
Intelligent Variable Selection for Branch & Bound
Methods

Priya Shanmugasundaram
priya_s2@dell.com

CFS AI Research
Dell Inc.

Saurabh Jha
saurabh_jha2@dell.com

CFS AI Research
Dell Inc.

Sailendu Patra
sailendu_patra@dell.com

CFS AI Research
Dell Inc.

Abstract

Combinatorial optimisation (Wolsey and Nemhauser [22]) is applied to a wide vari-
ety of real-world problems like job scheduling, capacity planning and supply-chain
management. These problems are usually modelled as Mixed Integer Program-
ming (MIP) Problems and solved using the Branch and Bound (B&B) (Land and
Doig [12]) paradigm. Branch and Bound method partitions the solution space
(branching) by creating constrained sub-problems (bounding) and explores those
subsets of the solution space which are highly likely to produce optimal solutions.
The efficiency of the Branch and Bound method in finding optimal solutions is
heavily influenced by the variable and node selection heuristics used for branching
(Linderoth and Savelsbergh [13]). In this paper, we propose a novel deep rein-
forcement learning based variable selection strategy. The proposed solution shows
significant improvement over traditional branching strategies like Strong Branching
(SB) (Applegate et al. [3]), which have been traditionally used for variable selection
and also outperforms the current state of the art RL-based branching strategies
which use PPO (Schulman et al. [20]) and DQN (Hessel et al. [11]). The results of
our experiments show that the proposed solution performs consistently better than
the traditional and RL-based strategies across two different NP-hard problems.

1 Introduction

Mixed Integer Programming (MIP) formulation is an essential step in solving real-world combinatorial
optimisation problems. Real-world optimisation problems are complex in nature and are often NP-
hard due to the number of integer variables involved in these problems. An increase in the number
of integer variables causes an expansion in the solution space, thus, making the task of finding a
solution set that minimises the optimisation objective while obeying the constraints, tedious and
computationally costly.

Branch and Bound (Land and Doig [12]) (B&B) method is a widely used strategy to solve Mixed
Integer Programming problems. Branch and Bound method performs an iterative tree search of
the solution space by partitioning the solution space into disjoint subsets creating sub-problems.
The method selects sub-problems in such a fashion that it avoids exploration of subsets unlikely to
produce optimal solutions and actively explores subsets of the solution space that are more likely
to produce optimal solutions. Different branching strategies, pruning and cutting rules are used to
search the solution space efficiently, to fasten the search and obtain optimal solutions.

Branching strategies are key to solving branch and bound problems, as robust branching can result
in reduction in the effective size of the solution space and obtain optimal solutions at a faster rate.
Variable selection based branching (Lodi and Zarpellon [14]) determines the next variable to be used
for partitioning the subspace and node selection based branching determines the next subset of the
solution space to be explored. The focus of this paper will be on variable selection based branching.
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Traditional strategies for variable selection like Pseudo-Cost Branching (PCB) and Strong Branching
(SB) (Applegate et al. [3]) are manually designed using domain knowledge for each problem instance
and do not generalise to other kinds of problems. Learning to branch using machine learning methods
helps in generating variable selection strategies that are non-myopic and can generalise to a broad set
of problems. Supervised Learning and Imitation Learning based approaches are a common choice for
learning to branch which are trained using expert demonstrations. These methods face issues when
applied to real-world problems as the data they are exposed to differ from the expert demonstrations
that were used during training phase.

Reinforcement Learning has also been adopted for variable selection in the literature. However, it
suffers from cold-start problems and cannot perform optimally until sufficient experience tuples are
collected, resulting in sub-optimal early performance. In this paper, a novel deep reinforcement
learning based variable selection strategy devoid of above mentioned drawbacks is proposed. The
key contributions of the paper are as follows,

• A soft-actor critic based deep reinforcement learning framework for branching variable
selection has been developed which can be used in branch & bound methods to solve Mixed
Integer Programming (MIP) problems.

• The proposed solution uses experience replay, entropy regularized policy updates and double
critics to enhance learning stability.

