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Abstract

Large-scale pre-trained vision-and-language001
(V+L) transformers have propelled the state002
of the art (SOTA) on Visual Question Answer-003
ing (VQA) task. Despite impressive perfor-004
mance on the standard VQA benchmark, it re-005
mains unclear how robust these models are. To006
investigate, we conduct a host of evaluations007
over 4 different types of robust VQA datasets:008
(i) Linguistic Variation; (ii) Logical Reason-009
ing; (iii) Visual Content Manipulation; and010
(iv) Answer Distribution Shift. Experiments011
show that pre-trained V+L models already ex-012
hibit better robustness than many task-specific013
SOTA methods via standard model finetun-014
ing. To further enhance model robustness, we015
propose MANGO, a generic and efficient ap-016
proach that learns a Multimodal Adversarial017
Noise GeneratOr in the embedding space to018
fool V+L models. Differing from previous019
studies focused on one specific type of robust-020
ness, MANGO is agnostic to robustness types,021
and enables universal performance lift for both022
task-specific and pre-trained models over di-023
verse robust VQA datasets designed to evaluate024
broad aspects of robustness. Comprehensive025
experiments demonstrate that MANGO outper-026
forms previous task-specific SOTAs on 7 out027
of 9 robustness benchmarks.028

1 Introduction029

Large-scale multimodal pre-training has taken030

innovative strides in the realm of vision-and-031

language (V+L) research (Lin et al., 2020; Lu et al.,032

2020; Sun et al., 2019; Li et al., 2020b). Pre-033

trained models (Su et al., 2020; Li et al., 2020a,034

2019; Huang et al., 2020) such as ViLBERT (Lu035

et al., 2019), LXMERT (Tan and Bansal, 2019)036

and UNITER (Chen et al., 2020b) have demon-037

strated great generalizability over diverse V+L038

tasks (Zellers et al., 2019; Yu et al., 2016), espe-039

cially on the most popular Visual Question An-040

swering (VQA) (Antol et al., 2015) task. However,041

the standard VQA evaluation benchmarks (Antol042

et al., 2015; Goyal et al., 2017) usually possess sim- 043

ilar data distribution between training and test sets, 044

with little-to-none linguistic variation in textual 045

queries, and use only clean natural images without 046

any visual content manipulation. Although effec- 047

tive for benchmarking model improvements, these 048

standard benchmarks lack the ability to explicitly 049

evaluate model robustness. 050

To conduct a full dissection on model robustness, 051

we launch a comprehensive investigation with sys- 052

tematic evaluations of VQA models over 4 generic 053

types of robustness: (i) robustness against linguis- 054

tic variation; (ii) robustness against logical reason- 055

ing; (iii) robustness against visual content manip- 056

ulation; and (iv) robustness against answer distri- 057

bution shift between training and test splits. Given 058

the abundance of diverse datasets and splits on the 059

popular VQA task, we take VQA as the focal point 060

of our investigation, and compile an assemblage 061

of 9 diverse VQA datasets that cover each type 062

of model robustness: (i) VQA-Rephrasings (Shah 063

et al., 2019) for linguistic variation; (ii) VQA- 064

LOL (Compose and Supplement) (Gokhale et al., 065

2020b), VQA-Introspect (Selvaraju et al., 2020) 066

and GQA (Hudson and Manning, 2019a) for logi- 067

cal reasoning; (iii) IV-VQA and CV-VQA (Agar- 068

wal et al., 2020) for visual content manipulation; 069

and (iv) VQA-CP v2 (Agrawal et al., 2018) and 070

GQA-OOD (Kervadec et al., 2020) for answer dis- 071

tribution shift. Interestingly, analysis on several 072

pre-trained VQA models reveals that by standard 073

finetuning, pre-trained models already exhibit bet- 074

ter robustness than many task-specific state-of-the- 075

art methods. However, the achieved robustness is 076

still limited, and far from human performance. 077

Recently, adversarial training (AT) (Tramèr et al., 078

2017; Shafahi et al., 2019; Xie et al., 2020) has 079

shown success on standard V+L tasks (Gan et al., 080

2020; Tang et al., 2020). Inspired by this, we in- 081

vestigate whether AT can also serve as an effec- 082

tive conduit to improve performance on robustness 083
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(a) Overview of MANGO, which trains adversarial noise generators to add per-
turbations at embedding level. Random masking on image and text inputs are
designed to promote more diverse adversarial embeddings.

(b) Comparison between MANGO, UNITER
and task-specific methods. The blue dots
represent methods exploiting additional
task-specific information.1

Figure 1: Illustration of the proposed MANGO framework and performance comparison between MANGO and SOTA.

benchmarks aforementioned. Our evaluation of084

VILLA (Gan et al., 2020) (AT-enhanced pre-trained085

model) shows that by injecting adversarial perturba-086

tion to multimodal embeddings, PGD-based (Pro-087

jected Gradient Descent) AT (Madry et al., 2017;088

Zhu et al., 2020) can help the model adapt to lin-089

guistic variation and visual content manipulation,090

yielding better model robustness; but with only091

limited effect (sometimes even hurting model per-092

formance) on datasets that exhibit salient data dis-093

tribution gap between training and test sets (e.g.,094

VQA-CP v2, GQA-OOD).095

To achieve better robustness across all aspects,096

we propose MANGO (Multimodal Adversarial097

Noise GeneratOr), a generic and efficient approach098

that introduces adversarial noise to multimodal em-099

bedding space for robustness enhancement. As100

shown in Figure 1a, instead of relying on PGD to101

generate adversarial perturbation, MANGO learns102

an adversarial noise generator in the form of a103

trained neural network to fool the model. Follow-104

ing Gan et al. (2020), perturbation is added to the105

embedding space for all modalities, as our goal106

is the end results of AT, rather than crafting ac-107

tual adversarial examples. MANGO is lightweight,108

does not require repetitive gradient calculations on109

a deep model as in PGD-based approach.110

To enable diverse adversarial embeddings, we111

further propose to randomly mask image regions112

and randomly insert [MASK] tokens when adding113

adversarial noise to image and word embeddings.114

Empirical results show that MANGO significantly115

1LMH (Tramèr et al., 2017) and MMN (Chen et al., 2021)
on VQA-CP v2 and GQA are used to plot the SOTA polygon
for fair comparison. For CV-VQA and IV-VQA, performance
is computed as 100−#flips and 100− 5×#flips, respectively.
VQA-LOL performance is the average of accuracies on VQA-
LOL Compose and VQA-LOL Supplement.

improves model robustness across all tasks consid- 116

ered, compared to PGD-based methods. 117

Our main contributions are summarized as fol- 118

lows. (i) We show that V+L pre-training can 119

greatly lift the robustness of VQA models across 120

four different robustness types, suggesting stronger 121

baselines for future studies on robust VQA bench- 122

marks. (ii) We propose MANGO, a generic and 123

lightweight adversarial noise generator to enhance 124

VQA model robustness. (iii) As summarized in 125

Figure 1b, MANGO improves over UNITER and 126

outperforms previous task-specific SOTAs on 7 out 127

of 9 robustness benchmarks. 128

2 Robust VQA 129

Terminology We start with definition of the ter- 130

minology we use throughout the paper. We fol- 131

low VQA literature (Cadene et al., 2019; Wu and 132

Mooney, 2019; Teney et al., 2020c; Gokhale et al., 133

2020a; Kervadec et al., 2020) to unify different 134

forms of challenging bias and out-of-distribution 135

generalization as robustness, different from its defi- 136

nition in adversarial machine learning. Robustness 137

does not always mean “adversarial robustness” in 138

literature, e.g., it can also refer to model robust- 139

ness towards common image corruptions (Rusak 140

et al., 2020; Zhang, 2019; Hendrycks and Diet- 141

terich, 2019). In the language of adversarial ma- 142

chine learning, our definition of robustness here can 143

be understood as the “generalization” performance 144

on the challenging robust VQA benchmarks. 145

Existing Benchmarks There has been a few inde- 146

pendent studies on V+L robustness, mostly focus- 147

ing on variations of the popular VQA task. VQA- 148

CP (Agrawal et al., 2018), drawn from VQA v2 149

dataset (Goyal et al., 2017), is the first bench- 150

mark proposed to evaluate (and reduce) question- 151
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Type Benchmark Metric Q Type Train Val Test

