
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

Personalized Denoising Implicit Feedback for Robust
Recommender System

Anonymous Author(s)

Abstract

While implicit feedback is foundational to modern recommender

systems, factors such as human error, uncertainty, and ambiguity

in user behavior inevitably introduce significant noise into this

feedback, adversely affecting the accuracy and robustness of rec-

ommendations. To address this issue, existing methods typically

aim to reduce the training weight of noisy feedback or discard it en-

tirely, based on the observation that noisy interactions often exhibit

higher losses in the overall loss distribution. However, we identify
two key issues: (1) there is a significant overlap between normal

and noisy interactions in the overall loss distribution, and (2) this

overlap becomes even more pronounced when transitioning from

pointwise loss functions (e.g., BCE loss) to pairwise loss functions

(e.g., BPR loss). This overlap leads traditional methods to misclas-

sify noisy interactions as normal, and vice versa. To tackle these

challenges, we further investigate the loss overlap and find that for
a given user, there is a clear distinction between normal and noisy
interactions in the user’s personal loss distribution. Based on this in-

sight, we propose a resampling strategy to Denoise using the user’s

Personal Loss distribution, named PLD, which aims to reduce the

probability of noisy interactions being optimized. Specifically, dur-

ing each optimization iteration, we create a candidate item pool

for each user and resample the items from this pool based on the

user’s personal loss distribution, prioritizing normal interactions.

Additionally, we conduct a theoretical analysis to validate PLD’s

effectiveness and suggest ways to further enhance its performance.

Extensive experiments conducted on three datasets with varying

noise ratios demonstrate PLD’s efficacy and robustness.

CCS Concepts

• Information systems → Recommender systems; • Security

and privacy→ Social network security and privacy.

Keywords

Robust Recommender System, Denoising Recommendation, Im-

plicit Feedback

ACM Reference Format:

Anonymous Author(s). 2025. Personalized Denoising Implicit Feedback

for Robust Recommender System. In Proceedings of The 2025 ACM Web
Conference (WWW’25). ACM, New York, NY, USA, 11 pages. https://doi.org/

XXXXXXX.XXXXXXX

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

WWW’25, Apri 28–May 02, 2025, Sydney, Australia
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-XXXX-X/18/06

https://doi.org/XXXXXXX.XXXXXXX

Noisy Interaction
In Overlap: 18.16%

45,275

Normal Interaction
In Overlap: 19.58%

162,763

Noisy Interaction
In Overlap: 11.52%

28,720

Normal Interaction
In Overlap: 11.86%

98,596

Upper Quartile of Normal Interaction Loss Lower Quartile of Noisy Interaction Loss

Figure 1: Probability distribution of losses. The overlap re-

gion includes interactions that deviate from the common as-

sumption in existing methods, i.e., where noisy interactions

exhibit lower losses or normal interactions exhibit higher

losses. Quantiles are used instead of max-min values to miti-

gate the influence of extreme values when determining the

overlap region.

1 INTRODUCTION

Recommender systems have become essential tools for mitigating

information overload in the modern era [6, 11]. Since obtaining

explicit user feedback (e.g., ratings) is often hindered by the need for

active user participation, these systems typically rely on implicit

feedback to capture user behavior patterns, thereby facilitating

effective recommendations [4, 8, 20]. Nonetheless, factors such as

human error, uncertainty, and ambiguity in user behavior inevitably

introduce significant noise into this feedback [23, 40]. This noise

can bias learned behavior patterns, undermine system robustness,

and degrade recommendation performance [34, 40].

Mainstream methods for noise elimination in recommender sys-

tems primarily focus on reweighting feedback. A commonly ob-

served pattern in the overall loss distribution, which represents

the losses of all interactions (i.e., feedback), is that noisy interac-

tions tend to exhibit higher losses during training [5, 8, 15, 26].

Based on this observation, these methods either reduce the training

weight of high-loss interactions or discard them entirely. For in-

stance, R-CE [26] assigns weights to interactions based on their loss

magnitude, with higher losses receiving smaller weights. T-CE [26]

proportionally discards interactions with the highest losses at a

predefined rate. These methods typically compute the loss for each

interaction using pointwise loss functions, such as Binary Cross

Entropy (BCE) loss [8, 26].

However, we identify two key limitations in this approach. To

illustrate, we separate the overall loss distribution into normal and

noisy interaction loss distributions. For clarity, we define an overlap

region that includes interactions deviating from the assumptions of

existing methods, i.e., where noisy interactions exhibit lower losses

or normal interactions exhibit higher losses:

• We observe a significant overlap between normal and noisy in-

teractions in the overall loss distribution, as shown on the left

1

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

WWW’25, Apri 28–May 02, 2025, Sydney, Australia Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

side of Figure 1. In LightGCN [6], trained with BCE loss on the

MIND [31] dataset with a 30% noise ratio, 11.86% of normal in-

teractions (98,596) fall within the overlap, while 11.52% of noisy

interactions (35,926) also fall within this overlap.

• Moreover, this overlap becomes more pronounced when transi-

tioning from pointwise loss functions to pairwise loss functions,

such as BPR loss [18], as shown on the right side of Figure 1.

Specifically, the percentage of normal interactions in the over-

lap increases to 19.58% (162,763, a 65.1% increase), while the

percentage of noisy interactions rises to 18.16% (60,170, a 67.5%

increase).

It is important to note that interactions in the overlap region cannot

be reliably identified using the overall loss distribution alone. This

limits the effectiveness of methods that rely solely on the overall

loss distribution for denoising.

To address these issues, we investigate the causes of the overlap

between noisy and normal interactions in the overall loss distri-

bution. We find that, due to the variance in users’ personal loss

distributions, the losses of normal interactions for some users over-

lap with those of noisy interactions for others, leading to signif-

icant overlap in the overall loss distribution. Furthermore, we

observe that, for a given user, there is a clear distinction be-

tween normal and noisy interactions in the user’s personal

loss distribution.

Based on this insight, denoising from the perspective of a user’s

personal loss distribution, rather than the overall loss distribution,

yields more effective results. However, the variance in users’ per-

sonal loss distributions and the differing ratios of noisy interactions

across users make it challenging to set an appropriate drop rate

for filtering noisy interactions or to adjust their weights based on

interaction losses, as traditional denoising approaches do [8, 26].

Given these considerations, we propose a resampling strategy

for Denoising based on users’ Personal Loss distributions, named

PLD. PLD reduces the probability of noisy interactions being opti-

mized by resampling training interactions. Specifically, PLD first

uniformly samples a user’s interacted items to construct candidate

pools, ensuring the stability of subsequent resampling. In the resam-

pling stage, it selects an item for optimization from the candidate

pool based on the user’s personal loss distribution, prioritizing nor-

mal interactions. Additionally, we conduct an in-depth theoretical

analysis of PLD, demonstrating its effectiveness and suggesting

that adjusting the sharpness of the resampling distribution using

a scaling coefficient can further improve the probability of sam-

pling normal interactions. Extensive experiments show that PLD

achieves state-of-the-art performance across various noise ratios,

not only with BCE loss but also with BPR loss.

The main contributions of our work are as follows:

• We identify the limitations of existing loss-based denoising meth-

ods, highlighting the significant overlap between normal and

noisy interactions in the overall loss distribution.