• The proposed solution uses expert demonstration data during beginning of training to avoid
cold-start problem.

• The proposed solution uses MaxLP Gain construction heuristic to traverse the search tree and
samples experience trajectories, to improve sample efficiency and avoid partial observability.

• We assess the performance of our proposed strategy on non-adaptive heuristic based and
adaptive state of the art RL based branching strategies across different kind of MIP formula-
tions and observe that our solution generalizes well to the different scenarios.

2 Related Work

Traditional Variable Selection Strategies Most Infeasible Branching (MIB) (Achterberg et al. [1]),
Pseudo-Cost Branching (PC) and Strong Branching (SB) (Applegate et al. [3]) are traditional methods
which score the candidate variables based on their effectiveness in partitioning the solution space.
Most Infeasible Branching method chooses the variable with the high fractional parts (close to 0.5)
and has been shown in Achterberg et al. [1] to perform worse than when the variables were to be
selected randomly. Pseudo-cost Branching (Falk [8]) estimates an expected gain for each candidate
variable based on the history of branching. The method suffers from cold-start due to lack of history
and requires the pseudo-costs to be initialised manually which might induce bias. Strong Branching
is an efficient strategy which selects candidate variables that result in maximum improvement the
dual bound at every stage. However, this strategy is computationally costly even for small problems
and becomes intractable even for a slight increase in the size of the problem.

Learning based Variable Selection Strategies As traditional variable branching strategies are
computationally heavy and require manual intervention, machine learning based strategies are being
studied to develop improved and efficient strategies. Expert demonstrations of Strong Branching
(SB) strategy are used to train Supervised Learning based techniques like offline extra tree regression
(Geurts et al. [10]) and online linear regression (Marcos Alvarez et al. [16]) to predict branching
scores and Imitation Learning based agents which learn to branch by mimicking Strong Branching
behavior. However, these methods require extensively labelled expert data sets for training and cannot
generalise well to heterogeneous problems. Reinforcement Learning has also been used to solve
the variable branching problem, Sun et al. [21] designs a primal-dual policy network with negative
unit reward for every time step to encourage the agent to learn to solve the problem with minimum
number of steps. In Parsonson et al. [17]), Double Deep Q Network architecture with a Superior
Network is used to deal with the large action spaces. In Ahn et al. [2], the authors leverage deep
reinforcement learning to design solvers for combinatorial optimization problems that can adaptively
learn to minimize the number of stages involved in obtaining the solution by deferring the assessment
of some vertices to later iterations. In Chen and Tian [6], the authors formulate the optimization
problem as a rewriting problem and perform iterative rewriting an existing solution until optimality.
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3 Background

3.1 Mixed Integer Programming (MIP)

Definition 1 Mixed Integer Programming (MIP) Formulation Given A ∈ Rm×n, b ∈ Rm and
c ∈ Rn, and a subset I ⊆ {1, 2, ..., n}, the mixed integer program MIP = (A, b, c, I) linear in x is
defined as follows,

z∗ = min{cTx|Ax ≤ b, x ∈ Rn, xj ∈ Z,∀j ∈ I} (1)

where the vectors in X are feasible solutions of the MIP if X = {x ∈ Rn|Ax ≤ b, x ∈ Rn, xj ∈
Z,∀j ∈ I}, and x∗ ∈ X is an optimal solution if cTx∗ = z∗. The problem is NP-Hard due to
the integer requirements on x. MIP problems are solved by recursively splitting the problem into
sub-problems using Branch and Bound method, where the LP relaxation of the problem is used to
circumvent the integerality requirements and to obtain the lower bound for the sub-problems.

Definition 2 LP Relaxation for a (MIP) Problem The LP relaxation of the MIP is defined as follows,

ž = min{cTx|Ax ≤ b, x ∈ Rn} (2)

The lower-bound for the sub-tree is provided by solving the above LP-relaxation and if the objective
value of the LP relaxation ž ≥ ẑ where ẑ = cT x̂ of the current best solution x̂, then the node can
be discarded. The optimal integer solution will always lie between the determined upper-bound and
lower-bound for the node to be explored. The choice of the variable xj to be used for calculating
these bounds, the choice of the nodes to be explored and the cutting rules are different strategies used
in solving MIP problems.