Source #IQ len(Q) #IQ len(Q) #IQ len(Q)
Lingual VQA-Rephrasings Acc. All VQA v2 train 444K 6.20 162K 7.15 - -

Reason

VQA-LOL Compose Acc. Y/N VQA v2 train 444K 6.20 43K 12.09 291K 12.12
VQA-LOL Supplement Acc. Y/N VQA v2 train 444K 6.20 9K 15.15 669K 15.19
VQA-Introspect M✓S✓ All VQA v1 train 248K 6.21 - - 95K 6.36
GQA Acc. All - 943K 8.76 132K 8.77 13K 8.51

Visual IV-VQA #flips All VQA v2 train 444K 6.20 120K 5.85 - -
CV-VQA #flips Num. VQA v2 train 444K 6.20 4K 5.83 - -

Answer VQA-CP v2 Acc. All - 438K 6.14 - - 220K 6.31
GQA-OOD Acc. All GQA train 943K 8.76 51K 8.09 3K 7.70

Table 1: Detailed descriptions of each downstream benchmark, including robustness type, evaluation metric, question type,
training data source and statistics on train, val, test data in terms of number of Image-Question pairs (#IQ) and average question
length (len(Q)). We use the training data provided with the benchmark unless specified otherwise. Results on val split are reported
when test split is not available. Acc. is short for Accuracy. M✓S✓ is a consistency measure between main questions and
sub-questions in VQA-Introspect. #flips is the number of predictions mismatched before and after visual content manipulation.

oriented language bias in VQA models. Consider-152

able effort (KV and Mittal, 2020; Cadene et al.,153

2019; Selvaraju et al., 2019; Abbasnejad et al.,154

2020) has been invested on VQA-CP along 3 di-155

mensions: (i) compensating for question-answer156

distribution patterns through a regularizer based on157

an auxiliary model (Niu et al., 2020; Clark et al.,158

2019; Teney et al., 2020b; Grand and Belinkov,159

2019; Jing et al., 2020); (ii) taking advantage of160

additional supervision from human-generated at-161

tention maps (Wu and Mooney, 2019; Gokhale162

et al., 2020a); and (iii) synthesizing counterfac-163

tual examples to augment training set (Chen et al.,164

2020a; Teney et al., 2020a). Recent work (Teney165

et al., 2020c) shows that simple methods such as166

generating answers at random can already surpass167

state of the art on some question types. The re-168

cent GQA-OOD (Kervadec et al., 2020), another169

robustness-focused task, is designed based on a170

fine-grained reorganization of the original GQA171

dataset (Hudson and Manning, 2019a).172

Other types of VQA model robustness are also173

studied: VQA-Rephrasings (Shah et al., 2019) pro-174

poses cyclic consistency to improve robustness175

against linguistic variations in questions; Ray et al.176

(2019) tackles antonym consistency; Agarwal et al.177

(2020) studies robustness against automated seman-178

tic image manipulations, and tests for prediction179

consistency to questions on clean images and cor-180

responding manipulated images.181

Further studies investigate robustness against182

logical reasoning. For instance, Selvaraju et al.183

(2020) provides a dataset containing perception-184

related sub-questions per question for a new rea-185

soning split of VQA dataset. VQA-LOL (Gokhale186

et al., 2020b) perform logical compositions and187

linguistic transformations to VQA questions to ex-188

amine model ability in logical reasoning. Moreover,189

large-scale rule-based questions in GQA (Hudson 190

and Manning, 2019a) can also support analysis on 191

different reasoning skills of VQA models. 192

Despite the continuous effort in enhancing ro- 193

bustness of VQA models, these works mostly focus 194

on either task-specific models or a single type of 195

robustness. To provide a comprehensive study on 196

pretrained V+L models for VQA robustness, we 197

compile a list of existing datasets, and group them 198

into four robustness types: Lingual, Visual, Reason, 199

and Answer (Table 1). Covering various respects of 200

a ‘stress test’, from linguistic to visual variations, 201

from reasoning complexity to answer distribution, 202

this compilation can serve as a unified yardstick for 203

evaluating V+L model robustness and a guidance 204

for future study on robust model design. As a start, 205

we introduce a generic and effective approach that 206

can lift model performance over all types of VQA 207

robustness indiscriminately. 208

3 MANGO Framework 209

In this section, we briefly review VQA backbone, 210

introduce a simple baseline that injects Gaussian 211

noise, and explain the proposed MANGO approach. 212

3.1 VQA Backbone 213

Given an image-question pair (v,w) in dataset D, 214

the goal is to predict an answer that best matches 215

ground-truth answer y. The image input is usually 216

projected into a set of region-level features (Ander- 217

son et al., 2018) or image patch embeddings (Kim 218

et al., 2021) v = {v1, ...,vK} (vi ∈ Rdv ). The 219

text input is tokenized and projected into high- 220

dimensional feature vectors w = {w1, ...,wL} 221

through a learnable word embedding layer (wi ∈ 222

Rdw ). These embeddings from the paired image- 223

question inputs are then fed into a VQA model 224

fθ(v,w) to predict an answer, where θ denotes 225
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all the trainable parameters. Binary Cross Entropy226

(BCE) loss is used to supervise model training. The227

training process can be formulated as:228

min
θ

E
(v,w,y)∼D

[LBCE(fθ(v,w),y)] . (1)229

3.2 Gaussian Noise Augmentation230

Randomized smoothing (Duchi et al., 2012) advo-231

cates the addition of random perturbations to model232

inputs, which can often yield better model perfor-233

mance. Recent study (Rusak et al., 2020) also234

shows that perturbing clean images with Gaussian235

noise is effective in improving model robustness236

against image corruptions for image classification.237

Inspired by this, we use Gaussian noise augmen-238

tation as a simple baseline to investigate model239

robustness under V+L setting. Instead of adding240

noise to raw image pixels as in Rusak et al. (2020),241

we add perturbations directly to the embeddings:242

min
θ

E
(v,w,y)∼D

E
δv∼N (0,σ21)

[LBCE(fθ(v+δv,w),y)] , (2)243

where σ is the standard deviation of Gaussian noise.244

Similarly, we add Gaussian noise to the word em-245

beddings:246

min
θ

E
(v,w,y)∼D

E
δw∼N (0,σ21)

[LBCE(fθ(v,w + δw),y)] .247

3.3 Adversarial Noise Generator248

Adding Gaussian noise to clean image-text pairs249

can augment training examples to a certain level.250

However, as the training continues, the model can251

gradually adapt to the perturbations which are sam-252

pled from the same Gaussian noise distribution.253

To produce harder perturbations that can fool the254

backbone network, we propose to actively learn255

an adversarial noise generator. Specifically, we256

aim to discover an adversarial noise distribution,257

from which the sampled noises, when added to the258

multimodal embeddings, can maximally confuse259

the backbone network. Note that our goal is not260

to model the explicit density form of such a dis-261

tribution, as we only care about the noise samples262

drawn from the distribution. To achieve this, the263

adversarial noise generator takes in Gaussian noise264

samples as input, and produces adversarial noise265

samples through a learned neural network.266

Take image modality as an example. Let gϕv :267

Rdv → Rdv denote the adversarial noise gener-268

ator. The adversarial noise δv is generated by269

δv = gϕv(α),α ∈ N (0,1). Intuitively, to maxi-270

mally fool the backbone network, we want to max-271

imize prediction errors on these adversarially per-272

turbed samples. In the meantime, we want the273

model to possess less confidence in its predictions 274

on perturbed samples than clean samples, to pro- 275

mote harder adversarial examples Therefore, the 276

objective of the adversarial noise generator is to 277

maximize the sum of two losses: (i) task-specific 278

loss (e.g., BCE loss for VQA task); (ii) adversarial 279

loss (e.g., BCE loss for adversarial data, and the 280

Kullback-Leibler (KL) divergence loss between the 281

predicted answer distribution of perturbed samples 282

and that of clean samples). On the other hand, the 283

trained model aims to minimize both losses by tak- 284

ing adversarial embeddings as data augmentation. 285

Formally, the min-max game can be defined as: 286

min
θ

max
ϕv

E
(v,w,y)∼D

E
α∈N (0,1)

