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Abstract

State-of-the-art language models have demon-001
strated impressive code generation capabilities002
but struggle with real-world software engineer-003
ing tasks like code reviewing, hindering prac-004
tical use. Review comments are often implicit,005
ambiguous, and colloquial, requiring models006
to grasp both code and human intent. This007
challenge calls for evaluating language models’008
ability to bridge technical and conversational009
contexts. While existing work has employed010
the automated code refinement task to resolve011
these comments, current evaluation methods012
fall short, relying on metrics that provide lim-013
ited insight into model failures and remain sus-014
ceptible to training data contamination. To ad-015
dress these limitations, we introduce a novel016
evaluation benchmark CodeReviewQA that en-017
ables us to conduct fine-grained assessment of018
model capabilities and mitigate data contami-019
nation risks. In CodeReviewQA, we decom-020
pose the generation task in code refinement021
into three essential reasoning steps: change022
type recognition, change localisation, and solu-023
tion identification. Each step is reformulated as024
multiple-choice questions with varied difficulty025
levels, enabling precise assessment of model ca-026
pabilities while mitigating data contamination027
risks. Our comprehensive evaluation spans 65028
recently released large language models on 900029
manually curated, high-quality examples across030
nine programming languages. Our results show031
that CodeReviewQA is able to reveal model ca-032
pability gaps in different reasoning tasks, and033
expose specific model weaknesses.1034

1 Introduction035

The proficiency of state-of-the-art large language036

models (LLMs) in code generation has garnered037

significant attention (Zhuo et al., 2024), demon-038

strating their ability to follow explicit instructions039

to author code. However, their competency in real-040

world software engineering environments remains041

1All code and data will be released upon acceptance.

limited (Pornprasit and Tantithamthavorn, 2024), 042

particularly in collaborative tasks involving collo- 043

quial and complex forms of communication. A 044

quintessential example is code reviewing, where re- 045

view comments (Yang et al., 2023; Efstathiou and 046

Spinellis, 2018) represent natural communication 047

between developers with a shared mental model, 048

often resulting in under-specified, ambiguous, and 049

implicit expressions of intent. For example, this 050

comment “For all of the fuzz tests, does it make 051

sense to have versions for ‘len_prefixed’ both ‘true’ 052

and ‘false’?” is asking for an opinion, rather than 053

giving explicit instructions. 054

As a result, the ability to resolve code review 055

comments requires not only proficiency in under- 056

standing and generating code but also the ability to 057

comprehend the communicative intent behind the 058

code review in relation to the code submission it 059

addresses. Therefore, we argue that assessing how 060

LLMs resolve code review comments thus serves as 061

a crucial testbed for their capability to understand 062

and follow on implicit, conversational instructions 063

in software development. Success in this domain 064

would significantly advance automated software 065

development assistance, potentially reducing devel- 066

oper workload and improving code quality. 067

To test models’ capability in resolving code re- 068

view comments, prior work has explored automated 069

code refinement task using both neural models 070

(Tufano et al., 2022; Thongtanunam et al., 2022) 071

and LLMs (Guo et al., 2024; Pornprasit and Tan- 072

tithamthavorn, 2024), which aims to revise code 073

based on peer review comments. While efforts have 074

advanced this direction, several critical challenges 075

remain unaddressed. First, current automatic evalu- 076

ation approaches rely heavily on metrics such as ex- 077

act match and BLEU (Papineni et al., 2002), which 078

merely capture surface-level token similarities with- 079

out assessing deeper comprehension capabilities. 080

Second, as these evaluation benchmarks typically 081

use popular GitHub projects, they risk data contam- 082
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ination from training data in LLMs (Sallou et al.,083

2024), potentially masking true model capabilities.084

As a result, there are no suitable evaluation bench-085

marks and approaches to assess LLMs’ capabilities086

in code reviewing.087

To address these challenges, we introduce a088

novel evaluation benchmark that enables compre-089

hensive assessment of automated code refinement090

capabilities. Our benchmark decomposes the origi-091

nal one-step generative task into three underlying092

reasoning steps: change type recognition, change093

localisation, and solution identification. These094

components represent essential cognitive processes095

required for understanding intents in code review096

comments, which is important before generating re-097

fined code. By reflecting explicit intermediate rea-098

soning steps, our benchmark provides fine-grained099

feedback to support model development.100

To mitigate potential data contamination, we for-101

mulate each reasoning step as a multiple-choice102

question answering (MCQA) probe. This approach103

transforms the original task into unfamiliar formats104

with new solutions, demanding proficiency in code105

review comprehension rather than sequence mem-106

orization (Zhu et al., 2024) and mitigating train-107

ing data contamination. Furthermore, we leverage108

MCQA’s flexibility to introduce distractor variation109

strategies, enabling assessment of model under-110

standing across different difficulty levels.111

To avoid the noisy data issues present in past112

benchmarks (Tufano et al., 2024) and ensure high-113

quality evaluation data, we manually curate 900114

valid code refinement examples that cannot be au-115

tomated by traditional software engineering tools.116

These examples are sourced from 199 repositories,117

reflecting nine of the most popular programming118

languages on GitHub. Finally, we evaluate a wide119

range of state-of-the-art code-intelligent language120

models, providing an extensive benchmark to facil-121

itate future research.122

2 Background and Related Work123

Recently, large language models (LLMs) have124

shown promise in various software engineering125

tasks involving natural language artifacts. How-126

ever, these artifacts vary significantly in their127

linguistic nature and structure. Some tasks in-128

volve explicit, non-conversational language, such129

as bug reports (Saha et al., 2018) and GitHub is-130

sues (Jimenez et al., 2024), which typically contain131

detailed specifications of defects or feature requests.132

Other tasks involve static monologues, like commit 133

messages (Jiang et al., 2017), code comments (Hu 134

et al., 2018), and pull request descriptions (Liu 135

et al., 2019), which aim to clearly explain code or 136

code changes. 137

In contrast, code review is unique as it represents 138

routine conversations in highly collaborative sce- 139

narios. As such, they are informal, free-flowing, 140

and can lean on the interlocutor’s shared technical 141

knowledge, without being overly specific (Yang 142

et al., 2023). Thus, automating code reviews re- 143

quires a deep understanding of conversational lan- 144

guage in a highly technical context, posing chal- 145

lenges for code review automation. Especially for 146

code refinement where the code submission needs 147

to be revised according to code review comments, 148

which require understanding both the technical im- 149

plications and the reviewer’s unstated expectations. 150

Such nuanced communication makes code review 151

refinement an ideal testbed for evaluating LLMs’ 152

ability to bridge technical and conversational un- 153

derstanding in software development. 154

Code refinement was typically framed as a 155

sequence-to-sequence translation problem, where 156

models “translate” the Hpre into a Hpost based on 157

a review comment Rnl. Formally, this problem 158

requires the following estimation: 159

P (Hpost|Hpre, Rnl), (1) 160

where Hpre denotes the submitted pre-review code 161

hunk, Rnl denotes the natural language code re- 162

view comment, and Hpost denotes the expected 163

post-review revision of that code hunk. The “hunk” 164

refers to the code snippet within the file, where the 165

code review comment was inlined. See Figure 1 166

for a concrete example. 167

While prior work has applied various neural 168

models, such as recurrent neural networks (Tufano 169

et al., 2019), transformers (Tufano et al., 2022; 170

Thongtanunam et al., 2022), the task remains a 171

challenging problem even for recent LLMs such as 172

GPT-4 (Guo et al., 2024; Lu et al., 2023; Tufano 173

et al., 2024). 174

Indeed, prior work has highlighted several lim- 175

itations in the evaluation (Guo et al., 2024). Tra- 176

ditional evaluation approaches have relied heav- 177

ily on text matching metrics such as exact match 178

and BLEU (Tufano et al., 2024; Guo et al., 2024), 179

which are either too strict or fail to provide mean- 180

ingful feedback. The emergence of LLMs has in- 181

troduced additional challenges, as they are trained 182
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Code Review Benchmark Size #Lang Metric DC MV VD

Tufano 2021 (Tufano et al., 2021) 1.7k 1 Text Match p p p
T5CR (Tufano et al., 2022) 16.8k 1 Text Match p p p
CodeReviewer (Li et al., 2022) 13.1k 9 Text Match p p p
CodeReview-New (Guo et al., 2024) 14.6k 16 Text Match p p p

CodeReviewQA (Ours) 900 9 Text Match
& Probe

✓ ✓ ✓

DC: Addresses Data Contamination, MV: Manual Verification, VD: Varied Difficulty

Table 1: Benchmarks for automated code refinement.

on extensive code repositories, creating significant183

risks of training data contamination in evaluation184

sets. While some researchers have attempted to185

address this by collecting code reviews that out-186

pace training cutoff dates (Guo et al., 2024), such187

approaches lack long-term sustainability. Further-188

more, existing benchmarks have been constructed189

automatically through large-scale mining, and a sig-190

nificant proportion of noise has been reported (Tu-191

fano et al., 2024; Liu et al., 2025), undermining192

the reliability of past results. As a result, all past193

benchmarks are unsuitable for evaluating the latest194

models.195

Table 1 summarises the limitations in the exist-196

ing evaluation benchmarks for code refinement, un-197

derscoring the need for a new evaluation approach198

and dataset to reliably assess the capabilities of199

modern language models. Our proposed CodeRe-200

viewQA focuses on addressing this gap.201

3 CodeReviewQA: Code Review202

Comprehension Probes203

Effective code refinement relies heavily on the abil-204

ity to comprehend Rnl under the context of Hpre.205

Rather than focusing this task as a sequence-to-206

sequence translation problem like the prior works,207

we argue that the model must be able to: 1) reason208

about the type of change Rnl is requesting and 2)209

identify the relevant lines of code in Hpre that is the210

subject of the change; and 3) formulate the required211

code changes from a wide action space of potential212

code edits that can be performed on Hpre, before213

generating the refined code Hpost. The inability214

to perform the final code generation step may be215

caused by any failure point amongst this multi-216

step reasoning process. Additionally, any failure217

within the intermediary reasoning steps might be218

propagated from a failure in a prior reasoning step,219

which obfuscates the specific incompetencies of220

the model.221

To assess the proficiency of a language model222

in automated code refinement, we design three223

MCQA probes that replicate the key three inter-224

Pre-Review Code Submission (Hpre):
1 from hypothesistooling . projects . hypothesispython import PYTHON_SRC
2 from hypothesistooling . scripts import pip_tool , tool_path
3
4 PYTHON_VERSIONS = [f"3.{v}" for v in range(7, 11)]
5
6 def test_mypy_passes_on_hypothesis () :

Code Review (Rnl): I think I’d prefer to write these out as literals, unless
we can pull them out of the autoupdated CI config? Just thinking about how
they’ll stay up to date. I think we can also test against 3.11?
——————————————————————————————

What type of change is the code review asking for?
A. Only add new lines of code
B. Only delete existing lines of code
C. Modify the code ✓
——————————————————————————————

Which line numbers is the code review asking to modify code?
A. line number 1 B. line number 2
C. line number 4 ✓ D. line number 6
——————————————————————————————

Which code revision is the code review asking for?
A.

4 − PYTHON_VERSIONS = [f"3.{v}" for v in range(7, 11)]
4 + PYTHON_VERSIONS >= ["3.7", "3.8", "3.9", "3.10", "3.11"]

B.
4 − PYTHON_VERSIONS = [f"3.{v}" for v in range(7, 11)]
4 + PYTHON_VERSIONS <= ["3.7", "3.8", "3.9", "3.10", "3.11"]

C.
4 − PYTHON_VERSIONS = [f"3.{v}" for v in range(7, 11)]
4 + PYTHON_VERSIONS != ["3.7", "3.8", "3.9", "3.10", "3.11"]

D. ✓
4 − PYTHON_VERSIONS = [f"3.{v}" for v in range(7, 11)]
4 + PYTHON_VERSIONS = ["3.7", "3.8", "3.9", "3.10", "3.11"]

——————————————————————————————
Post-Review Code Revision (Hpost):
1 from hypothesistooling . projects . hypothesispython import PYTHON_SRC
2 from hypothesistooling . scripts import pip_tool , tool_path
3
4 PYTHON_VERSIONS = ["3.7", "3.8", "3.9", "3.10", "3.11"]
5
6 def test_mypy_passes_on_hypothesis () :

Figure 1: The automated code refinement task with in-
termediate reasoning steps presented as MCQA probes.

mediate reasoning steps. Below, we describe the 225

construction approach of MCQA of each reasoning 226

step. 227

3.1 Change Type Recognition (CTR) 228

This is a closed set intent classification task that 229

probes the model’s ability to infer the intended type 230

of code change. Specifically, given Hpre, the model 231

must infer which general type of code change is 232

being requested by Rnl. Formally, this problem 233

requires the following estimation: 234

P (Ctype+ |Hpre, Rnl) (2) 235

where Ctype+∈{add, delete,modify} denotes 236

the correct code change type. There are three gen- 237

eral types. Firstly, add requests involve only adding 238

new lines of code. Secondly, delete requests in- 239

volve only deleting existing lines of code. Lastly, 240

modify requests involve altering the existing code 241

by both deleting existing segments and adding new 242

ones. The Ctype− distractors are the remaining two 243

incorrect code change types. 244

This preliminary understanding serves as crucial 245

conditional information that refines the problem 246
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space, providing the correct Ctype context to sub-247

