operation.

7.2 GROUPED CONVOLUTION AS UNIFORM EXPERT ROUTING

Grouped convolution is an operation where the input tensor X ∈ RH×W×C is processed by k
independent kernels Ki, and the results are summed: Y =

∑
Xi ∗Ki.

When performing uniform routing, this effectively creates a grouped convolution structure with k
adapters where the outputs are averaged:Y = 1

k

∑
Xai1a

i
2.

This structure is similar to ResNeXt (Xie et al., 2017), which uses three kernels: reduction, inter-
mediate, and expansion. Our approach simplifies this to two operations (reduction and expansion)
while maintaining the grouped computation structure. This allows for efficient computation while
still capturing complex transformations through multiple adapter pairs. The only difference between
grouped convolution and uniform routing is that grouped convolution uses a sum while uniform rout-
ing uses the average of the outputs. This can be rectified with proper initialization.

Specifically, convolutional kernels are often initialized by a normal distribution adjusted for how

many channels exist in the kernel (Glorot & Bengio, 2010): N
(
0,
√

1
C

)
. Here C represents the

channel dimension.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

For uniform routing to be equivalent in the output distribution, we can initialize each LoRA adapter

with N
(
0,
√

1
C×k

)
. Here, C represents the input dimension, and k is the number of expert adapters

used.

With this specific initialization scheme, the variance of the Seeded LoRA output will align with that
of the grouped convolutions, leading to equivalent behavior.

8 RELATED WORK

Mixture-of-Adapters (MoA) methods MoLoRA (Zadouri et al., 2023) integrating Low-Rank
Adapters as experts, updates only a small portion of parameters, efficiently enhancing performance
across various tasks. Similarly, SiRA (Zhu et al., 2023) adopts a Sparse MoE strategy, implementing
a top-k expert routing with limits on token processing and an expert dropout to combat overfitting,
aiming for computational efficiency. PHATGOOSE (Muqeeth et al., 2024) facilitates zero-shot gen-
eralization by routing among language model experts and employing a sigmoid gate for efficient
top-k inference routing. Lastly, LoRAMoE (Dou et al., 2024) safeguards world knowledge within
LLMs during fine-tuning by freezing the main model and fine-tuning select LoRAs, thus bolstering
downstream task performance while preserving the original knowledge base.

Branch-Train-Merge (BTM) Approaches BTM (Li et al., 2022) is a communication-efficient
algorithm designed for the parallel training of large language models (LLMs). It facilitates the inde-
pendent training of model subparts, termed Expert Language Models (ELMs), across different data
subsets. ELMs form the ELMFOREST and can be dynamically modulated or integrated through en-
sembling or parameter averaging. Cluster-Branch-Train-Merge (c-BTM) (Gururangan et al., 2023)
extends BTM by incorporating unsupervised domain discovery, enabling domain-specific training
and forming a sparse ensemble for efficient inference. Branch-Train-MiX (Sukhbaatar et al., 2024)
further advances this paradigm by mixing trained domain-specific experts into an MoE model, yield-
ing an efficient LLM with enhanced accuracy-efficiency trade-offs.

9 LIMITATIONS & FUTURE WORK

Despite Seeded LoRA’s demonstrated efficacy in enhancing the zero-shot performance of LLMs
across a variety of tasks while adding chatbot capabilities to pretrained models, there are inherent
limitations that require further exploration:

Past models are unseeded. While future models can be initialized via Seeded LoRA currently
available models are not seeded and as such not initialized in the same optimization subspace.

Inherent limits of averaging. While a simple average of expert outputs works in Seeded LoRA,
this has inherent limits as ineffective experts add more and more noise decreasing the signal to noise
ratio. As such, when too many experts are merged more advanced weighted averaging techniques
will become necessary.

Scalable Expert Management. To address scalability, further research could look on developing
efficient algorithms for expert selection and routing that minimize computational overhead. Tech-
niques such as sparse expert selection, where only a subset of the most relevant experts are activated
for a given input, could improve Seeded LoRA’s performance.

Number of Experts. Determining an optimal number of experts for a given task or dataset re-
mains an open question. Techniques for dynamically adjusting the number of experts based on task
complexity or data characteristics could be beneficial.

REPRODUCIBILITY STATEMENT

The code to fine-tune LoRA, MoLoRa, and Seeded LoRA, as well as the evaluation code, can be
found in Github2.