[Lstd(θ,ϕv) + βRat(θ,ϕv)] , 287

where β is a hyper-parameter, and 288

Lstd(θ,ϕv) = LBCE(fθ(v,w),y) , (3) 289

Rat(θ,ϕv) = LBCE(fθ(v + gϕv (α),w),y) 290

+ Lkl(fθ(v + gϕv (α),w), fθ(v,w)), (4) 291

where Rkl(p, q) = KL(p||q) + KL(q||p), p, q denote 292

two probability distributions. The first term in 293

Rat(θ,ϕv) promotes label-preserving adversarial 294

perturbations; while the second term advocates 295

more fine-grained label preservation, meaning that 296

the probability distribution across all answers is 297

used as soft label, instead of using the ground truth 298

answer index as hard label. Similarly, we can learn 299

an adversarial noise generator (with parameters 300

gϕw ) that corresponds to the text modality.2 301

During training, we alternate between an outer 302

loop of the backbone network update and an in- 303

ner loop of generator update. We constrain the 304

noise samples δv and δw to be within the sphere 305

||δv||2 = ||δw||2 = ϵ, by scaling the generator out- 306

put with a scalar. ϵ is set as {1, 2, 5, 10} in our 307

experiments. For better efficiency, we also accu- 308

mulate the gradients of adversarial noise generator, 309

and only update the generator’s parameters every 310

T times (T = {20, 40}) of backbone update. 311

The proposed adversarial noise generator is 312

lightweight, consisting of only a few linear layers. 313

To avoid such a light trapping in local minimum 314

when competing with a deep backbone network, at 315

regular intervals, we replace the learned noise gen- 316

erator with a new one trained from scratch. Each 317

time, the new generator is trained against the latest 318

learned parameters of the backbone. 319

2The corresponding equations are omitted for simplicity.
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Random Masking Adversarial noise generator,320

although produces more challenging and more di-321

verse noise perturbations, does not alter the intrin-322

sic statistics of training examples, such as the dis-323

tribution of question lengths and image regions.324

In practice, we observe significant mismatch in325

these statistics between training and test splits of326

robustness benchmarks. For example, the average327

length of questions in VQA-LOL (Gokhale et al.,328

2020b) test split is 2-3 times longer than that in329

VQA v2 (Goyal et al., 2017) training split. The330

region distribution of images in IV-VQA and CV-331

VQA (Agarwal et al., 2020) is very different from332

VQA v2 training split, due to visual content manip-333

ulation. To compensate for such statistic mismatch,334

we propose to randomly mask image regions (by335

zeroing out corresponding feature vectors) as well336

as randomly insert [MASK] tokens when adding337

adversarial noise to image and word embeddings.338

Empirically, this simple technique is effective in339

further boosting model robustness.340

Comparison with PGD-based AT Although341

MANGO is similar to VILLA (Gan et al., 2020) in342

terms of learning adversarial perturbations, they are343

different in the sense that MANGO learns an adver-344

sarial noise generator to generate adversarial per-345

turbations, instead of relying on PGD as in VILLA.346

This makes MANGO more efficient, as computing347

gradients of a generic lightweight noise generator348

is less time-consuming. Empirically, MANGO also349

achieves better performance. The comparison on350

model performance and training time difference351

is provided in Experiments. A detailed literature352

review on AT is provided in Appendix A.353

Comparison with ANT In ANT (Rusak et al.,354

2020), a similar noise generator is proposed to355

make neural networks robust against diverse image356

corruptions. However, there are two key distinc-357

tions. First, we mainly focus on transformer models358

for VQA task, whereas Rusak et al. (2020) focuses359

on convolutional networks for image classification.360

Second, we propose to generate adversarial noise361

over the embeddings of images and words, while362

Rusak et al. (2020) adds adversarial noise directly363

on image pixels.364

4 Experiments365

We experiment on BUTD (Anderson et al., 2018),366

pre-trained UNITER (Chen et al., 2020b) and367

VILLA (Gan et al., 2020) over all 9 robust VQA368

datasets (Sec. 2), plus a standard VQA-v2 dataset. 369

UNITER is a one-stream model based on object 370

detection to extract visual features. We also ex- 371

periment on LXMERT (a two-stream model in- 372

stead) (Tan and Bansal, 2019), and ViLT (directly 373

taking image patches and word tokens as model 374

inputs) (Kim et al., 2021) for generalizability test. 375

4.1 Experimental Setting 376

We follow the original papers to test model robust- 377

ness under the most challenging setting (shown in 378

Table 1), which is to evaluate models trained on the 379

VQA training split for VQA-Rephrasings, VQA- 380

LOL, VQA-Introspect, IV-VQA and CV-VQA. De- 381

tailed description of all benchmarks are provided in 382

Appendix D. For thorough evaluation, we compare 383

model performance against the following methods: 384

• SOTA w/o PT (task-specific models without pre- 385

training): Cycle Consistency+ BAN (Shah et al., 386

2019) for VQA-Rephrasings, LOL (Gokhale 387

et al., 2020b) for VQA-LOL Compose and Sup- 388

plement, Pythia (Selvaraju et al., 2020; Jiang 389

et al., 2018) for VQA-Introspect, NSM (Hudson 390

and Manning, 2019b) for GQA, SAAA (Agarwal 391

et al., 2020; Kazemi and Elqursh, 2017) for CV- 392

VQA and IV-VQA, MUTANT (Gokhale et al., 393

2020a) for VQA-CP v2, MMN (Chen et al., 2021; 394

Kervadec et al., 2020) for GQA-OOD; 395

• BUTD and MANGOBUTD: task-specific VQA 396

model and its enhanced version with MANGO3; 397

• UNITERB and UNITERL: standard finetuning of 398

pre-trained UNITER base and large model; 399

• VILLAB and VILLAL: adversarial pre-trained 400

and finetuned UNITER base and large model; 401

• MANGOB and MANGOL: applying adversarial 402

noise generator on pre-trained UNITER, base and 403

large size; 404

• MANGOVB and MANGOVL: applying adversar- 405

ial noise generator on adversarial pre-trained 406

UNITER model (provided in the VILLA pa- 407

per (Gan et al., 2020)) with base and large size. 408

4.2 Experimental Results 409

Table 2 presents the results of BUTD, UNITER, 410

VILLA and MANGO on all robustness benchmarks. 411

3In practice, we remove random inserting [MASK] token
for BUTD backbone, as it is not included in its provided
vocabularies.

5



Lingual Reason Visual Answer

Model VQA-
Rep.

VQA-LOL
Comp.

VQA-LOL
Supp.

VQA-
Intro. GQA IV-

VQA
CV-

VQA
VQA-
CP v2

GQA-
OOD

VQA
v2

Meta-Ave. ↑ Acc. ↑ Acc. ↑ Acc. ↑ M✓ S✓ ↑ Acc. ↑ #flips ↓ #flips ↓ Acc. ↑ Acc. ↑ Acc. ↑
1 SOTA w/o PT - 56.59 48.99 50.54 50.05 63.17 7.53 78.44 69.52 52.70 -
2 BUTD 35.03 56.88 53.04 52.53 46.17 55.41 9.83 62.23 40.39 50.29 67.60
3 MANGOBUTD 36.49 57.84 54.98 54.83 47.58 56.50 9.01 58.10 40.60 51.50 68.18
4 UNITERB 40.98 64.56 54.54 50.00 56.80 59.99 8.47 40.67 46.93 53.43 72.70
5 MANGOB 42.80 65.80 56.22 56.49 58.33 60.65 7.32 38.11 47.52 55.15 73.24
6 VILLAB 42.37 65.35 54.90 56.17 58.29 60.26 7.07 38.28 46.39 54.11 73.59
7 MANGOVB 43.08 65.91 55.44 57.58 58.94 60.73 7.43 38.25 48.63 55.79 73.45
8 UNITERL 43.37 67.64 58.60 55.95 57.64 60.30 8.20 36.66 50.98 53.65 73.82
9 MANGOL 45.27 68.33 59.45 60.50 62.14 61.10 6.69 35.52 52.76 56.40 74.26
8 VILLAL 44.33 68.16 58.66 58.29 62.00 61.38 6.70 37.55 49.10 55.26 74.69
9 MANGOVL 45.31 68.27 61.49 58.83 62.60 61.41 6.73 35.64 52.55 56.08 74.20

Table 2: Comparison to task-specific state-of-the-art (SOTA), UNITER, VILLA on 9 robustness downstream benchmarks and a
standard VQA benchmark. Results are reported on val split of VQA-Rephrasings (VQA-Rep.), VQA-LOL Compose (Comp.)
and Supplement (Supp.), VQA-Introspect (VQA-Intro.), IV-VQA, CV-VQA, VQA-CP v2 and test-dev split of GQA, GQA-OOD
and VQA v2. ↑ (↓) indicate the higher (lower) the better.

