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Abstract

Large-scale pre-trained vision-and-language
(V+L) transformers have propelled the state
of the art (SOTA) on Visual Question Answer-
ing (VQA) task. Despite impressive perfor-
mance on the standard VQA benchmark, it re-
mains unclear how robust these models are. To
investigate, we conduct a host of evaluations
over 4 different types of robust VQA datasets:
(¢) Linguistic Variation; (i2) Logical Reason-
ing; (#4¢) Visual Content Manipulation; and
(2v) Answer Distribution Shift. Experiments
show that pre-trained V+L models already ex-
hibit better robustness than many task-specific
SOTA methods via standard model finetun-
ing. To further enhance model robustness, we
propose MANGO, a generic and efficient ap-
proach that learns a Multimodal Adversarial
Noise GeneratOr in the embedding space to
fool V+L models. Differing from previous
studies focused on one specific type of robust-
ness, MANGO is agnostic to robustness types,
and enables universal performance lift for both
task-specific and pre-trained models over di-
verse robust VQA datasets designed to evaluate
broad aspects of robustness. Comprehensive
experiments demonstrate that MANGO outper-
forms previous task-specific SOTAs on 7 out
of 9 robustness benchmarks.

1 Introduction

Large-scale multimodal pre-training has taken
innovative strides in the realm of vision-and-
language (V+L) research (Lin et al., 2020; Lu et al.,
2020; Sun et al., 2019; Li et al., 2020b). Pre-
trained models (Su et al., 2020; Li et al., 2020a,
2019; Huang et al., 2020) such as VIiLBERT (Lu
et al., 2019), LXMERT (Tan and Bansal, 2019)
and UNITER (Chen et al., 2020b) have demon-
strated great generalizability over diverse V+L
tasks (Zellers et al., 2019; Yu et al., 2016), espe-
cially on the most popular Visual Question An-
swering (VQA) (Antol et al., 2015) task. However,
the standard VQA evaluation benchmarks (Antol

et al., 2015; Goyal et al., 2017) usually possess sim-
ilar data distribution between training and test sets,
with little-to-none linguistic variation in textual
queries, and use only clean natural images without
any visual content manipulation. Although effec-
tive for benchmarking model improvements, these
standard benchmarks lack the ability to explicitly
evaluate model robustness.

To conduct a full dissection on model robustness,
we launch a comprehensive investigation with sys-
tematic evaluations of VQA models over 4 generic
types of robustness: (z) robustness against linguis-
tic variation; (it) robustness against logical reason-
ing; (12%) robustness against visual content manip-
ulation; and (iv) robustness against answer distri-
bution shift between training and test splits. Given
the abundance of diverse datasets and splits on the
popular VQA task, we take VQA as the focal point
of our investigation, and compile an assemblage
of 9 diverse VQA datasets that cover each type
of model robustness: (i) VQA-Rephrasings (Shah
et al., 2019) for linguistic variation; (ii1) VQA-
LOL (Compose and Supplement) (Gokhale et al.,
2020b), VQA-Introspect (Selvaraju et al., 2020)
and GQA (Hudson and Manning, 2019a) for logi-
cal reasoning; (111) IV-VQA and CV-VQA (Agar-
wal et al., 2020) for visual content manipulation;
and (1v) VQA-CP v2 (Agrawal et al., 2018) and
GQA-OOD (Kervadec et al., 2020) for answer dis-
tribution shift. Interestingly, analysis on several
pre-trained VQA models reveals that by standard
finetuning, pre-trained models already exhibit bet-
ter robustness than many task-specific state-of-the-
art methods. However, the achieved robustness is
still limited, and far from human performance.

Recently, adversarial training (AT) (Tramer et al.,
2017; Shafahi et al., 2019; Xie et al., 2020) has
shown success on standard V+L tasks (Gan et al.,
2020; Tang et al., 2020). Inspired by this, we in-
vestigate whether AT can also serve as an effec-
tive conduit to improve performance on robustness
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Figure 1: Illustration of the proposed MANGO framework and performance comparison between MANGO and SOTA.

benchmarks aforementioned. Our evaluation of
VILLA (Gan et al., 2020) (AT-enhanced pre-trained
model) shows that by injecting adversarial perturba-
tion to multimodal embeddings, PGD-based (Pro-
jected Gradient Descent) AT (Madry et al., 2017;
Zhu et al., 2020) can help the model adapt to lin-
guistic variation and visual content manipulation,
yielding better model robustness; but with only
limited effect (sometimes even hurting model per-
formance) on datasets that exhibit salient data dis-
tribution gap between training and test sets (e.g.,
VQA-CP v2, GQA-OOD).

To achieve better robustness across all aspects,
we propose MANGO & (Multimodal Adversarial
Noise GeneratOr), a generic and efficient approach
that introduces adversarial noise to multimodal em-
bedding space for robustness enhancement. As
shown in Figure 1a, instead of relying on PGD to
generate adversarial perturbation, MANGO learns
an adversarial noise generator in the form of a
trained neural network to fool the model. Follow-
ing Gan et al. (2020), perturbation is added to the
embedding space for all modalities, as our goal
is the end results of AT, rather than crafting ac-
tual adversarial examples. MANGO is lightweight,
does not require repetitive gradient calculations on
a deep model as in PGD-based approach.

To enable diverse adversarial embeddings, we
further propose to randomly mask image regions
and randomly insert [MASK] tokens when adding
adversarial noise to image and word embeddings.
Empirical results show that MANGO significantly

'"LMH (Tramér et al., 2017) and MMN (Chen et al., 2021)
on VQA-CP v2 and GQA are used to plot the SOTA polygon
for fair comparison. For CV-VQA and IV-VQA, performance
is computed as 100—#flips and 100 — 5 x#flips, respectively.
VQA-LOL performance is the average of accuracies on VQA-
LOL Compose and VQA-LOL Supplement.

improves model robustness across all tasks consid-
ered, compared to PGD-based methods.

Our main contributions are summarized as fol-
lows. (i) We show that V+L pre-training can
greatly lift the robustness of VQA models across
four different robustness types, suggesting stronger
baselines for future studies on robust VQA bench-
marks. (¢¢2) We propose MANGO, a generic and
lightweight adversarial noise generator to enhance
VQA model robustness. (#i7) As summarized in
Figure 1b, MANGO improves over UNITER and
outperforms previous task-specific SOTAs on 7 out
of 9 robustness benchmarks.

2 Robust VQA

Terminology We start with definition of the ter-
minology we use throughout the paper. We fol-
low VQA literature (Cadene et al., 2019; Wu and
Mooney, 2019; Teney et al., 2020c; Gokhale et al.,
2020a; Kervadec et al., 2020) to unify different
forms of challenging bias and out-of-distribution
generalization as robustness, different from its defi-
nition in adversarial machine learning. Robustness
does not always mean “adversarial robustness” in
literature, e.g., it can also refer to model robust-
ness towards common image corruptions (Rusak
et al., 2020; Zhang, 2019; Hendrycks and Diet-
terich, 2019). In the language of adversarial ma-
chine learning, our definition of robustness here can
be understood as the “generalization” performance
on the challenging robust VQA benchmarks.

