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Personalized Denoising Implicit Feedback for Robust
Recommender System

Anonymous Author(s)

Abstract

While implicit feedback is foundational to modern recommender

systems, factors such as human error, uncertainty, and ambiguity

in user behavior inevitably introduce significant noise into this

feedback, adversely affecting the accuracy and robustness of rec-

ommendations. To address this issue, existing methods typically

aim to reduce the training weight of noisy feedback or discard it en-

tirely, based on the observation that noisy interactions often exhibit

higher losses in the overall loss distribution. However, we identify
two key issues: (1) there is a significant overlap between normal

and noisy interactions in the overall loss distribution, and (2) this

overlap becomes even more pronounced when transitioning from

pointwise loss functions (e.g., BCE loss) to pairwise loss functions

(e.g., BPR loss). This overlap leads traditional methods to misclas-

sify noisy interactions as normal, and vice versa. To tackle these

challenges, we further investigate the loss overlap and find that for
a given user, there is a clear distinction between normal and noisy
interactions in the user’s personal loss distribution. Based on this in-

sight, we propose a resampling strategy to Denoise using the user’s

Personal Loss distribution, named PLD, which aims to reduce the

probability of noisy interactions being optimized. Specifically, dur-

ing each optimization iteration, we create a candidate item pool

for each user and resample the items from this pool based on the

user’s personal loss distribution, prioritizing normal interactions.

Additionally, we conduct a theoretical analysis to validate PLD’s

effectiveness and suggest ways to further enhance its performance.

Extensive experiments conducted on three datasets with varying

noise ratios demonstrate PLD’s efficacy and robustness.

CCS Concepts

• Information systems → Recommender systems; • Security

and privacy→ Social network security and privacy.

Keywords

Robust Recommender System, Denoising Recommendation, Im-

plicit Feedback
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# Noisy Interaction 
In Overlap:  18.16%

45,275

# Normal Interaction 
In Overlap:  19.58%

162,763

# Noisy Interaction 
In Overlap:  11.52%

28,720

# Normal Interaction 
In Overlap:  11.86%

98,596

Upper Quartile of Normal Interaction Loss Lower Quartile of Noisy Interaction Loss

Figure 1: Probability distribution of losses. The overlap re-

gion includes interactions that deviate from the common as-

sumption in existing methods, i.e., where noisy interactions

exhibit lower losses or normal interactions exhibit higher

losses. Quantiles are used instead of max-min values to miti-

gate the influence of extreme values when determining the

overlap region.

1 INTRODUCTION

Recommender systems have become essential tools for mitigating

information overload in the modern era [6, 11]. Since obtaining

explicit user feedback (e.g., ratings) is often hindered by the need for

active user participation, these systems typically rely on implicit

feedback to capture user behavior patterns, thereby facilitating

effective recommendations [4, 8, 20]. Nonetheless, factors such as

human error, uncertainty, and ambiguity in user behavior inevitably

introduce significant noise into this feedback [23, 40]. This noise

can bias learned behavior patterns, undermine system robustness,

and degrade recommendation performance [34, 40].

Mainstream methods for noise elimination in recommender sys-

tems primarily focus on reweighting feedback. A commonly ob-

served pattern in the overall loss distribution, which represents

the losses of all interactions (i.e., feedback), is that noisy interac-

tions tend to exhibit higher losses during training [5, 8, 15, 26].

Based on this observation, these methods either reduce the training

weight of high-loss interactions or discard them entirely. For in-

stance, R-CE [26] assigns weights to interactions based on their loss

magnitude, with higher losses receiving smaller weights. T-CE [26]

proportionally discards interactions with the highest losses at a

predefined rate. These methods typically compute the loss for each

interaction using pointwise loss functions, such as Binary Cross

Entropy (BCE) loss [8, 26].

However, we identify two key limitations in this approach. To

illustrate, we separate the overall loss distribution into normal and

noisy interaction loss distributions. For clarity, we define an overlap

region that includes interactions deviating from the assumptions of

existing methods, i.e., where noisy interactions exhibit lower losses

or normal interactions exhibit higher losses:

• We observe a significant overlap between normal and noisy in-

teractions in the overall loss distribution, as shown on the left

1
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side of Figure 1. In LightGCN [6], trained with BCE loss on the

MIND [31] dataset with a 30% noise ratio, 11.86% of normal in-

teractions (98,596) fall within the overlap, while 11.52% of noisy

interactions (35,926) also fall within this overlap.

• Moreover, this overlap becomes more pronounced when transi-

tioning from pointwise loss functions to pairwise loss functions,

such as BPR loss [18], as shown on the right side of Figure 1.

Specifically, the percentage of normal interactions in the over-

lap increases to 19.58% (162,763, a 65.1% increase), while the

percentage of noisy interactions rises to 18.16% (60,170, a 67.5%

increase).

It is important to note that interactions in the overlap region cannot

be reliably identified using the overall loss distribution alone. This

limits the effectiveness of methods that rely solely on the overall

loss distribution for denoising.

To address these issues, we investigate the causes of the overlap

between noisy and normal interactions in the overall loss distri-

bution. We find that, due to the variance in users’ personal loss

distributions, the losses of normal interactions for some users over-

lap with those of noisy interactions for others, leading to signif-

icant overlap in the overall loss distribution. Furthermore, we

observe that, for a given user, there is a clear distinction be-

tween normal and noisy interactions in the user’s personal

loss distribution.

Based on this insight, denoising from the perspective of a user’s

personal loss distribution, rather than the overall loss distribution,

yields more effective results. However, the variance in users’ per-

sonal loss distributions and the differing ratios of noisy interactions

across users make it challenging to set an appropriate drop rate

for filtering noisy interactions or to adjust their weights based on

interaction losses, as traditional denoising approaches do [8, 26].

Given these considerations, we propose a resampling strategy

for Denoising based on users’ Personal Loss distributions, named

PLD. PLD reduces the probability of noisy interactions being opti-

mized by resampling training interactions. Specifically, PLD first

uniformly samples a user’s interacted items to construct candidate

pools, ensuring the stability of subsequent resampling. In the resam-

pling stage, it selects an item for optimization from the candidate

pool based on the user’s personal loss distribution, prioritizing nor-

mal interactions. Additionally, we conduct an in-depth theoretical

analysis of PLD, demonstrating its effectiveness and suggesting

that adjusting the sharpness of the resampling distribution using

a scaling coefficient can further improve the probability of sam-

pling normal interactions. Extensive experiments show that PLD

achieves state-of-the-art performance across various noise ratios,

not only with BCE loss but also with BPR loss.

The main contributions of our work are as follows:

• We identify the limitations of existing loss-based denoising meth-

ods, highlighting the significant overlap between normal and

noisy interactions in the overall loss distribution.