Meta-Ave (average of scores across all bench-412

marks) is used as the global metric.4 We compare413

task-specific models in L2-3 and pre-trained mod-414

els with base size (12 layers) in L4-7.415

Task-specific VQA model BUTD (L2) estab-416

lishes a weak baseline across all robustness bench-417

marks, with a Meta-Ave of 35.03. With pre-training418

and deeper model architecture, UNITERB (L4)419

achieves much stronger performance, with a Meta-420

Ave of 40.98. MANGOBUTD (L3) and MANGOB421

(L5) achieve across-the-board performance lift on422

all robustness benchmarks over the corresponding423

baselines, harnessing an absolute gain of +1.46 and424

+1.82 on Meta-Ave.425

MANGO vs. VILLA VILLAB (L6) improves over426

the strong baseline UNITERB by +1.39 Meta-Ave427

(42.37) via PGD-based adversarial training. As428

VILLAB performs adversarial training on both pre-429

training and finetuning stages, we apply our method430

to their adversarial pre-trained model for fair com-431

parison. MANGOVB (L5) outperforms VILLAB on432

7 out of 9 robustness benchmarks, with an absolute433

gain +0.71 on Meta-Ave. MANGOVB is particu-434

larly effective on reasoning (+1.41 on VQA-LOL435

Supp.) and OOD benchmarks (+2.24 on VQA-436

CP, +1.68 on GQA-OOD). We also compare the437

training speed of MangoVB and VILLAB under the438

same experimental setting. Our experiments show439

that MANGOVB is 25% faster than VILLAB (1.44440

vs. 1.92 second per gradient update step).5 We441

contribute the better efficiency to the use of global442

4For IV-VQA and CV-VQA, we take the negative of the
number of flips for calculating Meta-Ave.

5The speed comparison is conducted during finetuning
experiments for both models with the same batch size, gradient
accumulation steps and GPUs.

noise generator in MANGO instead of iterative PGD 443

steps as in VILLA. More comparisons between 444

MANGO and VILLA are included in Appendix B. 445

Scaling Up to Large Model Size (24 Layers) 446

Compared to base models (L2&L4), large mod- 447

els (L6&L8) have more advantage on Meta-Ave 448

(UNITER: 43.37(L) vs. 40.98(B); VILLA: 44.33(L) 449

vs. 42.37(B)), which is consistent with the observa- 450

tions on standard V+L tasks in (Chen et al., 2020b; 451

Gan et al., 2020). When applying adversarial noise 452

to large backbone models (L7&L9), MANGO fur- 453

ther pushes the margins of performance gain across 454

all benchmarks: an absolute gain of +1.90 over 455

UNITERL and +0.98 over VILLAL on Meta-Ave. 456

End-to-end Comparison with SOTA MANGO 457

achieves new state of the art on 7 out of 9 bench- 458

marks, except VQA-CP v2 and GQA. SOTA 459

methods on these two benchmarks exploit addi- 460

tional task-specific information. Specifically, MU- 461

TANT (Gokhale et al., 2020a) for VQA-CP v2 is 462

trained with excessive additional image-question 463

pairs designed to promote positive bias; while 464

NSM (Hudson and Manning, 2019b) for GQA 465

takes advantage of additional scene graph anno- 466

tations, which are only provided in GQA. As the 467

goal of our proposed method is to bring universal 468

performance lift on all robustness benchmarks, we 469

do not exploit these additional task-specific infor- 470

mation introduced by MUTANT and GQA. 471

4.3 A Closer Look into Robustness 472

We conduct an in-depth autopsy to examine the 473

robustness of competing methods over each robust- 474

ness type. For simplicity, we focus our discussions 475

on UNITERB, VILLAB and MANGOVB. 476

6



Robustness against Linguistic Variation As477

shown in Table 2 (‘Lingual’ column), UNITERB478

has shown its advantage of defending model ro-479

bustness against linguistic variation. We con-480

tribute the performance lift from UNITERB to ex-481

cessive variations of textual inputs seen during482

pre-training. Comparing AT-enhanced methods,483

MANGOVB improves over VILLAB, even though484

VILLAB has already shown significant improve-485

ment over UNITERB. We attribute the improve-486

ment from MANGO to not only the adversarial data487

augmentation during training, but also the random488

masking introduced from the text modality (more489

detailed analyses in Table 3).490

Robustness against Logical Reasoning We com-491

pare model performance on 4 benchmarks un-492

der the ‘Reason’ column in Table 2. Different493

from VQA-LOL Compose, VQA-LOL Supple-494

ment dataset consists of questions generated by495

heuristic rules. Semantically-close questions with496

different answers are included to make the task497

more challenging. The close-to-random perfor-498

mance on VQA-LOL Supplement dataset indicates499

that UNITERB severely suffers from these challeng-500

ing semantically-close questions.501

VILLAB brings performance lift on all 4 reason-502

ing benchmarks. Not surprisingly, VILLAB exhibits503

more robustness than UNITERB on semantically-504

close questions in VQA-LOL Supplement. Our hy-505

pothesis is that the adversarial embeddings learned506

during VILLAB training can mimic the effect of507

adding semantically-close questions as training508

data, and the generated adversarial perturbations509

are also constrained to be small to preserve the510

semantic meaning of the clean text embeddings.511

MANGOVB outperforms VILLAB on all reason-512

ing benchmarks. Similar to VQA-Rephrasings,513

MANGOVB has more advantages over VQA-LOL514

Compose and VQA-LOL Supplement, whose aver-515

age question length is much longer than VQA v2.516

By randomly inserting [MASK] tokens, MANGOB517

effectively augments training data with questions518

of similar lengths to the test split.519

Robustness against Visual Content Manipula-520

tion UNITERB performs on par to SOTA model521

on IV-VQA, and significantly improves over SOTA522

on CV-VQA (Table 2 ‘Visual’ column). This is523

due to that during pre-training, UNITERB has al-524

ready be trained on diverse images, and the pre-525

training task of masked region modeling can also526

prevent UNITERB from overfitting to visual biases.527

Modality Method

VQA-
Rep.

VQA-LOL
Comp.

VQA-LOL
Supp.

IV-
VQA

VQA-CP
v2

Acc. ↑ Acc. ↑ Acc. ↑ #flips ↓ Acc. ↑
None 1 None 64.56 54.54 50.00 8.47 47.29

Image
2 GN 65.17 54.46 50.68 8.45 47.29
3 AN 65.42 54.59 52.54 7.52 47.38
4 MANGO 65.51 56.67 55.20 7.39 47.51

Text
5 GN 64.73 53.66 54.59 8.46 46.59
6 AN 65.36 54.12 52.95 7.99 47.09
7 MANGO 65.63 55.79 56.54 7.53 47.45

Both 8 MANGO 65.80 56.22 56.49 7.32 47.52

Table 3: Ablation studies on adding noise to different modalities
and on different types of noise. UNITERB is used as the backbone.
GN (AN) stands for Gaussian (Adversarial) Noise.