• We find that, for a given user, there is a clear distinction between

normal and noisy interactions in the user’s personal loss distribu-

tion. Leveraging this insight, we propose a resampling strategy

for denoising, PLD.

• We conduct an in-depth theoretical analysis of PLD, proving its

effectiveness and suggesting ways to further enhance its perfor-

mance.

• Extensive experiments validate the superiority of our proposed

method across various datasets and noise ratios.

2 RELATEDWORK

This section briefly reviews the research on collaborative filtering

and denoising implicit feedback.

2.1 Collaborative Filtering

Collaborative Filtering (CF) remains a fundamental technique in the

design of recommender systems and has been extensively adopted

in numerous research efforts [2, 21, 38]. At its core, CF operates on

the principle that users with similar behaviors or preferences are

likely to have aligned future choices, making it a powerful tool for

predicting recommendations [12]. A widely used method within

this paradigm is Matrix Factorization, which models latent rela-

tionships between users and items by factorizing the interaction

matrix [11]. This interaction matrix can be constructed from both

explicit feedback, such as ratings, and implicit feedback, which

includes indirect behavioral signals like clicks, views, and pur-

chases [10]. Although implicit feedback is often noisier and lacks

clear negative signals, it provides a wealth of data that is crucial for

building recommendation models in real-world scenarios where

explicit ratings are scarce [10].

In recent years, the introduction of deep learning has expanded

CF’s capabilities, particularly for handling the complexities of im-

plicit feedback. Neural-based models can capture more nuanced

user-item interactions, often observed through implicit signals. For

example, CDL [24] integrates auxiliary item data into CF using neu-

ral networks, effectively addressing data sparsity. Similarly, NCF [7]

replaces the traditional dot product operation with a multi-layer

neural architecture, which is better suited for modeling the intricate

patterns found in implicit user interactions. More recently, the rise

of Graph Neural Networks (GNNs) has inspired graph-based CF

models [28, 33, 35], such as NGCF [27] and LightGCN [6], which

have shown exceptional performance in leveraging implicit feed-

back. Despite these advancements, a persistent issue remains: the

vulnerability of these models to noise, particularly from implicit

data, which continues to undermine their robustness [40].

2.2 Denoising Implicit Feedback

Recommender systems that rely on implicit feedback have garnered

substantial attention. However, recent research highlights their sus-

ceptibility to noise in implicit feedback [25, 40]. The primary strate-

gies for mitigating noise in recommender systems can be broadly

categorized into two types [40]: reweight-based approaches [5, 8,

15, 22, 26, 30, 37] and self-supervised approaches [29, 32, 36].

Reweight-based Methods. These approaches aim to reduce

or eliminate the influence of noisy interactions by adjusting their

contributions during training [8, 15, 26, 30]. Some methods reduce

the weights of noisy interactions [5, 15, 26, 30], while others re-

move them entirely [8, 26]. A common observation driving these

methods is that noisy interactions typically produce higher train-

ing losses in the overall loss distribution [5, 8, 15, 26]. For instance,

2

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

Personalized Denoising Implicit Feedback for Robust Recommender System WWW’25, Apri 28–May 02, 2025, Sydney, Australia

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

R-CE [26] leverages loss values as indicators of noise, assigning

reduced weights to potentially noisy interactions, while T-CE [26]

eliminates interactions with the highest loss values at a predefined

drop rate. DCF [8] further addresses challenges posed by hard

positive samples and the data sparsity introduced by dropping in-

teractions. However, since normal and noisy interactions overlap

in the overall loss distribution, the effectiveness of these methods

is limited. Additionally, BOD [30] formulates the determination of

interaction weights as a bi-level optimization problem to learn more

effective denoising weights, though this approach is significantly

more time-consuming.

Self-supervised Methods. Self-supervised approaches mitigate

noise by introducing auxiliary signals through self-supervised learn-

ing [3, 16, 17, 29, 44]. For example, SGL [32] enhances the robust-

ness of user-item representations by applying various graph aug-

mentations, such as node dropping and edge masking. KGCL [36]

incorporates external knowledge graph data to refine the mask-

ing process. Meanwhile, DeCA [29] posits that clean data samples

tend to yield consistent predictions across different models and,

therefore incorporates two recommendation models during train-

ing to better differentiate between clean and noisy interactions.

However, self-supervised approaches rely heavily on the design of

self-supervised tasks, and these heuristics cannot always guarantee

effective denoising performance.

3 PRELIMINARY

We begin by providing a formal description of the task. Following [6,

8], we define a set of users asU = {𝑢} and a set of items asV = {𝑣},
alongwith an observed interaction set,I = {(𝑢, 𝑣) | 𝑢 ∈ U, 𝑣 ∈ V},
where the pair (𝑢, 𝑣) indicates that user 𝑢 interacted with item 𝑣 .

Generally, recommendation methods based on implicit feedback are

trained on interaction data, treating (𝑢, 𝑣) ∈ I as positive samples

and (𝑢, 𝑣) ∈ (U×V)\I as negative samples to learn the parameters

Θ. The training of the recommendation model is formulated as:

Θ∗ = argmin

Θ
L(U,V,I),

where L denotes the recommendation loss. However, the observed

interaction set I may contain noise, leading to a deviation between

the learned parameters Θ∗
and the ideal parameters ΘIdeal

, which

represent the optimal model parameters in the absence of noise.

The goal of denoising methods is to mitigate the impact of noise in

the observed interaction set I on the model parameters [39, 40, 43].

4 METHOD

To address the limitations of current denoising techniques [5, 8,

15, 26], we conduct a thorough investigation into the underlying

causes of the overlap between normal and noisy interactions in the

overall loss distribution. Then, we refine existing denoising crite-

ria and introduce a novel resampling strategy for denoising based

on users’ personal loss distributions, called PLD. Furthermore, we

enhance the denoising capability of PLD through rigorous theo-

retical analysis, resulting in a more robust and effective denoising

methodology.

Upper Quartile of Normal Interaction Loss Lower Quartile of Noisy Interaction Loss

Overlap

Figure 2: Probability Distribution of losses.

Table 1: Statistics of overall loss distribution

Noise Ratio |IG
normal

| |IG
normal

|/|I
normal

| |IG
noise

| |IG
noise

|/|Inoise |
0.1 152,892 18.40% 12,976 15.61%

0.2 162,700 19.58% 29,130 17.52%

0.3 162,763 19.58% 45,275 18.16%

0.4 159,454 19.19% 59,486 17.89%

4.1 Motivation

To investigate the causes of the overlap between normal and noisy

interactions in the overall loss distribution, we conduct an experi-

mental analysis. Using the MIND dataset [31] as a case study, we

introduce additional noise ratios of 10%, 20%, 30%, and 40% into user

interactions and evaluate the impact on LightGCN [6]
1
. Detailed

description of the experimental setup can be found in Section 5.1.

To facilitate this analysis, we introduce the following notation:

• I
normal

: the set of normal interactions.

• Inoise: the set of noisy interactions.

• 𝑙𝑢,𝑣 : the loss corresponding to the interaction between user 𝑢

and item 𝑣 .

• O: the overlap region containing noisy interactions with lower

losses and normal interactions with higher losses in the overall

loss distribution, as depicted in Figure 2.