• We find that, for a given user, there is a clear distinction between

normal and noisy interactions in the user’s personal loss distribu-

tion. Leveraging this insight, we propose a resampling strategy

for denoising, PLD.

• We conduct an in-depth theoretical analysis of PLD, proving its

effectiveness and suggesting ways to further enhance its perfor-

mance.

• Extensive experiments validate the superiority of our proposed

method across various datasets and noise ratios.

2 RELATEDWORK

This section briefly reviews the research on collaborative filtering

and denoising implicit feedback.

2.1 Collaborative Filtering

Collaborative Filtering (CF) remains a fundamental technique in the

design of recommender systems and has been extensively adopted

in numerous research efforts [2, 21, 38]. At its core, CF operates on

the principle that users with similar behaviors or preferences are

likely to have aligned future choices, making it a powerful tool for

predicting recommendations [12]. A widely used method within

this paradigm is Matrix Factorization, which models latent rela-

tionships between users and items by factorizing the interaction

matrix [11]. This interaction matrix can be constructed from both

explicit feedback, such as ratings, and implicit feedback, which

includes indirect behavioral signals like clicks, views, and pur-

chases [10]. Although implicit feedback is often noisier and lacks

clear negative signals, it provides a wealth of data that is crucial for

building recommendation models in real-world scenarios where

explicit ratings are scarce [10].

In recent years, the introduction of deep learning has expanded

CF’s capabilities, particularly for handling the complexities of im-

plicit feedback. Neural-based models can capture more nuanced

user-item interactions, often observed through implicit signals. For

example, CDL [24] integrates auxiliary item data into CF using neu-

ral networks, effectively addressing data sparsity. Similarly, NCF [7]

replaces the traditional dot product operation with a multi-layer

neural architecture, which is better suited for modeling the intricate

patterns found in implicit user interactions. More recently, the rise

of Graph Neural Networks (GNNs) has inspired graph-based CF

models [28, 33, 35], such as NGCF [27] and LightGCN [6], which

have shown exceptional performance in leveraging implicit feed-

back. Despite these advancements, a persistent issue remains: the

vulnerability of these models to noise, particularly from implicit

data, which continues to undermine their robustness [40].

2.2 Denoising Implicit Feedback

Recommender systems that rely on implicit feedback have garnered

substantial attention. However, recent research highlights their sus-

ceptibility to noise in implicit feedback [25, 40]. The primary strate-

gies for mitigating noise in recommender systems can be broadly

categorized into two types [40]: reweight-based approaches [5, 8,

15, 22, 26, 30, 37] and self-supervised approaches [29, 32, 36].

Reweight-based Methods. These approaches aim to reduce

or eliminate the influence of noisy interactions by adjusting their

contributions during training [8, 15, 26, 30]. Some methods reduce

the weights of noisy interactions [5, 15, 26, 30], while others re-

move them entirely [8, 26]. A common observation driving these

methods is that noisy interactions typically produce higher train-

ing losses in the overall loss distribution [5, 8, 15, 26]. For instance,

2
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R-CE [26] leverages loss values as indicators of noise, assigning

reduced weights to potentially noisy interactions, while T-CE [26]

eliminates interactions with the highest loss values at a predefined

drop rate. DCF [8] further addresses challenges posed by hard

positive samples and the data sparsity introduced by dropping in-

teractions. However, since normal and noisy interactions overlap

in the overall loss distribution, the effectiveness of these methods

is limited. Additionally, BOD [30] formulates the determination of

interaction weights as a bi-level optimization problem to learn more

effective denoising weights, though this approach is significantly

more time-consuming.

Self-supervised Methods. Self-supervised approaches mitigate

noise by introducing auxiliary signals through self-supervised learn-

ing [3, 16, 17, 29, 44]. For example, SGL [32] enhances the robust-

ness of user-item representations by applying various graph aug-

mentations, such as node dropping and edge masking. KGCL [36]

incorporates external knowledge graph data to refine the mask-

ing process. Meanwhile, DeCA [29] posits that clean data samples

tend to yield consistent predictions across different models and,

therefore incorporates two recommendation models during train-

ing to better differentiate between clean and noisy interactions.

However, self-supervised approaches rely heavily on the design of

self-supervised tasks, and these heuristics cannot always guarantee

effective denoising performance.

3 PRELIMINARY

We begin by providing a formal description of the task. Following [6,

8], we define a set of users asU = {𝑢} and a set of items asV = {𝑣},
alongwith an observed interaction set,I = {(𝑢, 𝑣) | 𝑢 ∈ U, 𝑣 ∈ V},
where the pair (𝑢, 𝑣) indicates that user 𝑢 interacted with item 𝑣 .

Generally, recommendation methods based on implicit feedback are

trained on interaction data, treating (𝑢, 𝑣) ∈ I as positive samples

and (𝑢, 𝑣) ∈ (U×V)\I as negative samples to learn the parameters

Θ. The training of the recommendation model is formulated as:

Θ∗ = argmin

Θ
L(U,V,I),

where L denotes the recommendation loss. However, the observed

interaction set I may contain noise, leading to a deviation between

the learned parameters Θ∗
and the ideal parameters ΘIdeal

, which

represent the optimal model parameters in the absence of noise.

The goal of denoising methods is to mitigate the impact of noise in

the observed interaction set I on the model parameters [39, 40, 43].

4 METHOD

To address the limitations of current denoising techniques [5, 8,

15, 26], we conduct a thorough investigation into the underlying

causes of the overlap between normal and noisy interactions in the

overall loss distribution. Then, we refine existing denoising crite-

ria and introduce a novel resampling strategy for denoising based

on users’ personal loss distributions, called PLD. Furthermore, we

enhance the denoising capability of PLD through rigorous theo-

retical analysis, resulting in a more robust and effective denoising

methodology.

Upper Quartile of Normal Interaction Loss Lower Quartile of Noisy Interaction Loss

Overlap

Figure 2: Probability Distribution of losses.

Table 1: Statistics of overall loss distribution

Noise Ratio |IG
normal

| |IG
normal

|/|I
normal

| |IG
noise

| |IG
noise

|/|Inoise |
0.1 152,892 18.40% 12,976 15.61%

0.2 162,700 19.58% 29,130 17.52%

0.3 162,763 19.58% 45,275 18.16%

0.4 159,454 19.19% 59,486 17.89%

4.1 Motivation

To investigate the causes of the overlap between normal and noisy

interactions in the overall loss distribution, we conduct an experi-

mental analysis. Using the MIND dataset [31] as a case study, we

introduce additional noise ratios of 10%, 20%, 30%, and 40% into user

interactions and evaluate the impact on LightGCN [6]
1
. Detailed

description of the experimental setup can be found in Section 5.1.