Existing Benchmarks There has been a few inde-
pendent studies on V+L robustness, mostly focus-
ing on variations of the popular VQA task. VQA-
CP (Agrawal et al., 2018), drawn from VQA v2
dataset (Goyal et al., 2017), is the first bench-
mark proposed to evaluate (and reduce) question-



Train Val Test

Type Benchmark Metric  Q Type
Source #IQ len(Q) #IQ len(Q) #IQ Ilen(Q)
Lingual VQA-Rephrasings Acc. All VQAv2train 444K 6.20 162K 7.15 - -
VQA-LOL Compose Acc. Y/N VQAv2train 444K 620 43K 12.09 291K 12.12
Reason VQA-LOL Supplement  Acc. Y/N  VQAv2train 444K 6.20 9K 15.15 669K 15.19
VQA-Introspect Mv'Sv.  All VQAvltrain 248K 6.21 - - 95K  6.36
GQA Acc. All - 943K 876 132K 877 13K 851
Visual IV-VQA #flips All VQAv2train 444K 620 120K 5.85 - -
CV-VQA #flips  Num. VQAv2train 444K 620 4K  5.83 - -
Answer VQA-CP v2 Acc. All - 438K  6.14 - - 220K  6.31
GQA-OOD Acc. All GQAtrain 943K 876 51K  8.09 3K 7.70

Table 1: Detailed descriptions of each downstream benchmark, including robustness type, evaluation metric, question type,
training data source and statistics on train, val, test data in terms of number of Image-Question pairs (#1Q) and average question
length (len(Q)). We use the training data provided with the benchmark unless specified otherwise. Results on val split are reported
when test split is not available. Acc. is short for Accuracy. Mv'Sv’ is a consistency measure between main questions and
sub-questions in VQA-Introspect. #flips is the number of predictions mismatched before and after visual content manipulation.

oriented language bias in VQA models. Consider-
able effort (KV and Mittal, 2020; Cadene et al.,
2019; Selvaraju et al., 2019; Abbasnejad et al.,
2020) has been invested on VQA-CP along 3 di-
mensions: (¢7) compensating for question-answer
distribution patterns through a regularizer based on
an auxiliary model (Niu et al., 2020; Clark et al.,
2019; Teney et al., 2020b; Grand and Belinkov,
2019; Jing et al., 2020); (i7) taking advantage of
additional supervision from human-generated at-
tention maps (Wu and Mooney, 2019; Gokhale
et al., 2020a); and (ii¢) synthesizing counterfac-
tual examples to augment training set (Chen et al.,
2020a; Teney et al., 2020a). Recent work (Teney
et al., 2020c) shows that simple methods such as
generating answers at random can already surpass
state of the art on some question types. The re-
cent GQA-OOD (Kervadec et al., 2020), another
robustness-focused task, is designed based on a
fine-grained reorganization of the original GQA
dataset (Hudson and Manning, 2019a).

Other types of VQA model robustness are also
studied: VQA-Rephrasings (Shah et al., 2019) pro-
poses cyclic consistency to improve robustness
against linguistic variations in questions; Ray et al.
(2019) tackles antonym consistency; Agarwal et al.
(2020) studies robustness against automated seman-
tic image manipulations, and tests for prediction
consistency to questions on clean images and cor-
responding manipulated images.

Further studies investigate robustness against
logical reasoning. For instance, Selvaraju et al.
(2020) provides a dataset containing perception-
related sub-questions per question for a new rea-
soning split of VQA dataset. VQA-LOL (Gokhale
et al., 2020b) perform logical compositions and
linguistic transformations to VQA questions to ex-
amine model ability in logical reasoning. Moreover,

large-scale rule-based questions in GQA (Hudson
and Manning, 2019a) can also support analysis on
different reasoning skills of VQA models.

Despite the continuous effort in enhancing ro-
bustness of VQA models, these works mostly focus
on either task-specific models or a single type of
robustness. To provide a comprehensive study on
pretrained V+L models for VQA robustness, we
compile a list of existing datasets, and group them
into four robustness types: Lingual, Visual, Reason,
and Answer (Table 1). Covering various respects of
a ‘stress test’, from linguistic to visual variations,
from reasoning complexity to answer distribution,
this compilation can serve as a unified yardstick for
evaluating V+L model robustness and a guidance
for future study on robust model design. As a start,
we introduce a generic and effective approach that
can lift model performance over all types of VQA
robustness indiscriminately.

3 MANGO Framework

In this section, we briefly review VQA backbone,
introduce a simple baseline that injects Gaussian
noise, and explain the proposed MANGO approach.

3.1 VQA Backbone

Given an image-question pair (v, w) in dataset D,
the goal is to predict an answer that best matches
ground-truth answer y. The image input is usually
projected into a set of region-level features (Ander-
son et al., 2018) or image patch embeddings (Kim
et al., 2021) v = {vy,...,vx} (v; € R%). The
text input is tokenized and projected into high-
dimensional feature vectors w = {wi,...,wr}
through a learnable word embedding layer (w; €
R%). These embeddings from the paired image-
question inputs are then fed into a VQA model
fo(v,w) to predict an answer, where 6 denotes



all the trainable parameters. Binary Cross Entropy
(BCE) loss is used to supervise model training. The
training process can be formulated as:

[Loce(fo(v, w), y)]. M

min E
6 (v,w,y)~D

3.2 Gaussian Noise Augmentation

Randomized smoothing (Duchi et al., 2012) advo-
cates the addition of random perturbations to model
inputs, which can often yield better model perfor-
mance. Recent study (Rusak et al., 2020) also
shows that perturbing clean images with Gaussian
noise is effective in improving model robustness
against image corruptions for image classification.
Inspired by this, we use Gaussian noise augmen-
tation as a simple baseline to investigate model
robustness under V+L setting. Instead of adding
noise to raw image pixels as in Rusak et al. (2020),
we add perturbations directly to the embeddings:

in E E[C S, w), )], @
o sy gay Lo (V0 w) Y], (2)

where o is the standard deviation of Gaussian noise.
Similarly, we add Gaussian noise to the word em-
beddings:

min E
0 (v,w,y)~D §,~N(0,021)

[EBCE(fe('lL w + dy), y)} .

3.3 Adversarial Noise Generator

Adding Gaussian noise to clean image-text pairs
can augment training examples to a certain level.
However, as the training continues, the model can
gradually adapt to the perturbations which are sam-
pled from the same Gaussian noise distribution.
To produce harder perturbations that can fool the
backbone network, we propose to actively learn
an adversarial noise generator. Specifically, we
aim to discover an adversarial noise distribution,
from which the sampled noises, when added to the
multimodal embeddings, can maximally confuse
the backbone network. Note that our goal is not
to model the explicit density form of such a dis-
tribution, as we only care about the noise samples
drawn from the distribution. To achieve this, the
adversarial noise generator takes in Gaussian noise
samples as input, and produces adversarial noise
samples through a learned neural network.

Take image modality as an example. Let gy, :
R% — R% denote the adversarial noise gener-
ator. The adversarial noise d, is generated by
0y = g¢, (), € N(0,1). Intuitively, to maxi-
mally fool the backbone network, we want to max-
imize prediction errors on these adversarially per-
turbed samples. In the meantime, we want the

model to possess less confidence in its predictions
on perturbed samples than clean samples, to pro-
mote harder adversarial examples Therefore, the
objective of the adversarial noise generator is to
maximize the sum of two losses: (7) task-specific
loss (e.g., BCE loss for VQA task); (¢¢) adversarial
loss (e.g., BCE loss for adversarial data, and the
Kullback-Leibler (KL) divergence loss between the
predicted answer distribution of perturbed samples
and that of clean samples). On the other hand, the
trained model aims to minimize both losses by tak-
ing adversarial embeddings as data augmentation.
Formally, the min-max game can be defined as:

[£514(6, dv) + BRar(0, ¢0)]

min max E E
o ¢y (v,w,y)~D xeN(0,1)

where (3 is a hyper-parameter, and

Lstd(ey (Zl)v) = £BCE(f9 (’U, w)a y) 3 (3)
Rat(0, @) = Loce(fo(v + g¢, (), w), y)
+ Lii(fo(v + g, (), w), fo(v, w)), @)

where Ry (p,q) = KL(p|lg) + KL(g||p), p,q denote
two probability distributions. The first term in
Ra:(0, ) promotes label-preserving adversarial
perturbations; while the second term advocates
more fine-grained label preservation, meaning that
the probability distribution across all answers is
used as soft label, instead of using the ground truth
answer index as hard label. Similarly, we can learn
an adversarial noise generator (with parameters
9¢,,) that corresponds to the text modality.”