2https://github.com/xxxxx/xxxxx

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal,
Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel M.
Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler, Mateusz Litwin,
Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford,
Ilya Sutskever, and Dario Amodei. Language models are few-shot learners. 2020.

Sahil Chaudhary. Code alpaca: An instruction-following llama model for code generation. https:
//github.com/sahil280114/codealpaca, 2023.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. arXiv preprint arXiv:2110.14168,
2021.

Mike Conover, Matt Hayes, Ankit Mathur, Jianwei Xie, Jun Wan, Sam Shah, Ali Ghodsi, Patrick
Wendell, Matei Zaharia, and Reynold Xin. Free dolly: Introducing the world’s first truly open
instruction-tuned llm, 2023. URL https://www.databricks.com/blog/2023/04/
12/dolly-first-open-commercially-viable-instruction-tuned-llm.

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Llm. int8 (): 8-bit matrix
multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:
30318–30332, 2022.

Shihan Dou, Enyu Zhou, Yan Liu, Songyang Gao, Jun Zhao, Wei Shen, Yuhao Zhou, Zhiheng Xi,
Xiao Wang, Xiaoran Fan, Shiliang Pu, Jiang Zhu, Rui Zheng, Tao Gui, Qi Zhang, and Xuanjing
Huang. Loramoe: Alleviate world knowledge forgetting in large language models via moe-style
plugin, 2024.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel M Roy, and Michael Carbin. Stabilizing the
lottery ticket hypothesis. arXiv preprint arXiv:1903.01611, 2019.

Jonathan Frankle, Gintare Karolina Dziugaite, Daniel Roy, and Michael Carbin. Linear mode con-
nectivity and the lottery ticket hypothesis. In International Conference on Machine Learning, pp.
3259–3269. PMLR, 2020.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 12 2023. URL https://zenodo.org/records/
10256836.

Behrooz Ghorbani, Shankar Krishnan, and Ying Xiao. An investigation into neural net optimization
via hessian eigenvalue density. In International Conference on Machine Learning, pp. 2232–
2241. PMLR, 2019.

Xavier Glorot and Yoshua Bengio. Understanding the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth international conference on artificial intelligence and
statistics, pp. 249–256. JMLR Workshop and Conference Proceedings, 2010.

Ian J Goodfellow, Mehdi Mirza, Da Xiao, Aaron Courville, and Yoshua Bengio. An empiri-
cal investigation of catastrophic forgetting in gradient-based neural networks. arXiv preprint
arXiv:1312.6211, 2013.

Guy Gur-Ari, Daniel A Roberts, and Ethan Dyer. Gradient descent happens in a tiny subspace. arXiv
preprint arXiv:1812.04754, 2018.

Suchin Gururangan, Margaret Li, Mike Lewis, Weijia Shi, Tim Althoff, Noah A. Smith, and Luke
Zettlemoyer. Scaling expert language models with unsupervised domain discovery, 2023.

10

https://github.com/sahil280114/codealpaca
https://github.com/sahil280114/codealpaca
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://www.databricks.com/blog/2023/04/12/dolly-first-open-commercially-viable-instruction-tuned-llm
https://zenodo.org/records/10256836
https://zenodo.org/records/10256836

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition, 2015.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874, 2021.

Edward J. Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models, 2021.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris Bam-
ford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, et al.
Mixtral of experts. arXiv preprint arXiv:2401.04088, 2024.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. In F. Pereira, C.J. Burges, L. Bottou, and K.Q. Weinberger
(eds.), Advances in Neural Information Processing Systems, volume 25. Curran Associates, Inc.,
2012. URL https://proceedings.neurips.cc/paper_files/paper/2012/
file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf.

Ariel N. Lee, Cole J. Hunter, and Nataniel Ruiz. Platypus: Quick, cheap, and powerful refinement
of llms, 2023.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with conditional
computation and automatic sharding. arXiv preprint arXiv:2006.16668, 2020.

Guohao Li, Hasan Abed Al Kader Hammoud, Hani Itani, Dmitrii Khizbullin, and Bernard Ghanem.
Camel: Communicative agents for ”mind” exploration of large scale language model society,
2023.

Margaret Li, Suchin Gururangan, Tim Dettmers, Mike Lewis, Tim Althoff, Noah A. Smith, and Luke
Zettlemoyer. Branch-train-merge: Embarrassingly parallel training of expert language models,
2022.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation, 2021.