To facilitate this analysis, we introduce the following notation:

• I
normal

: the set of normal interactions.

• Inoise: the set of noisy interactions.

• 𝑙𝑢,𝑣 : the loss corresponding to the interaction between user 𝑢

and item 𝑣 .

• O: the overlap region containing noisy interactions with lower

losses and normal interactions with higher losses in the overall

loss distribution, as depicted in Figure 2.

• O𝑢 : the overlap region in user 𝑢’s personal loss distribution.

Note that quantiles are used instead of max-min values to mitigate

the influence of extreme values when determining overlap regions.

We further define the following sets to analyze interactions within

the overlap regions:

• IG
normal

= {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ I
normal

∧ 𝑙𝑢,𝑣 ∈ O}: the set of normal

interactions that fall within the overlap region of the overall loss

distribution.

• IG
noise

= {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ Inoise ∧ 𝑙𝑢,𝑣 ∈ O}: the set of noisy

interactions that fall within the overlap region of the overall loss

distribution.

• IP
normal

= {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ I
normal

∧𝑙𝑢,𝑣 ∈ O𝑢 }: the set of normal

interactions that fall within the overlap region of the personal

loss distribution.

• IP
noise

= {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ Inoise ∧ 𝑙𝑢,𝑣 ∈ O𝑢 }: the set of noisy
interactions that fall within the overlap region of the personal

loss distribution.

Overall Loss Distribution. The overall loss distribution con-

sists of the loss of all interactions. For clarity, we separate the overall

loss distribution into normal and noisy interaction loss distribu-

tions. Figure 2 illustrates that normal and noisy interactions exhibit

1
Similar experiments are conducted on different datasets and models, yielding consis-

tent results. Due to space constraints, we present only the results for this configuration

here.

3
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Figure 3: Personal loss distribution for five users.

significant overlap in the overall loss distribution across varying

noise ratios. As shown in Table 1, across different noise ratios, the

values of |IG
normal

|/|I
normal

| and |IG
noise

|/|Inoise | are generally high.

This makes it difficult to distinguish between normal and noisy

interactions based on the overall loss distribution, increasing the

likelihood of denoising errors in existing methods [5, 8, 15, 26].

Consequently, relying solely on the overall loss distribution may

not be an effective approach for differentiating between normal

and noisy interactions.

User Case in Personal Loss Distribution. To further analyze

these interactions, we randomly select five users from the dataset

and display their personal loss distributions across varying noise

ratios. As shown in Figure 3, for each user, the losses of normal

interactions consistently remain lower than those of noisy interac-

tions. However, due to significant variance in users’ personal loss

distributions, the overlap depicted in Figure 2 is primarily attributed

to certain users exhibiting normal interaction losses that exceed

other users’ noisy interaction losses. For example, at a noise ratio of

0.2, the noisy interaction losses of user 2 differ from corresponding

normal interaction losses but are similar to the normal interaction

losses of user 5.

Statistics of Personal Loss Distribution. Building on the pre-

vious user case analysis, we propose that noisy interactions can

be more effectively identified by analyzing users’ personal loss

distributions. To further illustrate this, we examine the statistical

differences between users’ normal and noisy interaction losses. For

each user, we compute the difference between the lower quartile

of their normal interaction losses and the upper quartile of their

noisy interaction losses. As depicted in Figure 4, most users exhibit

higher noisy interaction losses compared to their normal interac-

tion losses, a trend that persists across all noise levels. As shown

in Table 2, compared to |IG
normal

| and |IG
noise

|, |IP
normal

| and |IP
noise

|
decrease significantly, further validating the effectiveness of per-

sonal loss distributions for distinguishing normal interactions from

noisy ones. This observation offers valuable insights for potential

improvements in denoising strategies.

4.2 PLD Methodology

Based on the above insights, a straightforward denoising method

would treat higher-loss interactions within the personal loss distri-

bution as noise. However, the sparsity of user interactions causes

significant fluctuations in personal loss distributions. As a result,

reweight-based methods may cause drastic changes in the weight

assigned to the same interaction across consecutive epochs, under-

mining training stability. Additionally, due to variations in the pres-

ence and amount of noise, dropping the highest-loss interactions

could negatively affect users with little or no noisy interactions. For

Figure 4: Difference between normal and noisy interactions

in personal loss distributions across all users.

Table 2: Statistics of personal loss distribution

Noise Ratio |IP
normal

| |IP
normal

|/|I
normal

| |IP
noise

| |IP
noise

|/|Inoise |
0.1 38,998 5.13% 2,125 2.79%

0.2 36,971 4.44% 4,979 2.99%

0.3 35,571 4.28% 7,969 3.19%

0.4 35,511 4.27% 10,771 3.24%

instance, with a fixed drop rate (e.g., 10%), a user without noisy in-

teractions would still experience a 10% drop in normal interactions

during training, which would degrade the user’s experience.

To address these issues, we propose solving this problem through

probabilistic sampling. Specifically, we aim to reduce the proba-

bility of noisy interactions being optimized while ensuring that

users without noise remain unaffected. To this end, we propose

a resampling strategy named PLD, which consists of two parts:

Candidate Pool Construction and Item Resampling.

Candidate PoolConstruction.To prevent itemswith extremely

small losses from being repeatedly sampled, we pre-construct a can-

didate item pool, C𝑘
𝑢 of size 𝑘 for each user 𝑢. Items in C𝑘

𝑢 are

randomly sampled from the user’s interacted items,V𝑢 .

ItemResampling.Next, we calculate the loss 𝑙𝑢,𝑣 for each of the

𝑘 items in the candidate pool. We then perform resampling based

on the computed loss values. Specifically, for user 𝑢, the sampling

probability for item 𝑣 in the candidate pool C𝑘
𝑢 is determined by:

𝑃𝑢,𝑣 =
exp(−𝑙𝑢,𝑣)∑

𝑗∈C𝑘
𝑢
exp(−𝑙𝑢,𝑗 )

. (1)

Finally, the resampled item is selected as the positive interaction

for the current optimization step.

This method ensures that variances in personal loss distribu-

tions do not adversely affect the sampling process. Moreover, this

approach ensures that normal interactions are optimized, even for

users without noisy interactions—unlike previous methods, which

always drop a subset of interactions [8, 26].

4.3 Theoretical Analysis

To analyze the effectiveness of the PLD method, we examine the

probability that PLD samples both normal and noisy interactions.