VILLAB improves model robustness against visual 528

content manipulation, and MANGOVB performs on 529

par with VILLAB. Our hypothesis is that by inject- 530

ing adversarial perturbations at pre-training stage, 531

the model is exposed to even more diverse images, 532

hence easier to recover from visual biases. 533

Robustness against Answer Distribution Shift 534

On out-of-distribution (OOD) benchmarks, 535

UNITERB performs poorly on VQA-CP v2, while 536

improving over SOTA model on GQA-OOD 537

(Table 2 ‘Answer’ column). MUTANT is a very 538

task-specific method, which augments VQA-CP v2 539

training with excessive rule-based image-question 540

pairs to counter the training split bias. Hence, it is 541

difficult to generalize to other robustness cases. Ad- 542

ditional manual effort is required to generalize to 543

other rule-based datasets such as VQA-LOL, GQA, 544

IV-VQA and CV-VQA. Interestingly, VILLAB 545

improves over UNITERB on GQA-OOD, but not 546

on VQA-CP v2, while MANGOB (MANGOVB) 547

significantly outperforms UNITERB (VILLAB) 548

on both benchmarks. These results suggest that 549

MANGO are more generalizable than VILLA to 550

challenging OOD datasets. 551

4.4 Ablation Study 552

Noise Generation and Random Masking We se- 553

lect one dataset from each robustness type as a rep- 554

resentative benchmark for ablation studies: VQA- 555

CP v2, VQA-Rephrasings, VQA-LOL (Compose 556

and Supplement), and IV-VQA. Results are sum- 557

marized in Table 3. First, we compare with the 558

baseline that simply adds Gaussian noise to either 559

image or text modality.6 Different from observa- 560

tions in (Rusak et al., 2020), comparing L2/L5 with 561

L1 indicates that adding simple Gaussian noise to 562

multimodal embeddings is not always helpful. Es- 563

6In our experiments, we set standard deviation to 0.5, and
only perturb 50% of training data via Gaussian noise within
each minibatch.
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Method
VQA-
Rep.

VQA-LOL
Comp.

VQA-LOL
Supp.

GQA
GQA-
OOD

VQA
v2

Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑ Acc. ↑
LXMERT 67.20 49.34 47.33 59.78 53.86 72.31
Ours 68.61 53.83 53.54 60.06 54.94 72.70
ViLT 61.87 49.57 50.24 56.60 49.43 70.84
Ours 62.20 51.16 52.95 57.41 49.57 71.24

Table 4: Results of MANGO with LXMERT, ViLT and VinVL
as the backbone. VinVL results are reported on base model.

Model NLVR2 RefCOCO RefCOCOg VE
UNITERB 77.52 80.55 74.41 78.44
MANGOB 78.36 80.95 75.37 78.87

Table 5: Results on other V+L tasks, we report the average of
performance across different splits of each task for simplicity.

pecially, adding Gaussian noise on text modality564

brings unstable performance.565

Second, we experiment with adding adversarial566

noise alone, without random masking. Results on567

L3/L6 show that universal performance improve-568

ments over Gaussian noise (L2/L5). Intuitively,569

adversarial noise is harder than Gaussian noise, as570

the adversarial noise generator learns to fool the571

backbone network. Such hard training examples572

helps to boost model robustness.573

Third, we show that by using random masking574

(L4/L7), which encourages more diverse adversar-575

ial embeddings, MANGO is better than using ad-576

versarial noise alone (L2/L5). Randomly inserting577

[MASK] tokens (L7) also shifts the distribution of578

question lengths that the model is exposed to during579

training. Hence, we observe more gains on bench-580

marks with severe mismatches in question length581

between training and test sets. For example, in582

VQA-LOL, the testing questions are significantly583

longer than training questions on average.584

Lastly, we observe that adding adversarial noise585

on one modality is already gaining significant im-586

provement (L4/L7). Empirically, adding adversar-587

ial noise on both modalities (L8) only performs588

slightly better or on par with MANGO on text or589

image modality alone. More ablation results on590

model architecture are included in Appendix B.591

Results on Other VQA Backbones We also apply592

MANGO to other V+L backbones, LXMERT (Tan593

and Bansal, 2019) and ViLT (Kim et al., 2021), for594

generalizability test. When comparing both base-595

lines with their MANGO-enhanced versions (“ours”596

in Table 4), we observe universal performance lift597

from MANGO across all benchmarks considered. 7598

7IV-VQA, CV-VQA and VQA-CP v2 are excluded in this
study as the performance on these benchmarks is based on
examples in VQA v2 val split, which is used to supervise
LXMERT pre-training.

Figure 2: Visualization of model predictions, comparing
MANGO(M) against UNITER(U) and VILLA(V). Correct an-
swers are highlighted in green and wrong ones are in red.

Results on other V+L tasks MANGO is task- 599

agnostic, thereby can also be applied to other stan- 600

dard V+L tasks. Table 5 shows that MANGOB sur- 601

passes UNITERB on 4 popular V+L tasks, including 602

NLVR2 (Suhr et al., 2019), RefCOCO (Yu et al., 603

2016), RefCOCOg (Yu et al., 2016) and Visual 604

Entailment (VE) (Xie et al., 2019). We leave thor- 605

ough investigation of the effectiveness of MANGO 606

on other standard V+L tasks as future study. 607

Qualitative Analysis Figure 2 visualizes predic- 608

tions from UNITER, VILLA and MANGO on 4 609

benchmarks (one for each robustness type). These 610

visualizations illustrate MANGO’s consistently ac- 611

curate performance when facing challenges of: (a) 612

uninformative leading phrase added to the ques- 613

tion; (b) removal of irrelevant object in the image; 614

(c) over-length logical combination of questions; 615

and (d) imbalanced answer distribution (‘white’ ap- 616

pears 3 times as many as ‘blue’ in training set). 617

5 Conclusion 618

We provide a systematic study on the robustness 619

of VQA models over a wide range of robust VQA 620

benchmarks. The comprehensive evaluation shows 621

V+L pre-training can effectively defend model per- 622

formance under various types of robust tests. We 623

further propose MANGO, a simple yet effective 624

method to enhance model robustness, which ad- 625

vances the state of the art on 7 out of 9 robustness 626

benchmarks. We hope this set of results can be 627

used as baseline for future research. 628
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A Detailed Related Work919

Multimodal Pre-training Early approaches to920

vision-and-language pre-training (Lu et al., 2019;921

Tan and Bansal, 2019) adopt a two-stream architec-922

ture. Later on, single-stream architecture gains pop-923

ularity (Zhou et al., 2020; Su et al., 2020; Li et al.,924

2020a; Chen et al., 2020b). To enhance the model925

performance, there have been efforts in designing926

different training strategies (Lu et al., 2020; Gan927

et al., 2020; Shi et al., 2020; Li et al., 2020c; Cho928

et al., 2021) and injecting external knowledge (Li929

et al., 2020d; Yu et al., 2020) as additional model in-930

puts. While most of these methods reply on offline931

extracted region-level features (Anderson et al.,932

2018; Zhang et al., 2021), there has been grow-933

ing interests in end-to-end learning directly from934

image pixels (Huang et al., 2020, 2021; Kim et al.,935

2021; Xue et al., 2021; Li et al., 2021a; Dou et al.,936

2021).937

Distinct from these efforts on improving perfor-938

mance over standard benchmarks,8 we focus on a939

different direction, evaluating and enhancing the940

robustness of pre-trained models. This helps us bet-941

ter understand how well multimodal pre-training942

truly advances this field, and guides us to design943

more robust models.944

Adversarial Training As one of the most effec-945

tive strategies of defending against adversarial at-946

tacks (Szegedy et al., 2013), adversarial training947

(AT) has been widely studied for enhancing ad-948

versarial robustness of neural networks (Tramèr949

et al., 2017; Shafahi et al., 2019; Xie et al., 2020),950

using adversarial examples as effective data aug-951

mentation. Recent studies show that, by injecting952

adversarial perturbations into feature space, AT can953

further improve model generalization on language954

understanding (Zhu et al., 2020), visual question955

answering (Gan et al., 2020; Tang et al., 2020), and956

graph neural networks (Kong et al., 2020).957

In our work, we investigate the use of an adver-958

sarial noise generator for robustness enhancement,959

inspired by (Rusak et al., 2020), which proposes960

a similar noise generator to make neural networks961

robust against diverse image corruptions.962

Robust V+L Datasets There have been continu-963

ous efforts in examining the robustness of VQA964

models. Some recent attempts include, (i) gener-965

8Examples of standard benchmarks include VQA (Antol
et al., 2015), VCR (Zellers et al., 2019), NLVR2 (Suhr et al.,
2019), Image-Text Retrieval (Lee et al., 2018), and Referring
Expressions (Yu et al., 2016).