sequently locate where the code changes need to248

occur and identify what needs to be implemented.249

3.2 Change Localisation (CL)250

This is a coreference resolution task that probes the251

model’s ability to locate where the intended code252

change is to occur. Specifically, given Rnl, the253

model must locate the precise lines of code within254

Hpre where the intended Ctype code change should255

be applied. Formally, this problem requires the256

following estimation:257

P (Cloc+ |Hpre, Rnl, Ctype) (3)258

where Cloc+ denotes the exact set of line num-259

bers that is the target of the intended code change.260

When Ctype∈{delete,modify}, these are the ex-261

act lines of code that need to be deleted or modified.262

When Ctype = {add}, these are the lines of code263

above where the new code needs to be added. The264

Cloc− distractors are different sets of lines sampled265

from Hpre. We ensure |Cloc− | = |Cloc+ |, such that266

set sizes do not reveal additional information.267

As shown in Figure 1, natural code review com-268

ments often do not directly specify the exact loca-269

tion of the intended code change, rather this is im-270

plicitly conveyed based on a shared understanding271

between the reviewer and code author. Thus, the272

model must possess the ability to conduct anaphora273

resolution across modalities, between anaphors in274

Rnl and antecedents in Hpre. Inferring the incor-275

rect Cloc, would subsequently hinder the model’s276

ability to identify the Hpost that accurately reflects277

the intended code change.278

3.3 Solution Identification (SI)279

This task probes the model’s ability to both con-280

duct open intent extraction from Rnl and identify281

the Hpost that accurately reflects that intent. Given282

Rnl, the model must identify the correct Hpost that283

reflects the intended Ctype change on Cloc in Hpre.284

The intuition behind this task design is that if a285

model is able to generate a correct Hpost+ revi-286

sion, it should at least be able to identify that exact287

Hpost+ solution amongst a solution space with in-288

correct Hpost− alternatives. Formally, this problem289

requires the following estimation:290

P (Hpost+|Hpre, Rnl, Ctype, Cloc), (4)291

where Hpost+ denotes the diff of the ground truth292

post-review code revision. We only include cases293

where Ctype ∈ {add,modify}, as {delete} cases 294

merely delete Cloc located in the previous task. 295

3.4 Variation of Distractor Difficulty 296

The MCQA format allows flexibility in varying 297

the difficulties of the distractors (i.e., the incorrect 298

answer options). This not only allows us to stress 299

test the models’ level of understanding, but also 300

enables the ability to evolve the benchmark against 301

performance saturation. We specify the process of 302

generating easy and hard distractors for Change 303

Localisation and Solution Identification, as these 304

tasks allow for variation in solutions. 305

Change Localisation Distractors. We vary the 306

difficulty based on the degree of overlap between 307

the sets of the provided Cloc options. For the easy 308

distractors, we sample Cloc− distractors from Hpre, 309

such that the Jaccard Similarity between all answer 310

options are as low as possible. This ensures that 311

all answers are easy to distinguish from each other 312

and the ground truth is more obvious to locate. For 313

the hard distractors, we sample Cloc− distractors, 314

such that the Jaccard Similarity between all answer 315

options are as high as possible. This ensures that 316

all answers are hard to discern from the ground 317

truth, and requires the model to locate every exact 318

line of the intended code change. 319

Solution Identification Distractors. To create 320

distractor options Hpost−, we generate modified 321

versions of Hpost+ by perturbing code elements 322

in the change location Cloc, ensuring the intended 323

code change is no longer correctly implemented. 324

To create plausible but incorrect distractors that 325

imitate possible mistakes that the models would 326

make, we use a surrogate language model2 to 1) 327

identify the code element with the highest average 328

token surprisal in the correct Hpost+ solution, 2) 329

mask it, and then retroactively fill the masks with 330

diverse candidates. We keep candidates that are 331

not equivalent to Hpost+ as valid Hpost− distractor 332

candidates. All generated distractors are manually 333

verified for semantic in-equivalence to the ground 334

truth. The algorithm of constructing Hpost− dis- 335

tractors is illustrated in Algorithm 1 in Appendix. 336

We vary the difficulty based on the degree of 337

semantic similarity between the Hpost− distractors 338

and the Hpost+ ground truth. For the easy distrac- 339

tors, we retain the Hpost− distractors which yield 340

the lowest cosine similarity against Hpost+ in the 341

2We use a competitive surrogate model that is proficient in
coding (Codestral-22B-v0.1) with a temperature of 3.5
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embedding space of the surrogate model. This en-342

sures that each Hpost− is substantially different to343

Hpost+ , such that it is easy to discern. For the hard344

distractors, we retain the Hpost− distractors which345

yield the highest cosine similarity against Hpost+ .346

This ensures that each Hpost− is only marginally347

different from Hpost+ , such that it is hard to dis-348

cern. See Figure 3 in the Appendix for examples349

of variation in difficulty.350

4 Dataset Preparation351

Data Source. We built our benchmark based on352

the most recently published automated code refine-353

ment dataset (Guo et al., 2024). This multilingual354

dataset was constructed from code reviews that oc-355

curred after January 1, 2022. To ensure that we356

have a sizable amount of clean data for each of357

the programming languages in our benchmark, we358

only include the nine most popular programming359

languages on GitHub i.e. C, C++, C#, Go, Java,360

Javascript, PHP, Python, Ruby. These 9,367 ex-361

amples were mined from 259 repositories, filtered362

from a list of the most starred GitHub projects.363

Data Sampling. To ensure diversity and quality364

in our benchmark, we conducted stratified sam-365

pling (Baltes and Ralph, 2022) across all nine pro-366

gramming languages in the dataset, and discarded367

any examples that were noisy or unfaithfully repre-368

sented the task of code refinement. For each of the369

nine languages, we sampled until there were 100370

clean examples each, resulting in 900 total exam-371

ples in our benchmark. Within each language parti-372

tion, we also conducted stratified sampling across373

projects to maintain diversity. This mitigated bias374

towards the code reviews of any specific project,375

the nature of which are influenced by their partic-376

ular software development tools (Paschali et al.,377

2017), processes (Viggiato et al., 2019) and is-378

sues (Linares-Vásquez et al., 2014).379

Data Curation. We discard examples that were380

noisy or unfaithfully represented the task of code381

refinement. The noisy examples refer to code re-382

view comments that are unclear, ignored, no change383

asked, or linking to wrong code hunks. See Ap-384

pendix A for a detailed explanation of these noise385

types. These kind of review comments were re-386

ported as critical quality issues with existing code387

review datasets by prior work (Tufano et al., 2024).388

Unfaithful examples refer to the scenarios that do389

not faithfully represent the automated code refine-390

ment task i.e., reviews directly including the entire391

intended code revision implementation, reviews 392

regarding code formatting, reviews that are not self- 393

contained (Tufano et al., 2024; Lin et al., 2024). In- 394

stead, examples in the benchmark should represent 395

meaningful quality improving code reviews that 396

are beyond the capacity of traditional rule-based 397

software engineering tools. See Appendix B for a 398

detailed explanation of these unfaithful examples. 399

To discard noisy and unfaithful examples, we 400

first applied heuristic filters as detailed in Ap- 401

pendix C, before manual verficiation. This resulted 402

in 3,761 out of 9,367 examples being discarded 403

from the source dataset. The manual discarding 404

was conducted by two annotators who are currently 405

pursuing a PhD in software engineering. Both an- 406

notators independently annotated 3k examples, and 407

resolved all conflicts together across 46 rounds. 408

The µ and σ of the Cohen’s Kappa were 0.89 and 409

0.11, respectively. For C, JavaScript and Ruby, 410

less than 100 clean examples could be obtained 411

from the source dataset, thus, the remaining exam- 412

ples were sampled from code reviews conducted 413

in 2021 (Li et al., 2022). The overall retention 414

rate was 13%, highlighting the critical quality is- 415

sue in the original dataset, necessitating curating 416

automated code refinement benchmarks for accu- 417

rate and reliable evaluation. The final benchmark 418

includes 199 of the original 259 GitHub reposito- 419

ries. Table 4 in the Appendix shows benchmark 420

statistics. 421

5 Experimental Setup 422

5.1 MCQA Setup 423

To support the MCQA probes for our CodeRe- 424

viewQA, we detail our prompt design, answer ex- 425

traction approach, and evaluation framework incor- 426

porating invariance testing. 427

Prompt. We use multiple-choice prompting that 428

takes an input containing three components: task 429

definition, question, and options. The task defini- 430

tion specifies the broad purpose (e.g., “tests code 431

review comprehension”). The question section 432

presents the code review scenario within a struc- 433

tured template that includes programming language 434

markers, the preview code Hpre, and the code re- 435

view comment Rnl. Finally, the options section 436

lists multiple choice answers labeled alphabetically 437

(A, B, C, D), with explicit instructions to respond 438

with only the letter symbol. This prompt structure 439

is used across all three tasks while varying only the 440

specific task parameters and number of answer op- 441
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tions. See Figure 2 in the Appendix for all prompt442

templates used.443

Answer Extraction. We use multiple choice444

prompting with a max output length of one, where445

the symbol token ∈ {A,B,C,D} with the highest446

log probability is considered as the selected answer.447

This style of prompting avoids the conflation of448

likelihood of sequence and likelihood of answer,449

eliminates the need for normalisation and allows450

for direct comparison between answers (Robinson451

and Wingate, 2023). Our implementation uses the452

vLLM inference framework (Kwon et al., 2023)453

with guided decoding targeting the option symbols.454

Invariant Test and Evaluation. To reduce the455

likelihood of random correct guesses, for each ques-456

tion, we exposed the models to every order com-457

bination of the answer options. This resulted in458

N ! runs per question, where N is the number of459

answer options provided. Thus, the likelihood of460

guessing the correct answer for all combinations of461

a question is merely ( 1
N )N !. With this, we mitigate462

the models’ invariability in selecting the correct463

answer, regardless of the position of that answer.464

To be counted as correctly answering that question,465

the models must select the correct answer for all466

N ! runs, which is a more reliable indicator of the467

models’ understanding (Wang et al., 2024).468

5.2 Model Selection Criteria469

We list the criteria that determines whether a LLM470

is appropriate for this benchmark.471

MCQA Proficiency. The LLM must have472

achieved state-of-the-art results in MCQA style473

benchmarks e.g., MMLU (Hendrycks et al., 2021).474

This accounts for format as a confounding factor.475

MCSB Proficiency. The LLM must demon-476

strate proficiency in multiple choice symbol bind-477

ing (MCSB; Robinson and Wingate (2023)). This478

ensures that the answer extraction method is not a479

confounding factor. We report the Proportion of480

Plurarity Agreement (PPA), which measures the de-481

gree of order invariance in selecting the symbol of482

the plurarity answer. Formally, PPA is calculated483

as the average of k
N ! over a dataset, where k is484

the number of times the plurarity answer’s symbol485

yielded the highest log probability for a given ques-486

tion and N ! is the aforementioned number of order487

combinations for N answer options. MCSB profi-488

ciency is demonstrated when a PPA significantly489

higher than the random baseline of 1
N is achieved.490

Coding Proficiency. In addition to under-491

standing the natural language in Rnl, the model492

must also be able to understand the code in 493

Hpre and Hpost. Therefore, the LLM must have 494

demonstrated proficiency in coding related bench- 495

marks e.g., HumanEval (Chen et al., 2021) and 496

MBPP (Austin et al., 2021). 497

In total, we select 65 state-of-the-art open source 498

LLMs, that have satisfied the three criteria. The 499

included models are considered state-of-the-art as 500

of January, 2025. See Table 6 in Appendix F for 501

descriptions of all 65 models. The models are 502

grouped into five scales based on their model pa- 503

rameters: ≤3B, ≤9B, ≤16B, ≤34B, and ≤72B. 504

We select models under 72B as it is the largest size 505

we can run locally to extract answer probabilities. 506

6 Results 507

To compare model capacity differences in the au- 508

tomated code refinement (ACR) tasks and three 509

MCQA probe tasks, we conducted experiments 510

using all 65 selected models. Due to space limita- 511

tions, detailed results are provided in Appendix F. 512

We summarize the key observations of top-2 mod- 513

els of each scale class in Table 2. 514

ACR vs. Probes.3 In general, we find that 515

larger language models tend to achieve higher ex- 516

act match rates on average in automated code re- 517

finement. However, their performance on probing 518

tasks could vary. Table 2 (column ACR) shows 519

that Llama-3.1-70B-Instruct achieved the highest 520

exact match rate of 50.3%. Interestingly, Qwen2.5- 521

72B-Instruct achieves an exact match rate 2 per- 522

centage points lower, but outperforms Llama-3.1- 523

70B-Instruct in change type recognition (CTR) and 524

solution identification (SI). Our benchmark reveals 525

similar results for the smaller models. For exam- 526

ple, Qwen2.5-Coder-14B-Instruct, gemma-2-27b- 527

it, and QwQ-32B-Preview achieve comparable ex- 528

act match rates in ACR with less than a percentage 529

point difference. However, their performance on 530

each probing task is substantially different. This 531

highlights the benefits of a more granular assess- 532

ment of model capabilities, beyond exact match 533

rates, as different models exhibit varying strengths 534

across specific probing tasks. 535

Below, we discuss model capabilities in these 536

three probing tasks. 537

CTR Results.4 Interestingly, we find that most 538

of the ≤ 3B models were already competent in this 539

3Table 7 in Appendix F presents the full list of automated
code refinement results.

4Table 8 in Appendix F shows the full results for change
type recognition.
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Model ACR CTR CLE CLH SIE SIH

Llama-3.2-3B-Instruct 25.9 78.8 0.8 0.3 9.9 7.6
Qwen2.5-Coder-3B-Instruct 30.3 77.7 1.8 1.6 12.2 8.0
Qwen2.5-Coder-7B-Instruct 41.0 78.6 13.8 10.7 67.6 55.2
gemma-2-9b-it 39.0 74.1 59.2 52.0 58.8 49.6
CodeLlama-13b-Instruct-hf 36.7 67.8 0.11 0.1 13.8 10
Qwen2.5-Coder-14B-Instruct 46.6 73.9 46.7 37.3 65.5 56.2
gemma-2-27b-it 46.4 74.0 70.1 58.7 76.2 65.7
QwQ-32B-Preview 45.6 60.3 52.1 50.1 79.1 75.1
Llama-3.1-70B-Instruct 50.3 68.4 74.7 69.0 84.2 76.7
Qwen2.5-72B-Instruct 48.7 79.8 64.2 58.3 97.1 90.9
ACR: Automated Code Refinement, CTR: Change Type Recognition
CL: Change Localisation, SI: Solution Identification, E: Easy, H: Hard

Table 2: Top-2 Performing Models (per scale class)
based on Exact Match (%) in Automated Code Refine-
ment.

task, with Llama-3.2-3B-Instruct achieving 78.8%540

invariant accuracy. Despite the promising results541

of small models, this ability plateaus as we scale542

model size. In fact, the best performance from the543

≤ 72B models was only 79.8% by Qwen2.5-72B-544

Instruct, which is only a 1% increase.545

CL Results.5 Overall, change localisation tend546

to be the most difficult reasoning task in the bench-547

mark. Most of the ≤ 3B models achieved invariant548

accuracies of between 0%-3% for both variations.549

The only exceptions being Qwen2.5-3B-Instruct550

and Phi-3-mini-128k-instruct, which could achieve551

39.3% and 34.1% for the easy variation, respec-552

tively. In contrast, we find that many models from553

the ≤ 34B and ≤ 72B classes could achieve in-554

variant accuracies of more than 70% for the easy555

variation and more than 60% for the hard variation.556

SI Results.6 Similarly, we also find that com-557

petency in this task strengthens with size, with the558

exception of a few anomalies that far outperform559

their scale class average. For example, Phi-3-mini-560

128k-instruct can achieve an invariant accuracy of561

58.16% in the easy variation, whilst the major-562

ity of ≤ 3B models achieve less than 13%. In563

contrast, many models from the ≤ 72B class can564

achieve more than 80% in the easy variation and565

more than 70% for hard. Most notably, Qwen2.5-566

72B-Instruct, could achieve a near perfect score of567

97.06% for the easy variation, and 90.88% for the568

hard variation, despite previously achieving under-569

whelming results for change localisation.570

5Tables 9 and 10 in Appendix F present the full results for
the easy and hard variations of change localisation.

6Tables 11 and 12 in Appendix F show the full results for
the easy and hard variations of solution identification.