During training, we alternate between an outer
loop of the backbone network update and an in-
ner loop of generator update. We constrain the
noise samples §, and d,, to be within the sphere
[160]]2 = ||8w|]2 = €, by scaling the generator out-
put with a scalar. € is set as {1,2,5,10} in our
experiments. For better efficiency, we also accu-
mulate the gradients of adversarial noise generator,
and only update the generator’s parameters every
T times (T = {20, 40}) of backbone update.

The proposed adversarial noise generator is
lightweight, consisting of only a few linear layers.
To avoid such a light trapping in local minimum
when competing with a deep backbone network, at
regular intervals, we replace the learned noise gen-
erator with a new one trained from scratch. Each
time, the new generator is trained against the latest
learned parameters of the backbone.

The corresponding equations are omitted for simplicity.



Random Masking Adversarial noise generator,
although produces more challenging and more di-
verse noise perturbations, does not alter the intrin-
sic statistics of training examples, such as the dis-
tribution of question lengths and image regions.
In practice, we observe significant mismatch in
these statistics between training and test splits of
robustness benchmarks. For example, the average
length of questions in VQA-LOL (Gokhale et al.,
2020b) test split is 2-3 times longer than that in
VQA v2 (Goyal et al., 2017) training split. The
region distribution of images in IV-VQA and CV-
VQA (Agarwal et al., 2020) is very different from
VQA v2 training split, due to visual content manip-
ulation. To compensate for such statistic mismatch,
we propose to randomly mask image regions (by
zeroing out corresponding feature vectors) as well
as randomly insert [MASK] tokens when adding
adversarial noise to image and word embeddings.
Empirically, this simple technique is effective in
further boosting model robustness.

Comparison with PGD-based AT Although
MANGO is similar to VILLA (Gan et al., 2020) in
terms of learning adversarial perturbations, they are
different in the sense that MANGO learns an adver-
sarial noise generator to generate adversarial per-
turbations, instead of relying on PGD as in VILLA.
This makes MANGO more efficient, as computing
gradients of a generic lightweight noise generator
is less time-consuming. Empirically, MANGO also
achieves better performance. The comparison on
model performance and training time difference
is provided in Experiments. A detailed literature
review on AT is provided in Appendix A.

Comparison with ANT In ANT (Rusak et al.,
2020), a similar noise generator is proposed to
make neural networks robust against diverse image
corruptions. However, there are two key distinc-
tions. First, we mainly focus on transformer models
for VQA task, whereas Rusak et al. (2020) focuses
on convolutional networks for image classification.
Second, we propose to generate adversarial noise
over the embeddings of images and words, while
Rusak et al. (2020) adds adversarial noise directly
on image pixels.

4 Experiments

We experiment on BUTD (Anderson et al., 2018),
pre-trained UNITER (Chen et al., 2020b) and
VILLA (Gan et al., 2020) over all 9 robust VQA

datasets (Sec. 2), plus a standard VQA-v2 dataset.
UNITER is a one-stream model based on object
detection to extract visual features. We also ex-
periment on LXMERT (a two-stream model in-
stead) (Tan and Bansal, 2019), and ViLT (directly
taking image patches and word tokens as model
inputs) (Kim et al., 2021) for generalizability test.

4.1 Experimental Setting

We follow the original papers to test model robust-
ness under the most challenging setting (shown in
Table 1), which is to evaluate models trained on the
VQA training split for VQA-Rephrasings, VQA-
LOL, VQA-Introspect, IV-VQA and CV-VQA. De-
tailed description of all benchmarks are provided in
Appendix D. For thorough evaluation, we compare
model performance against the following methods:

* SOTA w/o PT (task-specific models without pre-
training): Cycle Consistency+ BAN (Shah et al.,
2019) for VQA-Rephrasings, LOL (Gokhale
et al., 2020b) for VQA-LOL Compose and Sup-
plement, Pythia (Selvaraju et al., 2020; Jiang
et al., 2018) for VQA-Introspect, NSM (Hudson
and Manning, 2019b) for GQA, SAAA (Agarwal
et al., 2020; Kazemi and Elqursh, 2017) for CV-
VQA and IV-VQA, MUTANT (Gokhale et al.,
2020a) for VQA-CP v2, MMN (Chen et al., 2021;
Kervadec et al., 2020) for GQA-OOD;

e BUTD and MANGOgytp: task-specific VQA
model and its enhanced version with MANGO?;

* UNITERg and UNITERy,: standard finetuning of
pre-trained UNITER base and large model;

* VILLAg and VILLAy,: adversarial pre-trained
and finetuned UNITER base and large model;

* MANGOg and MANGOY,: applying adversarial
noise generator on pre-trained UNITER, base and
large size;

* MANGOvyg and MANGOvy: applying adversar-
ial noise generator on adversarial pre-trained
UNITER model (provided in the VILLA pa-
per (Gan et al., 2020)) with base and large size.

4.2 Experimental Results

Table 2 presents the results of BUTD, UNITER,
VILLA and MANGO on all robustness benchmarks.
3In practice, we remove random inserting [MASK] token

for BUTD backbone, as it is not included in its provided
vocabularies.



Lingual Reason Visual Answer

Model VQA- VQA-LOL VQA-LOL VQA- GQA V- CV-  VQA- GQA- VQA
Rep. Comp. Supp. Intro. VQA VQA CPv2 OOD v2

Meta-Ave. | Acc. Acc. Acc. MV Sv' 1 Acc. | #flips | #flips| Acc.] Acc. | Acc.

1 SOTA w/o PT - 56.59 48.99 50.54 50.05 63.17 753 7844 69.52 52.70 -
2 BUTD 35.03 56.88 53.04 52.53 46.17 5541 9.83 6223 40.39 50.29 67.60
3 MANGOgutD 36.49 57.84 54.98 54.83 47.58 56.50 9.01 5810 40.60 51.50 68.18
4 UNITERg 40.98 64.56 54.54 50.00 56.80  59.99 847 40.67 4693 5343 7270
5 MANGOg 42.80 65.80 56.22 56.49 58.33 60.65 7.32 3811 47.52 55.15 7324
6 VILLAB 42.37 65.35 54.90 56.17 5829  60.26 7.07 38.28 46.39 54.11 73.59
7 MANGOvs 43.08 65.91 55.44 57.58 5894  60.73 743 3825 48.63 55.79 73.45
8 UNITERL 43.37 67.64 58.60 55.95 57.64  60.30 820 36.66 5098 53.65 73.82
9 MANGOL 45.27 68.33 59.45 60.50 62.14 61.10 6.69 3552 5276 56.40 74.26
8 VILLAL 44.33 68.16 58.66 58.29 62.00 6138 6.70 37.55 49.10 5526 74.69
9 MANGOvL 45.31 68.27 61.49 58.83 62.60 6141 6.73 3564 5255 56.08 74.20

Table 2: Comparison to task-specific state-of-the-art (SOTA), UNITER, VILLA on 9 robustness downstream benchmarks and a
standard VQA benchmark. Results are reported on val split of VQA-Rephrasings (VQA-Rep.), VQA-LOL Compose (Comp.)
and Supplement (Supp.), VQA-Introspect (VQA-Intro.), IV-VQA, CV-VQA, VQA-CP v2 and test-dev split of GQA, GQA-OOD

and VQA v2. 1 () indicate the higher (lower) the better.