ating adversarial VQA questions with human-and- 966

model-in-the-loop (Li et al., 2021b; Sheng et al., 967

2021) and (ii) removing multimodal shortcuts, that 968

involve both questions and images, from existing 969

VQA datasets (Dancette et al., 2021). 970

In addition to robust VQA datasets, CLEVR- 971

Change (Park et al., 2019) has been introduced to 972

study robust Change Captioning, where the model 973

needs to identify an important scene change and 974

using language to describe the change. We hope 975

our work can encourage future works to explore 976

various stress tests on diverse V+L tasks to provide 977

a full dissection of model robustness for pre-trained 978

V+L models. 979

B More Results 980

We report model evaluation of prediction consis- 981

tency on VQA-Rephrasings (Shah et al., 2019), 982

VQA-introspect (Selvaraju et al., 2020), IV- 983

VQA (Agarwal et al., 2020), CV-VQA (Agarwal 984

et al., 2020) and GQA-OOD (Kervadec et al., 2020). 985

We also include more detailed results on VQA 986

v2 (Goyal et al., 2017), and additional ablation 987

experiments on model architecture. 988

Evaluation on Consistency In addition to accu- 989

racy, many benchmarks consider consistency as 990

an additional measure for evaluating model robust- 991

ness. Here, we take VQA-Rephrasings and VQA- 992

Introspect as examples to demonstrate that MANGO 993

can also help boost consistency in model predic- 994

tions. Results are summarized in Table 6. 995

On VQA-Rephrasings, we investigate consis- 996

tency in model predictions on different variants 997

of semantically equivalent questions. Consis- 998

tency is measured by a Consensus Score CS(k).9 999

MANGO achieves universal performance lift across 1000

all consistency measures, compared to each base- 1001

line model. The best results are achieved by 1002

MANGOL, surpassing SOTA by +9.43, +12.27, 1003

+13.62, +14.40 on CS(k), k = 1, 2, 3, 4, respec- 1004

tively. 1005

On VQA-Introspect, we examine consistency 1006

between the main reasoning questions and percep- 1007

tual sub-questions, measured by 5 metrics. Sim- 1008

ilarly, MANGO brings universal consistency im- 1009

provements across all baseline models. The best 1010

performance is achieved by MANGOVL, surpassing 1011

9Consensus Score is the ratio of the number of subsets
where all the answers are correct and the total number of
subsets of size k. For every group Q with n rephrasings, all
subsets of size k are sampled. The answer to a question is
considered correct if it has a non-zero VQA accuracy.
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Model VQA-Rephrasings VQA-Reas. VQA-Introspect

CS(1) ↑ CS(2) ↑ CS(3) ↑ CS(4) ↑ Acc. ↑ M✓ S✓ ↑ M✓ S× ↓ M× S✓ ↓ M× S× ↓ S✓|M✓ ↑
SOTA 65.77 56.94 51.76 48.18 69.61 50.05 19.73 17.40 12.83 71.73
BUTD 63.73 54.52 49.13 45.42 65.19 46.17 19.01 20.61 14.20 70.82
MANGOBUTD 64.55 55.60 50.34 46.73 65.76 47.58 18.18 20.64 13.60 72.35
UNITERB 71.29 63.95 59.48 56.31 73.33 56.80 16.53 16.93 9.74 77.46
MANGOB 72.66 66.03 61.92 58.95 74.20 58.33 15.88 16.76 9.04 78.60
VILLAB 72.18 65.28 60.99 57.93 73.63 58.29 15.34 17.08 9.30 79.17
MANGOVB 72.78 65.97 61.70 58.59 74.41 58.94 15.47 16.59 9.00 79.20
UNITERL 74.44 67.93 63.85 60.86 72.99 57.64 15.35 17.54 9.47 79.01
MANGOL 75.20 69.21 65.38 62.58 76.91 62.14 14.71 15.40 7.74 80.86
VILLAL 74.93 68.65 64.61 61.61 76.18 62.00 14.19 15.72 8.10 81.38
MANGOVL 75.17 69.01 65.07 62.16 77.20 62.60 14.60 15.13 7.67 81.09

Table 6: Results of consistency evaluations on VQA-Rephrasings and VQA-Introspect. VQA-Reasoning (VQA-Reas.) is a split
of VQA-Introspect, containing only the main reasoning questions (M). S stands for sub-questions. ✓ or × indicate a correct or
wrong prediction.

Model VQA IV-VQA VQA Num. CV-VQA

Acc.↑ Acc.↑ # of flips ↓ p2n ↓ n2p ↓ n2n ↓ Acc.↑ Acc.↑ # of flips ↓ p2n ↓ n2p ↓ n2n ↓
SOTA 70.26 - 7.85 3.47 2.79 1.58 49.90 - 78.44 31.66 25.38 21.40
BUTD 63.92 73.73 9.83 4.29 3.42 2.12 44.14 50.16 62.23 25.53 21.56 15.14
MANGOBUTD 64.63 74.53 9.01 4.08 3.27 1.66 44.99 54.29 58.10 23.01 20.72 14.37
UNITERB 70.34 83.35 8.47 3.89 2.60 1.97 53.82 63.22 40.67 23.21 10.72 6.74
MANGOB 71.17 82.69 7.32 3.55 2.27 1.49 54.86 64.21 38.11 22.22 9.97 5.92
VILLAB 71.27 82.87 7.07 3.48 2.16 1.44 55.02 65.06 38.28 22.17 10.60 5.51
MANGOVB 71.47 82.84 7.43 3.57 2.34 1.52 55.27 65.66 38.25 22.10 9.78 6.38
UNITERL 72.60 85.86 8.20 3.96 2.37 1.88 56.61 67.13 36.66 22.05 9.80 4.81
MANGOL 73.06 84.05 6.69 3.34 2.00 1.34 57.44 67.30 35.52 21.59 8.55 5.39
VILLAL 73.20 84.79 6.70 3.45 1.95 1.29 57.43 65.54 37.55 24.05 8.94 4.56
MANGOVL 72.96 84.70 6.73 3.42 1.89 1.42 57.53 67.86 35.64 22.07 8.79 4.78

Table 7: Detailed Results on IV-VQA and CV-VQA. ↑ (↓) indicate the higher (lower) the better. We compare with UNITER,
VILLA and task-specific SOTA method (Kazemi and Elqursh, 2017).