• O𝑢 : the overlap region in user 𝑢’s personal loss distribution.

Note that quantiles are used instead of max-min values to mitigate

the influence of extreme values when determining overlap regions.

We further define the following sets to analyze interactions within

the overlap regions:

• IG
normal

= {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ I
normal

∧ 𝑙𝑢,𝑣 ∈ O}: the set of normal

interactions that fall within the overlap region of the overall loss

distribution.

• IG
noise

= {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ Inoise ∧ 𝑙𝑢,𝑣 ∈ O}: the set of noisy

interactions that fall within the overlap region of the overall loss

distribution.

• IP
normal

= {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ I
normal

∧𝑙𝑢,𝑣 ∈ O𝑢 }: the set of normal

interactions that fall within the overlap region of the personal

loss distribution.

• IP
noise

= {(𝑢, 𝑣) | (𝑢, 𝑣) ∈ Inoise ∧ 𝑙𝑢,𝑣 ∈ O𝑢 }: the set of noisy
interactions that fall within the overlap region of the personal

loss distribution.

Overall Loss Distribution. The overall loss distribution con-

sists of the loss of all interactions. For clarity, we separate the overall

loss distribution into normal and noisy interaction loss distribu-

tions. Figure 2 illustrates that normal and noisy interactions exhibit

1
Similar experiments are conducted on different datasets and models, yielding consis-

tent results. Due to space constraints, we present only the results for this configuration

here.

3

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

WWW’25, Apri 28–May 02, 2025, Sydney, Australia Anon.

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

Figure 3: Personal loss distribution for five users.

significant overlap in the overall loss distribution across varying

noise ratios. As shown in Table 1, across different noise ratios, the

values of |IG
normal

|/|I
normal

| and |IG
noise

|/|Inoise | are generally high.

This makes it difficult to distinguish between normal and noisy

interactions based on the overall loss distribution, increasing the

likelihood of denoising errors in existing methods [5, 8, 15, 26].

Consequently, relying solely on the overall loss distribution may

not be an effective approach for differentiating between normal

and noisy interactions.

User Case in Personal Loss Distribution. To further analyze

these interactions, we randomly select five users from the dataset

and display their personal loss distributions across varying noise

ratios. As shown in Figure 3, for each user, the losses of normal

interactions consistently remain lower than those of noisy interac-

tions. However, due to significant variance in users’ personal loss

distributions, the overlap depicted in Figure 2 is primarily attributed

to certain users exhibiting normal interaction losses that exceed

other users’ noisy interaction losses. For example, at a noise ratio of

0.2, the noisy interaction losses of user 2 differ from corresponding

normal interaction losses but are similar to the normal interaction

losses of user 5.

Statistics of Personal Loss Distribution. Building on the pre-

vious user case analysis, we propose that noisy interactions can

be more effectively identified by analyzing users’ personal loss

distributions. To further illustrate this, we examine the statistical

differences between users’ normal and noisy interaction losses. For

each user, we compute the difference between the lower quartile

of their normal interaction losses and the upper quartile of their

noisy interaction losses. As depicted in Figure 4, most users exhibit

higher noisy interaction losses compared to their normal interac-

tion losses, a trend that persists across all noise levels. As shown

in Table 2, compared to |IG
normal

| and |IG
noise

|, |IP
normal

| and |IP
noise

|
decrease significantly, further validating the effectiveness of per-

sonal loss distributions for distinguishing normal interactions from

noisy ones. This observation offers valuable insights for potential

improvements in denoising strategies.

4.2 PLD Methodology

Based on the above insights, a straightforward denoising method

would treat higher-loss interactions within the personal loss distri-

bution as noise. However, the sparsity of user interactions causes

significant fluctuations in personal loss distributions. As a result,

reweight-based methods may cause drastic changes in the weight

assigned to the same interaction across consecutive epochs, under-

mining training stability. Additionally, due to variations in the pres-

ence and amount of noise, dropping the highest-loss interactions

could negatively affect users with little or no noisy interactions. For

Figure 4: Difference between normal and noisy interactions

in personal loss distributions across all users.

Table 2: Statistics of personal loss distribution

Noise Ratio |IP
normal

| |IP
normal

|/|I
normal

| |IP
noise

| |IP
noise

|/|Inoise |
0.1 38,998 5.13% 2,125 2.79%

0.2 36,971 4.44% 4,979 2.99%

0.3 35,571 4.28% 7,969 3.19%

0.4 35,511 4.27% 10,771 3.24%

instance, with a fixed drop rate (e.g., 10%), a user without noisy in-

teractions would still experience a 10% drop in normal interactions

during training, which would degrade the user’s experience.

To address these issues, we propose solving this problem through

probabilistic sampling. Specifically, we aim to reduce the proba-

bility of noisy interactions being optimized while ensuring that

users without noise remain unaffected. To this end, we propose

a resampling strategy named PLD, which consists of two parts:

Candidate Pool Construction and Item Resampling.

Candidate PoolConstruction.To prevent itemswith extremely

small losses from being repeatedly sampled, we pre-construct a can-

didate item pool, C𝑘
𝑢 of size 𝑘 for each user 𝑢. Items in C𝑘

𝑢 are

randomly sampled from the user’s interacted items,V𝑢 .

ItemResampling.Next, we calculate the loss 𝑙𝑢,𝑣 for each of the

𝑘 items in the candidate pool. We then perform resampling based

on the computed loss values. Specifically, for user 𝑢, the sampling

probability for item 𝑣 in the candidate pool C𝑘
𝑢 is determined by:

𝑃𝑢,𝑣 =
exp(−𝑙𝑢,𝑣)∑

𝑗∈C𝑘
𝑢
exp(−𝑙𝑢,𝑗)

. (1)

Finally, the resampled item is selected as the positive interaction

for the current optimization step.

This method ensures that variances in personal loss distribu-

tions do not adversely affect the sampling process. Moreover, this

approach ensures that normal interactions are optimized, even for

users without noisy interactions—unlike previous methods, which

always drop a subset of interactions [8, 26].

4.3 Theoretical Analysis

To analyze the effectiveness of the PLD method, we examine the

probability that PLD samples both normal and noisy interactions.

Theorem 1. For a user 𝑢, there are 𝑛 items with normal interac-
tions and𝑚 items with noisy interactions. Assume that the loss of the
user’s normal interactions follows a Gaussian distribution N(𝜇1, 𝜎2)
and the loss of noisy interactions follows a Gaussian distribution
N(𝜇2, 𝜎2), where 𝜇1 < 𝜇2 and 𝜇1, 𝜇2 > 𝜎 . From these𝑚 + 𝑛 inter-
actions, we first randomly select 𝑘 interactions, and then resample
one positive interaction according to Equation 1. Let Λnormal denote
the sum of sampling probabilities for normal interactions, and Λnoise
denote the sum of sampling probabilities for noisy interactions. Define

4

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

Personalized Denoising Implicit Feedback for Robust Recommender System WWW’25, Apri 28–May 02, 2025, Sydney, Australia

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

Algorithm 1 Training Procedure with PLD

Input: Training setD, pool size𝑘 , temperature coefficient 𝜏 , batch

size B, loss function L(𝑢, 𝑖, 𝑗)
Output: Model parameters Θ.
1: while stopping criteria not met do

⊲ PLD
2: Draw B triples (𝑢, C𝑘

𝑢 , 𝑗) from D.