Wing Lian, Bleys Goodson, Eugene Pentland, Austin Cook, Chanvichet Vong, and ”Teknium”.
Openorca: An open dataset of gpt augmented flan reasoning traces. https://https://
huggingface.co/Open-Orca/OpenOrca, 2023.

Wei Yang Bryan Lim, Nguyen Cong Luong, Dinh Thai Hoang, Yutao Jiao, Ying-Chang Liang,
Qiang Yang, Dusit Niyato, and Chunyan Miao. Federated learning in mobile edge networks: A
comprehensive survey. IEEE Communications Surveys & Tutorials, 22(3):2031–2063, 2020.

Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context learn-
ing, 2022.

Yun Luo, Zhen Yang, Fandong Meng, Yafu Li, Jie Zhou, and Yue Zhang. An empirical study of
catastrophic forgetting in large language models during continual fine-tuning, 2023.

Sourab Mangrulkar, Sylvain Gugger, Lysandre Debut, Younes Belkada, Sayak Paul, and Benjamin
Bossan. Peft: State-of-the-art parameter-efficient fine-tuning methods. https://github.
com/huggingface/peft, 2022.

Saeed Masoudnia and Reza Ebrahimpour. Mixture of experts: a literature survey. Artificial Intelli-
gence Review, 42:275–293, 2014.

11

https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2012/file/c399862d3b9d6b76c8436e924a68c45b-Paper.pdf
https://https://huggingface.co/Open-Orca/OpenOrca
https://https://huggingface.co/Open-Orca/OpenOrca
https://github.com/huggingface/peft
https://github.com/huggingface/peft

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Niklas Muennighoff, Luca Soldaini, Dirk Groeneveld, Kyle Lo, Jacob Morrison, Sewon Min, Wei-
jia Shi, Pete Walsh, Oyvind Tafjord, Nathan Lambert, et al. Olmoe: Open mixture-of-experts
language models. arXiv preprint arXiv:2409.02060, 2024.

Subhabrata Mukherjee, Arindam Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi, and
Ahmed Awadallah. Orca: Progressive learning from complex explanation traces of gpt-4, 2023.

Mohammed Muqeeth, Haokun Liu, Yufan Liu, and Colin Raffel. Learning to route among special-
ized experts for zero-shot generalization, 2024.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Sainbayar Sukhbaatar, Olga Golovneva, Vasu Sharma, Hu Xu, Xi Victoria Lin, Baptiste Rozière,
Jacob Kahn, Daniel Li, Wen tau Yih, Jason Weston, and Xian Li. Branch-train-mix: Mixing
expert llms into a mixture-of-experts llm, 2024.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023.

Alex Warstadt, Alicia Parrish, Haokun Liu, Anhad Mohananey, Wei Peng, Sheng-Fu Wang, and
Samuel R. Bowman. Blimp: The benchmark of linguistic minimal pairs for english, 2023. URL
https://arxiv.org/abs/1912.00582.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. In International
Conference on Learning Representations, 2022.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In International conference on machine learning, pp. 23965–23998. PMLR, 2022.

Saining Xie, Ross Girshick, Piotr Dollár, Zhuowen Tu, and Kaiming He. Aggregated residual trans-
formations for deep neural networks, 2017.

Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermiş, Acyr Locatelli, and Sara Hooker. Push-
ing mixture of experts to the limit: Extremely parameter efficient moe for instruction tuning,
2023.

Yun Zhu, Nevan Wichers, Chu-Cheng Lin, Xinyi Wang, Tianlong Chen, Lei Shu, Han Lu, Canoee
Liu, Liangchen Luo, Jindong Chen, and Lei Meng. Sira: Sparse mixture of low rank adaptation,
2023.

12

https://github.com/tatsu-lab/stanford_alpaca
https://arxiv.org/abs/1912.00582

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

A CONVOLUTIONS

Convolutional Neural Networks (CNNs) CNNs automate feature extraction from images using
layers of convolutional kernels. These kernels, through the convolution operation, identify patterns
and features within the input data, making them essential for tasks such as image and video recogni-
tion, image classification, and medical image analysis. The convolution operation is mathematically
represented as:

F (i, j) = (K ∗X)(i, j) =
∑
m

∑
n

K(m,n)X(i−m, j − n) (5)

where F is the feature map resulting from applying the kernel K to the input image X at coordinates
(i, j).