Theorem 1. For a user 𝑢, there are 𝑛 items with normal interac-
tions and𝑚 items with noisy interactions. Assume that the loss of the
user’s normal interactions follows a Gaussian distribution N(𝜇1, 𝜎2)
and the loss of noisy interactions follows a Gaussian distribution
N(𝜇2, 𝜎2), where 𝜇1 < 𝜇2 and 𝜇1, 𝜇2 > 𝜎 . From these𝑚 + 𝑛 inter-
actions, we first randomly select 𝑘 interactions, and then resample
one positive interaction according to Equation 1. Let Λnormal denote
the sum of sampling probabilities for normal interactions, and Λnoise
denote the sum of sampling probabilities for noisy interactions. Define

4
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Algorithm 1 Training Procedure with PLD

Input: Training setD, pool size𝑘 , temperature coefficient 𝜏 , batch

size B, loss function L(𝑢, 𝑖, 𝑗)
Output: Model parameters Θ.
1: while stopping criteria not met do

⊲ PLD
2: Draw B triples (𝑢, C𝑘

𝑢 , 𝑗) from D.

3: Initialize the batch set DB = ∅
4: for each (𝑢, C𝑘

𝑢 , 𝑗) do
5: Calculate 𝑙𝑖 for 𝑖 ∈ C𝑘

𝑢 using L(𝑢, 𝑖, 𝑗).
6: Resample 𝑖∗ based on Equation 3 within C𝑘

𝑢 .

7: Add (𝑢, 𝑖∗, 𝑗) to the batch set DB.

8: end for

⊲ Standard Training
9: Update Θ according to L(𝑢, 𝑖, 𝑗) for each (𝑢, 𝑖∗, 𝑗) in DB.

10: end while

11: return Θ

the following:

𝛼 = exp

(
−𝜇1 +

𝜎2

2

)
, 𝛽 = exp

(
−𝜇2 +

𝜎2

2

)
,

𝛾 = exp(𝜎2) − 1, 𝜂 =
𝑛𝛼 +𝑚𝛽
𝑛 +𝑚 ,

Γ =
(𝑛𝛼 −𝑚𝛽)
𝑚 + 𝑛 ·

(𝛼2 + 𝛽2) (𝛾 + 𝑚
𝑛+𝑚 ) + 𝛽2

𝜂3
,

𝜒 =
𝛾

(𝑛 +𝑚)
[
𝑛𝛼2 −𝑚𝛽2

]
we have:

E[Λnormal − Λnoise] =



𝑛 −𝑚
𝑛 +𝑚 𝑘 = 1

𝑛𝛼 −𝑚𝛽
(𝑚 + 𝑛)𝜂 + Γ

𝑘
− 𝜒

𝐶2

𝑘

(𝑘 − 1)2︸               ︷︷               ︸
Fluctuation term

𝑘 > 1

,

(2)

where 𝐶 ∈ [𝛽, 𝛼] is a constant term.

The proof of Theorem 1 is detailed in Appendix A.1. The term
Γ
𝑘
−

𝜒

𝐶2

𝑘
(𝑘−1)2 arises from the variance component in the denominator

of the softmax function, exhibiting larger fluctuations when 𝑘 is

small, while stabilizing as 𝑘 increases.

According to Theorem 1, when 𝑘 = 1, PLD reduces to standard

training with E[Λ
normal

−Λnoise] = 𝑛−𝑚
𝑛+𝑚 . For 𝑘 > 1, given 𝛼, 𝛽,𝛾 >

0, with 𝛼 > 𝛽 and 𝑛 ≫𝑚, we find that Γ >
𝜒

𝐶2
. Thus, E[Λ

normal
−

Λnoise] > 𝑛−𝑚
𝑛+𝑚 . This indicates that PLD outperforms standard

training, demonstrating superior denoising capabilities.

To further enhance the effectiveness of the PLD method, we

can increase
𝑛𝛼−𝑚𝛽

(𝑚+𝑛)𝜂 . Specifically, let 𝜉 =
𝛽
𝛼 = exp(𝜇1 − 𝜇2) < 1.

Then, we can express
𝑛𝛼−𝑚𝛽

(𝑚+𝑛)𝜂 =
𝑛−𝜉𝑚
𝑛+𝜉𝑚 . Notably, since

𝜕
𝑛𝛼−𝑚𝛽

(𝑚+𝑛)𝜂
𝜕𝜉

< 0,

we can decrease 𝜉 to amplify
𝑛𝛼−𝑚𝛽

(𝑚+𝑛)𝜂 , thus enlarging E[Λ
normal

−
Λnoise]. Based on this idea, we introduce a temperature coefficient

𝜏 into Equation 1:

𝑃𝑢,𝑣 =
exp(−𝑙𝑢,𝑣/𝜏)∑

𝑗∈C𝑘
𝑢
exp(−𝑙𝑢,𝑗/𝜏)

. (3)

Table 3: Dataset statistics

DATASET #Users #Items #Interactions Avg.Inter. Sparsity

Gowalla 29,858 40,981 1,027,370 34.4 99.92%

Yelp2018 31,668 38,048 1,561,406 49.3 99.88%

MIND 38,441 38,000 1,210,953 31.5 99.92%

MIND-Large 111,664 54,367 3,294,424 29.5 99.95%

In thismanner, the new 𝜉 ′ can be considered as 𝜉 ′ = exp ((𝜇1 − 𝜇2)/𝜏).
By reducing 𝜏 , we can further enlarge

𝑛𝛼−𝑚𝛽

(𝑚+𝑛)𝜂 . The algorithmic flow

of PLD is outlined in Algorithm 1.

Additionally, we perform an in-depth analysis and comparison

of the time and space complexity of PLD and baseline methods. For

further details, please refer to Appendix A.2.

5 EXPERIMENTS

In this section, we conduct extensive experiments to address the

following research questions (RQs):

• RQ1: How does PLD perform compared to state-of-the-art de-

noising methods?

• RQ2: How well does PLD generalize, align with the theoretical

analysis, and what is its time complexity?

• RQ3: How do the hyperparameters affect the performance of

PLD?

5.1 Experimental Setup

5.1.1 Datasets. We utilize four widely recognized datasets: the

Gowalla check-in dataset [14], the Yelp2018 business dataset, and

the MIND and MIND-Large news recommendation datasets [31].

The Gowalla and Yelp2018 datasets include all users, while for

the MIND dataset, we sample two subsets of users, constructing

MIND and MIND-Large, following [42]. Consistent with [27, 41],

we exclude users and items with fewer than 10 interactions from

our analysis. We allocate 80% of each user’s historical interactions

to the training set, reserving the remainder for testing. Additionally,

10% of the training set is randomly selected to form a validation set

for hyperparameter tuning. Detailed statistics for the datasets are

summarized in Table 3.