7 Evaluating Data Contamination 571

To what extent is CodeReviewQA resistant to 572

data contamination? We utilise two canonical 573

metrics for measuring data contamination, perplex- 574

ity (Jelinek et al., 1977) and n-gram accuracy (Xu 575

et al., 2024). Perplexity is an information-theoretic 576

metric, which quantifies the uncertainty of a lan- 577

guage model in a token sequence (Jelinek et al., 578

1977), which can be formulated as: 579

PPL(X) = exp(−1

t

t∑
t=0

log pθ(xi|x<i)), (5) 580

where X = [x0, x1, ..., xt] denotes a tokenised 581

sequence. In our case, the sequence is a con- 582

catenation of the question, i.e., prompt including 583

Hpre and Rnl and the solution, i.e. Hpost for au- 584

tomated code refinement or answer options for 585

MCQA probes. A low perplexity score indicates 586

high confidence, whilst a high perplexity score in- 587

dicates low confidence. Unusually low perplexity 588

scores may indicate data contamination. N-gram 589

accuracy measures the model’s ability to predict 590

random n-gram sequences from K starting points 591

that are uniformly sampled from an example (Xu 592

et al., 2024), i.e., the aforementioned sequence X . 593

It is calculated by the following equation: 594

NG(X) =
1

η ·K

η∑
i=0

K∑
j=0

I(Xsj :sj+n, X̂sj :sj+n),

(6) 595

where η denotes the corpus size, i denotes the 596

ith sequence in the corpus, sj denotes the index of 597

the jth starting point, Xsj :sj+n denotes the ground 598

truth n-gram to be predicted and I denotes an indi- 599

cator function that applies exact match. Unusually, 600

a high n-gram accuracy may indicate data contami- 601

nation. Following prior work (Xu et al., 2024), we 602

set K = 5 and n = 5 to measure 5-gram accuracy. 603

For this experiment, we use the largest and 604

newest models that we can support from the most 605

popular model families, as they are most likely to 606

exhibit memorisation (Kiyomaru et al., 2024). We 607

use base versions of models, as instruction-tuned 608

versions are optimised for responding to prompts 609

rather than completing sequences verbatim. 610

To test the effectiveness of MCQA reformula- 611

tion in mitigating data contamination, we compare 612

our benchmark in MCQA probe form with the orig- 613

inal automated code refinement form, as well as 614

7



Benchmark Task Llama-3.1-70B Qwen2.5-72B

PPL NG5 PPL NG5

CodeReviewer ACR 4.1 28.1 3.6 30.7
CodeReview-New ACR 4.4 40.3 3.9 42.6
CodeReviewQA ACR 4.5 40.3 4.1 42.0

MCQA6.0 25.1 5.4 26.8
ACR: Automated Code Refinement, MCQA: Multiple Choice Question & Answer

Table 3: Comparing Perplexity Scores (PPL) and 5-
gram Accuracies (NG5 %) on our CodeReviewQA
against existing code review benchmarks.

the most widely used automated code refinement615

benchmarks, i.e. CodeReviewer (Li et al., 2022)616

and CodeReview-New (Guo et al., 2024).617

Table 3 shows the perplexity and 5-gram accu-618

racy on the three benchmarks, based on two popu-619

lar base models Llama-3.1-70B and Qwen2.5-72B.620

We find that perplexity on the older CodeReviewer621

benchmark is far lower than on CodeReview-New,622

yet the 5-gram accuracies are also lower. A likely623

explanation is that older code reviews have been624

extensively included in the models’ pre-training625

and resembles the vast majority of the corpus, how-626

ever, since they may not have been included in627

the latter stages of training, there is less verbatim628

memorisation of the examples (Kiyomaru et al.,629

2024). In contrast, the newer code reviews may630

represent a distribution shift, yet is more likely to631

be included in the latter stages of training, thus con-632

currently inducing higher perplexity and higher ver-633

batim memorisation. We find that CodeReviewQA634

in the original automated code refinement format635

yields similar results to CodeReview-New, which636

is within expectation as one is simply a curated sub-637

set of the other. However, when reformulating into638

the MCQA probe format, our benchmark yields639

significantly higher perplexity than all past bench-640

marks with lower 5-gram accuracies, despite using641

the same examples. Therefore, we find that MCQA642

reformulation with synthetic questions and answers643

does mitigate the effects of data contamination, al-644

lowing for the reuse of code reviews that may have645

been previously included in pre-training. Coincid-646

ing with our insights from probing, models that647

perform well on automated code refinement with648

only memorisation, may be exposed when evalu-649

ated with MCQA probes of the same examples.650

8 Conclusion651

In this study, we focus on evaluating recent large652

language models’ capabilities through automated653

code refinement, a challenging task in code review. 654

We addressed two key limitations in existing work: 655

the inability of exact match metrics to provide fine- 656

grained performance feedback and the potential 657

for data contamination. To this end, we propose 658

CodeReviewQA as a new benchmark, which con- 659

sists of 900 high-quality manually curated code 660

review samples. We reformulated the code refine- 661

ment generation task into three intermediate rea- 662

soning tasks and designed multiple-choice ques- 663

tions to probe model performance. Our experi- 664

mental results across 72 large language models 665

revealed capability differences that traditional eval- 666

uation metrics failed to capture. Additionally, our 667

data contamination evaluation demonstrated that 668

the CodeReviewQA dataset effectively mitigates 669

training data contamination concerns. 670

9 Limitations 671

The size of dataset. Our CodeReviewQA has a 672

relatively modest size resulting from high noise 673

in existing benchmarks and rigorous manual ver- 674

ification. Despite its size, our CodeReviewQA is 675

diverse and comprehensive, covering real-world 676

code reviews in nine programming languages and 677

from 199 projects. 678

The construction of distractors. The change lo- 679

calisation task focused on the line level rather than 680

more fine-grained level (e.g., token level). How- 681

ever, our findings show that many models struggle 682

with identifying the location of changes even at 683

the line level. Future work can further explore ap- 684

proaches to automatically construct and evaluate 685

localisation at the token level. 686

The interaction among tasks. We did not inves- 687

tigate the causal relationships between these tasks, 688

meaning that failure in one probe task does not nec- 689

essarily predict performance on another. However, 690

our experimental results demonstrate that analyzing 691

performance across all three probe tasks alongside 692

the automated code refinement task provides more 693

comprehensive insights into model weaknesses. 694

The diversity of prompts. We used the same 695

prompt and hyperparameters for each task to main- 696

tain consistent, comparable results across mod- 697

els. Different prompts might impact model per- 698

formance. However, our main focus was not to find 699

the optimal prompt for each individual model, but 700

to investigate systematic differences across models 701

on comprehension and generation tasks. 702
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A Data Quality Issue Details932

We explain the four types of data quality issues933

found in code review datasets. Firstly, unclear934

comments are review comments where even hu-935

mans cannot comprehend the intended change. Sec-936

ondly, no change asked refers to review comments937

that are not actionable. Thirdly, ignored comment938

are examples where the developer ignores the re-939

view comment, resulting in a post-review code re-940

vision Hpost that does not reflect the intended code941

change. Lastly, wrong linking refers to data mining942

issues, where the review comment is not related to943

the paired pre-review code submission Hpre.944

B Unfaithful Example Details945

We explain the three types of unfaithful examples946

found in code review datasets. Firstly, some code947

reviews directly include the entire intended code re-948

vision implementation. These cases can be resolved949

by directly copy and pasting from the review itself,950

which does not assess natural language comprehen-951

sion. Secondly, code formatting related examples952

can already be resolved by linters and therefore953

are not useful to learn. These examples also fail954

to assess the models’ ability in handling challeng-955

ing and meaningful code reviews. Thirdly, code956

reviews that are not self-contained require infor-957

mation beyond the provided code hunk Hpre to958

understand, thus, it is impossible for the model (or959

even a human) to intuit the intended code change.960

C Heuristic Filtering Details961

We conducted keyword-based filtering to automati-962

cally discard examples that clearly violate the data963

quality and faithfulness issues mentioned above.964

With regards to unclear comments, we discarded965

reviews with less than 10 characters, since they966

are likely to be too short to convey a code change967

requirement. We also removed reviews that did968

not contain any alphabetic characters. With re-969

gards to code reviews that already contain the in-970

tended code revision implementation, we discarded971

reviews that included the "“‘" GitHub code block972

indicator. With regards to code reviews that are973

only demanding code formatting changes, we re-974

moved reviews that mention "indentation", "spac-975

ing" and "lint". With regards to reviews that are976

not self-contained, we removed reviews that men- 977

tion "revert", "as above" and "ditto". We manually 978

inspected all discarded examples to ensure that no 979

false positives were detected by our filter. 980

D Descriptive Statistics 981

We explain the descriptive statistics used in this 982

study for describing the benchmark. 983

Comment length is measured by the number 984

of whitespace separated words in the code review 985

comment. Longer comments may contain more 986

complex requirements, explanations or other dis- 987

cussions. Table 4 shows that the average comment 988

length is 18 words. See Figure 4 for examples of 989

different comment lengths. 990

Code edit distance represents the size of the 991

code change between Hpre and Hpost. Given that 992

some examples only involve changes in the inlined 993

code comment, we use the more general Leven- 994

shtein distance (Levenshtein, 1966) to measure the 995

number of character edits between the two versions 996

of code. Table 4 shows that the average code edit 997

distance is 56 characters. See Figure 5 for exam- 998

ples of different code edit distances. 999

Change locations is the number of lines in- 1000

volved in the change, as discussed in the task of 1001

change localisation. Table 4 shows the change 1002

location statistics. For the 35 (4% of total) code re- 1003

views that request to add code, the average number 1004

of change locations is 1 line. For the 144 (16% of 1005

total) code reviews that request to delete code, the 1006

average number of change locations is 3 lines. For 1007

the 721 (80% of total) code reviews that request to 1008

modify code, the average number of change loca- 1009

tions is 2 lines. 1010

Code element ratio is the proportion of tokens 1011

in the code review comment that are code elements. 1012

It is calculated as Code elements
Comment length . Reviewers may use 1013

code elements in conjunction with natural language 1014

to describe the intended code change. Comments 1015

with a higher proportion of code tokens may be 1016

more explicit in their specification of the require- 1017

ments (Rahman et al., 2017). Table 4 shows that 1018

the average code element ratio is 0.09. See Figure 6 1019

for examples of different code element ratios. 1020

Specification ratio is the code edit distance of 1021

the change divided by the length of its respec- 1022

tive code review comment. It is calculated as 1023
Code edit distance
Comment length , and can be interpreted as the num- 1024

ber of character edits in the code with respect to 1025

each word in the comment. Since code review com- 1026

11
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Statistic Min Max Mean SD Q1 Median Q3
Comment Length 2 98 18 15 8 13 23
Code Edit Distance 2 827 56 85 9 25 67
Change Locations

Add (35) 1 2 1 0 1 1 1
Delete (144) 1 19 3 4 1 2 4
Modify (721) 1 15 2 2 1 1 2

Code Element Ratio 0.00 0.89 0.09 0.15 0.00 0.00 0.13
Specification Ratio 0.04 165.40 4.88 9.79 0.67 1.83 5.07
See Appendix D for a detailed explanation of the descriptive statistics.

Table 4: CodeReviewQA descriptive statistics.

%Fail
Model ≥ 1 Probe CTR CL SI

Qwen2.5-Coder-3B-Instruct 99.8 23.4 99.4 95.8
Qwen2.5-Coder-7B-Instruct 96.6 22.2 93.0 55.0
Qwen2.5-Coder-14B-Instruct 87.3 29.3 74.0 56.0
gemma-2-27b-it 75.5 25.7 53.7 41.4
Llama-3.1-70B-Instruct 76.5 37.4 46.3 32.7
CTR: Change Type Recognition, CL: Change Localisation,
≥ 1 Probe: Failed at least one probe, SI: Solution Identification

Table 5: MCQA Failure (%) in Non-Exact Match Cases
on top-performing models at each scale.

ments may be under-specified and implicit, we use1027

specification ratio as a heuristic metric that incor-1028

porates this notion. Intuitively, examples with large1029

code edit distances and short comment lengths i.e.1030

large specification ratio, may be under-specified in1031

its description of the required code change. Table 41032

shows that the average specification ratio is 4.88.1033

See Figure 7 for examples of different specification1034

ratios.1035

E Insights from Probing1036

What model weaknesses does CodeReviewQA1037

expose, beyond those identified by automated1038

code refinement? We use our MCQA probes to1039

investigate failure cases of the top-performing mod-1040

els in Table 2 by analyzing examples where model1041

outputs on the code refinement task do not exactly1042

match the ground truth refined code. For each1043

failed case from each model, we examine whether1044

the model succeeds or fails on the three MCQA1045

tasks. Through this analysis, we aim to identify1046

specific weaknesses in models’ code review com-1047

prehension abilities that may contribute to their1048

failures in automated code refinement.1049

The results are presented in Table 5, including1050

the percentage of failure on each of the MCQA1051

tasks,7 and the overall failure on at least one task1052

(≥ 1 Probe). We find that all five models failed1053

at least one MCQA probe for 76%-100% of the1054

7For change location and solution identification, a failure
is counted if a model fails in either easy or hard mode.

examples, indicating a varying level of difficulty 1055

in comprehending the code review. Change type 1056

recognition is seldom a root cause, as failure in this 1057

capability only accounts for 22%-37% of cases. In 1058

contrast, change localisation is often a root cause, 1059

particularly for the three smaller models (74%-99% 1060

failures). When analysing the scenarios that re- 1061

quested to add or modify code, solution identifica- 1062

tion failures account for 96% of cases for Qwen2.5- 1063

Coder-3B-Instruct. Thus, for the smallest model, 1064

most non-exact matches can be accounted for by 1065

failures in both change localisation and solution 1066

identification. For both Qwen2.5-Coder-7B/14B- 1067

Instruct, change localisation is the major flaw. For 1068

the two largest models, the cause of failure is more 1069

evenly distributed, varying on an individual basis. 1070

On the other hand, we also analyze the success- 1071

ful cases where the model achieves an exact match. 1072

Intuitively, if a model can achieve exact match on 1073

an example, it should be able to fully comprehend 1074

the code review, thus achieving a perfect score 1075

across the reasoning probes. However, the mod- 1076

els often could not accurately answer all probes 1077

for 49%-99% of their exact matches. Interestingly, 1078

this trend shows a strict inverse relationship with 1079

model size, where smaller models yield higher pro- 1080

portions of exact matches that the model could not 1081

consistently complete all probes for. These symp- 1082

toms indicate signs of rote memorisation. 1083

F Experimental Results on 65 models 1084
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Algorithm 1: Create Hpost− Distractors for Solution Identification
Input: Surrogate LLM fθ, Temperature k, No. of Distractors N , Difficulty ϕ
Output: Set of Hpost− Distractors D
// Identify code elements in the changed lines of the post-review code revision
Lines← GetChangedLines(Hpost+);
AST ← GetAbstractSyntaxTree(Hpost+);
Nodes← GetLeafNodes(AST,Lines);
// Calculate average token surprisal for each identified code element
Stoken, Snode, Cdistractor, D ← ∅, ∅, ∅, ∅;
for ct ∈ Hpost+ do

ht−1 ← fθ(Hpre, Rnl, c<t);
Stoken[ct]← − log2 P (ct|ht−1);

for nt ∈ Nodes do
for ct ∈ nt do

Snode[nt]← Snode[nt] + Stoken[ct];
Snode[nt]← Snode[nt]

length(nt)
;