3: Initialize the batch set DB = ∅
4: for each (𝑢, C𝑘

𝑢 , 𝑗) do
5: Calculate 𝑙𝑖 for 𝑖 ∈ C𝑘

𝑢 using L(𝑢, 𝑖, 𝑗).
6: Resample 𝑖∗ based on Equation 3 within C𝑘

𝑢 .

7: Add (𝑢, 𝑖∗, 𝑗) to the batch set DB.

8: end for

⊲ Standard Training
9: Update Θ according to L(𝑢, 𝑖, 𝑗) for each (𝑢, 𝑖∗, 𝑗) in DB.

10: end while

11: return Θ

the following:

𝛼 = exp

(
−𝜇1 +

𝜎2

2

)
, 𝛽 = exp

(
−𝜇2 +

𝜎2

2

)
,

𝛾 = exp(𝜎2) − 1, 𝜂 =
𝑛𝛼 +𝑚𝛽
𝑛 +𝑚 ,

Γ =
(𝑛𝛼 −𝑚𝛽)
𝑚 + 𝑛 ·

(𝛼2 + 𝛽2) (𝛾 + 𝑚
𝑛+𝑚) + 𝛽2

𝜂3
,

𝜒 =
𝛾

(𝑛 +𝑚)
[
𝑛𝛼2 −𝑚𝛽2

]
we have:

E[Λnormal − Λnoise] =



𝑛 −𝑚
𝑛 +𝑚 𝑘 = 1

𝑛𝛼 −𝑚𝛽
(𝑚 + 𝑛)𝜂 + Γ

𝑘
− 𝜒

𝐶2

𝑘

(𝑘 − 1)2︸ ︷︷ ︸
Fluctuation term

𝑘 > 1

,

(2)

where 𝐶 ∈ [𝛽, 𝛼] is a constant term.

The proof of Theorem 1 is detailed in Appendix A.1. The term
Γ
𝑘
−

𝜒

𝐶2

𝑘
(𝑘−1)2 arises from the variance component in the denominator

of the softmax function, exhibiting larger fluctuations when 𝑘 is

small, while stabilizing as 𝑘 increases.

According to Theorem 1, when 𝑘 = 1, PLD reduces to standard

training with E[Λ
normal

−Λnoise] = 𝑛−𝑚
𝑛+𝑚 . For 𝑘 > 1, given 𝛼, 𝛽,𝛾 >

0, with 𝛼 > 𝛽 and 𝑛 ≫𝑚, we find that Γ >
𝜒

𝐶2
. Thus, E[Λ

normal
−

Λnoise] > 𝑛−𝑚
𝑛+𝑚 . This indicates that PLD outperforms standard

training, demonstrating superior denoising capabilities.

To further enhance the effectiveness of the PLD method, we

can increase
𝑛𝛼−𝑚𝛽

(𝑚+𝑛)𝜂 . Specifically, let 𝜉 =
𝛽
𝛼 = exp(𝜇1 − 𝜇2) < 1.

Then, we can express
𝑛𝛼−𝑚𝛽

(𝑚+𝑛)𝜂 =
𝑛−𝜉𝑚
𝑛+𝜉𝑚 . Notably, since

𝜕
𝑛𝛼−𝑚𝛽

(𝑚+𝑛)𝜂
𝜕𝜉

< 0,

we can decrease 𝜉 to amplify
𝑛𝛼−𝑚𝛽

(𝑚+𝑛)𝜂 , thus enlarging E[Λ
normal

−
Λnoise]. Based on this idea, we introduce a temperature coefficient

𝜏 into Equation 1:

𝑃𝑢,𝑣 =
exp(−𝑙𝑢,𝑣/𝜏)∑

𝑗∈C𝑘
𝑢
exp(−𝑙𝑢,𝑗/𝜏)

. (3)

Table 3: Dataset statistics

DATASET #Users #Items #Interactions Avg.Inter. Sparsity

Gowalla 29,858 40,981 1,027,370 34.4 99.92%

Yelp2018 31,668 38,048 1,561,406 49.3 99.88%

MIND 38,441 38,000 1,210,953 31.5 99.92%

MIND-Large 111,664 54,367 3,294,424 29.5 99.95%

In thismanner, the new 𝜉 ′ can be considered as 𝜉 ′ = exp ((𝜇1 − 𝜇2)/𝜏).
By reducing 𝜏 , we can further enlarge

𝑛𝛼−𝑚𝛽

(𝑚+𝑛)𝜂 . The algorithmic flow

of PLD is outlined in Algorithm 1.

Additionally, we perform an in-depth analysis and comparison

of the time and space complexity of PLD and baseline methods. For

further details, please refer to Appendix A.2.

5 EXPERIMENTS

In this section, we conduct extensive experiments to address the

following research questions (RQs):

• RQ1: How does PLD perform compared to state-of-the-art de-

noising methods?

• RQ2: How well does PLD generalize, align with the theoretical

analysis, and what is its time complexity?

• RQ3: How do the hyperparameters affect the performance of

PLD?

5.1 Experimental Setup

5.1.1 Datasets. We utilize four widely recognized datasets: the

Gowalla check-in dataset [14], the Yelp2018 business dataset, and

the MIND and MIND-Large news recommendation datasets [31].

The Gowalla and Yelp2018 datasets include all users, while for

the MIND dataset, we sample two subsets of users, constructing

MIND and MIND-Large, following [42]. Consistent with [27, 41],

we exclude users and items with fewer than 10 interactions from

our analysis. We allocate 80% of each user’s historical interactions

to the training set, reserving the remainder for testing. Additionally,

10% of the training set is randomly selected to form a validation set

for hyperparameter tuning. Detailed statistics for the datasets are

summarized in Table 3.

5.1.2 Baselines. We incorporate various denoising methods, in-

cluding four reweight-based approaches and one self-supervised

method. Specifically, we evaluate R-CE, T-CE [26], BOD [30], and

DCF [8] as reweight-based methods, and DeCA [29] as a self-

supervised method.

• R-CE [26]: R-CE assigns reduced training weight to high-loss

interactions.

• T-CE [26]: T-CE drops interactions with the highest loss values

at a predefined drop rate.

• BOD [30]: BOD treats the process of determining interaction

weights as a bi-level optimization problem to learn more effective

denoising weights.

• DCF [8]: DCF addresses the challenges posed by hard positive

samples and the data sparsity introduced by dropping interac-

tions in T-CE.

• DeCA [29]: DeCA posits that clean samples tend to yield con-

sistent predictions across different models, incorporating two

recommendation models during training to better differentiate

between clean and noisy interactions.

5

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

WWW’25, Apri 28–May 02, 2025, Sydney, Australia Anon.