Convolutional Kernels Convolutional kernels are the core components of CNNs, allowing the
network to capture spatial hierarchies of features. Early layers might capture basic patterns such as
edges and textures, while deeper layers combine these features to detect more complex patterns. The
design of CNN architectures such as ResNet (He et al., 2015) demonstrates how deep networks can
effectively learn a wide variety of features by applying convolutional kernels across multiple layers.

Grouped Convolutions Grouped convolutions, introduced in (Krizhevsky et al., 2012), extend
the convolutional operation by dividing the input and kernels into groups, allowing each group to
perform convolutions independently. This method reduces computational requirements and param-
eters while maintaining the network’s effectiveness. ResNeXt (Xie et al., 2017) leverages grouped
convolutions, introducing the concept of cardinality to efficiently scale the model’s capacity. This
approach demonstrates the significant advantages of grouped convolutions in deep learning archi-
tectures:

Fg = Kg ∗Xg (6)

where Fg represents the feature map produced by the gth group’s convolution of kernel Kg with
input Xg .

B DATA DETAILS

The experiments for Seeded LoRA leverage a composite dataset for instruction fine-tuning contain-
ing a mix of general knowledge, code, and mathematics, totaling 282,360 data points. Instruction
fine-tuning contrasts with traditional supervised fine-tuning, which primarily aims to correlate input
data with corresponding outputs. The data originates from various sources:

• Open-Orca/OpenOrca (Lian et al., 2023): collection of augmented FLAN (Wei et al.,
2022) data that aligns with the distributions outlined in the Orca paper (Mukherjee et al.,
2023).

• TokenBender/code instructions 122k alpaca style3: coding questions
following the Alpaca template.

• camel-ai/math (Li et al., 2023): composed of 50K problem-solution pairs obtained
using GPT-4.

• yahma/alpaca-cleaned (Taori et al., 2023): contains a cleaned version of the Alpaca
dataset.

• garage-bAInd/Open-Platypus (Lee et al., 2023): dataset focused on improving
LLM logical reasoning skills and was used to train the Platypus2 models.

• sahil2801/CodeAlpaca-20k (Chaudhary, 2023): contains 20K code problems in
the Alpaca format.

3https://huggingface.co/datasets/TokenBender/code instructions 122k alpaca style

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

• c-s-ale/dolly-15k-instruction-alpaca-format: cleaned and alpaca for-
matted version of Dolly (Conover et al., 2023), a corpus of more than 15,000 records gen-
erated by thousands of Databricks employees.

• hendrycks/competition math (Hendrycks et al., 2021): consists of problems from
mathematics competitions, including the AMC 10, AMC 12, AIME, and more. Each prob-
lem has a full step-by-step solution, which can be used to teach models to generate answer
derivations and explanations.

• gsm8k (Cobbe et al., 2021): dataset of 8.5K high quality linguistically diverse grade
school math word problems. The dataset was created to support the task of question an-
swering on basic mathematical problems that require multi-step reasoning.

Dataset Count Percentage (%)
Open-Orca/OpenOrca 70565 24.99
TokenBender/code instructions 122k alpaca style 60979 21.60
camel-ai/math 50000 17.71
yahma/alpaca-cleaned 25880 9.17
garage-bAInd/Open-Platypus 24926 8.83
sahil2801/CodeAlpaca-20k 20022 7.09
c-s-ale/dolly-15k-instruction-alpaca-format 15015 5.32
hendrycks/competition math 7500 2.66
gsm8k 7473 2.65

Table 2: Distribution of elements and their respective percentages across various datasets.

For training Seeded LoRA experts, the following hyperparameters were used:

• Rank: 16 (dimensionality of the low-rank adaptation space)
• LoRA Alpha: 8
• LoRA Dropout: 0.05
• Epochs: 2

C SEEDED LORA FINE-TUNING USING UNSUPERVISED DOMAIN
DISCOVERY

Building upon the foundation laid by c-BTM (Gururangan et al., 2023), we experimented with Un-
supervised Domain Discovery to create clusters to train experts.