// Mask the code element with the highest average token surprisal
nmax ← GetMaxKeys(Snode, 1);
Mask ← ApplyMask(Hpost+ , nmax)
// Create a set of distractors for each of the easy and hard variations
while length(Cdistractor) < 2×N do

n̂max ← argmax
nmax

Pk(nmax|fθ(Mask));

Candidate = InFill(Mask, n̂max);
if Candidate ̸= Hpost+ ∧ Candidate /∈ Cdistractor then

θ = Cosine(fθ(Candidate), fθ(Hpost+));
Cdistractor[Candidate]← θ;

// Select distractors most semantically different from ground truth for easy
and distractors most semantically similar to ground truth for hard

if ϕ = easy then
D ← GetMinKeys(Cdistractor, N);

else if ϕ = hard then
D ← GetMaxKeys(Cdistractor, N);
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Automated Code Refinement
{lang} = C/CPP/CSharp/Go/Java/JavaScript/PHP/Python/Ruby
### The following {lang} code snippet has received a code review.
[{lang}]
{code_snippet}
[/{lang}]
[CODE REVIEW]
{code_review}
[/CODE REVIEW]
### Please generate a revised version of the code snippet according to the code review. Do not add explanations.
[{lang}]
————————————————————————————————————————————————————–
Change Type Recognition
{option_a}, {option_b}, {option_c} = only add new lines of code/only delete existing lines of code/modify the code
### The following is a multiple choice question (with answers) that tests code review comprehension.
Question: Given this {lang} code snippet, what type of change is the code review asking for?
[{lang}]
{code_snippet}
[/{lang}]
[CODE REVIEW]
{code_review}
[/CODE REVIEW]
### Possible answers:
A. {option_a}
B. {option_b}
C. {option_c}
### Answer with the letter symbol only. Answer:
————————————————————————————————————————————————————–
Change Localisation
{change_type} = add new lines of code under/delete code/modify code
### The following is a multiple choice question (with answers) that tests code review comprehension.
Question: Given this {lang} code snippet, which line numbers is the code review asking to {change_type}?
[{lang}]
{code_snippet}
[/{lang}]
[CODE REVIEW]
{code_review}
[/CODE REVIEW]
### Possible answers:
A. {option_a}
B. {option_b}
C. {option_c}
D. {option_d}
### Answer with the letter symbol only. Answer:
————————————————————————————————————————————————————–
Solution Identification
### The following is a multiple choice question (with answers) that tests code review comprehension.
Question: Given this {lang} code snippet, which code revision is the code review asking for?
[{lang}]
{code_snippet}
[/{lang}]
[CODE REVIEW]
{code_review}
[/CODE REVIEW]
### Possible answers:
A. {option_a}
B. {option_b}
C. {option_c}
D. {option_d}
### Answer with the letter symbol only. Answer:

Figure 2: Prompt Templates.
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Pre-Review Code Submission
1 def main(args : argparse .Namespace):
2 )
3 host_environment = host_environments .pop()
4
5 module_dir_paths = sort_and_dedup_paths ([
6 iree_artifacts .get_module_dir_path( config . module_generation_config)
7 for config in run_configs
8 ])
9
10 output_map[device_name] = {
11 "host_environment" : dataclasses . asdict (host_environment) ,

Code Review: Huh, would be nice if the path was just naturally serializable
——————————————————————————————————————————————————

Which line numbers is the code review asking to modify code? A. line numbers 5, 6, 8 ✓
Change Localisation (Easy)
B. line numbers 1, 2, 3 C. line numbers 1, 4, 5 D. line numbers 1, 6, 7
Change Localisation (Hard)
B. line numbers 1, 5, 6 C. line numbers 1, 5, 8 D. line numbers 1, 6, 8
——————————————————————————————————————————————————

Which code revision is the code review asking for?
A. ✓

5 − module_dir_paths = sort_and_dedup_paths ([
5 + module_dir_paths = sorted ( set (
6 − iree_artifacts .get_module_dir_path( config . module_generation_config)
6 + str ( iree_artifacts .get_module_dir_path( config . module_generation_config) )
8 − ])
8 + ) )

Solution Identification (Easy)
B.

5 − module_dir_paths = sort_and_dedup_paths ([
5 + module_dir_paths = sorted ( set (
6 − iree_artifacts .get_module_dir_path( config . module_generation_config)
6 + str ( struct_lucule .get_module_dir_path( config . module_generation_config) )
8 − ])
8 + ) )

C.
5 − module_dir_paths = sort_and_dedup_paths ([
5 + module_dir_paths = sorted ( set (
6 − iree_artifacts .get_module_dir_path( config . module_generation_config)
6 + str ( assertTrue_localhost .get_module_dir_path( config . module_generation_config) )
8 − ])
8 + ) )

D.
5 − module_dir_paths = sort_and_dedup_paths ([
5 + module_dir_paths = sorted ( set (
6 − iree_artifacts .get_module_dir_path( config . module_generation_config)
6 + str ( indexChat_retry .get_module_dir_path( config . module_generation_config) )
8 − ])
8 + ) )

Solution Identification (Hard)
B.

5 − module_dir_paths = sort_and_dedup_paths ([
5 + module_dir_paths = sorted ( set (
6 − iree_artifacts .get_module_dir_path( config . module_generation_config)
6 + str (View_DEF.get_module_dir_path(config.module_generation_config))
8 − ])
8 + ) )

C.
5 − module_dir_paths = sort_and_dedup_paths ([
5 + module_dir_paths = sorted ( set (
6 − iree_artifacts .get_module_dir_path( config . module_generation_config)
6 + str (develop_weight.get_module_dir_path( config . module_generation_config) )
8 − ])
8 + ) )

D.
5 − module_dir_paths = sort_and_dedup_paths ([
5 + module_dir_paths = sorted ( set (
6 − iree_artifacts .get_module_dir_path( config . module_generation_config)
6 + str ( register_access .get_module_dir_path( config . module_generation_config) )
8 − ])
8 + ) )

Figure 3: Examples of Variation in Difficulty.
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Comment Length = 8
FYI, this will spam console when running ‘aaa‘.
——————————————————————————————————————————————————
Comment Length = 18
By the format string it looks like parameters shall be reversed. Type shall be 1st and exception 2nd
——————————————————————————————————————————————————
Comment Length = 23
I’m wondering if it’s useful to show the message from the exception in this debug message, at least in the case of IOException.

Figure 4: Examples of Different Comment Lengths.

Code Edit Distance = 9
1 OnConflictAction onconflict_action = ts_chunk_dispatch_get_on_conflict_action ( dispatch ) ;
2 ResultRelInfo * resrelinfo , * relinfo ;
3 − bool has_compressed_chunk = (chunk−>fd.compressed_chunk_id != 0);
3 + bool is_compressed = (chunk−>fd.compressed_chunk_id != 0)
4 /* permissions NOT checked here; were checked at hypertable level */
5 if ( check_enable_rls (chunk−>table_id, InvalidOid , false ) == RLS_ENABLED)

Code Review: Should ‘is_compressed‘ now be given by the chunk’s compression status flag? Otherwise it looks like we have
different ways of determining compression status.
——————————————————————————————————————————————————
Code Edit Distance = 25

1 void Server_Card :: resetState ()
2 setPT(QString() ) ;
3 setAnnotation (QString() ) ;
4 setDoesntUntap( false ) ;
5 − setFaceDown(false) ;
6 }
7
8 QString Server_Card :: setAttribute ( CardAttribute attribute , const QString &avalue, bool allCards )

Code Review: this causes a major bug: cards have their state reset when moved between the battlefield and the deck, their
facedown state is then checked afterwards to determine what event to show to other players. with this change moving a
facedown card to your deck (unknown to unknown) will tell all your opponents (but not you) what card it was.
——————————————————————————————————————————————————
Code Edit Distance = 67

1 public unsafe LazyStringValue GetDocumentId(LazyStringValue key)
2 if (index == −1)
3 return null ;
4
5 − _tmpLazyStringInstance = _context .GetLazyString(key.Buffer , index) ;
5 + return _context .GetLazyString(key.Buffer , index) ;
6 − return _tmpLazyStringInstance ;
7 }
8
9 // TODO unify if possible with AllowedPathsValidator

Code Review: Why do you store that in the temporary variable?

Figure 5: Examples of Different Code Edit Distances.

Code Element Ratio = 0
Should this really be a compile time error? The fact that is can be imported multiple times does not mean that it will be.
——————————————————————————————————————————————————
Code Element Ratio = 0.13
For all of the fuzz tests, does it make sense to have versions for ‘len_prefixed‘ both ‘true‘ and ‘false‘ ?
——————————————————————————————————————————————————
Code Element Ratio = 0.37
I think you’re missing a ‘flb_free(seq_index_str);‘ there.
Other than that, would you mind change that comparison to ‘if (tmp_key == NULL) {‘ instead? I’d really appreciate it.

Figure 6: Examples of Different Code Element Ratios.
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Specification Ratio = 0.67
1 void hpx_thread_buffer :: resize ( const std :: size_t num_threads,
2 }
3
4 void *hpx_thread_buffer :: get ( std :: size_t thread_num) const noexcept {
5 − KOKKOS_ASSERT(thread_num < m_num_threads);
5 + KOKKOS_EXPECTS(thread_num < m_num_threads);
6 if (m_data == nullptr ) {
7 return nullptr ;
8 }
9 return &m_data[thread_num * m_size_per_thread];
10 }
11
12 void *hpx_thread_buffer :: get_extra_space () const noexcept {
13 − KOKKOS_ASSERT(m_extra_space > 0);
13 + KOKKOS_EXPECTS(m_extra_space > 0);
14 if (m_data == nullptr ) {
15 return nullptr ;
16 }

Code Review: This is fine but just pointing out there is also a ‘KOKKOS_EXPECTS‘ that was meant for checking preconditions

——————————————————————————————————————————————————
Specification Ratio = 37.60

1 private String addNashornJavaScriptEngineIfNecessary( String cp) {
2 }
3
4 private boolean requiresNashornJavaScriptEngine () {
5 − String version = System.getProperty (" java . specification . version ") ;
5 + return getJavaVersion () >= 15; // Nashorn was removed in Java 15
6 − if ( version . startsWith ("1.") ) {
7 − version = version . substring (2) ;
8 − }
9 − return Integer . parseInt ( version ) >= 15; // Nashorn was removed in Java 15
10 }
11
12 }

Code Review: You can use ‘getJavaVersion()‘ here.

Figure 7: Examples of Different Specification Ratios.
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Scale Model Parameters Organisation Release Date Hugging Face

≤3B

Llama-3.2-3B-Instruct 3.2B Meta Sep 25, 2024 meta-llama/Llama-3.2-3B-Instruct
Llama-3.2-1B-Instruct 1.2B Meta Sep 25, 2024 meta-llama/Llama-3.2-1B-Instruct
Qwen2.5-Coder-3B-Instruct 3.1B Alibaba Nov 6, 2024 Qwen/Qwen2.5-Coder-3B-Instruct
Qwen2.5-Coder-1.5B-Instruct 1.5B Alibaba Sep 18, 2024 Qwen/Qwen2.5-Coder-1.5B-Instruct
Qwen2.5-3B-Instruct 3.1B Alibaba Sep 18, 2024 Qwen/Qwen2.5-3B-Instruct
Qwen2.5-1.5B-Instruct 1.5B Alibaba Sep 18, 2024 Qwen/Qwen2.5-1.5B-Instruct
deepseek-coder-1.3b-instruct 1.3B DeepSeek Oct 30, 2023 deepseek-ai/deepseek-coder-1.3b-instruct
DeepSeek-R1-Distill-Qwen-1.5B 1.5B DeepSeek Jan 20, 2025 deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
Falcon3-3B-Instruct 3.2B TII UAE Dec 17, 2024 tiiuae/Falcon3-3B-Instruct
Falcon3-1B-Instruct 1.7B TII UAE Dec 17, 2024 tiiuae/Falcon3-1B-Instruct
Phi-3-mini-128k-instruct 3.8B Microsoft Apr 23, 2024 microsoft/Phi-3-mini-128k-instruct
Yi-Coder-1.5B-Chat 1.5B 01.AI Aug 27, 2024 01-ai/Yi-Coder-1.5B-Chat
granite-3b-code-instruct-128k 3.5B IBM Jul 18, 2024 ibm-granite/granite-3b-code-instruct-128k
granite-3.0-3b-a800m-instruct 3.4B IBM Oct 21, 2024 ibm-granite/granite-3.0-3b-a800m-instruct
granite-3.0-2b-instruct 2.6B IBM Oct 21, 2024 ibm-granite/granite-3.0-2b-instruct
EXAONE-3.5-2.4B-Instruct 2.4B LG AI Dec 9, 2024 LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct
internlm2_5-1_8b-chat 1.9B InternLM Jul 30, 2024 internlm/internlm2_5-1_8b-chat
stable-code-instruct-3b 2.8B Stability AI Mar 19, 2024 stabilityai/stable-code-instruct-3b

≤9B

CodeLlama-7b-Instruct-hf 6.7B Meta Mar 13, 2024 meta-llama/CodeLlama-7b-Instruct-hf
Llama-3.1-8B-Instruct 8.0B Meta Jul 18, 2024 meta-llama/Llama-3.1-8B-Instruct
codegemma-1.1-7b-it 8.5B Google Apr 30, 2024 google/codegemma-1.1-7b-it
gemma-2-9b-it 9.2B Google Jun 25, 2024 google/gemma-2-9b-it
Qwen2.5-Coder-7B-Instruct 7.6B Alibaba Sep 17, 2024 Qwen/Qwen2.5-Coder-7B-Instruct
Qwen2.5-7B-Instruct 7.6B Alibaba Sep 16, 2024 Qwen/Qwen2.5-7B-Instruct
Marco-o1 7.6B AIDC-AI Nov 13, 2024 AIDC-AI/Marco-o1
deepseek-coder-7b-instruct-v1.5 6.9B DeepSeek Jan 25, 2024 deepseek-ai/deepseek-coder-7b-instruct-v1.5
deepseek-llm-7b-chat 6.9B DeepSeek Nov 29, 2023 deepseek-ai/deepseek-llm-7b-chat
DeepSeek-R1-Distill-Qwen-7B 7.6B DeepSeek Jan 20, 2025 deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
DeepSeek-R1-Distill-Llama-8B 8.0B DeepSeek Jan 20, 2025 deepseek-ai/DeepSeek-R1-Distill-Llama-8B
Falcon3-7B-Instruct 7.5B TII UAE Dec 17, 2024 tiiuae/Falcon3-7B-Instruct
Baichuan2-7B-Chat 7.1B Baichuan AI Sep 6, 2023 baichuan-inc/Baichuan2-7B-Chat
Yi-Coder-9B-Chat 8.8B 01.AI Aug 27, 2024 01-ai/Yi-Coder-9B-Chat
Yi-1.5-9B-Chat 8.8B 01.AI May 10, 2024 01-ai/Yi-1.5-9B-Chat
granite-8b-code-instruct-128k 8.1B IBM Jul 12, 2024 ibm-granite/granite-8b-code-instruct-128k
granite-3.0-8b-instruct 8.2B IBM Oct 15, 2024 ibm-granite/granite-3.0-8b-instruct
EXAONE-3.5-7.8B-Instruct 7.8B LG AI Dec 9, 2024 LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct

≤16B

CodeLlama-13b-Instruct-hf 13.0B Meta Mar 13, 2024 meta-llama/CodeLlama-13b-Instruct-hf
Qwen2.5-Coder-14B-Instruct 14.8B Alibaba Nov 6, 2024 Qwen/Qwen2.5-Coder-14B-Instruct
Qwen2.5-14B-Instruct 14.8B Alibaba Sep 16, 2024 Qwen/Qwen2.5-14B-Instruct
DeepSeek-Coder-V2-Lite-Instruct 15.7B DeepSeek Jun 14, 2024 deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
DeepSeek-V2-Lite-Chat 15.7B DeepSeek May 15, 2024 deepseek-ai/DeepSeek-V2-Lite-Chat
DeepSeek-R1-Distill-Qwen-14B 14.8B DeepSeek Jan 20, 2025 deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
falcon-11B 11.1B TII UAE May 9, 2024 tiiuae/falcon-11B
Falcon3-10B-Instruct 10.3B TII UAE Dec 17, 2024 tiiuae/Falcon3-10B-Instruct
Baichuan2-13B-Chat 13.0B Baichuan AI Sep 6, 2023 baichuan-inc/Baichuan2-13B-Chat
WizardLM-13B-V1.2 13.0B WizardLM Team Jul 25, 2023 WizardLMTeam/WizardLM-13B-V1.2
starcoder2-15b-instruct-v0.1 16.0B BigCode Apr 23, 2024 bigcode/starcoder2-15b-instruct-v0.1
Mistral-Nemo-Instruct-2407 12.2B Mistral Jul 17, 2024 mistralai/Mistral-Nemo-Instruct-2407

≤34B

CodeLlama-34b-Instruct-hf 33.7B Meta Mar 14, 2024 meta-llama/CodeLlama-34b-Instruct-hf
gemma-2-27b-it 27.2B Google Jun 25, 2024 google/gemma-2-27b-it
Qwen2.5-Coder-32B-Instruct 32.8B Alibaba Nov 6, 2024 Qwen/Qwen2.5-Coder-32B-Instruct
Qwen2.5-32B-Instruct 32.8B Alibaba Sep 17, 2024 Qwen/Qwen2.5-32B-Instruct
QwQ-32B-Preview 32.8B Alibaba Nov 27, 2024 Qwen/QwQ-32B-Preview
Sky-T1-32B-Preview 32.8B NovaSky Jan 9, 2025 NovaSky-AI/Sky-T1-32B-Preview
deepseek-coder-33b-instruct 33.3B DeepSeek Nov 1, 2023 deepseek-ai/deepseek-coder-33b-instruct
DeepSeek-R1-Distill-Qwen-32B 32.8B DeepSeek Jan 20, 2025 deepseek-ai/DeepSeek-R1-Distill-Qwen-32B

≤72B

CodeLlama-70b-Instruct-hf 69.0B Meta Mar 14, 2024 meta-llama/CodeLlama-70b-Instruct-hf
Llama-3.1-70B-Instruct 70.6B Meta Jul 16, 2024 meta-llama/Llama-3.1-70B-Instruct
Llama-3.3-70B-Instruct 70.6B Meta Nov 26, 2024 meta-llama/Llama-3.3-70B-Instruct
Qwen2.5-72B-Instruct 72.7B Alibaba Sep 16, 2024 Qwen/Qwen2.5-72B-Instruct
deepseek-llm-67b-chat 67.0B DeepSeek Nov 29, 2023 deepseek-ai/deepseek-llm-67b-chat
DeepSeek-R1-Distill-Llama-70B 70.6B DeepSeek Jan 20, 2025 deepseek-ai/DeepSeek-R1-Distill-Llama-70B
WizardLM-70B-V1.0 70.0B WizardLM Team Aug 9, 2023 WizardLMTeam/WizardLM-70B-V1.0
K2-Chat 65.3B LLM360 May 28, 2024 LLM360/K2-Chat
falcon-40b-instruct 40.0B TII UAE May 25, 2023 tiiuae/falcon-40b-instruct

Table 6: List of benchmarked models.
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https://huggingface.co/meta-llama/Llama-3.2-3B-Instruct
https://huggingface.co/meta-llama/Llama-3.2-1B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-Coder-1.5B-Instruct
https://huggingface.co/Qwen/Qwen2.5-3B-Instruct
https://huggingface.co/Qwen/Qwen2.5-1.5B-Instruct
https://huggingface.co/deepseek-ai/deepseek-coder-1.3b-instruct
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B
https://huggingface.co/tiiuae/Falcon3-3B-Instruct
https://huggingface.co/tiiuae/Falcon3-1B-Instruct
https://huggingface.co/microsoft/Phi-3-mini-128k-instruct
https://huggingface.co/01-ai/Yi-Coder-1.5B-Chat
https://huggingface.co/ibm-granite/granite-3b-code-instruct-128k
https://huggingface.co/ibm-granite/granite-3.0-3b-a800m-instruct
https://huggingface.co/ibm-granite/granite-3.0-2b-instruct
https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-2.4B-Instruct
https://huggingface.co/internlm/internlm2_5-1_8b-chat
https://huggingface.co/stabilityai/stable-code-instruct-3b
https://huggingface.co/meta-llama/CodeLlama-7b-Instruct-hf
https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
https://huggingface.co/google/codegemma-1.1-7b-it
https://huggingface.co/google/gemma-2-9b-it
https://huggingface.co/Qwen/Qwen2.5-Coder-7B-Instruct
https://huggingface.co/Qwen/Qwen2.5-7B-Instruct
https://huggingface.co/AIDC-AI/Marco-o1
https://huggingface.co/deepseek-ai/deepseek-coder-7b-instruct-v1.5
https://huggingface.co/deepseek-ai/deepseek-llm-7b-chat
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-8B
https://huggingface.co/tiiuae/Falcon3-7B-Instruct
https://huggingface.co/baichuan-inc/Baichuan2-7B-Chat
https://huggingface.co/01-ai/Yi-Coder-9B-Chat
https://huggingface.co/01-ai/Yi-1.5-9B-Chat
https://huggingface.co/ibm-granite/granite-8b-code-instruct-128k
https://huggingface.co/ibm-granite/granite-3.0-8b-instruct
https://huggingface.co/LGAI-EXAONE/EXAONE-3.5-7.8B-Instruct
https://huggingface.co/meta-llama/CodeLlama-13b-Instruct-hf
https://huggingface.co/Qwen/Qwen2.5-Coder-14B-Instruct
https://huggingface.co/Qwen/Qwen2.5-14B-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-Coder-V2-Lite-Instruct
https://huggingface.co/deepseek-ai/DeepSeek-V2-Lite-Chat
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-14B
https://huggingface.co/tiiuae/falcon-11B
https://huggingface.co/tiiuae/Falcon3-10B-Instruct
https://huggingface.co/baichuan-inc/Baichuan2-13B-Chat
https://huggingface.co/WizardLMTeam/WizardLM-13B-V1.2
https://huggingface.co/bigcode/starcoder2-15b-instruct-v0.1
https://huggingface.co/mistralai/Mistral-Nemo-Instruct-2407
https://huggingface.co/meta-llama/CodeLlama-34b-Instruct-hf
https://huggingface.co/google/gemma-2-27b-it
https://huggingface.co/Qwen/Qwen2.5-Coder-32B-Instruct
https://huggingface.co/Qwen/Qwen2.5-32B-Instruct
https://huggingface.co/Qwen/QwQ-32B-Preview
https://huggingface.co/NovaSky-AI/Sky-T1-32B-Preview
https://huggingface.co/deepseek-ai/deepseek-coder-33b-instruct
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-32B
https://huggingface.co/meta-llama/CodeLlama-70b-Instruct-hf
https://huggingface.co/meta-llama/Llama-3.1-70B-Instruct
https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
https://huggingface.co/Qwen/Qwen2.5-72B-Instruct
https://huggingface.co/deepseek-ai/deepseek-llm-67b-chat
https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Llama-70B
https://huggingface.co/WizardLMTeam/WizardLM-70B-V1.0
https://huggingface.co/LLM360/K2-Chat
https://huggingface.co/tiiuae/falcon-40b-instruct


Scale Model C C++ CSharp Go Java JavaScript PHP Python Ruby Overall

≤3B

Llama-3.2-3B-Instruct 23.0 18.0 22.0 21.0 29.0 24.0 36.0 33.0 27.0 25.9
Llama-3.2-1B-Instruct 4.0 7.0 1.0 9.0 11.0 2.0 9.0 5.0 3.0 5.7
Qwen2.5-Coder-3B-Instruct 24.0 28.0 27.0 30.0 30.0 25.0 42.0 30.0 37.0 30.3
Qwen2.5-Coder-1.5B-Instruct 11.0 16.0 19.0 23.0 23.0 19.0 36.0 23.0 21.0 21.2
Qwen2.5-3B-Instruct 15.0 16.0 12.0 24.0 18.0 26.0 31.0 24.0 26.0 21.3
Qwen2.5-1.5B-Instruct 14.0 17.0 12.0 16.0 24.0 19.0 27.0 23.0 28.0 20.0
deepseek-coder-1.3b-instruct 7.0 8.0 10.0 13.0 13.0 6.0 16.0 16.0 16.0 11.7
DeepSeek-R1-Distill-Qwen-1.5B 0.0 5.0 3.0 4.0 1.0 2.0 2.0 2.0 1.0 2.2
Falcon3-3B-Instruct 11.0 14.0 7.0 19.0 14.0 16.0 21.0 8.0 18.0 14.2
Falcon3-1B-Instruct 2.0 3.0 2.0 7.0 5.0 4.0 4.0 2.0 2.0 3.4
Phi-3-mini-128k-instruct 15.0 6.0 3.0 2.0 1.0 11.0 8.0 8.0 15.0 7.7
Yi-Coder-1.5B-Chat 5.0 6.0 3.0 4.0 4.0 4.0 10.0 5.0 10.0 5.7
granite-3b-code-instruct-128k 21.0 23.0 21.0 28.0 27.0 23.0 24.0 30.0 24.0 24.6
granite-3.0-3b-a800m-instruct 10.0 14.0 6.0 13.0 21.0 11.0 18.0 23.0 16.0 14.7
granite-3.0-2b-instruct 16.0 18.0 13.0 16.0 19.0 19.0 29.0 29.0 25.0 20.4
EXAONE-3.5-2.4B-Instruct 5.0 6.0 1.0 0.0 2.0 4.0 4.0 3.0 9.0 3.8
internlm2_5-1_8b-chat 5.0 5.0 2.0 3.0 6.0 4.0 7.0 7.0 4.0 4.8
stable-code-instruct-3b 8.0 4.0 1.0 4.0 2.0 2.0 10.0 10.0 5.0 5.1

≤9B

CodeLlama-7b-Instruct-hf 30.0 27.0 27.0 36.0 41.0 30.0 43.0 40.0 41.0 35.0
Llama-3.1-8B-Instruct 28.0 31.0 16.0 17.0 16.0 20.0 30.0 38.0 40.0 26.2
codegemma-1.1-7b-it 22.0 10.0 25.0 32.0 21.0 32.0 26.0 27.0 41.0 26.2
gemma-2-9b-it 29.0 31.0 44.0 39.0 34.0 39.0 46.0 47.0 42.0 39.0
Qwen2.5-Coder-7B-Instruct 29.0 38.0 44.0 37.0 40.0 39.0 47.0 47.0 48.0 41.0
Qwen2.5-7B-Instruct 22.0 21.0 33.0 34.0 41.0 36.0 43.0 43.0 48.0 35.7
Marco-o1 27.0 28.0 33.0 37.0 34.0 32.0 40.0 41.0 43.0 35.0
deepseek-coder-7b-instruct-v1.5 33.0 34.0 28.0 39.0 37.0 34.0 36.0 44.0 42.0 36.3
deepseek-llm-7b-chat 15.0 15.0 14.0 17.0 21.0 14.0 20.0 26.0 18.0 17.8
DeepSeek-R1-Distill-Qwen-7B 3.0 10.0 6.0 8.0 9.0 7.0 4.0 4.0 9.0 6.7
DeepSeek-R1-Distill-Llama-8B 3.0 5.0 3.0 6.0 1.0 8.0 3.0 6.0 9.0 4.9
Falcon3-7B-Instruct 16.0 15.0 7.0 14.0 12.0 14.0 19.0 11.0 21.0 14.3
Baichuan2-7B-Chat 9.0 15.0 8.0 15.0 18.0 11.0 21.0 18.0 13.0 14.2
Yi-Coder-9B-Chat 23.0 27.0 20.0 35.0 37.0 28.0 40.0 42.0 40.0 32.4
Yi-1.5-9B-Chat 24.0 30.0 22.0 30.0 29.0 34.0 31.0 38.0 38.0 30.7
granite-8b-code-instruct-128k 22.0 28.0 25.0 34.0 38.0 30.0 41.0 41.0 43.0 33.6
granite-3.0-8b-instruct 23.0 24.0 30.0 29.0 31.0 27.0 43.0 37.0 42.0 31.8
EXAONE-3.5-7.8B-Instruct 15.0 12.0 19.0 20.0 12.0 8.0 22.0 20.0 26.0 17.1

≤16B

CodeLlama-13b-Instruct-hf 29.0 32.0 30.0 37.0 43.0 36.0 43.0 42.0 38.0 36.7
Qwen2.5-Coder-14B-Instruct 36.0 34.0 45.0 43.0 47.0 46.0 54.0 54.0 60.0 46.6
Qwen2.5-14B-Instruct 26.0 31.0 29.0 34.0 30.0 38.0 49.0 42.0 52.0 36.8
DeepSeek-Coder-V2-Lite-Instruct 20.0 29.0 10.0 23.0 33.0 25.0 38.0 30.0 35.0 27.0
DeepSeek-V2-Lite-Chat 12.0 7.0 10.0 14.0 24.0 16.0 16.0 22.0 14.0 15.0
DeepSeek-R1-Distill-Qwen-14B 25.0 27.0 20.0 32.0 28.0 29.0 46.0 41.0 34.0 31.3
falcon-11B 16.0 14.0 22.0 23.0 19.0 17.0 23.0 23.0 20.0 19.7
Falcon3-10B-Instruct 19.0 23.0 14.0 14.0 24.0 15.0 26.0 27.0 39.0 22.3
Baichuan2-13B-Chat 11.0 14.0 12.0 17.0 10.0 13.0 24.0 25.0 19.0 16.1
WizardLM-13B-V1.2 15.0 20.0 21.0 20.0 19.0 23.0 32.0 31.0 25.0 22.9
Phi-3-medium-128k-instruct 21.0 22.0 24.0 32.0 35.0 29.0 35.0 38.0 36.0 30.2
phi-4 41.0 23.0 38.0 36.0 38.0 37.0 37.0 48.0 36.0 37.1
starcoder2-15b-instruct-v0.1 25.0 34.0 29.0 40.0 39.0 29.0 29.0 39.0 39.0 33.7
Mistral-Nemo-Instruct-2407 29.0 22.0 27.0 33.0 29.0 38.0 38.0 39.0 43.0 33.1