5.1.2 Baselines. We incorporate various denoising methods, in-

cluding four reweight-based approaches and one self-supervised

method. Specifically, we evaluate R-CE, T-CE [26], BOD [30], and

DCF [8] as reweight-based methods, and DeCA [29] as a self-

supervised method.

• R-CE [26]: R-CE assigns reduced training weight to high-loss

interactions.

• T-CE [26]: T-CE drops interactions with the highest loss values

at a predefined drop rate.

• BOD [30]: BOD treats the process of determining interaction

weights as a bi-level optimization problem to learn more effective

denoising weights.

• DCF [8]: DCF addresses the challenges posed by hard positive

samples and the data sparsity introduced by dropping interac-

tions in T-CE.

• DeCA [29]: DeCA posits that clean samples tend to yield con-

sistent predictions across different models, incorporating two

recommendation models during training to better differentiate

between clean and noisy interactions.

5
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Table 4: Recommendation performance of different denoising methods. The highest scores are in bold, and the runner-ups are

with underlines. A significant improvement over the runner-up is marked with * (i.e., two-sided t-test with 0.05 ≤ 𝑝 < 0.1) and

** (i.e., two-sided t-test with 𝑝 < 0.05).

Model

Gowalla Yelp2018 MIND

Recall NDCG Recall NDCG Recall NDCG

@20 @50 @20 @50 @20 @50 @20 @50 @20 @50 @20 @50

MF 0.1486 0.2410 0.1073 0.1370 0.0621 0.1187 0.0483 0.0704 0.0658 0.1219 0.0430 0.0615

+R-CE 0.1456 0.2362 0.1053 0.1343 0.0654 0.1239 0.0506 0.0733 0.0716 0.1311 0.0468 0.0663

+T-CE 0.1326 0.2197 0.0920 0.1197 0.0571 0.1113 0.0430 0.0639 0.0359 0.0812 0.0215 0.0363

+DeCA 0.1463 0.2356 0.1068 0.1355 0.0645 0.1225 0.0502 0.0729 0.0714 0.1312 0.0471 0.0668

+BOD 0.1489 0.2415 0.1079 0.1376 0.0654 0.1235 0.0511 0.0738 0.0713 0.1300 0.0473 0.0665

+DCF 0.1489 0.2413 0.1073 0.1367 0.0635 0.1208 0.0493 0.0715 0.0710 0.1297 0.0472 0.0665

+PLD (ours) 0.1520** 0.2475** 0.1097 0.1404* 0.0677** 0.1264** 0.0527** 0.0755** 0.0769** 0.1379** 0.0513* 0.0713**

Gain +2.04% ↑ +2.47% ↑ +1.71% ↑ +1.98% ↑ +3.46% ↑ +2.02% ↑ +3.09% ↑ +2.33% ↑ +7.36% ↑ +5.09% ↑ +8.46% ↑ +6.83% ↑
LightGCN 0.1553 0.2509 0.1142 0.1449 0.0665 0.1270 0.0516 0.0750 0.0817 0.1485 0.0538 0.0757

+R-CE 0.1536 0.2481 0.1131 0.1434 0.0554 0.1042 0.0428 0.0617 0.0723 0.1315 0.0478 0.0670

+T-CE 0.1146 0.1859 0.0859 0.1088 0.0532 0.1004 0.0412 0.0595 0.0674 0.1222 0.0447 0.0626

+DeCA 0.1540 0.2495 0.1133 0.1440 0.0678 0.1298 0.0526 0.0766 0.0812 0.1480 0.0532 0.0751

+BOD 0.1560 0.2519 0.1154 0.1461 0.0672 0.1280 0.0523 0.0758 0.0809 0.1475 0.0532 0.0750

+DCF 0.1276 0.2072 0.0948 0.1203 0.0619 0.1180 0.0482 0.0699 0.0734 0.1342 0.0483 0.0681

+PLD (ours) 0.1580** 0.2558** 0.1157 0.1472* 0.0693** 0.1325** 0.0538** 0.0783** 0.0837** 0.1516** 0.0551** 0.0774**

Gain +1.23% ↑ +1.53% ↑ +0.32% ↑ +0.71% ↑ +2.31% ↑ +2.02% ↑ +2.44% ↑ +2.22% ↑ +2.43% ↑ +2.06% ↑ +2.47% ↑ +2.33% ↑

Table 5: Recommendation performance of different denois-

ing methods on MIND-Large.

Model
Recall NDCG

@20 @50 @20 @50

MF 0.0788 0.1441 0.0501 0.0710

+R-CE 0.0790 0.1453 0.0502 0.0715

+T-CE 0.0329 0.0788 0.0194 0.0340

+DeCA 0.0793 0.1447 0.0507 0.0717

+BOD 0.0794 0.1435 0.0516 0.0722

+DCF 0.0818 0.1482 0.0528 0.0741

+PLD (ours) 0.0846** 0.1524** 0.0543** 0.0760**

Gain +3.36% ↑ +2.85% ↑ +2.67% ↑ +2.58% ↑

5.1.3 Evaluation Metrics. We adopt standard metrics widely em-

ployed in the field. The primary metrics for evaluating recommen-

dation performance are the top-𝑘 metrics: Recall at 𝐾 (Recall@𝐾)

and Normalized Discounted Cumulative Gain at 𝐾 (NDCG@𝐾 ), as

described in [6, 9, 40]. For evaluation, we set 𝐾 = 20 and 𝐾 = 50,

following [27, 41].

5.1.4 Implementation Details. In our study, we employ two com-

monly used backbone recommendation models: MF [11] and Light-

GCN [6]. The configuration of both denoising methods and recom-

mendation models involves selecting a learning rate from {0.1, 0.01,

. . . , 1 × 10
−5
}, and a weight decay from {0, 0.1, . . . , 1 × 10

−5
}. For

PLD, the candidate pool size 𝑘 is selected from {2, 3, 5, 10, 20}, and

the temperature coefficient 𝜏 is chosen from {0.01, 0.05, 0.1, 0.2, 0.3,

0.4, 0.5}. For the baselines, hyperparameter settings follow those

specified in the original publications. Our implementation code is

available at the following link
2
.

5.2 Performance Comparison (RQ1)

In this section, we address RQ1 by focusing on two key aspects:

recommendation performance and robustness against noise. All

2
https://anonymous.4open.science/r/PLD

Table 6: Recommendation performance of different denois-

ing methods on BCE loss on MIND.