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

Table 4: Recommendation performance of different denoising methods. The highest scores are in bold, and the runner-ups are

with underlines. A significant improvement over the runner-up is marked with * (i.e., two-sided t-test with 0.05 ≤ 𝑝 < 0.1) and

** (i.e., two-sided t-test with 𝑝 < 0.05).

Model

Gowalla Yelp2018 MIND

Recall NDCG Recall NDCG Recall NDCG

@20 @50 @20 @50 @20 @50 @20 @50 @20 @50 @20 @50

MF 0.1486 0.2410 0.1073 0.1370 0.0621 0.1187 0.0483 0.0704 0.0658 0.1219 0.0430 0.0615

+R-CE 0.1456 0.2362 0.1053 0.1343 0.0654 0.1239 0.0506 0.0733 0.0716 0.1311 0.0468 0.0663

+T-CE 0.1326 0.2197 0.0920 0.1197 0.0571 0.1113 0.0430 0.0639 0.0359 0.0812 0.0215 0.0363

+DeCA 0.1463 0.2356 0.1068 0.1355 0.0645 0.1225 0.0502 0.0729 0.0714 0.1312 0.0471 0.0668

+BOD 0.1489 0.2415 0.1079 0.1376 0.0654 0.1235 0.0511 0.0738 0.0713 0.1300 0.0473 0.0665

+DCF 0.1489 0.2413 0.1073 0.1367 0.0635 0.1208 0.0493 0.0715 0.0710 0.1297 0.0472 0.0665

+PLD (ours) 0.1520** 0.2475** 0.1097 0.1404* 0.0677** 0.1264** 0.0527** 0.0755** 0.0769** 0.1379** 0.0513* 0.0713**

Gain +2.04% ↑ +2.47% ↑ +1.71% ↑ +1.98% ↑ +3.46% ↑ +2.02% ↑ +3.09% ↑ +2.33% ↑ +7.36% ↑ +5.09% ↑ +8.46% ↑ +6.83% ↑
LightGCN 0.1553 0.2509 0.1142 0.1449 0.0665 0.1270 0.0516 0.0750 0.0817 0.1485 0.0538 0.0757

+R-CE 0.1536 0.2481 0.1131 0.1434 0.0554 0.1042 0.0428 0.0617 0.0723 0.1315 0.0478 0.0670

+T-CE 0.1146 0.1859 0.0859 0.1088 0.0532 0.1004 0.0412 0.0595 0.0674 0.1222 0.0447 0.0626

+DeCA 0.1540 0.2495 0.1133 0.1440 0.0678 0.1298 0.0526 0.0766 0.0812 0.1480 0.0532 0.0751

+BOD 0.1560 0.2519 0.1154 0.1461 0.0672 0.1280 0.0523 0.0758 0.0809 0.1475 0.0532 0.0750

+DCF 0.1276 0.2072 0.0948 0.1203 0.0619 0.1180 0.0482 0.0699 0.0734 0.1342 0.0483 0.0681

+PLD (ours) 0.1580** 0.2558** 0.1157 0.1472* 0.0693** 0.1325** 0.0538** 0.0783** 0.0837** 0.1516** 0.0551** 0.0774**

Gain +1.23% ↑ +1.53% ↑ +0.32% ↑ +0.71% ↑ +2.31% ↑ +2.02% ↑ +2.44% ↑ +2.22% ↑ +2.43% ↑ +2.06% ↑ +2.47% ↑ +2.33% ↑

Table 5: Recommendation performance of different denois-

ing methods on MIND-Large.

Model
Recall NDCG

@20 @50 @20 @50

MF 0.0788 0.1441 0.0501 0.0710

+R-CE 0.0790 0.1453 0.0502 0.0715

+T-CE 0.0329 0.0788 0.0194 0.0340

+DeCA 0.0793 0.1447 0.0507 0.0717

+BOD 0.0794 0.1435 0.0516 0.0722

+DCF 0.0818 0.1482 0.0528 0.0741

+PLD (ours) 0.0846** 0.1524** 0.0543** 0.0760**

Gain +3.36% ↑ +2.85% ↑ +2.67% ↑ +2.58% ↑

5.1.3 Evaluation Metrics. We adopt standard metrics widely em-

ployed in the field. The primary metrics for evaluating recommen-

dation performance are the top-𝑘 metrics: Recall at 𝐾 (Recall@𝐾)

and Normalized Discounted Cumulative Gain at 𝐾 (NDCG@𝐾), as

described in [6, 9, 40]. For evaluation, we set 𝐾 = 20 and 𝐾 = 50,

following [27, 41].

5.1.4 Implementation Details. In our study, we employ two com-

monly used backbone recommendation models: MF [11] and Light-

GCN [6]. The configuration of both denoising methods and recom-

mendation models involves selecting a learning rate from {0.1, 0.01,

. . . , 1 × 10
−5
}, and a weight decay from {0, 0.1, . . . , 1 × 10

−5
}. For

PLD, the candidate pool size 𝑘 is selected from {2, 3, 5, 10, 20}, and

the temperature coefficient 𝜏 is chosen from {0.01, 0.05, 0.1, 0.2, 0.3,

0.4, 0.5}. For the baselines, hyperparameter settings follow those

specified in the original publications. Our implementation code is

available at the following link
2
.

5.2 Performance Comparison (RQ1)

In this section, we address RQ1 by focusing on two key aspects:

recommendation performance and robustness against noise. All

2
https://anonymous.4open.science/r/PLD

Table 6: Recommendation performance of different denois-

ing methods on BCE loss on MIND.

Model
Recall NDCG

@20 @50 @20 @50

MF 0.0585 0.1156 0.0337 0.0520

+R-CE 0.0644 0.1235 0.0387 0.0581

+T-CE 0.0612 0.1193 0.0361 0.0550

+DeCA 0.0655 0.1250 0.0394 0.0588

+BOD 0.0681 0.1243 0.0442 0.0624

+DCF 0.0683 0.1319 0.0407 0.0615

+PLD (ours) 0.0731** 0.1334 0.0464** 0.0663**

Gain +6.98% ↑ +1.16% ↑ +4.94% ↑ +6.13% ↑

results in this section are based on the widely adopted BPR loss

function [18]. For a comprehensive evaluation, results using the

BCE loss function are provided in Section 5.3.

Recommendation Performance. We evaluate the effective-

ness of PLD across three common datasets without introducing

additional noise, as shown in Table 4. The performance of R-CE [26],

T-CE [26], and DCF [8] is suboptimal due to the limitations of using

overall loss distribution as a denoising criterion for pairwise loss

functions, as discussed earlier (in Figure 1). In particular, T-CE ap-

plies a fixed drop ratio, which truncates part of the loss completely,

unintentionally discarding many normal interactions and leading

to a significant performance decrease.

On the other hand, DeCA [29] and BOD [30] demonstrate more

stable performance, securing runner-up results across several met-

rics. Our method, PLD, mitigates the impact of noisy interactions

by resampling based on users’ personal loss distributions, producing

stable and optimal results across all datasets. It achieves significant

improvements, with 4.29% and 4.42% increase in Recall@20 and

NDCG@20, respectively, using MF as the backbone model.

6

https://anonymous.4open.science/r/PLD

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

Personalized Denoising Implicit Feedback for Robust Recommender System WWW’25, Apri 28–May 02, 2025, Sydney, Australia

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

Figure 5: Recommendation performance of different denoising methods across various noise ratios.

Figure 6: Theoretical, practical, and standard values (i.e., with-

out resampling in PLD) of E[Λ
normal

− Λnoise] for 6 users on

MIND with 30% additional noise.