Meta-Ave (average of scores across all bench-
marks) is used as the global metric.* We compare
task-specific models in L2-3 and pre-trained mod-
els with base size (12 layers) in L4-7.

Task-specific VQA model BUTD (L2) estab-
lishes a weak baseline across all robustness bench-
marks, with a Meta-Ave of 35.03. With pre-training
and deeper model architecture, UNITERg (L4)
achieves much stronger performance, with a Meta-
Ave of 40.98. MANGOgyTp (L3) and MANGOg
(L5) achieve across-the-board performance lift on
all robustness benchmarks over the corresponding
baselines, harnessing an absolute gain of +1.46 and
+1.82 on Meta-Ave.

MANGO vs. VILLA VILLAg (L6) improves over
the strong baseline UNITERg by +1.39 Meta-Ave
(42.37) via PGD-based adversarial training. As
VILLAg performs adversarial training on both pre-
training and finetuning stages, we apply our method
to their adversarial pre-trained model for fair com-
parison. MANGOvyp (L5) outperforms VILLAg on
7 out of 9 robustness benchmarks, with an absolute
gain +0.71 on Meta-Ave. MANGOygp is particu-
larly effective on reasoning (+1.41 on VQA-LOL
Supp.) and OOD benchmarks (+2.24 on VQA-
CP, +1.68 on GQA-OOD). We also compare the
training speed of Mangoyg and VILLAg under the
same experimental setting. Our experiments show
that MANGOVvp is 25% faster than VILLAp (1.44
vs. 1.92 second per gradient update step).’> We
contribute the better efficiency to the use of global

“For IV-VQA and CV-VQA, we take the negative of the
number of flips for calculating Meta-Ave.

>The speed comparison is conducted during finetuning
experiments for both models with the same batch size, gradient
accumulation steps and GPUs.

noise generator in MANGO instead of iterative PGD
steps as in VILLA. More comparisons between
MANGO and VILLA are included in Appendix B.

Scaling Up to Large Model Size (24 Layers)
Compared to base models (L2&L4), large mod-
els (L6&L8) have more advantage on Meta-Ave
(UNITER: 43.37(L) vs. 40.98(B); VILLA: 44.33(L)
vs. 42.37(B)), which is consistent with the observa-
tions on standard V+L tasks in (Chen et al., 2020b;
Gan et al., 2020). When applying adversarial noise
to large backbone models (L7&L9), MANGO fur-
ther pushes the margins of performance gain across
all benchmarks: an absolute gain of +1.90 over
UNITER{, and +0.98 over VILLA[ on Meta-Ave.

End-to-end Comparison with SOTA MANGO
achieves new state of the art on 7 out of 9 bench-
marks, except VQA-CP v2 and GQA. SOTA
methods on these two benchmarks exploit addi-
tional task-specific information. Specifically, MU-
TANT (Gokhale et al., 2020a) for VQA-CP v2 is
trained with excessive additional image-question
pairs designed to promote positive bias; while
NSM (Hudson and Manning, 2019b) for GQA
takes advantage of additional scene graph anno-
tations, which are only provided in GQA. As the
goal of our proposed method is to bring universal
performance lift on all robustness benchmarks, we
do not exploit these additional task-specific infor-
mation introduced by MUTANT and GQA.

4.3 A Closer Look into Robustness

We conduct an in-depth autopsy to examine the
robustness of competing methods over each robust-
ness type. For simplicity, we focus our discussions
on UNITERg, VILLAg and MANGOvE.



Robustness against Linguistic Variation As
shown in Table 2 (‘Lingual’ column), UNITERp
has shown its advantage of defending model ro-
bustness against linguistic variation. We con-
tribute the performance lift from UNITERg to ex-
cessive variations of textual inputs seen during
pre-training. Comparing AT-enhanced methods,
MANGOyp improves over VILLAg, even though
VILLAg has already shown significant improve-
ment over UNITERg. We attribute the improve-
ment from MANGO to not only the adversarial data
augmentation during training, but also the random
masking introduced from the text modality (more
detailed analyses in Table 3).

Robustness against Logical Reasoning We com-
pare model performance on 4 benchmarks un-
der the ‘Reason’ column in Table 2. Different
from VQA-LOL Compose, VQA-LOL Supple-
ment dataset consists of questions generated by
heuristic rules. Semantically-close questions with
different answers are included to make the task
more challenging. The close-to-random perfor-
mance on VQA-LOL Supplement dataset indicates
that UNITERg severely suffers from these challeng-
ing semantically-close questions.

VILLAg brings performance lift on all 4 reason-
ing benchmarks. Not surprisingly, VILLAg exhibits
more robustness than UNITERg on semantically-
close questions in VQA-LOL Supplement. Our hy-
pothesis is that the adversarial embeddings learned
during VILLAg training can mimic the effect of
adding semantically-close questions as training
data, and the generated adversarial perturbations
are also constrained to be small to preserve the
semantic meaning of the clean text embeddings.

MANGOvyg outperforms VILLAg on all reason-
ing benchmarks. Similar to VQA-Rephrasings,
MANGOvyp has more advantages over VQA-LOL
Compose and VQA-LOL Supplement, whose aver-
age question length is much longer than VQA v2.
By randomly inserting [MASK] tokens, MANGOg
effectively augments training data with questions
of similar lengths to the test split.

Robustness against Visual Content Manipula-
tion UNITERp performs on par to SOTA model
on IV-VQA, and significantly improves over SOTA
on CV-VQA (Table 2 ‘Visual’ column). This is
due to that during pre-training, UNITERg has al-
ready be trained on diverse images, and the pre-
training task of masked region modeling can also
prevent UNITERgp from overfitting to visual biases.

VQA- VQA-LOL VQA-LOL IV- VQA-CP
Modality Method <P _C€omp.  Supp.  VQA 2
Acc. Acc. Acc. #flips | Acc.
None 1 None 64.56 54.54 50.00 8.47 47.29
2GN 65.17 54.46 50.68 8.45 47.29
Image 3 AN 65.42 54.59 52.54 7.52 47.38
4 MANGO 65.51 56.67 55.20 7.39 47.51
5GN 64.73 53.66 54.59 8.46 46.59
Text 6 AN 65.36 54.12 52.95 7.99 47.09
7 MANGO 65.63 55.79 56.54 7.53 47.45
Both 8§ MANGO 65.80 56.22 56.49 7.32 47.52

Table 3: Ablation studies on adding noise to different modalities
and on different types of noise. UNITERg is used as the backbone.
GN (AN) stands for Gaussian (Adversarial) Noise.

VILLAg improves model robustness against visual
content manipulation, and MANGOvyg performs on
par with VILLAg. Our hypothesis is that by inject-
ing adversarial perturbations at pre-training stage,
the model is exposed to even more diverse images,
hence easier to recover from visual biases.

Robustness against Answer Distribution Shift

On out-of-distribution (OOD) benchmarks,
UNITERg performs poorly on VQA-CP v2, while
improving over SOTA model on GQA-OOD
(Table 2 ‘Answer’ column). MUTANT is a very
task-specific method, which augments VQA-CP v2
training with excessive rule-based image-question
pairs to counter the training split bias. Hence, it is
difficult to generalize to other robustness cases. Ad-
ditional manual effort is required to generalize to
other rule-based datasets such as VQA-LOL, GQA,
IV-VQA and CV-VQA. Interestingly, VILLAgp
improves over UNITERg on GQA-OOD, but not
on VQA-CP v2, while MANGOg (MANGOvyg)
significantly outperforms UNITERp (VILLAB)
on both benchmarks. These results suggest that
MANGO are more generalizable than VILLA to
challenging OOD datasets.