Model
Recall NDCG

@20 @50 @20 @50

MF 0.0585 0.1156 0.0337 0.0520

+R-CE 0.0644 0.1235 0.0387 0.0581

+T-CE 0.0612 0.1193 0.0361 0.0550

+DeCA 0.0655 0.1250 0.0394 0.0588

+BOD 0.0681 0.1243 0.0442 0.0624

+DCF 0.0683 0.1319 0.0407 0.0615

+PLD (ours) 0.0731** 0.1334 0.0464** 0.0663**

Gain +6.98% ↑ +1.16% ↑ +4.94% ↑ +6.13% ↑

results in this section are based on the widely adopted BPR loss

function [18]. For a comprehensive evaluation, results using the

BCE loss function are provided in Section 5.3.

Recommendation Performance. We evaluate the effective-

ness of PLD across three common datasets without introducing

additional noise, as shown in Table 4. The performance of R-CE [26],

T-CE [26], and DCF [8] is suboptimal due to the limitations of using

overall loss distribution as a denoising criterion for pairwise loss

functions, as discussed earlier (in Figure 1). In particular, T-CE ap-

plies a fixed drop ratio, which truncates part of the loss completely,

unintentionally discarding many normal interactions and leading

to a significant performance decrease.

On the other hand, DeCA [29] and BOD [30] demonstrate more

stable performance, securing runner-up results across several met-

rics. Our method, PLD, mitigates the impact of noisy interactions

by resampling based on users’ personal loss distributions, producing

stable and optimal results across all datasets. It achieves significant

improvements, with 4.29% and 4.42% increase in Recall@20 and

NDCG@20, respectively, using MF as the backbone model.

6
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Figure 5: Recommendation performance of different denoising methods across various noise ratios.

Figure 6: Theoretical, practical, and standard values (i.e., with-

out resampling in PLD) of E[Λ
normal

− Λnoise] for 6 users on

MIND with 30% additional noise.

Robustness against Noise. We further assess PLD’s robust-

ness to noise by randomly introducing noisy interactions at ratios
3

ranging from 0.1 to 0.5, as shown in Figure 5. As the noise ratio

increases, the performance of all methods decreases. Additionally,

we observe that in some cases, specifically when using LightGCN

as the backbone model, denoising methods based solely on over-

all loss distribution (T-CE, R-CE, and DCF) perform worse than

the backbone model itself. This further confirms that overall loss

distribution is unsuitable for denoising in pairwise loss scenarios.

In contrast, our method, PLD, remains the most stable across all

noise ratios, consistently outperforming other denoising methods.

Additionally, we show the results on a larger dataset, MIND-Large

(Table 5), where only the results at a noise ratio of 0.1 are presented

due to space limitations. The conclusions drawn from MIND-Large

are consistent with those from the other datasets.

3
A ratio of 0.1 means adding noisy interactions equal to 10% | Inormal | .

More 
Normal 
Inter.

Less 
Noisy
Inter.

Figure 7: Number of normal interactions and noisy interac-

tions sampled.

5.3 Argumentation Study (RQ2)

In this section, we address RQ2 by evaluating the generalization

of our method with the pointwise loss function, analyzing the

consistency between Theorem 1 and practical results, and verifying

the advantage of our method in terms of time complexity.

Pointwise Loss Function. To further demonstrate the general-

ization of PLD, we evaluate its performance using the pointwise

loss function, specifically Binary Cross-Entropy (BCE) loss. Table 6

presents the results with MF as the backbone model on the MIND

dataset. Unlike the results with pairwise loss functions shown in

Table 4, all denoising methods show improvements under MF with

the BCE loss function, particularly T-CE. Since these methods are

originally designed with BCE loss in mind, they perform well with

BCE but struggle to adapt to BPR loss. In contrast, our method, PLD,

not only adapts but also achieves the best results with BCE loss,

showing a 6.98% improvement in Recall@20 and a 4.94% improve-

ment in NDCG@20.

Theorem Validation. To evaluate the consistency between

Theorem 1 and practical results, and thereby demonstrate the effec-

tiveness of PLD, we examine the alignment between the theoretical

value E[Λ
normal

− Λnoise] and its practical counterpart. We also

7
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Figure 8: Left: Analysis of hyper-parameter 𝑘; Right: Analysis of hyper-parameter 𝜏 .

Figure 9: Training time per epoch (in seconds) with batch

size 2048 on MIND.

compare these values to the probability values under a standard

training process without resampling. Since Theorem 1 contains

a constant 𝐶 ∈ [𝛼, 𝛽], we approximate it by setting 𝐶 =
𝛼+𝛽
2

for

probability calculations.

We randomly selecte 6 users from the dataset and use Equation 2

to calculate E[Λ
normal

− Λnoise]. Concurrently, we compute the

practical value through 100 simulations of the sampling process

in lines 5-7 of Algorithm 1. Finally, we obtain the standard value

by running 100 simulations using the standard training process

without resampling.

As shown in Figure 6, the theoretical value of E[Λ
normal

−Λnoise]
closely aligns with the practical value, verifying the correctness of

our theoretical analysis. Moreover, we observe that the practical

value corresponding to PLD is significantly higher than the standard

value, highlighting the effectiveness of our method.

Additionally, we compare the number of normal and noisy inter-

actions sampled in each epoch for PLD and standard training, as

shown in Figure 7. PLD significantly reduces the number of noisy

interactions sampled.

Time Complexity. To validate the advantage of our method in

terms of time complexity, we compare the per-epoch runtime of

baseline methods on the MIND dataset. Training is conducted on an

RTX 4090, and we record the average training time over 100 epochs.

To avoid GPU memory limitations, we standardize the batch size

to 2048, which reduces the number of sorting operations within

each batch, thereby lowering the time complexity for methods like

T-CE [26] and DCF [8] that rely on batch-level sorting.

As shown in Figure 9, BOD [30] incurs additional time costs due

to the extra training required for the weight encoder and decoder.

T-CE and DCF require sorting the loss within each batch, leading

to higher time costs. DeCA [29] involves training multiple models,

further increasing time overhead. In contrast, both R-CE [26] and

our method, PLD, do not significantly increase time complexity,

as their time is close to that of the backbone model.

5.4 Hyper-Parameters Analysis (RQ3)

In this section, we address RQ3 by exploring the effects of hyperpa-

rameters on MIND with MF as the backbone model, specifically the

candidate pool size 𝑘 and the temperature coefficient 𝜏 . The results

are shown in Figure 8.

Analysis of Hyper-Parameter 𝑘 . With 𝜏 fixed at 0.1, we vary

𝑘 within the range [2, 3, 5, 10, 15, 20]. We observe that when the

candidate pool size is too small, i.e., 𝑘 = 2, the high sampling

variance often results in the candidate pool being dominated by

noisy samples. At 𝑘 = 5, the method consistently achieves good

performance across all noise ratios. Beyond𝑘 = 10, the performance

stabilizes, showing minimal additional improvements.