≤34B

CodeLlama-34b-Instruct-hf 37.0 36.0 38.0 47.0 45.0 41.0 51.0 46.0 47.0 43.1
gemma-2-27b-it 38.0 37.0 42.0 47.0 43.0 47.0 56.0 54.0 54.0 46.4
Qwen2.5-Coder-32B-Instruct 35.0 35.0 40.0 45.0 40.0 39.0 51.0 51.0 61.0 44.1
Qwen2.5-32B-Instruct 38.0 41.0 40.0 52.0 49.0 32.0 51.0 47.0 55.0 45.0
QwQ-32B-Preview 39.0 42.0 46.0 51.0 45.0 43.0 58.0 42.0 44.0 45.6
Sky-T1-32B-Preview 36.0 38.0 35.0 49.0 43.0 32.0 52.0 46.0 51.0 42.4
deepseek-coder-33b-instruct 28.0 30.0 22.0 40.0 32.0 28.0 38.0 40.0 37.0 32.8
DeepSeek-R1-Distill-Qwen-32B 25.0 23.0 36.0 22.0 25.0 31.0 36.0 35.0 42.0 30.6
Yi-1.5-34B-Chat 22.0 30.0 28.0 28.0 27.0 27.0 39.0 39.0 40.0 31.1
Mistral-Small-Instruct-2409 34.0 39.0 44.0 42.0 42.0 51.0 53.0 50.0 55.0 45.6
granite-34b-code-instruct-8k 23.0 27.0 31.0 36.0 35.0 32.0 48.0 45.0 42.0 35.4
internlm2_5-20b-chat 29.0 24.0 31.0 37.0 33.0 28.0 40.0 40.0 39.0 33.4
EXAONE-3.5-32B-Instruct 27.0 28.0 28.0 24.0 28.0 29.0 39.0 32.0 39.0 30.4

≤72B

CodeLlama-70b-Instruct-hf 42.0 38.0 38.0 48.0 48.0 41.0 54.0 53.0 45.0 45.2
Llama-3.1-70B-Instruct 46.0 42.0 45.0 49.0 47.0 57.0 55.0 50.0 62.0 50.3
Llama-3.3-70B-Instruct 40.0 33.0 36.0 19.0 31.0 34.0 40.0 17.0 46.0 32.9
Qwen2.5-72B-Instruct 46.0 45.0 44.0 44.0 48.0 44.0 53.0 56.0 58.0 48.7
deepseek-llm-67b-chat 29.0 33.0 31.0 41.0 35.0 43.0 50.0 44.0 51.0 39.7
DeepSeek-R1-Distill-Llama-70B 20.0 23.0 23.0 23.0 26.0 43.0 35.0 24.0 41.0 28.7
WizardLM-70B-V1.0 16.0 31.0 29.0 28.0 32.0 33.0 36.0 32.0 41.0 30.9
K2-Chat 34.0 35.0 36.0 41.0 35.0 33.0 50.0 48.0 47.0 39.9
falcon-40b-instruct 17.0 13.0 12.0 20.0 21.0 21.0 27.0 24.0 16.0 19.0

Best Score Overall, Best Score within Scale

Table 7: Automated Code Refinement Results (Exact Match Rate).
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Scale Model C C++ CSharp Go Java JavaScript PHP Python Ruby Overall

≤3B

Llama-3.2-3B-Instruct 73.0 80.0 73.0 80.0 82.0 79.0 85.0 72.0 85.0 78.8
Llama-3.2-1B-Instruct 72.0 76.0 72.0 77.0 79.0 77.0 80.0 73.0 79.0 76.1
Qwen2.5-Coder-3B-Instruct 72.0 76.0 72.0 80.0 81.0 80.0 81.0 71.0 86.0 77.7
Qwen2.5-Coder-1.5B-Instruct 67.0 74.0 67.0 75.0 76.0 73.0 76.0 65.0 81.0 72.7
Qwen2.5-3B-Instruct 70.0 76.0 64.0 72.0 72.0 64.0 68.0 59.0 74.0 68.8
Qwen2.5-1.5B-Instruct 71.0 79.0 70.0 80.0 83.0 78.0 82.0 74.0 87.0 78.2
deepseek-coder-1.3b-instruct 11.0 0.0 1.0 1.0 3.0 0.0 0.0 0.0 1.0 1.9
DeepSeek-R1-Distill-Qwen-1.5B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Falcon3-3B-Instruct 42.0 58.0 50.0 53.0 53.0 56.0 59.0 43.0 54.0 52.0
Falcon3-1B-Instruct 36.0 64.0 33.0 66.0 62.0 52.0 66.0 53.0 70.0 55.8
Phi-3-mini-128k-instruct 73.0 77.0 74.0 74.0 81.0 77.0 81.0 72.0 83.0 76.9
Yi-Coder-1.5B-Chat 0.0 5.0 5.0 25.0 3.0 2.0 5.0 7.0 9.0 6.8
granite-3b-code-instruct-128k 28.0 23.0 26.0 40.0 36.0 30.0 21.0 22.0 26.0 28.0
granite-3.0-3b-a800m-instruct 50.0 37.0 28.0 37.0 17.0 19.0 40.0 23.0 17.0 29.8
granite-3.0-2b-instruct 66.0 69.0 69.0 70.0 76.0 69.0 72.0 54.0 76.0 69.0
EXAONE-3.5-2.4B-Instruct 55.0 71.0 65.0 67.0 69.0 58.0 73.0 52.0 78.0 65.3
internlm2_5-1_8b-chat 70.0 69.0 58.0 68.0 67.0 52.0 79.0 60.0 57.0 64.4
stable-code-instruct-3b 0.0 0.0 0.0 0.0 3.0 2.0 1.0 0.0 2.0 0.9

≤9B

CodeLlama-7b-Instruct-hf 68.0 78.0 73.0 78.0 78.0 75.0 81.0 66.0 82.0 75.4
Llama-3.1-8B-Instruct 68.0 74.0 65.0 77.0 72.0 74.0 77.0 62.0 77.0 71.8
codegemma-1.1-7b-it 73.0 80.0 75.0 81.0 83.0 80.0 86.0 74.0 87.0 79.9
gemma-2-9b-it 72.0 80.0 69.0 74.0 78.0 75.0 76.0 59.0 84.0 74.1
Qwen2.5-Coder-7B-Instruct 71.0 80.0 73.0 80.0 83.0 80.0 85.0 70.0 85.0 78.6
Qwen2.5-7B-Instruct 72.0 79.0 74.0 79.0 81.0 74.0 70.0 71.0 83.0 75.9
Marco-o1 73.0 81.0 76.0 81.0 82.0 74.0 76.0 75.0 85.0 78.1
deepseek-coder-7b-instruct-v1.5 58.0 68.0 58.0 65.0 54.0 51.0 61.0 44.0 64.0 58.1
deepseek-llm-7b-chat 66.0 76.0 66.0 75.0 78.0 74.0 80.0 66.0 79.0 73.3
DeepSeek-R1-Distill-Qwen-7B 1.0 1.0 0.0 0.0 1.0 2.0 0.0 1.0 3.0 1.0
DeepSeek-R1-Distill-Llama-8B 0.0 0.0 1.0 1.0 0.0 1.0 0.0 0.0 1.0 0.4
Falcon3-7B-Instruct 66.0 76.0 73.0 75.0 79.0 73.0 74.0 67.0 76.0 73.2
Baichuan2-7B-Chat 25.0 77.0 74.0 80.0 77.0 78.0 84.0 68.0 82.0 71.7
Yi-Coder-9B-Chat 57.0 66.0 44.0 54.0 50.0 50.0 63.0 39.0 46.0 52.1
Yi-1.5-9B-Chat 73.0 80.0 75.0 83.0 83.0 77.0 79.0 72.0 85.0 78.6
granite-8b-code-instruct-128k 71.0 78.0 71.0 77.0 77.0 76.0 81.0 69.0 82.0 75.8
granite-3.0-8b-instruct 56.0 62.0 47.0 57.0 51.0 53.0 68.0 45.0 64.0 55.9
EXAONE-3.5-7.8B-Instruct 67.0 66.0 63.0 70.0 65.0 66.0 74.0 60.0 77.0 67.6

≤16B

CodeLlama-13b-Instruct-hf 42.0 78.0 68.0 68.0 66.0 74.0 77.0 58.0 79.0 67.8
Qwen2.5-Coder-14B-Instruct 69.0 79.0 66.0 74.0 77.0 74.0 82.0 64.0 80.0 73.9
Qwen2.5-14B-Instruct 68.0 73.0 76.0 74.0 80.0 73.0 77.0 62.0 77.0 73.3
DeepSeek-Coder-V2-Lite-Instruct 70.0 81.0 77.0 80.0 79.0 69.0 75.0 72.0 78.0 75.7
DeepSeek-V2-Lite-Chat 72.0 80.0 66.0 79.0 83.0 77.0 84.0 69.0 81.0 76.8
DeepSeek-R1-Distill-Qwen-14B 67.0 68.0 72.0 72.0 77.0 76.0 78.0 64.0 80.0 72.7
falcon-11B 72.0 80.0 74.0 81.0 83.0 80.0 85.0 74.0 87.0 79.6
Falcon3-10B-Instruct 71.0 54.0 53.0 44.0 50.0 26.0 51.0 31.0 22.0 44.7
Baichuan2-13B-Chat 14.0 80.0 67.0 76.0 78.0 75.0 83.0 69.0 76.0 68.7
WizardLM-13B-V1.2 42.0 69.0 66.0 68.0 70.0 51.0 74.0 67.0 79.0 65.1
starcoder2-15b-instruct-v0.1 48.0 43.0 31.0 42.0 38.0 43.0 50.0 37.0 29.0 40.1
Mistral-Nemo-Instruct-2407 69.0 78.0 73.0 80.0 76.0 76.0 78.0 69.0 83.0 75.8

≤34B

CodeLlama-34b-Instruct-hf 1.0 4.0 1.0 0.0 1.0 0.0 2.0 2.0 3.0 1.6
gemma-2-27b-it 69.0 77.0 70.0 76.0 73.0 73.0 77.0 68.0 83.0 74.0
Qwen2.5-Coder-32B-Instruct 69.0 82.0 81.0 82.0 85.0 77.0 80.0 72.0 84.0 79.1
Qwen2.5-32B-Instruct 73.0 76.0 71.0 68.0 78.0 72.0 64.0 67.0 70.0 71.0
QwQ-32B-Preview 47.0 64.0 59.0 60.0 66.0 62.0 63.0 55.0 67.0 60.3
Sky-T1-32B-Preview 56.0 68.0 61.0 58.0 71.0 64.0 60.0 61.0 64.0 62.6
deepseek-coder-33b-instruct 42.0 70.0 60.0 76.0 74.0 72.0 78.0 71.0 85.0 69.8
DeepSeek-R1-Distill-Qwen-32B 69.0 77.0 76.0 74.0 80.0 72.0 72.0 63.0 76.0 73.2

≤72B

CodeLlama-70b-Instruct-hf 72.0 79.0 71.0 81.0 83.0 75.0 83.0 73.0 83.0 77.8
Llama-3.1-70B-Instruct 59.0 71.0 75.0 68.0 71.0 74.0 67.0 63.0 68.0 68.4
Llama-3.3-70B-Instruct 59.0 68.0 69.0 67.0 70.0 73.0 65.0 59.0 64.0 66.0
Qwen2.5-72B-Instruct 75.0 81.0 82.0 80.0 83.0 79.0 77.0 75.0 86.0 79.8
deepseek-llm-67b-chat 74.0 81.0 73.0 81.0 82.0 79.0 84.0 72.0 86.0 79.1
DeepSeek-R1-Distill-Llama-70B 50.0 68.0 63.0 55.0 67.0 65.0 60.0 60.0 63.0 61.2
WizardLM-70B-V1.0 72.0 82.0 73.0 80.0 80.0 81.0 82.0 73.0 84.0 78.6
K2-Chat 72.0 79.0 71.0 82.0 83.0 77.0 81.0 72.0 86.0 78.1
falcon-40b-instruct 12.0 57.0 58.0 72.0 69.0 65.0 74.0 57.0 77.0 60.1

Best Score Overall, Best Score within Scale

Table 8: Change Type Recognition (Invariant Accuracy).
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Scale Model C C++ CSharp Go Java JavaScript PHP Python Ruby Overall

≤3B

Llama-3.2-3B-Instruct 2.0 0.0 0.0 0.0 1.0 0.0 2.0 1.0 1.0 0.8
Llama-3.2-1B-Instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen2.5-Coder-3B-Instruct 0.0 4.0 1.0 2.0 2.0 0.0 2.0 2.0 3.0 1.8
Qwen2.5-Coder-1.5B-Instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen2.5-3B-Instruct 41.0 34.0 45.0 39.0 45.0 31.0 46.0 37.0 36.0 39.3
Qwen2.5-1.5B-Instruct 2.0 1.0 2.0 1.0 3.0 1.0 4.0 1.0 1.0 1.8
deepseek-coder-1.3b-instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DeepSeek-R1-Distill-Qwen-1.5B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Falcon3-3B-Instruct 0.0 3.0 1.0 5.0 2.0 1.0 2.0 0.0 1.0 1.7
Falcon3-1B-Instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Phi-3-mini-128k-instruct 27.0 24.0 34.0 38.0 32.0 28.0 48.0 43.0 33.0 34.1
Yi-Coder-1.5B-Chat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
granite-3b-code-instruct-128k 0.0 1.0 0.0 1.0 1.0 1.0 2.0 1.0 0.0 0.8
granite-3.0-3b-a800m-instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
granite-3.0-2b-instruct 4.0 2.0 3.0 1.0 1.0 1.0 4.0 0.0 0.0 1.8
EXAONE-3.5-2.4B-Instruct 3.0 1.0 1.0 0.0 0.0 5.0 1.0 2.0 0.0 1.4
internlm2_5-1_8b-chat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
stable-code-instruct-3b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