4.4 Ablation Study

Noise Generation and Random Masking We se-
lect one dataset from each robustness type as a rep-
resentative benchmark for ablation studies: VQA-
CP v2, VQA-Rephrasings, VQA-LOL (Compose
and Supplement), and IV-VQA. Results are sum-
marized in Table 3. First, we compare with the
baseline that simply adds Gaussian noise to either
image or text modality.® Different from observa-
tions in (Rusak et al., 2020), comparing L2/L5 with
L1 indicates that adding simple Gaussian noise to
multimodal embeddings is not always helpful. Es-

In our experiments, we set standard deviation to 0.5, and
only perturb 50% of training data via Gaussian noise within
each minibatch.



VQA- VQA-LOL VQA-LOL GQA- VQA
Method Rep.  Comp. Supp. GQA O0D v2

Acc. Acc. Acc. Acc. T Acc. T Acc.
LXMERT 67.20 49.34 47.33 59.78 53.86 72.31
Ours 68.61 53.83 53.54 60.06 54.94 72.70
ViLT 61.87 49.57 50.24 56.60 49.43 70.84
Ours 62.20 51.16 52.95 57.41 49.57 71.24

Table 4: Results of MANGO with LXMERT, ViLT and VinVL
as the backbone. VinVL results are reported on base model.

Model NLVR? RefCOCO RefCOCOg VE
UNITERg ~ 77.52 80.55 74.41 78.44
MANGOg  78.36 80.95 75.37 78.87

Table 5: Results on other V+L tasks, we report the average of
performance across different splits of each task for simplicity.

pecially, adding Gaussian noise on text modality
brings unstable performance.

Second, we experiment with adding adversarial
noise alone, without random masking. Results on
L3/L6 show that universal performance improve-
ments over Gaussian noise (L2/L5). Intuitively,
adversarial noise is harder than Gaussian noise, as
the adversarial noise generator learns to fool the
backbone network. Such hard training examples
helps to boost model robustness.

Third, we show that by using random masking
(L4/L7), which encourages more diverse adversar-
ial embeddings, MANGO is better than using ad-
versarial noise alone (L2/L5). Randomly inserting
[MASK] tokens (L7) also shifts the distribution of
question lengths that the model is exposed to during
training. Hence, we observe more gains on bench-
marks with severe mismatches in question length
between training and test sets. For example, in
VQA-LOL, the testing questions are significantly
longer than training questions on average.

Lastly, we observe that adding adversarial noise
on one modality is already gaining significant im-
provement (L4/L7). Empirically, adding adversar-
ial noise on both modalities (L.8) only performs
slightly better or on par with MANGO on text or
image modality alone. More ablation results on
model architecture are included in Appendix B.

Results on Other VQA Backbones We also apply
MANGO to other V+L backbones, LXMERT (Tan
and Bansal, 2019) and ViLT (Kim et al., 2021), for
generalizability test. When comparing both base-
lines with their MANGO-enhanced versions (“ours”
in Table 4), we observe universal performance lift
from MANGO across all benchmarks considered. ’

"IV-VQA, CV-VQA and VQA-CP v2 are excluded in this
study as the performance on these benchmarks is based on
examples in VQA v2 val split, which is used to supervise
LXMERT pre-training.
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(b) IV-VQA (Visual)

V: red M: white

Q: Is there a tree in front of the
building or is there a stop sign?

Q: What color is the stripe on
the side of the train?

U: white  V: white M: blue
(d) VQA-CP v2 (Answer)

U:tree V:stopsign M:yes
(c) VQA-LOL (Reason)

Figure 2: Visualization of model predictions, comparing
MANGO(M) against UNITER(U) and VILLA(V). Correct an-
swers are highlighted in and wrong ones are in red.

Results on other V+L tasks MANGO is task-
agnostic, thereby can also be applied to other stan-
dard V+L tasks. Table 5 shows that MANGOg sur-
passes UNITERp on 4 popular V+L tasks, including
NLVR? (Suhr et al., 2019), RefCOCO (Yu et al.,
2016), RefCOCOg (Yu et al., 2016) and Visual
Entailment (VE) (Xie et al., 2019). We leave thor-
ough investigation of the effectiveness of MANGO
on other standard V+L tasks as future study.

Qualitative Analysis Figure 2 visualizes predic-
tions from UNITER, VILLA and MANGO on 4
benchmarks (one for each robustness type). These
visualizations illustrate MANGO’s consistently ac-
curate performance when facing challenges of: (a)
uninformative leading phrase added to the ques-
tion; (b) removal of irrelevant object in the image;
(c) over-length logical combination of questions;
and (d) imbalanced answer distribution (‘white’ ap-
pears 3 times as many as ‘blue’ in training set).

5 Conclusion

We provide a systematic study on the robustness
of VQA models over a wide range of robust VQA
benchmarks. The comprehensive evaluation shows
V+L pre-training can effectively defend model per-
formance under various types of robust tests. We
further propose MANGO, a simple yet effective
method to enhance model robustness, which ad-
vances the state of the art on 7 out of 9 robustness
benchmarks. We hope this set of results can be
used as baseline for future research.
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A Detailed Related Work

Multimodal Pre-training Early approaches to
vision-and-language pre-training (Lu et al., 2019;
Tan and Bansal, 2019) adopt a two-stream architec-
ture. Later on, single-stream architecture gains pop-
ularity (Zhou et al., 2020; Su et al., 2020; Li et al.,
2020a; Chen et al., 2020b). To enhance the model
performance, there have been efforts in designing
different training strategies (Lu et al., 2020; Gan
et al., 2020; Shi et al., 2020; Li et al., 2020c; Cho
et al., 2021) and injecting external knowledge (Li
etal., 2020d; Yu et al., 2020) as additional model in-
puts. While most of these methods reply on offline
extracted region-level features (Anderson et al.,
2018; Zhang et al., 2021), there has been grow-
ing interests in end-to-end learning directly from
image pixels (Huang et al., 2020, 2021; Kim et al.,
2021; Xue et al., 2021; Li et al., 2021a; Dou et al.,
2021).

Distinct from these efforts on improving perfor-
mance over standard benchmarks,® we focus on a
different direction, evaluating and enhancing the
robustness of pre-trained models. This helps us bet-
ter understand how well multimodal pre-training
truly advances this field, and guides us to design
more robust models.

Adversarial Training As one of the most effec-
tive strategies of defending against adversarial at-
tacks (Szegedy et al., 2013), adversarial training
(AT) has been widely studied for enhancing ad-
versarial robustness of neural networks (Tramer
et al., 2017; Shafahi et al., 2019; Xie et al., 2020),
using adversarial examples as effective data aug-
mentation. Recent studies show that, by injecting
adversarial perturbations into feature space, AT can
further improve model generalization on language
understanding (Zhu et al., 2020), visual question
answering (Gan et al., 2020; Tang et al., 2020), and
graph neural networks (Kong et al., 2020).

In our work, we investigate the use of an adver-
sarial noise generator for robustness enhancement,
inspired by (Rusak et al., 2020), which proposes
a similar noise generator to make neural networks
robust against diverse image corruptions.