3.2 Branch & Bound (B&B) Algorithm

For any optimisation problem defined as O = (W, f) with an objective function f : W → R and
W as the search space which is the set of all valid solutions to O, the branch and bound algorithm
aims to find an optimal solution x∗ ∈ argminx∈W f(x). The search space W is partitioned into
disjoint sub-spaces by constructing a search tree T , which is then iteratively partitioned by selecting
a subspace G ⊂ W from the unexplored sub-spaces and checking for x̂′ ∈ G has f(x̂′) < f(x̂)
for a feasible x̂ ∈W stored globally. If above condition is satisfied then the incumbent solution is
updated and the subspace G is branched into sub-spaces G1, G2, ..., Gk and the search continues
iteratively. If f(x̂′) ≥ f(x̂) ∀x ∈ G, the subspace is abandoned and not searched further. Once the
search is complete with no unexplored sub-spaces, the best incumbent solution is returned and the
search terminates.

4 Proposed Solution

Variable Selection plays an important role in branch and bound methods as it prescribes the variable
on which branching is to be performed. Selecting a wrong variable for branching can result in increase
in the size of the search tree and can increase the computational complexity significantly. Existing
methods score the different variables and perform branching greedily by ordering the variables in
terms of the score. The goal is to develop a high-quality far-sighted variable selection strategy that
is capable of generalising to unseen expert data. The proposed solution leverages reinforcement
learning to achieve above goals by modelling the variable selection process as a Markov Decision
Process (MDP) (Puterman [19]).

4.1 MDP Formulation

The sequential decision making process for variable selection is formulated as a Markov Decision
Process. With the environment represented by the solver, the brancher agent states, actions, transition
function and the reward function are described as follows,

State Space S At each instance t, the problem state st consists of the bi-partite graph representation
for the MIP of the focus node and the index set It of the branching candidates which posses constraints
on integers and have a non-integer solution. The state st is defined as below,

st = {(Xt, Et, Ct), It} (3)
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Figure 1: Branching State Transition

where X ∈ Rn×dx is a feature matrix describing the variables and the features from the objective
function and the constraints. The nodes of the bi-partite graph represent the n variables to be optimised
and the m constraints to be met. An edge eij is created if the variable xi has a corresponding
Aij ̸= 0 in the constraint cj with features de representing the constraint’s constant term resulting
in E ∈ Rm×n×de , the edge feature matrix. C ∈ Rm×dc represents the constraint matrix where the
constraints are encoded into dc features like in (Gasse et al. [9]). Thus, the state st presents a holistic
representation of the variables, the objective function and the constraints involved in the MIP at any
instance t.

Action Space A The action at represents the branching variable selected at instance t from the action
space where It is the index set of branching variable candidates.

A(st) = {i ∈ It} (4)

Transition Function P The state transition function P (st+1|st, at) generates the next state provided
the current state and action. The next state st+1 is given by using a node selection policy πn which
selects the next node nt to be branched upon as shown in fig. 1, whose features will be represented
by st+1. However, the environment changes independently of the action of the brancher agent as
it cannot perceive the actions of the node selection policy resulting in partial observability. To
circumvent partial observability, multiple trajectory paths are constructed such that the root-leaf
pairs are used as the source-destination pair and each node on the search tree is mapped to a single
trajectory. This generated trajectory information is then stored in the replay buffer and used during
the training process.

Reward Function R The goal of our solution is to be able to obtain an optimal solution faster with
minimum branching steps as possible. Thus, we define the reward Rt at instance t as follows,

Rt = −1 (5)

where for every step a unit penalty is issued. The cumulative reward of an episode will represent
the number of steps to optimal solution as a penalty, thereby encouraging the method to solve in
minimum number of steps.

4.2 Solution

A novel deep reinforcement learning algorithm for variable branching based on Soft Actor Critic
Networks (Christodoulou [7]) is proposed. The soft actor critic algorithm aims to learn an optimal
actor π∗ which maximises the expected discounted reward and the entropy H associated with it.