SOTA by +12.55, +5.54, +2.27, +5.16, +10.10 on1012

M✓S✓, M✓S×, M×S✓, M×S×, and S✓|M✓,1013

respectively.1014

On IV-VQA and CV-VQA, we decouple the in-1015

consistency in model predictions on edited images1016

(measured by #flips) into 3 categories: (i) p2n: an-1017

swer predicted on the edited image was wrong, but1018

the prediction on the corresponding real image was1019

correct; (ii) n2p: model makes a correct prediction1020

on the edited image, while predicting a wrong an-1021

swer on real image; (iii) n2n: different answers1022

were predicted on edited and real images and both1023

are wrong. These metrics may expose that there is1024

brittleness even when the model makes correct pre-1025

dictions, indicating that models often exploit spu-1026

rious correlations while making predictions. We1027

follow (Agarwal et al., 2020) to report accuracy on1028

VQA v2 val split to serve as reference for IV-VQA,1029

and performance on counting questions in VQA v21030

val split for CV-VQA.1031

Similar conclusions are drawn from the results1032

presented in Table 7. First, MANGO brings con-1033

sistent performance improvements across all met- 1034

rics on both benchmarks, compared to BUTD and 1035

UNITER. Second, MANGO significantly improves 1036

over SOTA. We also observe significant improve- 1037

ments from MANGO over VILLA on CV-VQA. 1038

These results suggest that for challenging questions 1039

such as counting problems in CV-VQA, MANGO 1040

is more robust than VILLA. 1041

On GQA-OOD, except for the accuracy over all 1042

GQA-OOD samples (‘All’ in Table 8), three ad- 1043

ditional metrics are considered: (i) the accuracy 1044

on OOD samples, which are the samples of the 1045

tail of the answer class distribution (‘Tail’); (ii) 1046

the accuracy on the head of distribution (‘Head’); 1047

and (iii) ∆(head, tail) = (head - tail)/tail to illus- 1048

trate how much the error prediction is imbalanced 1049

between frequent and rare answers (‘∆’). More 1050

details on the statistics of head and tail examples 1051

can be found in (Kervadec et al., 2020). MANGO 1052

achieves universal performance lift across all accu- 1053

racy measures, compared to each baseline model. 1054

However, better accuracy does not indicate better- 1055
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Model All ↑ Tail ↑ Head ↑ ∆ ↓
SOTA (best All) 52.70 48.00 55.50 15.60
SOTA (best ∆) 50.20 47.20 51.90 9.90
BUTD 50.29 44.31 53.38 20.40
MANGOBUTD 51.50 47.13 54.36 15.34
UNITERB 53.43 48.45 56.49 16.59
MANGOB 54.47 50.24 57.07 13.59
VILLAB 54.11 49.86 56.72 13.76
MANGOVB 55.79 50.89 58.74 15.43
UNITERL 53.65 48.82 56.61 15.96
MANGOL 56.40 51.27 59.55 16.15
VILLAL 55.26 50.80 58.05 14.27
MANGOVL 56.08 51.27 59.03 15.14

Table 8: Detailed Results on GQA-OOD. ↑ (↓) indicate the
higher (lower) the better. We compare with both SOTA (best
ALL) (Chen et al., 2021) and SOTA (best ∆) (Kim et al.,
2018).

Method All Y/N Num Other
UNITERB 72.70 88.97 55.67 62.81
MANGOB 73.24 89.27 56.48 63.34

Table 9: Detailed results of UNITERB and MANGOB on VQA
v2.

balanced predictions between tail and head splits.1056

We observe that there are more performance im-1057

provements on head split than tail split. When com-1058

pared to SOTA, MANGOB surpasses MMN (Chen1059

et al., 2021) (SOTA with the best All) across all met-1060

rics. BAN (Kim et al., 2018) is the SOTA method1061

with the best ∆; however, it suffers on all accuracy1062

measures.1063

On VQA v2, we use MANGOB and UNITERB as1064

examples to show that our method can provide uni-1065

versal performance lift for each question type. This1066

is also consistent with our observations on various1067

robust vqa benchmarks, as they focus on different1068

question types by design. For examples, IV-VQA1069

speficially desgined for counting questions, VQA-1070

LOL only includes yes/no questions.1071

Method VQA-Rep. GQA VQA v2 VQA-CP v2 GQA-OOD
Human 98.91 89.30 80.78 80.78† 89.30†
MANGO 68.33 61.41 74.20 52.76 56.40

Table 10: Comparison between human performance and re-
sults from MANGO. † we use human performance on VQA v2
and GQA as estimation of human performance as VQA-CP
v2 and GQA-OOD.

Comparison to Human Performance We com-1072

pare the human performance made available by the1073

original authors with the best performance achieved1074

by MANGO in Table 10. The large gap between1075

MANGO and human performance suggest that there1076

are still room to improve model robustness. Note1077

that for VQA-CP v2 and GQA-OOD, which are1078

re-distribution of VQA v2 and GQA, we can use 1079

human performance on the original datasets as ref- 1080

erence. The gaps between human and SOTA meth- 1081

ods are even larger on these two OOD datasets. 1082

Additional Ablations Table 11, we make a direct 1083

comparison between adversarial noise generator 1084

(MANGO) and PGD-based AT (VILLA) during fine- 1085

tuning stage, when both models are initialized with 1086

pre-trained UNITERB weights. As results shows, 1087

MANGO is on par with VILLA on standard VQA 1088

v2 dataset and IV-VQA, but more competitive on 1089

all other robust VQA benchmarks. Note that the 1090

design of MANGO is not specific for finetuning 1091

experiments only. Similar to VILLA, it can be nat- 1092

urally extended to pre-training stage, which is an 1093

interesting direction for future works to explore. 1094

We conduct additional ablation studies to vali- 1095

date several model design choices of MANGO, in- 1096

cluding KL-divergence Loss, retraining noise gen- 1097

erator every T steps (retrain NG), the architecture 1098

of NG (multiple linear layers with nonlinear activa- 1099

tion) and the effectiveness of masking on VILLA. 1100

Results are reported in Table 12. 1101

A few key observations are summarized here: (i) 1102

KL divergence loss contributes to performance im- 1103

provements in MANGO. (ii) Without resetting gen- 1104

erator parameters and retraining generator periodi- 1105

cally renders inferior performance. As explained 1106

in Section 3.3, the lightweight generator may be 1107

trapped in a local optima. In addition, we explore 1108

randomly initializing the adversarial noise gener- 1109

ator and freeze the generator parameters, which 1110

results in even worse performance. (iii) Replacing 1111

our noise generator with a single linear layer also 1112

hurts the performance. Note that applying linear 1113

layers to a Gaussian noise only changes its mean 1114

and variance, still results in a Gaussian noise. (iv) 1115

VILLAB + Masking renders weaker performance 1116

than MANGOVB. This observation is consistent 1117

with comparison of VILLAB in Table 2 and “AN" 1118

in Table 4, which can be considered as “MANGOB 1119

- Masking”. 1120

Moreover, we conduct a comparison between 1121

simple Gaussian Noise (GN) with MANGO, where 1122

noises/perturbations are added to both image and 1123

text modalities. Results in the bottom part of Ta- 1124

ble 12 show that adding simple Gaussian noise to 1125

embeddings from both modalities underperforms 1126

the proposed MANGO method. When compared 1127

with L2 (GN on image modality) and L5 (GN on 1128

text modality) of Table 3, we observe that adding 1129
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Lingual Reason Visual Answer

Model
VQA-
Rep.

VQA-LOL
Comp.

VQA-LOL
Supp.

VQA-
Intro.

GQA
IV-

VQA
CV-

VQA
VQA-
CP v2

GQA-
OOD

VQA
v2

Meta-Ave. ↑ Acc. ↑ Acc. ↑ Acc. ↑ M✓ S✓ ↑ Acc. ↑ #flips ↓ #flips ↓ Acc. ↑ Acc. ↑ Acc. ↑
MANGOB 42.80 65.80 56.22 56.49 58.33 60.65 7.32 38.11 47.52 55.15 73.24
VILLAB (fine. only) 41.83 65.02 55.66 53.48 57.24 60.36 7.20 40.50 45.96 55.01 73.29

Table 11: Direct comparison between adversarial noise generator (MANGO) and PGD-based AT (VILLA (fine. only)) during
finetuning stage. Both models are initialized with pre-trained UNITERB weights.

Method VQA-Rep. VQA-LOL
MANGOB 65.80 56.61
−Lkl 65.01 54.55
− retrain NG 65.48 54.57
random init., no training 65.14 54.16
w/ 1-layer linear NG 65.54 53.14
VILLAB + Masking 65.46 55.96
MANGOVB 65.91 56.55
MANGOB (Both) 65.80 56.36
GN (Both) 64.72 53.62

Table 12: Additional ablation results.