Robustness against Noise. We further assess PLD’s robust-

ness to noise by randomly introducing noisy interactions at ratios
3

ranging from 0.1 to 0.5, as shown in Figure 5. As the noise ratio

increases, the performance of all methods decreases. Additionally,

we observe that in some cases, specifically when using LightGCN

as the backbone model, denoising methods based solely on over-

all loss distribution (T-CE, R-CE, and DCF) perform worse than

the backbone model itself. This further confirms that overall loss

distribution is unsuitable for denoising in pairwise loss scenarios.

In contrast, our method, PLD, remains the most stable across all

noise ratios, consistently outperforming other denoising methods.

Additionally, we show the results on a larger dataset, MIND-Large

(Table 5), where only the results at a noise ratio of 0.1 are presented

due to space limitations. The conclusions drawn from MIND-Large

are consistent with those from the other datasets.

3
A ratio of 0.1 means adding noisy interactions equal to 10% | Inormal | .

More
Normal
Inter.

Less
Noisy
Inter.

Figure 7: Number of normal interactions and noisy interac-

tions sampled.

5.3 Argumentation Study (RQ2)

In this section, we address RQ2 by evaluating the generalization

of our method with the pointwise loss function, analyzing the

consistency between Theorem 1 and practical results, and verifying

the advantage of our method in terms of time complexity.

Pointwise Loss Function. To further demonstrate the general-

ization of PLD, we evaluate its performance using the pointwise

loss function, specifically Binary Cross-Entropy (BCE) loss. Table 6

presents the results with MF as the backbone model on the MIND

dataset. Unlike the results with pairwise loss functions shown in

Table 4, all denoising methods show improvements under MF with

the BCE loss function, particularly T-CE. Since these methods are

originally designed with BCE loss in mind, they perform well with

BCE but struggle to adapt to BPR loss. In contrast, our method, PLD,

not only adapts but also achieves the best results with BCE loss,

showing a 6.98% improvement in Recall@20 and a 4.94% improve-

ment in NDCG@20.

Theorem Validation. To evaluate the consistency between

Theorem 1 and practical results, and thereby demonstrate the effec-

tiveness of PLD, we examine the alignment between the theoretical

value E[Λ
normal

− Λnoise] and its practical counterpart. We also

7

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

WWW’25, Apri 28–May 02, 2025, Sydney, Australia Anon.

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

Figure 8: Left: Analysis of hyper-parameter 𝑘; Right: Analysis of hyper-parameter 𝜏 .

Figure 9: Training time per epoch (in seconds) with batch

size 2048 on MIND.

compare these values to the probability values under a standard

training process without resampling. Since Theorem 1 contains

a constant 𝐶 ∈ [𝛼, 𝛽], we approximate it by setting 𝐶 =
𝛼+𝛽
2

for

probability calculations.

We randomly selecte 6 users from the dataset and use Equation 2

to calculate E[Λ
normal

− Λnoise]. Concurrently, we compute the

practical value through 100 simulations of the sampling process

in lines 5-7 of Algorithm 1. Finally, we obtain the standard value

by running 100 simulations using the standard training process

without resampling.

As shown in Figure 6, the theoretical value of E[Λ
normal

−Λnoise]
closely aligns with the practical value, verifying the correctness of

our theoretical analysis. Moreover, we observe that the practical

value corresponding to PLD is significantly higher than the standard

value, highlighting the effectiveness of our method.

Additionally, we compare the number of normal and noisy inter-

actions sampled in each epoch for PLD and standard training, as

shown in Figure 7. PLD significantly reduces the number of noisy

interactions sampled.

Time Complexity. To validate the advantage of our method in

terms of time complexity, we compare the per-epoch runtime of

baseline methods on the MIND dataset. Training is conducted on an

RTX 4090, and we record the average training time over 100 epochs.

To avoid GPU memory limitations, we standardize the batch size

to 2048, which reduces the number of sorting operations within

each batch, thereby lowering the time complexity for methods like

T-CE [26] and DCF [8] that rely on batch-level sorting.

As shown in Figure 9, BOD [30] incurs additional time costs due

to the extra training required for the weight encoder and decoder.

T-CE and DCF require sorting the loss within each batch, leading

to higher time costs. DeCA [29] involves training multiple models,

further increasing time overhead. In contrast, both R-CE [26] and

our method, PLD, do not significantly increase time complexity,

as their time is close to that of the backbone model.

5.4 Hyper-Parameters Analysis (RQ3)

In this section, we address RQ3 by exploring the effects of hyperpa-

rameters on MIND with MF as the backbone model, specifically the

candidate pool size 𝑘 and the temperature coefficient 𝜏 . The results

are shown in Figure 8.

Analysis of Hyper-Parameter 𝑘 . With 𝜏 fixed at 0.1, we vary

𝑘 within the range [2, 3, 5, 10, 15, 20]. We observe that when the

candidate pool size is too small, i.e., 𝑘 = 2, the high sampling

variance often results in the candidate pool being dominated by

noisy samples. At 𝑘 = 5, the method consistently achieves good

performance across all noise ratios. Beyond𝑘 = 10, the performance

stabilizes, showing minimal additional improvements.

Analysis of Hyper-Parameter 𝜏 . With 𝑘 set to 5, we vary 𝜏

within the range [0.01, 0.05, 0.1, 0.2, 0.3, 0.4]. We find that when 𝜏 is

large, i.e., 𝜏 ≥ 0.2, the performance of PLD fluctuates significantly.

In contrast, when 𝜏 ≤ 0.1, the performance becomes more stable.

Specifically, at 𝜏 = 0.05, the results exhibit smaller variations across

different noise ratios, indicating that PLD has a stronger denoising

effect under this configuration.

6 CONCLUSION

In this research, we identify the limitations of denoising indica-

tors used in current loss-based denoising methods, particularly

the significant overlap between normal and noisy interactions in

the overall loss distribution. Our analysis reveals a clear distinc-

tion between normal and noisy interactions in users’ personal loss

distributions. Building on these findings, we introduce a novel de-

noising strategy, PLD, which incorporates a resampling approach

based on users’ personal loss distributions. By selectively resam-

pling training interactions, PLD effectively reduces the likelihood

of noisy interactions being optimized. Additionally, we conduct a

comprehensive theoretical analysis, demonstrating the robustness

of PLD and suggesting potential ways to further enhance its perfor-

mance. Extensive experimental results confirm the strong efficacy

and robustness of PLD in denoising recommender systems.

8

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

Personalized Denoising Implicit Feedback for Robust Recommender System WWW’25, Apri 28–May 02, 2025, Sydney, Australia

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

References

[1] Kai Lai Chung. 2000. A Course in Probability Theory. Elsevier.
[2] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep Neural Networks

for Youtube Recommendations. In Proceedings of the 10th ACM Conference on
Recommender Systems. 191–198.

[3] Ziwei Fan, Ke Xu, Zhang Dong, Hao Peng, Jiawei Zhang, and Philip S Yu. 2023.

Graph Collaborative Signals Denoising and Augmentation for Recommendation.

In Proceedings of the 46th international ACM SIGIR Conference on Research and
Development in Information Retrieval. 2037–2041.