Robust V+L Datasets There have been continu-
ous efforts in examining the robustness of VQA
models. Some recent attempts include, (i) gener-

8Examples of standard benchmarks include VQA (Antol
etal., 2015), VCR (Zellers et al., 2019), NLVR? (Suhr et al.,
2019), Image-Text Retrieval (Lee et al., 2018), and Referring
Expressions (Yu et al., 2016).
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ating adversarial VQA questions with human-and-
model-in-the-loop (Li et al., 2021b; Sheng et al.,
2021) and (¢7) removing multimodal shortcuts, that
involve both questions and images, from existing
VQA datasets (Dancette et al., 2021).

In addition to robust VQA datasets, CLEVR-
Change (Park et al., 2019) has been introduced to
study robust Change Captioning, where the model
needs to identify an important scene change and
using language to describe the change. We hope
our work can encourage future works to explore
various stress tests on diverse V+L tasks to provide
a full dissection of model robustness for pre-trained
V+L models.

B More Results

We report model evaluation of prediction consis-
tency on VQA-Rephrasings (Shah et al., 2019),
VQA-introspect (Selvaraju et al., 2020), IV-
VQA (Agarwal et al., 2020), CV-VQA (Agarwal
etal., 2020) and GQA-OOD (Kervadec et al., 2020).
We also include more detailed results on VQA
v2 (Goyal et al., 2017), and additional ablation
experiments on model architecture.

Evaluation on Consistency In addition to accu-
racy, many benchmarks consider consistency as
an additional measure for evaluating model robust-
ness. Here, we take VQA-Rephrasings and VQA-
Introspect as examples to demonstrate that MANGO
can also help boost consistency in model predic-
tions. Results are summarized in Table 6.

On VQA-Rephrasings, we investigate consis-
tency in model predictions on different variants
of semantically equivalent questions. Consis-
tency is measured by a Consensus Score C'S (k).
MANGO achieves universal performance lift across
all consistency measures, compared to each base-
line model. The best results are achieved by
MANGOL, surpassing SOTA by +9.43, +12.27,
+13.62, +14.40 on CS(k),k = 1,2, 3,4, respec-
tively.

On VQA-Introspect, we examine consistency
between the main reasoning questions and percep-
tual sub-questions, measured by 5 metrics. Sim-
ilarly, MANGO brings universal consistency im-
provements across all baseline models. The best
performance is achieved by MANGOyy, surpassing

°Consensus Score is the ratio of the number of subsets
where all the answers are correct and the total number of
subsets of size k. For every group @ with n rephrasings, all

subsets of size k are sampled. The answer to a question is
considered correct if it has a non-zero VQA accuracy.



Model VQA-Rephrasings H VQA-Reas. VQA-Introspect

CS(1) T CS(2) 1 CS(3) 1T CS@) Acc. My SV T Mv Sx | Mx Sv | Mx Sx | SV |Mv
SOTA 65.77 5694 51.76 48.18 69.61 50.05 19.73 17.40 12.83 71.73
BUTD 63.73 5452 49.13 4542 65.19 46.17 19.01 20.61 14.20 70.82
MANGOgyrp 64.55 55.60 50.34 46.73 65.76 47.58 18.18 20.64 13.60 72.35
UNITERg 7129 6395 5948 56.31 73.33 56.80 16.53 16.93 9.74 77.46
MANGOg 72.66 66.03 6192 58095 74.20 58.33 15.88 16.76 9.04 78.60
VILLAgB 72.18 65.28 6099 57.93 73.63 58.29 15.34 17.08 9.30 79.17
MANGOvg 7278 6597 61.70 58.59 74.41 58.94 15.47 16.59 9.00 79.20
UNITERL 7444 6793 63.85 60.86 72.99 57.64 15.35 17.54 9.47 79.01
MANGOL 75.20 69.21 65.38 62.58 76.91 62.14 14.71 15.40 7.74 80.86
VILLAL 7493 68.65 64.61 61.61 76.18 62.00 14.19 15.72 8.10 81.38
MANGOvL 75.17 69.01 65.07 62.16 77.20 62.60 14.60 15.13 7.67 81.09

Table 6: Results of consistency evaluations on VQA-Rephrasings and VQA-Introspect. VQA-Reasoning (VQA-Reas.) is a split
of VQA-Introspect, containing only the main reasoning questions (M). S stands for sub-questions. v* or X indicate a correct or

wrong prediction.

Model VQA IV-VQA VQA Num. CV-VQA

Acc.] Acc.] #offlips] p2nl| n2p) n2n| Acc. Acc.] #offlips| p2nl) n2p) n2n|
SOTA 70.26 - 7.85 347 279 1.58 49.90 - 78.44 31.66 25.38 21.40
BUTD 63.92 73.73 9.83 429 342 212 44.14 50.16 62.23 25.53 21.56 15.14
MANGOgurp 64.63 74.53 9.01 4.08 327 1.66 44.99 54.29 58.10 23.01 20.72 14.37
UNITERg 70.34 83.35 8.47 389 260 197 53.82 63.22 40.67 23.21 10.72 6.74
MANGOg 71.17 82.69 7.32 355 227 149 54.86 64.21 38.11 2222 997 592
VILLAg 71.27 82.87 7.07 348 2.16 144 55.02 65.06 38.28 22.17 10.60 5.51
MANGOyg  71.47 82.84 7.43 357 234 152 55.27 65.66 38.25 22.10 9.78 6.38
UNITERL 72.60 85.86 8.20 396 237 1.88 56.61 67.13 36.66  22.05 9.80 4.81
MANGOY, 73.06 84.05 6.69 334 200 134 57.44 67.30 35.52 21.59 8.55 5.39
VILLAL 73.20 84.79 6.70 345 195 1.29 57.43 65.54 37.55 24.05 8.94 4.56
MANGOy;,  72.96 84.70 6.73 342 189 142 57.53 67.86 35.64 2207 879 4.78

Table 7: Detailed Results on IV-VQA and CV-VQA.

({) indicate the higher (lower) the better. We compare with UNITER,

VILLA and task-specific SOTA method (Kazemi and Elqursh, 2017).

SOTA by +12.55, +5.54, +2.27, +5.16, +10.10 on
MV'SVv, MV Sx, MxSv', MxSx, and Sv'[Mv/,
respectively.

On IV-VQA and CV-VQA, we decouple the in-
consistency in model predictions on edited images
(measured by #flips) into 3 categories: (z) p2n: an-
swer predicted on the edited image was wrong, but
the prediction on the corresponding real image was
correct; (7¢) n2p: model makes a correct prediction
on the edited image, while predicting a wrong an-
swer on real image; (¢¢7¢) n2n: different answers
were predicted on edited and real images and both
are wrong. These metrics may expose that there is
brittleness even when the model makes correct pre-
dictions, indicating that models often exploit spu-
rious correlations while making predictions. We
follow (Agarwal et al., 2020) to report accuracy on
VQA v2 val split to serve as reference for IV-VQA,
and performance on counting questions in VQA v2
val split for CV-VQA.

Similar conclusions are drawn from the results
presented in Table 7. First, MANGO brings con-
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sistent performance improvements across all met-
rics on both benchmarks, compared to BUTD and
UNITER. Second, MANGO significantly improves
over SOTA. We also observe significant improve-
ments from MANGO over VILLA on CV-VQA.
These results suggest that for challenging questions
such as counting problems in CV-VQA, MANGO
is more robust than VILLA.