≤9B

CodeLlama-7b-Instruct-hf 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.3
Llama-3.1-8B-Instruct 37.0 39.0 39.0 37.0 38.0 28.0 48.0 41.0 28.0 37.2
codegemma-1.1-7b-it 5.0 1.0 4.0 6.0 6.0 1.0 3.0 3.0 3.0 3.6
gemma-2-9b-it 45.0 55.0 55.0 68.0 58.0 61.0 72.0 60.0 59.0 59.2
Qwen2.5-Coder-7B-Instruct 6.0 7.0 16.0 14.0 13.0 9.0 38.0 12.0 9.0 13.8
Qwen2.5-7B-Instruct 31.0 27.0 39.0 37.0 37.0 36.0 17.0 28.0 34.0 31.8
Marco-o1 31.0 26.0 36.0 36.0 27.0 38.0 40.0 28.0 28.0 32.2
deepseek-coder-7b-instruct-v1.5 7.0 4.0 9.0 4.0 8.0 5.0 9.0 2.0 3.0 5.7
deepseek-llm-7b-chat 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 4.0 0.6
DeepSeek-R1-Distill-Qwen-7B 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.2
DeepSeek-R1-Distill-Llama-8B 1.0 0.0 0.0 0.0 2.0 0.0 1.0 0.0 2.0 0.7
Falcon3-7B-Instruct 18.0 25.0 28.0 30.0 37.0 26.0 43.0 30.0 25.0 29.1
Baichuan2-7B-Chat 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.1
Yi-Coder-9B-Chat 2.0 3.0 9.0 10.0 8.0 4.0 8.0 8.0 1.0 5.9
Yi-1.5-9B-Chat 33.0 42.0 37.0 44.0 43.0 40.0 51.0 42.0 40.0 41.3
granite-8b-code-instruct-128k 12.0 13.0 19.0 19.0 24.0 14.0 18.0 16.0 9.0 16.0
granite-3.0-8b-instruct 20.0 15.0 28.0 35.0 27.0 28.0 41.0 29.0 17.0 26.7
EXAONE-3.5-7.8B-Instruct 28.0 21.0 32.0 48.0 38.0 33.0 40.0 32.0 29.0 33.4

≤16B

CodeLlama-13b-Instruct-hf 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.11
Qwen2.5-Coder-14B-Instruct 42.0 31.0 49.0 49.0 49.0 50.0 61.0 47.0 42.0 46.7
Qwen2.5-14B-Instruct 60.0 59.0 64.0 72.0 60.0 74.0 74.0 60.0 66.0 65.4
DeepSeek-Coder-V2-Lite-Instruct 11.0 6.0 6.0 7.0 9.0 7.0 8.0 4.0 4.0 6.9
DeepSeek-V2-Lite-Chat 2.0 3.0 10.0 9.0 11.0 7.0 13.0 5.0 7.0 7.4
DeepSeek-R1-Distill-Qwen-14B 46.0 47.0 62.0 59.0 58.0 59.0 68.0 61.0 62.0 58.0
falcon-11B 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Falcon3-10B-Instruct 9.0 16.0 18.0 17.0 21.0 10.0 27.0 14.0 8.0 15.6
Baichuan2-13B-Chat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WizardLM-13B-V1.2 1.0 0.0 0.0 0.0 1.0 0.0 2.0 0.0 0.0 0.4
starcoder2-15b-instruct-v0.1 0.0 0.0 0.0 1.0 0.0 0.0 1.0 1.0 0.0 0.3
Mistral-Nemo-Instruct-2407 25.0 24.0 35.0 36.0 32.0 33.0 43.0 35.0 31.0 32.7

≤34B

CodeLlama-34b-Instruct-hf 1.0 0.0 3.0 3.0 3.0 4.0 0.0 0.0 2.0 1.8
gemma-2-27b-it 64.0 62.0 79.0 71.0 68.0 72.0 76.0 72.0 67.0 70.1
Qwen2.5-Coder-32B-Instruct 64.0 63.0 74.0 74.0 74.0 76.0 76.0 71.0 72.0 71.6
Qwen2.5-32B-Instruct 58.0 58.0 76.0 81.0 72.0 77.0 77.0 70.0 69.0 70.9
QwQ-32B-Preview 39.0 41.0 61.0 54.0 49.0 60.0 65.0 53.0 47.0 52.1
Sky-T1-32B-Preview 47.0 49.0 66.0 64.0 56.0 66.0 70.0 58.0 58.0 59.3
deepseek-coder-33b-instruct 0.0 3.0 3.0 6.0 2.0 3.0 8.0 10.0 3.0 4.2
DeepSeek-R1-Distill-Qwen-32B 56.0 60.0 77.0 68.0 66.0 74.0 74.0 70.0 69.0 68.2

≤72B

CodeLlama-70b-Instruct-hf 8.0 9.0 14.0 10.0 13.0 17.0 31.0 16.0 11.0 14.3
Llama-3.1-70B-Instruct 72.0 68.0 74.0 81.0 73.0 78.0 82.0 74.0 70.0 74.7
Llama-3.3-70B-Instruct 65.0 68.0 76.0 80.0 76.0 78.0 82.0 73.0 72.0 74.4
Qwen2.5-72B-Instruct 46.0 53.0 71.0 74.0 64.0 69.0 73.0 63.0 65.0 64.2
deepseek-llm-67b-chat 36.0 28.0 47.0 44.0 49.0 38.0 60.0 45.0 35.0 42.4
DeepSeek-R1-Distill-Llama-70B 45.0 44.0 62.0 51.0 53.0 57.0 71.0 55.0 57.0 55.0
WizardLM-70B-V1.0 25.0 16.0 25.0 24.0 30.0 19.0 30.0 29.0 22.0 24.4
K2-Chat 39.0 31.0 45.0 45.0 43.0 37.0 59.0 50.0 31.0 42.2
falcon-40b-instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Best Score Overall, Best Score within Scale

Table 9: Change Localisation - Easy (Invariant Accuracy).
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Scale Model C C++ CSharp Go Java JavaScript PHP Python Ruby Overall

≤3B

Llama-3.2-3B-Instruct 0.0 1.0 0.0 0.0 0.0 0.0 1.0 0.0 1.0 0.3
Llama-3.2-1B-Instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen2.5-Coder-3B-Instruct 0.0 3.0 0.0 2.0 2.0 1.0 3.0 2.0 3.0 1.8
Qwen2.5-Coder-1.5B-Instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Qwen2.5-3B-Instruct 34.0 27.0 39.0 31.0 39.0 28.0 45.0 34.0 38.0 35.0
Qwen2.5-1.5B-Instruct 0.0 1.0 1.0 1.0 2.0 1.0 4.0 0.0 1.0 1.2
deepseek-coder-1.3b-instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DeepSeek-R1-Distill-Qwen-1.5B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Falcon3-3B-Instruct 0.0 3.0 1.0 5.0 2.0 1.0 2.0 0.0 1.0 1.7
Falcon3-1B-Instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Phi-3-mini-128k-instruct 21.0 21.0 29.0 36.0 26.0 27.0 48.0 36.0 32.0 30.7
Yi-Coder-1.5B-Chat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
granite-3b-code-instruct-128k 0.0 1.0 0.0 1.0 0.0 1.0 2.0 1.0 0.0 0.7
granite-3.0-3b-a800m-instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
granite-3.0-2b-instruct 2.0 2.0 1.0 0.0 0.0 1.0 3.0 0.0 0.0 1.0
EXAONE-3.5-2.4B-Instruct 1.0 0.0 1.0 0.0 0.0 3.0 1.0 1.0 0.0 0.8
internlm2_5-1_8b-chat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
stable-code-instruct-3b 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

≤9B

CodeLlama-7b-Instruct-hf 0.0 1.0 0.0 0.0 1.0 0.0 1.0 0.0 0.0 0.3
Llama-3.1-8B-Instruct 27.0 30.0 29.0 27.0 29.0 28.0 41.0 32.0 25.0 29.8
codegemma-1.1-7b-it 3.0 1.0 4.0 5.0 5.0 1.0 3.0 3.0 3.0 3.1
gemma-2-9b-it 41.0 45.0 49.0 58.0 49.0 55.0 68.0 50.0 53.0 52.0
Qwen2.5-Coder-7B-Instruct 6.0 5.0 15.0 13.0 12.0 8.0 18.0 10.0 9.0 10.7
Qwen2.5-7B-Instruct 26.0 28.0 41.0 32.0 36.0 40.0 43.0 28.0 34.0 34.2
Marco-o1 25.0 26.0 30.0 27.0 31.0 34.0 40.0 24.0 30.0 29.7
deepseek-coder-7b-instruct-v1.5 5.0 4.0 6.0 2.0 5.0 5.0 9.0 2.0 3.0 4.6
deepseek-llm-7b-chat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 4.0 0.4
DeepSeek-R1-Distill-Qwen-7B 0.0 0.0 0.0 0.0 0.0 1.0 0.0 0.0 1.0 0.2
DeepSeek-R1-Distill-Llama-8B 1.0 0.0 0.0 0.0 1.0 0.0 1.0 0.0 2.0 0.6
Falcon3-7B-Instruct 10.0 20.0 21.0 21.0 26.0 20.0 38.0 25.0 22.0 22.6
Baichuan2-7B-Chat 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.1
Yi-Coder-9B-Chat 1.0 1.0 4.0 7.0 4.0 5.0 8.0 4.0 1.0 3.9
Yi-1.5-9B-Chat 36.0 46.0 40.0 44.0 45.0 43.0 54.0 45.0 36.0 43.2
granite-8b-code-instruct-128k 10.0 9.0 16.0 15.0 17.0 11.0 15.0 10.0 11.0 12.7
granite-3.0-8b-instruct 15.0 11.0 23.0 27.0 22.0 27.0 40.0 23.0 16.0 22.7
EXAONE-3.5-7.8B-Instruct 18.0 18.0 25.0 35.0 29.0 29.0 37.0 28.0 27.0 27.3

≤16B

CodeLlama-13b-Instruct-hf 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1
Qwen2.5-Coder-14B-Instruct 29.0 22.0 37.0 38.0 37.0 45.0 56.0 36.0 36.0 37.3
Qwen2.5-14B-Instruct 51.0 48.0 58.0 59.0 55.0 67.0 69.0 46.0 61.0 57.1
DeepSeek-Coder-V2-Lite-Instruct 9.0 4.0 3.0 7.0 8.0 7.0 8.0 4.0 6.0 6.2
DeepSeek-V2-Lite-Chat 2.0 3.0 6.0 10.0 9.0 7.0 14.0 4.0 7.0 6.9
DeepSeek-R1-Distill-Qwen-14B 43.0 39.0 57.0 51.0 52.0 57.0 67.0 50.0 63.0 53.2
falcon-11B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Falcon3-10B-Instruct 6.0 14.0 15.0 17.0 11.0 8.0 20.0 9.0 8.0 12.0
Baichuan2-13B-Chat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
WizardLM-13B-V1.2 0.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 0.0 0.1
starcoder2-15b-instruct-v0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Mistral-Nemo-Instruct-2407 19.0 23.0 32.0 32.0 29.0 31.0 40.0 25.0 30.0 29.0

≤34B

CodeLlama-34b-Instruct-hf 1.0 0.0 3.0 3.0 3.0 4.0 0.0 0.0 2.0 1.8
gemma-2-27b-it 52.0 48.0 67.0 52.0 57.0 63.0 67.0 61.0 61.0 58.7
Qwen2.5-Coder-32B-Instruct 53.0 55.0 66.0 66.0 64.0 74.0 76.0 56.0 69.0 64.3
Qwen2.5-32B-Instruct 58.0 58.0 70.0 75.0 66.0 74.0 77.0 61.0 69.0 67.6
QwQ-32B-Preview 37.0 43.0 52.0 54.0 44.0 62.0 63.0 47.0 49.0 50.1
Sky-T1-32B-Preview 41.0 48.0 60.0 63.0 53.0 68.0 72.0 49.0 57.0 56.8
deepseek-coder-33b-instruct 0.0 3.0 3.0 4.0 1.0 1.0 8.0 6.0 3.0 3.2
DeepSeek-R1-Distill-Qwen-32B 54.0 58.0 65.0 67.0 61.0 74.0 73.0 61.0 68.0 64.6

≤72B

CodeLlama-70b-Instruct-hf 5.0 6.0 11.0 9.0 8.0 16.0 27.0 9.0 11.0 11.3
Llama-3.1-70B-Instruct 65.0 61.0 67.0 73.0 68.0 76.0 80.0 66.0 65.0 69.0
Llama-3.3-70B-Instruct 57.0 58.0 65.0 71.0 65.0 77.0 77.0 61.0 68.0 66.6
Qwen2.5-72B-Instruct 42.0 47.0 60.0 62.0 61.0 65.0 71.0 50.0 67.0 58.3
deepseek-llm-67b-chat 28.0 26.0 40.0 40.0 41.0 36.0 58.0 40.0 31.0 37.8
DeepSeek-R1-Distill-Llama-70B 37.0 38.0 45.0 42.0 46.0 52.0 67.0 46.0 53.0 47.3
WizardLM-70B-V1.0 22.0 9.0 18.0 20.0 21.0 18.0 25.0 20.0 20.0 19.2
K2-Chat 29.0 29.0 40.0 47.0 38.0 37.0 56.0 47.0 32.0 39.4
falcon-40b-instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Best Score Overall, Best Score within Scale

Table 10: Change Localisation - Hard (Invariant Accuracy).
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≤3B

Llama-3.2-3B-Instruct 3.75 5.88 11.69 16.28 3.49 6.98 7.78 8.97 23.86 9.9
Llama-3.2-1B-Instruct 2.5 1.2 1.3 3.5 1.2 2.3 1.1 5.1 1.1 2.2
Qwen2.5-Coder-3B-Instruct 11.25 11.8 15.6 11.6 17.4 6.9 16.7 15.4 3.4 12.2
Qwen2.5-Coder-1.5B-Instruct 5.0 5.9 5.2 2.3 2.3 4.7 10.0 10.3 5.7 5.7
Qwen2.5-3B-Instruct 50.0 61.2 52.0 53.5 59.3 56.9 62.2 51.3 51.1 55.3
Qwen2.5-1.5B-Instruct 32.5 52.9 46.8 40.7 44.2 44.2 57.8 39.7 52.3 45.7
deepseek-coder-1.3b-instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 1.3 0.0 0.1
DeepSeek-R1-Distill-Qwen-1.5B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Falcon3-3B-Instruct 15.0 30.6 27.3 29.0 29.1 29.1 37.8 32.1 21.6 27.9
Falcon3-1B-Instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Phi-3-mini-128k-instruct 53.75 55.3 59.7 54.7 62.8 69.8 56.7 55.1 55.7 58.2
Yi-Coder-1.5B-Chat 0.0 1.2 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.3
granite-3b-code-instruct-128k 3.75 2.4 0.0 4.7 2.3 0.0 3.3 6.4 3.4 2.9
granite-3.0-3b-a800m-instruct 7.5 8.2 6.5 5.8 9.3 8.1 11.1 5.1 3.4 7.2
granite-3.0-2b-instruct 20.0 21.1 14.3 22.1 18.6 22.1 21.1 23.1 9.1 19.1
EXAONE-3.5-2.4B-Instruct 20.0 40.0 40.3 31.4 36.1 30.2 44.4 41.0 25.0 34.3
internlm2_5-1_8b-chat 1.3 0.0 0.0 8.1 5.8 5.8 3.3 5.1 1.1 3.4
stable-code-instruct-3b 1.3 0.0 2.6 1.2 0.0 3.5 2.2 2.6 0.0 1.5