[4] Zeno Gantner, Lucas Drumond, Christoph Freudenthaler, and Lars Schmidt-

Thieme. 2012. Personalized Ranking for Non-uniformly Sampled Items. In Pro-
ceedings of KDD Cup 2011. PMLR, 231–247.

[5] Yunjun Gao, Yuntao Du, Yujia Hu, Lu Chen, Xinjun Zhu, Ziquan Fang, and Baihua

Zheng. 2022. Self-Guided Learning to Denoise for Robust Recommendation. In

Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 1412–1422.

[6] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, YongDong Zhang, and Meng

Wang. 2020. LightGCN - Simplifying and Powering Graph Convolution Net-

work for Recommendation. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 639–648.

[7] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural Collaborative Filtering. In Proceedings of the 26th International
Conference on World Wide Web. 173–182.

[8] Zhuangzhuang He, Yifan Wang, Yonghui Yang, Peijie Sun, Le Wu, Haoyue Bai,

Jinqi Gong, Richang Hong, and Min Zhang. 2024. Double Correction Frame-

work for Denoising Recommendation. In Proceedings of the 30th ACM SIGKDD
Conference on Knowledge Discovery and Data Mining, Vol. 33. ACM, 1062–1072.

[9] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl. 2004.

Evaluating Collaborative Filtering Recommender Systems. ACM Transactions on
Information Systems (TOIS) 22, 1 (2004), 5–53.

[10] Yifan Hu, Yehuda Koren, and Chris Volinsky. 2008. Collaborative Filtering for

Implicit Feedback Datasets. In 2008 8th IEEE International Conference on Data
Mining. IEEE, 263–272.

[11] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix Factorization

Techniques for Recommender Systems. Computer 42, 8 (2009), 30–37.
[12] Yehuda Koren, Steffen Rendle, and Robert Bell. 2021. Advances in collaborative

filtering. Recommender systems handbook (2021), 91–142.

[13] Erich L Lehmann and George Casella. 2006. Theory of Point Estimation. Springer
Science & Business Media.

[14] Dawen Liang, Laurent Charlin, James McInerney, and David M Blei. 2016. Mod-

eling User Exposure in Recommendation. In Proceedings of the 25th International
Conference on World Wide Web. 951–961.

[15] Weilin Lin, Xiangyu Zhao, Yejing Wang, Yuanshao Zhu, and Wanyu Wang.

2023. Autodenoise: Automatic data instance denoising for recommendations. In

Proceedings of the ACM Web Conference 2023. 1003–1011.
[16] Wenze Ma, Yuexian Wang, Yanmin Zhu, Zhaobo Wang, Mengyuan Jing, Xuhao

Zhao, Jiadi Yu, and Feilong Tang. 2024. MADM: A Model-agnostic Denoising

Module for Graph-based Social Recommendation. In Proceedings of the 17th ACM
International Conference on Web Search and Data Mining. 501–509.

[17] Yuhan Quan, Jingtao Ding, Chen Gao, Lingling Yi, Depeng Jin, and Yong Li. 2023.

Robust Preference-guided Denoising for Graph Based Social Recommendation. In

Proceedings of the 32nd International Conference on World Wide Web. 1097–1108.
[18] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-

Thieme. 2009. BPR: Bayesian Personalized Ranking from Implicit Feedback.

In Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelli-
gence. 452–461.

[19] John A Rice and John A Rice. 2007. Mathematical Statistics and Data Analysis.
Vol. 371. Thomson/Brooks/Cole Belmont, CA.

[20] Yuta Saito, Suguru Yaginuma, Yuta Nishino, Hayato Sakata, and Kazuhide Nakata.

2020. Unbiased recommender learning from missing-not-at-random implicit

feedback. In Proceedings of the 13th International Conference on Web Search and
Data Mining. 501–509.

[21] J Ben Schafer, Dan Frankowski, Jon Herlocker, and Shilad Sen. 2007. Collaborative

Filtering Recommender Systems. In The Adaptive Web: Methods and Strategies of
Web Personalization. Springer, 291–324.

[22] Changxin Tian, Yuexiang Xie, Yaliang Li, Nan Yang, and Wayne Xin Zhao. 2022.

Learning to Denoise Unreliable Interactions for Graph Collaborative Filtering.

In Proceedings of the 45th International ACM SIGIR Conference on Research and
Development in Information Retrieval. ACM, 122–132.

[23] Raciel Yera Toledo, Jorge Castro, and Luis Martínez-López. 2016. A fuzzy Model

for Managing Natural Noise in Recommender Systems. Applied Soft Computing
40 (2016), 187–198.

[24] HaoWang, NaiyanWang, and Dit-Yan Yeung. 2015. Collaborative Deep Learning

for Recommender Systems. In Proceedings of the 21th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 1235–1244.

[25] Pengfei Wang, Chenliang Li, Lixin Zou, Zhichao Feng, Kaiyuan Li, Xiaochen Li,

Xialong Liu, and Shangguang Wang. 2023. Tutorial: Data Denoising Metrics in

Recommender Systems. In Proceedings of the 32nd ACM International Conference
on Information and Knowledge Management. 5224–5227.

[26] Wenjie Wang, Fuli Feng, Xiangnan He, Liqiang Nie, and Tat-Seng Chua. 2021.

Denoising Implicit Feedback for Recommendation. In Proceedings of the 14th
ACM International Conference on Web Search and Data Mining. ACM, 373–381.

[27] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural Graph Collaborative Filtering. In Proceedings of the 42nd International
ACM SIGIR Conference on Research and Development in Information Retrieval.
165–174.

[28] Xiang Wang, Hongye Jin, An Zhang, Xiangnan He, Tong Xu, and Tat-Seng Chua.

2020. Disentangled Graph Collaborative Filtering. In Proceedings of the 43rd
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 1001–1010.

[29] Yu Wang, Xin Xin, Zaiqiao Meng, Joemon M Jose, Fuli Feng, and Xiangnan He.

2022. Learning Robust Recommenders through Cross-Model Agreement. In

Proceedings of the ACM Web Conference 2022. ACM, 2015–2025.

[30] Zongwei Wang, Min Gao, Wentao Li, Junliang Yu, Linxin Guo, and Hongzhi

Yin. 2023. Efficient Bi-Level Optimization for Recommendation Denoising. In

Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and
Data Mining. ACM, 2502–2511.

[31] Fangzhao Wu, Ying Qiao, Jiun-Hung Chen, Chuhan Wu, Tao Qi, Jianxun Lian,

Danyang Liu, Xing Xie, Jianfeng Gao,WinnieWu, et al. 2020. Mind: A Large-scale

Dataset for News Recommendation. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics. 3597–3606.

[32] Jiancan Wu, Xiang Wang, Fuli Feng, Xiangnan He, Liang Chen, Jianxun Lian,

and Xing Xie. 2021. Self-supervised Graph Learning for Recommendation. In

Proceedings of the 44th International ACM SIGIR Conference on Research and
Development in Information Retrieval. 726–735.

[33] Shiwen Wu, Fei Sun, Wentao Zhang, Xu Xie, and Bin Cui. 2022. Graph Neural

Networks in Recommender Systems: A Survey. Comput. Surveys 55, 5 (2022),
1–37.