On GQA-OOD, except for the accuracy over all
GQA-OOD samples (‘All’ in Table 8), three ad-
ditional metrics are considered: (z) the accuracy
on OOD samples, which are the samples of the
tail of the answer class distribution (“Tail’); (i7)
the accuracy on the head of distribution (‘Head’);
and (7i7) A(head, tail) = (head - tail) /tail to illus-
trate how much the error prediction is imbalanced
between frequent and rare answers (‘A’). More
details on the statistics of head and tail examples
can be found in (Kervadec et al., 2020). MANGO
achieves universal performance lift across all accu-
racy measures, compared to each baseline model.
However, better accuracy does not indicate better-



Model All Tail Head Al

SOTA (best All)  52.70  48.00 55.50 15.60
SOTA (best A) 50.20 47.20 51.90 9.90

BUTD 50.29  44.31 53.38 20.40
MANGOgBUTD 51.50 47.13 54.36 15.34
UNITERgp 5343 4845 56.49 16.59
MANGOg 5447 5024 57.07 13.59
VILLAg 54.11  49.86 56.72 13.76
MANGOvg 55.79  50.89 58.74 15.43
UNITERL 53.65 48.82 56.61 15.96
MANGOL 56.40 51.27 59.55 16.15
VILLAL 5526  50.80 58.05 14.27
MANGOvL 56.08 51.27 59.03 15.14

Table 8: Detailed Results on GQA-OOD. | (]) indicate the
higher (lower) the better. We compare with both SOTA (best
ALL) (Chen et al., 2021) and SOTA (best A) (Kim et al.,
2018).

Method All Y/N Num Other
UNITERg 72.70 88.97 55.67 62.81
MANGOg 73.24 89.27 56.48 63.34

Table 9: Detailed results of UNITERg and MANGOg on VQA
v2.

balanced predictions between tail and head splits.
We observe that there are more performance im-
provements on head split than tail split. When com-
pared to SOTA, MANGOg surpasses MMN (Chen
etal., 2021) (SOTA with the best All) across all met-
rics. BAN (Kim et al., 2018) is the SOTA method
with the best A; however, it suffers on all accuracy
measures.

On VQA v2, we use MANGOg and UNITERg as
examples to show that our method can provide uni-
versal performance lift for each question type. This
is also consistent with our observations on various
robust vqa benchmarks, as they focus on different
question types by design. For examples, IV-VQA
speficially desgined for counting questions, VQA-
LOL only includes yes/no questions.

Method VQA-Rep. GQA VQA v2 VQA-CP v2 GQA-OOD
Human 9891 89.30 80.78  80.78f 89.307
MANGO 68.33 6141 74.20 52.76 56.40

Table 10: Comparison between human performance and re-
sults from MANGO. T we use human performance on VQA v2
and GQA as estimation of human performance as VQA-CP
v2 and GQA-OQOD.

Comparison to Human Performance We com-
pare the human performance made available by the
original authors with the best performance achieved
by MANGO in Table 10. The large gap between
MANGO and human performance suggest that there
are still room to improve model robustness. Note
that for VQA-CP v2 and GQA-OOD, which are
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re-distribution of VQA v2 and GQA, we can use
human performance on the original datasets as ref-
erence. The gaps between human and SOTA meth-
ods are even larger on these two OOD datasets.

Additional Ablations Table 11, we make a direct
comparison between adversarial noise generator
(MANGO) and PGD-based AT (VILLA) during fine-
tuning stage, when both models are initialized with
pre-trained UNITERp weights. As results shows,
MANGO is on par with VILLA on standard VQA
v2 dataset and IV-VQA, but more competitive on
all other robust VQA benchmarks. Note that the
design of MANGO is not specific for finetuning
experiments only. Similar to VILLA, it can be nat-
urally extended to pre-training stage, which is an
interesting direction for future works to explore.

We conduct additional ablation studies to vali-
date several model design choices of MANGO, in-
cluding KL-divergence Loss, retraining noise gen-
erator every 7' steps (retrain NG), the architecture
of NG (multiple linear layers with nonlinear activa-
tion) and the effectiveness of masking on VILLA.
Results are reported in Table 12.

A few key observations are summarized here: (7)
KL divergence loss contributes to performance im-
provements in MANGO. (¢7) Without resetting gen-
erator parameters and retraining generator periodi-
cally renders inferior performance. As explained
in Section 3.3, the lightweight generator may be
trapped in a local optima. In addition, we explore
randomly initializing the adversarial noise gener-
ator and freeze the generator parameters, which
results in even worse performance. (¢:¢) Replacing
our noise generator with a single linear layer also
hurts the performance. Note that applying linear
layers to a Gaussian noise only changes its mean
and variance, still results in a Gaussian noise. (iv)
VILLAg + Masking renders weaker performance
than MANGOvyg. This observation is consistent
with comparison of VILLAg in Table 2 and “AN"
in Table 4, which can be considered as “MANGOp
- Masking”.

Moreover, we conduct a comparison between
simple Gaussian Noise (GN) with MANGO, where
noises/perturbations are added to both image and
text modalities. Results in the bottom part of Ta-
ble 12 show that adding simple Gaussian noise to
embeddings from both modalities underperforms
the proposed MANGO method. When compared
with L2 (GN on image modality) and L5 (GN on
text modality) of Table 3, we observe that adding



Lingual Reason Visual Answer
Model VQA- VQA-LOL VQA-LOL VQA- GQA V- CV-  VQA- GQA- VQA
ode Rep. Comp. Supp. Intro. VQA VQA CPv2 OOD v2
Meta-Ave. T Acc. Acc. Acc. MV Sv' T Acc. T #flips | #flips| Acc. ] Acc. ] Acc.
MANGOgB 42.80 65.80 56.22 56.49 5833 60.65 7.32 38.11 47.52 5515 73.24
VILLAg (fine. only) 41.83 65.02 55.66 53.48 5724 6036 7.20 4050 4596 55.01 73.29

Table 11: Direct comparison between adversarial noise generator (MANGO) and PGD-based AT (VILLA (fine. only)) during
finetuning stage. Both models are initialized with pre-trained UNITERg weights.

Method VQA-Rep. VQA-LOL
MANGOgB 65.80 56.61
—Ly 65.01 54.55
— retrain NG 65.48 54.57
random init., no training 65.14 54.16
w/ 1-layer linear NG 65.54 53.14
VILLAg + Masking 65.46 55.96
MANGOvyB 65.91 56.55
MANGOg (Both) 65.80 56.36
GN (Both) 64.72 53.62

Table 12: Additional ablation results.

Gaussian noise to both modalities does not yield
better performance.

C Implementation Details

Our models are implemented based on PyTorch.!°
To speed up training, we use Nvidia Apex!! for
mixed precision training. Gradient accumula-
tion (Ott et al., 2018) is applied to reduce multi-
GPU communication overheads. All experiments
are run on Nvidia V100 GPUs (32GB VRAM;
NVLink connection). We use AadmW (Loshchilov
and Hutter, 2019) with 5,=0.9, $5=0.98 and an
L2 weight decay of 0.01 to optimize model training.
Throughout the training, the learning rate is sched-
uled to warmup over the first 10% training steps fol-
lowed by linear decay to 0. The peak learning rate
is set to be 8e-5 and 5e-5 for base and large models,
respectively. Additional hyper-parameters used to
train our adversarial noise generators are listed in
Table 13. Empirically, we found that model train-

ing is sensitive to adversarial noise retrain steps,

img txt
Pask and Prask

D Downstream Benchmarks

In addition to dataset statistics summarized in Ta-
ble 1, we provide an overview of each robustness
benchmark as follows.

VQA-Rephrasings (Shah et al., 2019) is based on
VQA v2 (Goyal et al., 2017). It contains 3 human-
provided rephrasings for 40K questions on 40K

https://pytorch.org/
https://github.com/NVIDIA/apex
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images from VQA v2 val split. In addition to accu-
racy, consistency in model predictions to different
semantically-equivalent questions is also used to
measure the robustness of VQA models against lin-
guistic variations. We follow (Shah et al., 2019) to
evaluate models trained with VQA v2 train split.