The process begins by segmenting the data using k-means clustering. This divides the data (denoted
by X with N samples) into K distinct clusters (C). Each cluster is characterized by a centroid (µj),
representing the average feature vector of its members. The k-means algorithm aims to minimize
the inertia, ensuring data points within each cluster are similar.

n∑
i=0

min
µj∈C

(∥xi − µj∥2)

This method is flexible in its data representation. You can use any encoding method that captures
the dataset’s information suitable for unsupervised domain discovery. In this case, we create embed-
dings of our data. Afterwards, experts are trained as shown in Section 4.

Results for this setting can be seen in Appendices G and H.

D EVALUATION RESULTS FOR SEEDED LORA EXPERTS TRAINED ON
INDIVIDUAL DATASETS

Table 3 contains the evaluation resutls for Seeded LoRA with experts trained on the individual
datasets.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Figure 5: Seeded LoRA fine-funing using Unsupervised Domain Discovery. This method contains
four stages: 1) Unsupervised Domain Discovery on an unlabelled dataset to create domain-specific
datasets. 2) Seed Expert Training. 3) Cluster-Specific Expert Training. 4) Expert Combination.

Task Seed Expert Exp. 0 Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8
ANLI r1 36.10 34.70 35.30 33.90 34.00 31.90 35.20 37.00 34.70 38.00
ANLI r2 35.50 34.20 34.30 33.40 33.40 31.20 34.30 37.50 32.30 33.90
ANLI r3 34.67 35.92 34.33 32.58 33.42 32.67 33.50 35.83 33.25 35.33
Arc Challenge 43.77 34.73 46.16 40.96 45.56 42.32 45.22 44.54 42.75 43.34
Arithmetic 2ds 54.00 00.00 94.50 46.35 72.65 58.45 91.10 96.25 53.30 43.65
Arithmetic 4ds 37.10 00.00 52.80 39.45 44.70 39.90 50.35 58.35 37.90 37.00
BB C.J. MC 50.53 52.11 47.89 49.47 47.89 54.21 50.53 52.63 52.11 51.58
Blimp Causative 76.50 68.10 75.00 75.30 74.10 73.70 76.40 75.70 77.80 77.30
CB 26.79 26.79 39.29 21.43 30.36 21.43 28.57 32.14 28.57 26.79
COPA 88.00 88.00 86.00 85.00 88.00 86.00 87.00 88.00 88.00 88.00
HellaSwag 57.12 57.97 57.04 56.84 57.77 57.25 57.12 57.42 57.38 57.22
RTE 60.65 52.71 63.18 51.62 64.98 58.84 61.01 59.21 59.93 58.84
TruthfulQA mc1 30.35 31.95 28.52 33.90 34.39 31.09 27.91 28.76 28.89 28.03
WIC 50.16 50.00 49.69 50.00 49.84 50.00 50.00 50.00 50.00 50.00
Winogrande 69.61 70.96 71.35 68.51 70.72 70.24 70.40 69.77 69.69 69.77
WSC 39.42 36.54 40.38 36.54 41.35 36.54 50.96 37.50 41.35 38.46
Average 50.26 42.16 53.48 47.20 51.44 48.48 53.09 53.78 49.24 48.57

Table 3: Zero-shot accuracy of Seeded LoRA experts on multiple evaluation tasks for experts trained
on individual datasets.

E EVALUATION RESULTS FOR SEEDED LORA TRAINED ON INDIVIDUAL
DATASETS WITH NO Seed Expert

Table 4 contains the evaluation resutls for Seeded LoRA trained on individual datasets with no Seed
Expert.

F SEEDED LORA WITH SEED EXPERT IN THE FINAL MODEL

We also experimented with including the Seed Expert in the final model. In Seeded, this resulted in
an average score of 52.29. This shows that the general knowledge acquired by the seed expert is not
lost when the rest of the experts are trained.

G EVALUATION RESULTS FOR SEEDED LORA EXPERTS TRAINED ON
CLUSTERS

Table 6 contains the results for Seeded LoRA trained on clusters using Unsupervised Domain Dis-
covery. Table 7 contains the results for each expert in this model.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Task Seeded LoRA
(No Seed) Exp. 0 Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8