Analysis of Hyper-Parameter 𝜏 . With 𝑘 set to 5, we vary 𝜏

within the range [0.01, 0.05, 0.1, 0.2, 0.3, 0.4]. We find that when 𝜏 is

large, i.e., 𝜏 ≥ 0.2, the performance of PLD fluctuates significantly.

In contrast, when 𝜏 ≤ 0.1, the performance becomes more stable.

Specifically, at 𝜏 = 0.05, the results exhibit smaller variations across

different noise ratios, indicating that PLD has a stronger denoising

effect under this configuration.

6 CONCLUSION

In this research, we identify the limitations of denoising indica-

tors used in current loss-based denoising methods, particularly

the significant overlap between normal and noisy interactions in

the overall loss distribution. Our analysis reveals a clear distinc-

tion between normal and noisy interactions in users’ personal loss

distributions. Building on these findings, we introduce a novel de-

noising strategy, PLD, which incorporates a resampling approach

based on users’ personal loss distributions. By selectively resam-

pling training interactions, PLD effectively reduces the likelihood

of noisy interactions being optimized. Additionally, we conduct a

comprehensive theoretical analysis, demonstrating the robustness

of PLD and suggesting potential ways to further enhance its perfor-

mance. Extensive experimental results confirm the strong efficacy

and robustness of PLD in denoising recommender systems.

8
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A APPENDIX

A.1 Proofs

Proposition 1. Let 𝑥𝑖 ∼ N(𝜇, 𝜎2) and 𝑁 ∼ Binomial(𝑘, 𝑛
𝑛+𝑚 ).

Define

𝑆𝑥 =

𝑁∑︁
𝑖=1

exp(−𝑥𝑖 ).

Then, the expected value and variance of 𝑆𝑥 are given by:

E[𝑆𝑥 ] =
𝑘𝑛

𝑚 + 𝑛 exp

(
−𝜇 + 𝜎

2

2

)
,

Var[𝑆𝑥 ] =
𝑘𝑛

𝑛 +𝑚 exp(−2𝜇 + 𝜎2)
(
exp(𝜎2) − 𝑛

𝑛 +𝑚

)
.

Proof. To compute E[𝑆𝑥 ], we apply the Double Expectation

Theorem [19]. First, we condition on 𝑁 :

E[𝑆𝑥 ] = E𝑁
[
E𝑆𝑥 [𝑆𝑥 | 𝑁 ]

]
= E𝑁

[
𝑁 exp

(
−𝜇 + 𝜎

2

2

)]
.

The inner expectation evaluates to𝑁 exp

(
−𝜇 + 𝜎2

2

)
sinceE[exp(−𝑥𝑖 )]

for each 𝑥𝑖 ∼ N(𝜇, 𝜎2) is known. Taking the expectation over

𝑁 ∼ Binomial(𝑘, 𝑛
𝑛+𝑚 ), we obtain:

E[𝑆𝑥 ] =
𝑘𝑛

𝑚 + 𝑛 exp

(
−𝜇 + 𝜎

2

2

)
.

Next, we compute the variance of 𝑆𝑥 using the Law of Total

Variance [1]:

Var[𝑆𝑥 ] = E𝑁
[
Var𝑆𝑥 [𝑆𝑥 | 𝑁 ]

]
+ Var𝑁

[
E𝑆𝑥 [𝑆𝑥 | 𝑁 ]

]
.

For the first term, Var𝑆𝑥 [𝑆𝑥 | 𝑁 ] = 𝑁 exp(−2𝜇 +𝜎2)
(
exp(𝜎2) − 1

)
,

leading to:

E𝑁
[
Var𝑆𝑥 [𝑆𝑥 | 𝑁 ]

]
= E[𝑁 ] exp(−2𝜇 + 𝜎2)

(
exp(𝜎2) − 1

)
.

For the second term, we use the variance of 𝑁 , yielding:

Var𝑁

[
E𝑆𝑥 [𝑆𝑥 | 𝑁 ]

]
= Var[𝑁 ] exp(−2𝜇 + 𝜎2) .

Substituting E[𝑁 ] = 𝑘𝑛
𝑛+𝑚 and Var[𝑁 ] = 𝑘𝑛𝑚

(𝑛+𝑚)2 , we obtain the

final expression:

Var[𝑆𝑥 ] =
𝑘𝑛

𝑛 +𝑚 exp(−2𝜇 + 𝜎2)
(
exp(𝜎2) − 𝑛

𝑛 +𝑚

)
.

□

Proposition 2. Given two independent random variables 𝑋 and
𝑌 , we have

E
[

1

𝑋 + 𝑌

]
≈ 1

E[𝑋 ] + E[𝑌 ]

(
1 + Var[𝑋 ] + Var[𝑌 ]

(E[𝑋 ] + E[𝑌 ])2

)
.

Proof. Let𝑍 = 𝑋+𝑌 and define𝑔(𝑍 ) = 1

𝑍
. Applying the second-

order Taylor expansion [13] of 𝑔(𝑍 ) around E[𝑍 ], we obtain:

𝑔(𝑍 ) ≈ 𝑔(E[𝑍 ])+𝑔′ (E[𝑍 ]) (𝑍 − E[𝑍 ])+ 1

2

𝑔′′ (E[𝑍 ]) (𝑍 − E[𝑍 ])2 .

Taking the expectation of both sides, the linear term vanishes due

to E[𝑍 − E[𝑍 ]] = 0, leaving:

E[𝑔(𝑍 )] ≈ 𝑔(E[𝑍 ]) + 1

2

𝑔′′ (E[𝑍 ])E
[
(𝑍 − E[𝑍 ])2

]
= 𝑔(E[𝑍 ]) + 1

2

𝑔′′ (E[𝑍 ])Var[𝑍 ] .

Substituting𝑔(𝑍 ) = 1

𝑍
, we have𝑔′ (E[𝑍 ]) = − 1

E[𝑍 ]2 and𝑔
′′ (E[𝑍 ]) =

2

E[𝑍 ]3 . Thus, the expression simplifies to:

E[𝑔(𝑍 )] ≈ 1

E[𝑍 ] +
1

2

2

E[𝑍 ]3
Var[𝑍 ]

=
1

E[𝑍 ]

(
1 + Var[𝑍 ]

E[𝑍 ]2

)
.