π∗ = argmaxπ

T∑
t=0

E(st,at)

[
γtr(st, at) + αH(π(.|st))

]
(6)

where H(π(.|st)) = − log π(.|st), α is the temperature parameter that manages the exploration-
exploitation trade off. The actor network and the critic network are modelled using Graph Convolu-
tional Neural Network (GCNN) as the state st is represented as a bipartite graph. Two successive
passes to perform a single convolution as below,
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c′p ← fc

cp,

(p,q)∈E∑
q

gc(xq, epq, cp)

 , (7)

x′
q ← fx

xq,

(p,q)∈E∑
p

gx(xq, epq, c
′
p)

 , (8)

∀p ∈ C,∀q ∈ X , followed by a double-layer perceptrons with ReLU activation. The actor network
uses softmax to estimate the action probability distribution π and the critic network uses the masked
sum to estimate the state-action value Q. The action generated by the soft-actor agent at represents
the branching variable and the next node nt to be branched at instance t is selected by a node selection
policy. The sub-tree with nt as the root node is traversed by selecting the leaf with the largest LP gain
until a leaf node not yet fathomed is reached. Trajectories are generated for each of the nodes present
in the sub-tree and are added to the experience replay buffer. The node selection policy is used when
the soft actor-critic agent interacts with the environment and generates a variable for branching during
both training and inference phases. However, the maximum LP-gain trajectory generation happens
only during training phase having no additional inference-time overhead.

During the initial training phases, the brancher agent is naive due to lack of experience causing
random actions to be taken, which can result in sub-optimal initial performance. The experience
buffer filled with expert demonstration data at the beginning of training process will help close
the performance gap during this time. The proposed solution is provided with tuples of expert
demonstration data {st, at, rt, st+1, donet} in the replay buffer during the beginning of training
which is gradually phased it out in a linear matter as new experience tuples are collected by the
brancher agent, to avoid cold-start problem during beginning of training.

Algorithm 1: Soft Actor-Critic for Variable Selection in Branch & Bound Methods
1 for episode = 1 to E do
2 Initialize experience replay buffer D with batch b filled with expert demonstration tuples;
3 Initialize online policy weights θπ and critic weights θQ1 , θQ2 ;
4 Set target value network weights equal to online parameters θ′Q1

← θQ1 , θ′Q2
← θQ2 ;

5 Obtain initial observation from environment s0;
6 for t = 1 to T do
7 Execute action at ∼ πθπ (.|st) by branching on variable with index at;
8 Observe next state st+1, at, rt, st+1;
9 Store (st, at, st+1, rt) in D;

10 Set st = st+1 using DFS node selection policy which gives next node nt;
11 Explore Traj ←MaxLPGain(st, at, nt, rt, st+1);
12 Store Traj in D;
13 for i = 1 to M updates do
14 Sample a random batch of S samples (st, at, st+1, rt) from D;
15 Set yt = rt + γminj=1,2 Qθ′

Qj
(st+1, at+1)− α log πθπ (at+1|st+1);

16 where at+1 ← πθπ (.|st+1);
17 Minimize critic loss for both j = 1, 2 L(θi) =

1
S

∑
S(Qt,j(st, at)− yt)

2;
18 if t%d == 0 then
19 Update policy π with gradient

∇θπJ(πt) = ∇θπ minj=1,2 QθQj
(st+1, at+1)− α log πθπ (at+1|st+1);

20 Update target critic network parameters as θQ′
j
= τθQj + (1− τ)θQ′

j
;

21 end
22 end
23 end
24 end
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Figure 2: Comparison for MIP Setting 1 Figure 3: Comparison for MIP Setting 2

5 Results and Discussion

In this section, the results of our experiments are evaluated and examined for insights and improvement
areas. The performance of our proposed solution is studied under two different NP-hard problem
settings where we compare the performance of our solution with existing solutions of different levels
of control complexity as follows,

1. Heuristic-based control – Describes the variable selection methods that are hand-crafted and
non-adaptive. The solution is compared against the traditional variable selection method,
strong branching (SB);

2. Adaptive Control - Describes the variable selection methods where the actions are prescribed
based on recommendations made by reinforcement learning based controllers. The perfor-
mance of our solution which leverages SAC is compared to the methods which use PPO &
DQN.