ANLI r1 37.10 36.40 37.00 33.20 38.20 32.20 35.60 35.70 36.30 35.90
ANLI r2 38.60 34.80 38.30 31.50 37.80 31.60 37.10 38.60 37.60 36.80
ANLI r3 37.83 35.25 35.42 33.25 36.25 32.00 37.67 36.08 37.17 37.83
Arc Challenge 43.34 34.22 44.80 40.36 44.54 42.24 43.43 44.28 42.58 42.66
Arithmetic 2ds 49.80 00.00 93.90 46.00 44.55 44.45 51.90 52.85 50.10 48.90
Arithmetic 4ds 37.85 00.00 45.15 40.20 41.90 38.40 36.25 35.80 37.05 36.70
BB C.J. MC 52.63 51.05 47.37 48.42 48.95 51.05 55.79 53.16 51.58 52.63
Blimp Causative 74.00 63.70 74.10 75.30 73.70 75.00 75.30 73.20 74.00 73.90
CB 39.29 26.79 37.50 30.36 28.57 17.86 48.21 44.64 48.21 53.57
COPA 87.00 90.00 87.00 84.00 88.00 87.00 87.00 87.00 88.00 87.00
HellaSwag 57.38 57.81 57.14 56.82 57.35 57.28 57.14 57.41 57.26 57.07
RTE 62.82 52.71 59.21 54.51 63.18 59.57 61.37 57.04 62.45 62.45
TruthfulQA mc1 28.64 31.95 27.29 33.05 33.05 30.35 25.21 27.42 25.46 24.36
WIC 50.00 50.00 50.47 50.00 50.00 50.00 50.00 50.00 49.53 49.84
Winogrande 70.32 71.59 70.09 68.90 70.01 70.56 69.69 69.30 69.06 69.14
WSC 38.46 36.54 44.23 36.54 36.54 36.54 38.46 37.50 38.46 38.46
Average 50.31 42.04 53.05 47.65 49.53 47.25 50.63 49.99 50.30 50.45

Table 4: Zero-shot accuracy of Seeded, trained on individual datasets without Seed Expert, on
multiple evaluation tasks.

Task Seeded LoRA
with seed expert

ANLI r1 35.70
ANLI r2 32.90
ANLI r3 34.75
Arc Challenge 44.71
Arithmetic 2ds 81.85
Arithmetic 4ds 49.15
BB Causal Judgement MC 48.95
Blimp Causative 77.20
CB 30.36
COPA 88.00
HellaSwag 57.39
RTE 64.98
TruthfulQA mc1 31.82
WIC 50.00
Winogrande 70.48
WSC 38.46
Average 52.29

Table 5: Zero-shot accuracy of Seeded LoRA with seed expert in the final model trained on clusters
on multiple evaluation tasks.

H EVALUATION RESULTS FOR SEEDED LORA TRAINED ON CLUSTERS WITH
NO Seed Expert

Table 8 contains the evaluation results for Seeded LoRA trained on clusters with no Seed Expert.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Task Seeded LoRA
ANLI r1 34.90
ANLI r2 32.10
ANLI r3 35.08
Arc Challenge 44.62
Arithmetic 2ds 85.20
Arithmetic 4ds 50.25
BB Causal Judgement MC 50.00
Blimp Causative 77.30
CB 26.79
COPA 88.00
HellaSwag 57.48
RTE 64.98
TruthfulQA mc1 31.46
WIC 50.00
Winogrande 70.48
WSC 37.50
Average 52.25

Table 6: Zero-shot accuracy of Seeded LoRA trained on clusters on multiple evaluation tasks.

Task Seed Expert Exp. 0 Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8
ANLI r1 36.10 33.20 36.30 37.10 34.00 34.10 33.50 34.20 36.50 36.40
ANLI r2 35.50 32.70 33.80 34.10 32.80 33.40 31.30 31.90 32.70 32.50
ANLI r3 34.67 33.25 35.92 33.58 32.67 32.92 33.08 33.33 33.33 32.50
Arc Challenge 43.77 41.89 35.92 46.08 43.94 42.83 41.81 43.69 45.05 45.22
Arithmetic 2ds 54.00 83.70 00.00 92.30 45.95 93.25 32.85 76.35 67.90 79.20
Arithmetic 4ds 37.10 49.35 00.00 45.45 38.50 55.35 33.60 43.10 41.70 44.35
BB C.J. MC 50.53 52.11 52.11 47.89 47.37 51.58 48.95 50.53 47.89 47.37
Blimp Causative 76.50 73.00 65.60 75.80 77.60 76.90 78.00 77.50 76.00 75.40
CB 26.79 44.64 35.71 19.64 16.07 26.79 23.21 35.71 26.79 26.79
COPA 88.00 87.00 90.00 88.00 87.00 88.00 86.00 88.00 87.00 88.00
HellaSwag 57.12 57.47 57.93 57.48 57.24 57.31 56.94 57.03 57.17 57.33
RTE 60.65 51.62 53.07 62.82 65.70 63.18 64.26 59.57 61.73 63.18
TruthfulQA mc1 30.35 30.60 32.19 30.48 31.33 32.19 33.05 31.21 30.72 30.11
WIC 50.16 50.00 50.00 50.00 49.53 50.00 50.00 50.00 50.31 50.16
Winogrande 69.61 70.88 70.64 71.03 70.48 71.51 70.48 71.82 70.48 70.48
WSC 39.42 36.54 36.54 41.35 52.88 36.54 36.54 36.54 47.12 41.35
Average 49.39 51.74 42.85 52.06 48.94 52.86 47.09 51.28 50.77 51.27