Since𝑍 = 𝑋 +𝑌 and𝑋 and𝑌 are independent, we use the properties

E[𝑍 ] = E[𝑋 ] + E[𝑌 ] and Var[𝑍 ] = Var[𝑋 ] + Var[𝑌 ]. Substituting
these into the above expression gives:

E
[

1

𝑋 + 𝑌

]
≈ 1

E[𝑋 ] + E[𝑌 ]

(
1 + Var[𝑋 ] + Var[𝑌 ]

(E[𝑋 ] + E[𝑌 ])2

)
,

which completes the proof. □

Proof of Theorem 1. For 𝑘 samples, let 𝑁 be the number of

normal samples and𝑀 be the number of noisy samples. We have:

E[𝑁 ] = 𝑘 · 𝑛

𝑛 +𝑚, Var[𝑁 ] = 𝑘 · 𝑛𝑚

(𝑛 +𝑚)2
,

E[𝑀] = 𝑘 · 𝑚

𝑛 +𝑚, Var[𝑀] = 𝑘 · 𝑛𝑚

(𝑛 +𝑚)2
.

When 𝑘 = 1, the sampling probabilities simplify to:

𝑃𝑖 = 𝑃 𝑗 =
1

𝑛 +𝑚 .

Therefore, the expected difference in sampling probabilities is:

E[Λ
normal

− Λnoise] =
𝑛 −𝑚
𝑛 +𝑚 .

Now, for 𝑘 > 1, let 𝑥𝑖 ∼ N(𝜇1, 𝜎2
1
) represent the loss of a normal

sample 𝑖 , and 𝑦 𝑗 ∼ N(𝜇2, 𝜎2) represent the loss of a noisy sample

𝑗 . According to Equation 1, the probability of selecting sample 𝑖 is:

𝑃𝑖 =
exp(−𝑥𝑖 )∑𝑁

𝑖=1 exp(−𝑥𝑖 ) +
∑𝑀

𝑗=1 exp(−𝑦 𝑗 )
.

Define:

𝑆𝑥 =

𝑁∑︁
𝑖=1

exp(−𝑥𝑖 ), 𝑆𝑦 =

𝑀∑︁
𝑗=1

exp(−𝑦 𝑗 ).

The sum of the sampling probabilities of normal interactions be-

comes:

Λ
normal

=

𝑁∑︁
𝑖=1

𝑃𝑖 =
𝑆𝑥

𝑆𝑥 + 𝑆𝑦
.

Then, we have:

E[Λ
normal

] = E[𝑆𝑥 ] · E
[

1

𝑆𝑥 + 𝑆𝑦

]
+ Cov

(
𝑆𝑥 ,

1

𝑆𝑥 + 𝑆𝑦

)
.
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Table 7: Method complexity comparison.

Methods Space Complexity Time Complexity

Base 𝑀 O(𝑁 )
T-CE 𝑀 O(𝑁 log(𝑁 ))
BOD 𝑀 + 𝑑1 × 𝑑2 O((𝑑1 × 𝑑2)𝑁 )
DCF 𝑀 O(𝑁 log(𝑁 ))

PLD (ours) 𝑀 O(𝑘𝑁 )

Expanding the covariance term:

Cov

(
𝑆𝑥 ,

1

𝑆𝑥 + 𝑆𝑦

)
= E𝑁

[
Cov

(
𝑁∑︁
𝑖=1

exp(−𝑥𝑖 ) | 𝑁,
1

𝑆𝑥 + 𝑆𝑦

)]
+ Cov

(
E

[
𝑁∑︁
𝑖=1

exp(−𝑥𝑖 ) | 𝑁
]
,E

[
1

𝑆𝑥 + 𝑆𝑦

])
.

(4)

Assuming a linear dependence between 𝑆𝑥 + 𝑆𝑦 and exp(−𝑥𝑖 ), we
introduce a constant 𝐶 ∈ [𝛽, 𝛼] such that:

𝑆𝑥 + 𝑆𝑦 ≈ exp(−𝑥𝑖 ) + (𝑘 − 1)𝐶.

This leads to:

Cov

(
exp(−𝑥𝑖 ),

1

𝑆𝑥 + 𝑆𝑦

)
≈ Cov

(
exp(−𝑥𝑖 ),

1

exp(−𝑥𝑖 ) + (𝑘 − 1)𝐶

)
.

Using the approximation:

1

exp(−𝑥𝑖 ) + (𝑘 − 1)𝐶 ≈ 1

(𝑘 − 1)𝐶 − exp(−𝑥𝑖 )
(𝑘 − 1)2𝐶2

,

we find:

Cov

(
exp(−𝑥𝑖 ),

1

𝑆𝑥 + 𝑆𝑦

)
≈ Cov

(
exp(−𝑥𝑖 ),

1

(𝑘 − 1)𝐶

)
− Cov

(
exp(−𝑥𝑖 ),

exp(−𝑥𝑖 )
(𝑘 − 1)2𝐶2

)
= −Var [exp(−𝑥𝑖 )]

(𝑘 − 1)2𝐶2
.

Consequently:

E[Λ
normal

] = E[𝑆𝑥 ] · E
[

1

𝑆𝑥 + 𝑆𝑦

]
− 𝑘𝑛

𝑛 +𝑚 · Var [exp(−𝑥𝑖 )]
(𝑘 − 1)2𝐶2

.

Finally, applying the definitions of 𝛼, 𝛽,𝛾, 𝜂, Γ, and 𝜒 , we derive
the expression for E[Λ

normal
− Λnoise] as:

E[Λ
normal

− Λnoise] =
𝑛𝛼 −𝑚𝛽
(𝑚 + 𝑛)𝜂 + Γ

𝑘
− 𝜒

𝐶2

𝑘

(𝑘 − 1)2
,

where the term
𝜒

𝐶2

𝑘
(𝑘−1)2 arises from the covariance component of

the variance term. □

A.2 Model Discussion

This section compares various reweight-based denoising methods,

including T-CE [26], BOD [30], DCF [8], and our PLD, focusing

on space and time complexities. The comparison is summarized in

Table 7.

Space Complexity. The space complexity of the base model is

determined by the number of parameters, denoted as𝑀 . T-CE, DCF,

and our PLD do not introduce any additional modules, so their space

complexity remains unchanged. In contrast, BOD introduces extra

components, specifically a generator and decoder (i.e., EN ∈ R𝑑1×𝑑2

and DE ∈ R𝑑2 ), which significantly increases its complexity.

Time Complexity. The time complexity of the base model is

determined by the number of interactions, denoted as 𝑁 , resulting

in a complexity of O(𝑁 ). Both T-CE and DCF require sorting the

loss values, increasing their complexity to O(𝑁 log𝑁 ). BOD needs

to encode and decode the weights of each edge, leading to a time

complexity of O((𝑑1×𝑑2+𝑑1)𝑁 ). Our PLD introduces a resampling

process, adding an additionalO(2𝑘𝑁 ) to the time complexity, where

𝑘 ≪ 𝑁 .

In summary, our PLD does not significantly increase the space

or time complexity of the base model. Compared to other reweight-

based denoising methods, our approach demonstrates clear advan-

tages.
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