≤9B

CodeLlama-7b-Instruct-hf 3.8 2.4 3.9 3.5 4.7 7.0 11.1 12.8 3.4 5.8
Llama-3.1-8B-Instruct 57.5 64.7 70.1 67.4 67.4 68.6 68.9 67.9 58.0 65.6
codegemma-1.1-7b-it 20.0 23.5 20.8 17.4 19.8 20.9 16.7 24.4 14.8 19.8
gemma-2-9b-it 57.5 57.6 68.8 54.7 48.8 58.1 58.9 66.7 58.0 58.8
Qwen2.5-Coder-7B-Instruct 58.8 62.4 75.3 66.3 73.3 72.1 68.9 65.4 65.9 67.6
Qwen2.5-7B-Instruct 66.3 57.6 66.2 60.5 65.1 62.8 62.2 64.1 61.4 62.9
Marco-o1 62.5 64.7 70.1 66.3 75.6 70.9 73.3 67.9 72.7 69.3
deepseek-coder-7b-instruct-v1.5 15.0 10.6 11.7 20.9 15.1 14.0 18.9 20.5 12.5 15.5
deepseek-llm-7b-chat 7.5 8.2 9.1 12.8 12.8 12.8 7.8 15.4 9.1 10.6
DeepSeek-R1-Distill-Qwen-7B 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.1
DeepSeek-R1-Distill-Llama-8B 13.8 7.1 13.0 15.1 9.3 9.3 13.3 14.1 13.6 12.1
Falcon3-7B-Instruct 50.0 54.1 42.9 47.7 50.0 36.0 40.0 39.7 38.6 44.3
Baichuan2-7B-Chat 0.0 2.4 1.3 5.8 2.3 2.3 3.3 6.4 5.7 3.3
Yi-Coder-9B-Chat 40.0 43.5 50.6 39.5 33.7 39.5 43.3 44.9 33.0 40.9
Yi-1.5-9B-Chat 60.0 68.2 64.9 59.3 70.9 72.1 61.1 71.8 65.9 66.0
granite-8b-code-instruct-128k 15.0 25.9 15.6 24.4 16.3 19.8 23.3 30.8 29.5 22.3
granite-3.0-8b-instruct 40.0 47.1 44.2 43.0 40.7 41.9 50.0 29.5 29.5 40.6
EXAONE-3.5-7.8B-Instruct 60.0 69.4 71.4 65.1 68.6 72.1 76.7 66.7 65.9 68.4

≤16B

CodeLlama-13b-Instruct-hf 2.5 8.2 13.0 11.6 11.6 15.1 14.4 23.1 25.0 13.8
Qwen2.5-Coder-14B-Instruct 62.5 55.3 72.7 66.3 75.6 61.6 67.8 61.5 65.9 65.5
Qwen2.5-14B-Instruct 90.0 83.5 90.9 89.5 88.4 88.4 87.8 83.3 88.6 87.8
DeepSeek-Coder-V2-Lite-Instruct 22.5 17.6 13.0 12.8 17.4 15.1 14.4 24.4 13.6 16.8
DeepSeek-V2-Lite-Chat 27.5 34.1 28.6 26.0 23.3 20.9 24.4 28.2 18.2 25.7
DeepSeek-R1-Distill-Qwen-14B 72.5 72.9 88.3 77.9 77.9 83.7 80.0 66.7 75.0 77.2
falcon-11B 8.8 10.6 9.1 10.5 2.3 10.5 10.0 16.7 5.7 9.3
Falcon3-10B-Instruct 42.5 32.9 23.4 18.6 23.3 17.4 30.0 11.5 14.8 23.8
Baichuan2-13B-Chat 0.0 0.0 1.3 0.0 0.0 2.3 1.1 5.1 0.0 1.1
WizardLM-13B-V1.2 6.3 5.9 2.6 11.6 1.2 9.3 5.6 9.0 2.3 6.0
starcoder2-15b-instruct-v0.1 11.3 14.1 20.8 15.1 11.6 14.0 23.3 25.6 18.2 17.1
Mistral-Nemo-Instruct-2407 57.5 58.8 67.5 62.8 65.1 55.8 57.8 61.5 65.9 61.4

≤34B

CodeLlama-34b-Instruct-hf 7.5 11.8 18.2 12.8 15.1 17.4 10.0 11.5 18.2 13.6
gemma-2-27b-it 80.0 78.8 79.2 72.1 83.7 72.1 72.2 70.5 77.3 76.2
Qwen2.5-Coder-32B-Instruct 91.3 84.7 96.1 94.2 91.9 96.5 94.4 85.9 89.8 91.6
Qwen2.5-32B-Instruct 90.0 91.8 96.1 89.5 89.5 91.9 96.7 89.7 95.5 92.3
QwQ-32B-Preview 68.8 72.9 89.6 74.4 80.2 84.9 82.2 74.4 84.1 79.1
Sky-T1-32B-Preview 80.0 84.7 93.5 82.6 86.0 89.5 94.4 80.8 92.0 87.1
deepseek-coder-33b-instruct 6.3 3.5 6.5 12.8 4.7 11.6 15.6 16.7 13.6 10.1

≤72B

CodeLlama-70b-Instruct-hf 32.5 38.8 42.9 37.2 34.9 46.5 42.2 43.6 38.6 39.7
Llama-3.1-70B-Instruct 85.0 77.6 88.3 83.7 87.2 90.7 86.7 74.4 84.1 84.2
Llama-3.3-70B-Instruct 86.3 76.5 89.6 83.7 83.7 90.7 87.8 75.6 87.5 84.6
Qwen2.5-72B-Instruct 97.5 98.8 97.4 96.5 98.8 97.7 97.8 93.6 95.5 97.1
deepseek-llm-67b-chat 55.0 49.4 50.6 58.1 50.0 57.0 55.6 55.1 59.1 54.4
DeepSeek-R1-Distill-Llama-70B 71.3 77.6 74.0 81.4 79.1 84.9 80.0 76.9 76.1 77.9
WizardLM-70B-V1.0 52.5 52.9 62.3 55.8 60.5 61.6 62.2 56.4 55.7 57.8
K2-Chat 73.8 64.7 90.9 72.1 79.1 72.1 77.8 75.6 64.8 74.5
falcon-40b-instruct 2.5 5.9 10.4 9.3 2.3 8.1 7.8 12.8 1.1 6.7

Best Score Overall, Best Score within Scale

Table 11: Solution Identification - Easy (Invariant Accuracy).
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Scale Model C C++ CSharp Go Java JavaScript PHP Python Ruby Overall

≤3B

Llama-3.2-3B-Instruct 5.0 4.7 7.8 16.3 1.2 7.0 6.7 7.7 12.5 7.6
Llama-3.2-1B-Instruct 0.0 1.2 0.0 1.2 0.0 0.0 0.0 3.9 1.1 0.8
Qwen2.5-Coder-3B-Instruct 5.0 4.7 6.5 11.6 11.6 11.6 10.0 9.0 2.2 8.0
Qwen2.5-Coder-1.5B-Instruct 3.8 1.1 1.3 4.7 1.2 0.0 3.3 6.4 4.6 2.9
Qwen2.5-3B-Instruct 51.3 50.6 36.4 47.7 48.8 45.4 45.6 41.0 39.8 45.2
Qwen2.5-1.5B-Instruct 28.8 50.6 36.4 29.1 48.8 34.9 43.3 26.9 43.2 38.0
deepseek-coder-1.3b-instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
DeepSeek-R1-Distill-Qwen-1.5B 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Falcon3-3B-Instruct 10.0 23.5 15.6 20.9 26.7 19.8 31.1 15.4 12.5 19.5
Falcon3-1B-Instruct 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Phi-3-mini-128k-instruct 41.3 38.8 51.9 31.4 50.0 54.7 47.8 47.4 50.0 45.9
Yi-Coder-1.5B-Chat 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
granite-3b-code-instruct-128k 2.5 1.2 1.3 3.5 2.3 0.0 1.1 5.1 1.1 2.0
granite-3.0-3b-a800m-instruct 2.5 2.4 1.3 2.3 3.5 1.2 3.3 2.6 3.4 2.5
granite-3.0-2b-instruct 15.0 15.3 15.6 19.8 12.8 11.6 20.0 12.8 4.5 14.2
EXAONE-3.5-2.4B-Instruct 10.0 38.8 31.2 24.4 24.4 22.1 38.9 33.3 17.0 26.7
internlm2_5-1_8b-chat 0.0 1.2 1.3 5.8 2.3 1.2 2.2 2.6 0.0 1.8
stable-code-instruct-3b 1.3 1.2 1.3 2.3 1.2 0.0 4.4 2.6 0.0 1.6

≤9B

CodeLlama-7b-Instruct-hf 3.8 2.4 1.3 3.5 2.3 2.3 7.8 5.1 2.3 3.4
Llama-3.1-8B-Instruct 45.0 55.3 63.6 55.8 52.3 57.0 57.8 53.8 47.7 54.3
codegemma-1.1-7b-it 15.0 17.6 13.0 15.1 18.6 15.1 17.8 14.1 9.1 15.0
gemma-2-9b-it 48.8 49.4 55.8 44.2 44.2 45.3 48.9 52.6 56.8 49.6
Qwen2.5-Coder-7B-Instruct 48.8 57.6 62.3 54.7 62.8 50.0 51.1 53.8 55.7 55.2
Qwen2.5-7B-Instruct 51.3 45.9 55.8 47.7 54.7 52.3 51.1 52.6 53.4 51.6
Marco-o1 60.0 51.8 67.5 53.5 62.8 55.8 52.2 62.8 56.8 58.1
deepseek-coder-7b-instruct-v1.5 6.3 8.2 9.1 16.3 11.6 12.8 7.8 17.9 12.5 11.4
deepseek-llm-7b-chat 0.0 2.4 3.9 7.0 7.0 5.8 5.6 11.5 4.5 5.3
DeepSeek-R1-Distill-Qwen-7B 0.0 0.0 0.0 1.2 0.0 0.0 0.0 0.0 0.0 0.1
DeepSeek-R1-Distill-Llama-8B 5.0 4.7 5.2 8.1 5.8 3.5 10.0 9.0 10.2 6.8
Falcon3-7B-Instruct 42.5 41.2 27.3 41.9 37.2 29.1 34.4 24.4 39.8 35.3
Baichuan2-7B-Chat 0.0 1.2 0.0 4.7 0.0 1.2 3.3 1.3 2.3 1.5
Yi-Coder-9B-Chat 32.5 40.0 33.8 37.2 26.7 31.4 27.8 37.2 30.7 33.0
Yi-1.5-9B-Chat 62.5 55.3 59.7 55.8 55.8 66.3 57.8 56.4 60.2 58.9
granite-8b-code-instruct-128k 8.8 12.9 15.6 14.0 9.3 19.8 20.0 26.9 14.8 15.8
granite-3.0-8b-instruct 20.0 25.9 28.6 31.4 31.4 19.8 26.7 19.2 25.0 25.3
EXAONE-3.5-7.8B-Instruct 57.5 54.1 59.7 55.8 59.3 58.1 57.8 52.6 58.0 57.0

≤16B

CodeLlama-13b-Instruct-hf 7.5 7.1 9.1 10.5 5.8 11.6 13.3 10.3 14.8 10.0
Qwen2.5-Coder-14B-Instruct 55.0 45.9 59.7 51.2 65.1 55.8 56.7 53.8 62.5 56.2
Qwen2.5-14B-Instruct 83.8 84.7 83.1 80.2 82.6 84.9 81.1 73.1 84.1 81.9
DeepSeek-Coder-V2-Lite-Instruct 15.0 10.6 5.2 15.1 15.1 15.1 10.0 19.2 10.2 12.8
DeepSeek-V2-Lite-Chat 28.8 23.5 15.6 14.0 23.3 18.6 20.0 21.8 19.3 20.5
DeepSeek-R1-Distill-Qwen-14B 66.3 63.5 76.6 65.1 67.4 70.9 73.3 45.0 72.7 66.8
falcon-11B 12.5 5.9 3.9 8.1 3.5 9.3 8.9 14.1 6.8 8.1
Falcon3-10B-Instruct 30.0 23.5 18.2 15.1 25.6 7.0 20.0 11.5 11.4 18.0
Baichuan2-13B-Chat 0.0 0.0 1.3 1.2 0.0 1.2 1.1 1.3 0.0 0.7
WizardLM-13B-V1.2 6.3 3.5 0.0 10.5 1.2 5.8 7.8 3.8 2.3 4.6
starcoder2-15b-instruct-v0.1 15.0 12.9 20.8 14.0 8.1 15.1 17.8 20.5 19.3 15.9
Mistral-Nemo-Instruct-2407 53.8 52.9 55.8 50.0 58.1 48.8 48.9 48.7 58.0 52.8

≤34B

CodeLlama-34b-Instruct-hf 6.3 10.6 14.3 10.5 8.1 12.8 5.6 14.1 15.9 10.9
gemma-2-27b-it 67.5 68.2 64.9 67.4 69.8 64.0 67.8 61.5 60.2 65.7
Qwen2.5-Coder-32B-Instruct 87.5 80.0 90.9 89.5 93.0 86.0 82.2 78.2 84.1 85.7
Qwen2.5-32B-Instruct 90.0 89.4 96.1 90.7 86.0 86.0 92.2 85.9 88.6 89.5
QwQ-32B-Preview 73.8 72.9 83.1 67.4 74.4 77.9 81.1 69.2 76.1 75.1
Sky-T1-32B-Preview 78.8 82.4 90.9 76.7 80.2 81.4 85.6 76.9 84.1 81.9
deepseek-coder-33b-instruct 5.0 4.7 2.6 12.8 3.5 8.1 13.3 19.2 11.4 9.0

≤72B

CodeLlama-70b-Instruct-hf 22.5 35.3 35.1 26.7 33.7 41.9 30.0 32.1 37.5 32.7
Llama-3.1-70B-Instruct 83.8 67.1 75.3 74.4 80.2 81.4 81.1 65.4 81.8 76.7
Llama-3.3-70B-Instruct 78.8 71.8 80.5 79.1 75.6 81.4 84.4 67.9 83.0 78.0
Qwen2.5-72B-Instruct 92.5 94.1 89.6 89.5 90.7 93.0 88.9 89.7 89.8 90.9
deepseek-llm-67b-chat 48.8 34.1 41.6 52.3 46.5 50.0 54.4 48.7 46.6 47.0
DeepSeek-R1-Distill-Llama-70B 58.8 64.7 70.1 67.4 73.3 75.6 74.4 64.1 70.5 68.8
WizardLM-70B-V1.0 53.8 41.2 48.1 50.0 53.5 55.8 47.8 50.0 40.9 49.0
K2-Chat 63.8 58.8 74.0 61.6 64.0 60.5 64.4 60.3 47.7 61.7
falcon-40b-instruct 1.3 4.7 5.2 5.8 2.3 2.3 7.8 6.4 2.3 4.2

Best Score Overall, Best Score within Scale

Table 12: Solution Identification - Hard (Invariant Accuracy).
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