VQA-LOL (Gokhale et al., 2020b) is introduced
to examine the logical reasoning ability of a VQA
model through questions containing logical compo-
sitions and linguistic transformations (negation, dis-
junction, conjunction, and antonyms). It consists
of two datasets: VQA-LOL Compose (logical com-
binations of multiple closed binary questions about
the same image in VQA v2) and VQA-LOL Sup-
plement (logical combinations of additional ques-
tions based on external object and caption annota-
tions about the images from COCO (Chen et al.,
2015)). Both datasets share the same train/val im-
ages as VQA v2. In total, 757K/42.5K/291K and
1.61M/91.8K/669K image-question pairs are gener-
ated for train/val/test splits of VQA-LOL Compose
and VQA-LOL Supplement, respectively. In our
experiments, we follow (Gokhale et al., 2020b) to
evaluate models trained with VQA v2 train split on
test split of both datasets.

VQA-Introspect (Selvaraju et al., 2020) is created
to investigate the consistency in model predictions
of a VQA model between reasoning questions and
their associated low-level perception questions. It
first introduces a new Reasoning split of the VQA
v2 dataset and collects 238K new perception ques-
tions. These questions correspond to the set of
perceptual tasks needed to effectively answer com-
plex reasoning questions in the Reasoning split. In
total, VQA-Introspect contains 167K sub-questions
for 56K reasoning questions in VQA v2 train, and
72K sub-questions for 22K reasoning questions in
VQA v2 val. In our experiments, we follow (Sel-
varaju et al., 2020) to evaluate models trained with
VQA vl (Antol et al., 2015) train split on VQA-
Introspect val split.

GQA (Hudson and Manning, 2019a) contains 22M



; Adv. Noise kl-divloss Adv. Noise  Adv. Noise
L. img txt

Task Model  Training Steps  Ppag Prmask Lr. weight 3 Retrain steps  Retrain Lr.
. MANGOg 4000 015 0.15 le-5 1.0 400 le-4
VQA-Rephrasings /' or 3000 015 030 5¢-6 1.0 400 5¢-5
MANGOS 4000 0.15 045 le-5 1.0 400 le-4
VQA-LOL MANGOL 4000 0 045 5¢-6 1.0 400 5¢-5
MANGO3 2000 0 015 le-5 1.0 400 le-4
VQA-Introspect 1 Gor 3000 0 045  Se6 1.0 400 5e-5
GoA MANGOg 4000 015 0.5 le-5 1.0 800 le-4
MANGOL 4000 015 0.15 le-5 1.0 800 le-4
MANGOS 3000 015 0.6 le-5 0 400 le-4
VQACPv2 MANGOL 3000 015 0.6 le-6 0 400 le-5
MANGOg 4000 015 0.15 le-5 1.0 800 le-4
GQA-OOD MANGOL 2000 015 0.15 le-5 1.0 800 le-4
IV-VQA MANGOg 4000 0.15 045 le-5 1.0 400 le-4
&CV-VQA MANGOL 3000 015 0.5 5e-6 1.0 400 5e-5
VOA Y2 MANGOg 6000 015 045 le-5 1.0 400 le-4
MANGOL. 5000 0.15 045 le-5 1.0 400 le-4

Table 13: Hyper-parameter values used in our experiments. We use batch size of 5120 (3072) and gradient accumulation steps

of 5 (8) for base (large) model experiments.

automatically generated questions based on ground-
truth image scene graphs. The questions are con-
structed via a set of heuristic rules, which are de-
signed to evaluate a VQA model in terms of dif-
ferent types of reasoning skills (e.g., spatial un-
derstanding and multi-step inference). We fol-
low (Hudson and Manning, 2019b) to use the bal-
anced version of GQA, which has been designed
to reduce biases in answer distribution. In the
balanced version, 1.7M questions are split into
70%/10%/10% for training, validation and test
sets, respectively. In our experiments, models are
trained on GQA train split and we report perfor-
mance on test-dev split.

IV-VQA & CV-VQA (Agarwal et al., 2020) are
two synthetic datasets, created by removing objects
in the real VQA images. In IV-VQA, irrelevant
objects are erased and model predictions before
and after image manipulations are expected to be
invariant. In CV-VQA, which focuses on counting
questions, one relevant object is removed from the
given image and model predictions on the quantity
of such object are expected to be subtracted by 1.
Objects of choice are based on heuristic rules and
removed via inpainter-GAN (Shetty et al., 2018).
In total, 376K and 13K image-question pairs are
generated for IV-VQA and CV-VQA, respectively.
The detailed splits can be found in Table 1. In our
experiments, we follow (Agarwal et al., 2020) to
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evaluate models trained with VQA v2 train split on
IV-VQA/CV-VQA val split.

VQA-CP v2 (Agrawal et al., 2018) is an out-of-
distribution (OOD) reorganization of VQA v2. It
was created to examine the robustness of a VQA
model in a setting where language priors cannot be
relied upon for a correct prediction. The questions
in VQA v2 are first assigned to one of 65 question
types according to their prefix (first few words).
For every question type, the prior distribution of
answers is shuffled to be different in train and test
splits of VQA-CP v2. Our models are trained on
VQA-CP v2 train split and evaluated on test split,
following (Agrawal et al., 2018).

GQA-OOD (Kervadec et al., 2020) is also an OOD
benchmark, created by re-organization of the GQA
dataset. By utilizing fine-grained question genera-
tion templates in GQA, GQA-OOD divides ques-
tions into 37K local groups, and shifts answer dis-
tribution by selecting a subset of answer classes for
each question group, according to their frequencies.
Unlike VQA-CP v2, GQA-OOD features distribu-
tion shifts for both validation and test, allowing
to validate models under OOD conditions. In our
experiments, we follow (Kervadec et al., 2020) to
evaluate models trained with GQA train split on
GQA-OOD test-dev split.



U;‘pink U: white

Q: How many chairs? Q: What were these letters a part of? .
u:6 Vi6 M:6  U:keyboard V:keyboard M: keyboard = Al V: pink Vi P"_Tk
U: red V:orange M: orange M: pink M: pink
: What tity of chairs? . i )
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U: adult V:10 M: 6 U: keys V: keyboard M: keyboard the ft? player wearing?

(a) VQA-Rephrasings (Lingual) (b) IV-VQA (Visual|

Q: Is there a woman sitting not on this

Q: Is this an adult party or is bench? and Are these two people a Q: What stance is the surfer in? Q: How many kids are left-
there a person? couple? U ing V . . handed?
U: friend V: child M: yes u: . i :squatting V: squatting M: standing U:2 V:2 M: 0
1yes V: no M: no
(c) VQA-LOL (Reason) (d) VQA-CP v2 (Answer)

Figure 3: More visualization of model predictions, comparing MANGO (M) against UNITER (U) and VILLA (V). Correct
answers are highlighted in green and wrong ones are in red.

E More Visualizations

We provide additional visualization of model pre-
dictions in Figure 3. MANGO consistently provides
accurate predictions for each robustness type.

F Limitation and Broader Impact

A truly robust VQA system offers the possibility to
be applied to real-life scenarios such as a chatbot
that assists visually impaired people. In this paper,
we aim to improve the robustness of VQA models,
specifically the model performance on 9 robust
VQA benchmarks. While our method outperforms
the previous state-of-the-arts, the model does not
always guarantee a perfect prediction. Like any
other data-driven system, our method is sensitive to
the distribution of training data, therefor may fail
when encountering VQA examples in the wild.
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