Table 7: Zero-shot accuracy of Seeded LoRA experts, each one trained on a different cluster, on
multiple evaluation tasks.

Task Seeded LoRA
(No Seed) Exp. 0 Exp. 1 Exp. 2 Exp. 3 Exp. 4 Exp. 5 Exp. 6 Exp. 7 Exp. 8

ANLI r1 38.60 33.80 34.90 37.30 37.10 36.40 37.50 37.50 36.10 36.40
ANLI r2 37.30 32.20 34.20 38.90 38.30 34.10 36.90 37.10 37.90 36.50
ANLI r3 37.00 33.75 32.50 38.25 36.92 35.42 37.83 37.75 38.17 37.83
Arc Challenge 43.52 43.77 42.75 43.94 43.94 42.92 43.26 43.09 42.83 43.69
Arithmetic 2ds 51.75 75.60 89.70 65.75 49.80 47.50 49.95 49.40 50.40 50.30
Arithmetic 4ds 37.45 51.85 54.45 36.75 36.75 38.00 36.60 36.85 36.35 36.25
BB C.J. MC 53.68 52.11 52.63 50.00 48.95 48.42 48.42 46.32 51.05 52.11
Blimp Causative 74.70 75.70 71.00 75.10 73.80 77.30 74.30 77.20 73.60 74.10
CB 39.29 33.93 08.93 32.14 44.64 28.57 44.64 39.29 42.86 42.86
COPA 88.00 86.00 88.00 88.00 87.00 87.00 87.00 86.00 87.00 88.00
HellaSwag 57.20 57.32 57.60 57.22 57.09 57.06 56.87 57.08 57.28 57.14
RTE 63.54 66.06 62.82 60.29 63.54 62.82 62.45 63.18 63.54 62.82
TruthfulQA mc1 28.52 29.38 34.39 27.91 28.27 30.35 28.27 29.74 24.97 25.58
WIC 50.00 50.31 50.00 50.00 49.53 50.16 49.69 49.69 49.84 49.84
Winogrande 69.38 70.32 70.88 69.77 69.53 70.01 69.22 69.61 68.90 69.61
WSC 38.46 36.54 36.54 38.46 39.42 45.19 38.46 40.38 37.50 38.46
Average 50.52 51.79 51.33 50.61 50.28 49.45 50.08 50.01 49.89 50.09

Table 8: Zero-shot accuracy of Seeded LoRA, trained on Clusters without Seed Expert, on multiple
evaluation tasks.

17

	Introduction
	Background
	Seeded LoRA
	Fine-tuning Experiments with Seeded LoRA
	Experimental Details

	Results
	The Pitfalls of Routing: Analysis of Subtle Routing Failures
	Why failed routers can still be effective: Uniform routing as Grouped Convolutions
	1x1 Convolution as Matrix Multiplication
	Grouped Convolution as Uniform Expert Routing

	Related Work
	Limitations & Future Work
	Convolutions
	Data details
	Seeded LoRA Fine-Tuning using Unsupervised Domain Discovery
	Evaluation results for Seeded LoRA Experts trained on individual datasets
	Evaluation results for Seeded LoRA trained on individual datasets with no Seed Expert
	Seeded LoRA with Seed Expert in the final model
	Evaluation results for Seeded LoRA Experts trained on Clusters
	Evaluation results for Seeded LoRA trained on Clusters with no Seed Expert