The experiments were run using open-source Ecole (Prouvost et al. [18]) and PySCIPOpt (Maher
et al. [15]) libraries with SCIP solver. Two different NP-hard problems were considered: 1) Set
Covering (Balas and Ho [4]) referred to as MIP setting 1 and 2) Maximum Independent Set (Bergman
et al. [5]) referred to as MIP setting 2, across which the SB and RL-based controllers PPO & DQN
were evaluated in comparison to our solution. The comparison to SOTA tuned commercial solvers is
not made, as we do not claim to be competitive with them at this stage. The PPO and DQN agents
have similar MDP formulation and reward definition so that they can be compared effectively. The
node selection policy used for them is DFS search and we can see that DFS search is causing the
algorithm to perform poorly as DFS becomes computationally heavy for practical MIPs. As can be
seen in figs 2 & 3, the average reward of our solution improves over PPO by 27% and 22% in the
MIP setting 1 and MIP setting 2 respectively. It also significantly outperforms DQN control by 70%
and 58% for both the MIP settings.

The proposed strategy exhibits steady initial learning behavior unlike the PPO and DQN based
branching strategies, this can be attributed to the expert demonstration data used in our solution to
avoid cold-start. The behavior of the different algorithms in the MIP problem 2 are in-line with the
performance of the algorithms on the MIP problem 1. It can be seen that the episodic reward for
SAC in the MIP problem 2 starts at lower levels than that of the PPO and DQN. However, it exhibits
steady episode-over-episode learning behavior until around 100 episodes, after which the agent’s
learning stabilises. DQN exhibits very slow learning as it ascends with much lower slope and takes
until around 160 episodes to have stabilised learning.

The efficiency of our framework in solving the CO problems can be inferred from the average number
of nodes and the average number of LPs in Table 1. The proposed strategy is able to reduce the
average number of nodes and average number of LPs significantly. SAC reduces the average number
of nodes over PPO by 30% and 16% over the MIP problem 1 and MIP problem 2 respectively. It
also shows significant impact in the average number of nodes over DQN by around 40% and 20% for
the different problems. The average numbers of LPs exhibit a decreasing trend across the different
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Table 1: Performance Metrics separated by Algorithms

MIP Setting 1
Metric SAC PPO DQN SB

Average Reward -19.72 -29.76 -68.34 −−
Average # Nodes 7.35 10.48 12.61 6.43
Average # LPs 198 238 262 170

MIP Setting 2
Metrics SAC PPO DQN SB

Average Reward -12.93 -19.88 -42.71 −−
Average # Nodes 4.27 4.58 5.68 3.76
Average # LPs 18.7 21.3 25.3 19.6

problem settings. Also, it performs as good as the SB control significantly across the different MIP
problems. Thus, the improvement trend of our proposed strategy over PPO and DQN control is
consistent across the different MIP formulations, elucidating that our method is robust and scalable
to different kind of problems and significantly outperforms state of the art control strategies.

6 Conclusion

In this paper, we proposed variable selection strategy for Branch & Bound Methods leveraging
Soft Actor Critic. Our method is capable of performing variable selection for different kinds of
Mixed Integer Programming problems as it is supplemented by demonstration data to avoid cold-start
and trajectory generation that alleviates partial observability and increases sample efficiency. The
proposed method outperforms existing rule-based and reinforcement learning based control strategies
like Proximal Policy Optimization (PPO) and Deep Q Networks (DQN) and the traditional variable
selection method Strong Branching control (SB) across different MIP problems. The solution is
being studied for larger MIP problems and detailed experiments to observe its scores, wins and
performance comparisons with different constructions heuristics are being performed. The findings
will be communicated in a detailed version of this paper.
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