Gaussian noise to both modalities does not yield1130

better performance.1131

C Implementation Details1132

Our models are implemented based on PyTorch.101133

To speed up training, we use Nvidia Apex11 for1134

mixed precision training. Gradient accumula-1135

tion (Ott et al., 2018) is applied to reduce multi-1136

GPU communication overheads. All experiments1137

are run on Nvidia V100 GPUs (32GB VRAM;1138

NVLink connection). We use AadmW (Loshchilov1139

and Hutter, 2019) with β1=0.9, β2=0.98 and an1140

L2 weight decay of 0.01 to optimize model training.1141

Throughout the training, the learning rate is sched-1142

uled to warmup over the first 10% training steps fol-1143

lowed by linear decay to 0. The peak learning rate1144

is set to be 8e-5 and 5e-5 for base and large models,1145

respectively. Additional hyper-parameters used to1146

train our adversarial noise generators are listed in1147

Table 13. Empirically, we found that model train-1148

ing is sensitive to adversarial noise retrain steps,1149

p
img
mask and ptxt

mask.1150

D Downstream Benchmarks1151

In addition to dataset statistics summarized in Ta-1152

ble 1, we provide an overview of each robustness1153

benchmark as follows.1154

VQA-Rephrasings (Shah et al., 2019) is based on1155

VQA v2 (Goyal et al., 2017). It contains 3 human-1156

provided rephrasings for 40K questions on 40K1157

10https://pytorch.org/
11https://github.com/NVIDIA/apex

images from VQA v2 val split. In addition to accu- 1158

racy, consistency in model predictions to different 1159

semantically-equivalent questions is also used to 1160

measure the robustness of VQA models against lin- 1161

guistic variations. We follow (Shah et al., 2019) to 1162

evaluate models trained with VQA v2 train split. 1163

VQA-LOL (Gokhale et al., 2020b) is introduced 1164

to examine the logical reasoning ability of a VQA 1165

model through questions containing logical compo- 1166

sitions and linguistic transformations (negation, dis- 1167

junction, conjunction, and antonyms). It consists 1168

of two datasets: VQA-LOL Compose (logical com- 1169

binations of multiple closed binary questions about 1170

the same image in VQA v2) and VQA-LOL Sup- 1171

plement (logical combinations of additional ques- 1172

tions based on external object and caption annota- 1173

tions about the images from COCO (Chen et al., 1174

2015)). Both datasets share the same train/val im- 1175

ages as VQA v2. In total, 757K/42.5K/291K and 1176

1.61M/91.8K/669K image-question pairs are gener- 1177

ated for train/val/test splits of VQA-LOL Compose 1178

and VQA-LOL Supplement, respectively. In our 1179

experiments, we follow (Gokhale et al., 2020b) to 1180

evaluate models trained with VQA v2 train split on 1181

test split of both datasets. 1182

VQA-Introspect (Selvaraju et al., 2020) is created 1183

to investigate the consistency in model predictions 1184

of a VQA model between reasoning questions and 1185

their associated low-level perception questions. It 1186

first introduces a new Reasoning split of the VQA 1187

v2 dataset and collects 238K new perception ques- 1188

tions. These questions correspond to the set of 1189

perceptual tasks needed to effectively answer com- 1190

plex reasoning questions in the Reasoning split. In 1191

total, VQA-Introspect contains 167K sub-questions 1192

for 56K reasoning questions in VQA v2 train, and 1193

72K sub-questions for 22K reasoning questions in 1194

VQA v2 val. In our experiments, we follow (Sel- 1195

varaju et al., 2020) to evaluate models trained with 1196

VQA v1 (Antol et al., 2015) train split on VQA- 1197

Introspect val split. 1198

GQA (Hudson and Manning, 2019a) contains 22M 1199
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Task Model Training Steps pimg
mask ptxt

mask
Adv. Noise

Lr.
kl-div loss
weight β

Adv. Noise
Retrain steps

Adv. Noise
Retrain Lr.

VQA-Rephrasings MANGOB 4000 0.15 0.15 1e-5 1.0 400 1e-4
MANGOL 3000 0.15 0.30 5e-6 1.0 400 5e-5

VQA-LOL MANGOB 4000 0.15 0.45 1e-5 1.0 400 1e-4
MANGOL 4000 0 0.45 5e-6 1.0 400 5e-5

VQA-Introspect MANGOB 2000 0 0.15 1e-5 1.0 400 1e-4
MANGOL 3000 0 0.45 5e-6 1.0 400 5e-5

GQA MANGOB 4000 0.15 0.15 1e-5 1.0 800 1e-4
MANGOL 4000 0.15 0.15 1e-5 1.0 800 1e-4

VQA CP v2 MANGOB 3000 0.15 0.6 1e-5 0 400 1e-4
MANGOL 3000 0.15 0.6 1e-6 0 400 1e-5

GQA-OOD MANGOB 4000 0.15 0.15 1e-5 1.0 800 1e-4
MANGOL 2000 0.15 0.15 1e-5 1.0 800 1e-4

IV-VQA
&CV-VQA

MANGOB 4000 0.15 0.45 1e-5 1.0 400 1e-4
MANGOL 3000 0.15 0.15 5e-6 1.0 400 5e-5

VQA v2 MANGOB 6000 0.15 0.45 1e-5 1.0 400 1e-4
MANGOL 5000 0.15 0.45 1e-5 1.0 400 1e-4

Table 13: Hyper-parameter values used in our experiments. We use batch size of 5120 (3072) and gradient accumulation steps
of 5 (8) for base (large) model experiments.

automatically generated questions based on ground-1200

truth image scene graphs. The questions are con-1201

structed via a set of heuristic rules, which are de-1202

signed to evaluate a VQA model in terms of dif-1203

ferent types of reasoning skills (e.g., spatial un-1204

derstanding and multi-step inference). We fol-1205

low (Hudson and Manning, 2019b) to use the bal-1206

anced version of GQA, which has been designed1207

to reduce biases in answer distribution. In the1208

balanced version, 1.7M questions are split into1209

70%/10%/10% for training, validation and test1210

sets, respectively. In our experiments, models are1211

trained on GQA train split and we report perfor-1212

mance on test-dev split.1213

IV-VQA & CV-VQA (Agarwal et al., 2020) are1214

two synthetic datasets, created by removing objects1215

in the real VQA images. In IV-VQA, irrelevant1216

objects are erased and model predictions before1217

and after image manipulations are expected to be1218

invariant. In CV-VQA, which focuses on counting1219

questions, one relevant object is removed from the1220

given image and model predictions on the quantity1221

of such object are expected to be subtracted by 1.1222

Objects of choice are based on heuristic rules and1223

removed via inpainter-GAN (Shetty et al., 2018).1224

In total, 376K and 13K image-question pairs are1225

generated for IV-VQA and CV-VQA, respectively.1226

The detailed splits can be found in Table 1. In our1227

experiments, we follow (Agarwal et al., 2020) to1228

evaluate models trained with VQA v2 train split on 1229

IV-VQA/CV-VQA val split. 1230

VQA-CP v2 (Agrawal et al., 2018) is an out-of- 1231

distribution (OOD) reorganization of VQA v2. It 1232

was created to examine the robustness of a VQA 1233

model in a setting where language priors cannot be 1234

relied upon for a correct prediction. The questions 1235

in VQA v2 are first assigned to one of 65 question 1236

types according to their prefix (first few words). 1237

For every question type, the prior distribution of 1238

answers is shuffled to be different in train and test 1239

splits of VQA-CP v2. Our models are trained on 1240

VQA-CP v2 train split and evaluated on test split, 1241

following (Agrawal et al., 2018). 1242

GQA-OOD (Kervadec et al., 2020) is also an OOD 1243

benchmark, created by re-organization of the GQA 1244

dataset. By utilizing fine-grained question genera- 1245

tion templates in GQA, GQA-OOD divides ques- 1246

tions into 37K local groups, and shifts answer dis- 1247

tribution by selecting a subset of answer classes for 1248

each question group, according to their frequencies. 1249

Unlike VQA-CP v2, GQA-OOD features distribu- 1250

tion shifts for both validation and test, allowing 1251

to validate models under OOD conditions. In our 1252

experiments, we follow (Kervadec et al., 2020) to 1253

evaluate models trained with GQA train split on 1254

GQA-OOD test-dev split. 1255
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Figure 3: More visualization of model predictions, comparing MANGO (M) against UNITER (U) and VILLA (V). Correct
answers are highlighted in green and wrong ones are in red.

E More Visualizations1256

We provide additional visualization of model pre-1257

dictions in Figure 3. MANGO consistently provides1258

accurate predictions for each robustness type.1259

F Limitation and Broader Impact1260

A truly robust VQA system offers the possibility to1261

be applied to real-life scenarios such as a chatbot1262

that assists visually impaired people. In this paper,1263

we aim to improve the robustness of VQA models,1264

specifically the model performance on 9 robust1265

VQA benchmarks. While our method outperforms1266

the previous state-of-the-arts, the model does not1267

always guarantee a perfect prediction. Like any1268

other data-driven system, our method is sensitive to1269

the distribution of training data, therefor may fail1270

when encountering VQA examples in the wild.1271
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