[34] Yao Wu, Christopher DuBois, Alice X Zheng, and Martin Ester. 2016. Collabora-

tive Denoising Auto-encoders for Top-n Recommender Systems. In Proceedings of
the 9th ACM International Conference on Web Search and Data Mining. 153–162.

[35] Lianghao Xia, Chao Huang, Yong Xu, Jiashu Zhao, Dawei Yin, and Jimmy Huang.

2022. Hypergraph Contrastive Collaborative Filtering. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. 70–79.

[36] Yuhao Yang, Chao Huang, Lianghao Xia, and Chenliang Li. 2022. Knowledge

Graph Contrastive Learning for Recommendation. In Proceedings of the 45th
International ACM SIGIR Conference on Research and Development in Information
Retrieval. ACM, 1434–1443.

[37] Haibo Ye, Xinjie Li, Yuan Yao, and Hanghang Tong. 2023. Towards Robust

Neural Graph Collaborative Filtering via Structure Denoising and Embedding

Perturbation. ACM Transactions on Information Systems 41, 3 (2023), 1–28.
[38] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,

and Jure Leskovec. 2018. Graph Convolutional Neural Networks for Web-scale

Recommender Systems. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining. 974–983.

[39] Wenhui Yu and Zheng Qin. 2020. Sampler Design for Implicit Feedback Data by

Noisy-label Robust Learning. In Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Information Retrieval. 861–870.

[40] Kaike Zhang, Qi Cao, Fei Sun, Yunfan Wu, Shuchang Tao, Huawei Shen, and

Xueqi Cheng. 2023. Robust Recommender System: A Survey and Future Direc-

tions. arXiv preprint arXiv:2309.02057 (2023).

[41] Kaike Zhang, Qi Cao, Yunfan Wu, Fei Sun, Huawei Shen, and Xueqi Cheng. 2024.

Improving the Shortest Plank: Vulnerability-Aware Adversarial Training for

Robust Recommender System. arXiv preprint arXiv:2409.17476 (2024).
[42] Kaike Zhang, Qi Cao, Yunfan Wu, Fei Sun, Huawei Shen, and Xueqi Cheng. 2024.

LoRec: Combating Poisons with Large Language Model for Robust Sequential

Recommendation. In Proceedings of the 47th International ACM SIGIR Conference
on Research and Development in Information Retrieval. 1733–1742.

[43] Jujia Zhao,WangWenjie, Yiyan Xu, Teng Sun, Fuli Feng, and Tat-Seng Chua. 2024.

Denoising Diffusion Recommender Model. In Proceedings of the 47th International
ACM SIGIR Conference on Research and Development in Information Retrieval.
1370–1379.

[44] Xinjun Zhu, Yuntao Du, Yuren Mao, Lu Chen, Yujia Hu, and Yunjun Gao. 2023.

Knowledge-refined Denoising Network for Robust Recommendation. In Proceed-
ings of the 46th International ACM SIGIR Conference on Research and Development
in Information Retrieval. 362–371.

9

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

WWW’25, Apri 28–May 02, 2025, Sydney, Australia Anon.

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

A APPENDIX

A.1 Proofs

Proposition 1. Let 𝑥𝑖 ∼ N(𝜇, 𝜎2) and 𝑁 ∼ Binomial(𝑘, 𝑛
𝑛+𝑚).

Define

𝑆𝑥 =

𝑁∑︁
𝑖=1

exp(−𝑥𝑖).

Then, the expected value and variance of 𝑆𝑥 are given by:

E[𝑆𝑥] =
𝑘𝑛

𝑚 + 𝑛 exp

(
−𝜇 + 𝜎

2

2

)
,

Var[𝑆𝑥] =
𝑘𝑛

𝑛 +𝑚 exp(−2𝜇 + 𝜎2)
(
exp(𝜎2) − 𝑛

𝑛 +𝑚

)
.

Proof. To compute E[𝑆𝑥], we apply the Double Expectation

Theorem [19]. First, we condition on 𝑁 :

E[𝑆𝑥] = E𝑁
[
E𝑆𝑥 [𝑆𝑥 | 𝑁]

]
= E𝑁

[
𝑁 exp

(
−𝜇 + 𝜎

2

2

)]
.

The inner expectation evaluates to𝑁 exp

(
−𝜇 + 𝜎2

2

)
sinceE[exp(−𝑥𝑖)]

for each 𝑥𝑖 ∼ N(𝜇, 𝜎2) is known. Taking the expectation over

𝑁 ∼ Binomial(𝑘, 𝑛
𝑛+𝑚), we obtain:

E[𝑆𝑥] =
𝑘𝑛

𝑚 + 𝑛 exp

(
−𝜇 + 𝜎

2

2

)
.

Next, we compute the variance of 𝑆𝑥 using the Law of Total

Variance [1]:

Var[𝑆𝑥] = E𝑁
[
Var𝑆𝑥 [𝑆𝑥 | 𝑁]

]
+ Var𝑁

[
E𝑆𝑥 [𝑆𝑥 | 𝑁]

]
.

For the first term, Var𝑆𝑥 [𝑆𝑥 | 𝑁] = 𝑁 exp(−2𝜇 +𝜎2)
(
exp(𝜎2) − 1

)
,

leading to:

E𝑁
[
Var𝑆𝑥 [𝑆𝑥 | 𝑁]

]
= E[𝑁] exp(−2𝜇 + 𝜎2)

(
exp(𝜎2) − 1

)
.

For the second term, we use the variance of 𝑁 , yielding:

Var𝑁

[
E𝑆𝑥 [𝑆𝑥 | 𝑁]

]
= Var[𝑁] exp(−2𝜇 + 𝜎2) .

Substituting E[𝑁] = 𝑘𝑛
𝑛+𝑚 and Var[𝑁] = 𝑘𝑛𝑚

(𝑛+𝑚)2 , we obtain the

final expression:

Var[𝑆𝑥] =
𝑘𝑛

𝑛 +𝑚 exp(−2𝜇 + 𝜎2)
(
exp(𝜎2) − 𝑛

𝑛 +𝑚

)
.

□

Proposition 2. Given two independent random variables 𝑋 and
𝑌 , we have

E
[

1

𝑋 + 𝑌

]
≈ 1

E[𝑋] + E[𝑌]

(
1 + Var[𝑋] + Var[𝑌]

(E[𝑋] + E[𝑌])2

)
.

Proof. Let𝑍 = 𝑋+𝑌 and define𝑔(𝑍) = 1

𝑍
. Applying the second-

order Taylor expansion [13] of 𝑔(𝑍) around E[𝑍], we obtain:

𝑔(𝑍) ≈ 𝑔(E[𝑍])+𝑔′ (E[𝑍]) (𝑍 − E[𝑍])+ 1

2

𝑔′′ (E[𝑍]) (𝑍 − E[𝑍])2 .

Taking the expectation of both sides, the linear term vanishes due

to E[𝑍 − E[𝑍]] = 0, leaving:

E[𝑔(𝑍)] ≈ 𝑔(E[𝑍]) + 1

2

𝑔′′ (E[𝑍])E
[
(𝑍 − E[𝑍])2

]
= 𝑔(E[𝑍]) + 1

2

𝑔′′ (E[𝑍])Var[𝑍] .

Substituting𝑔(𝑍) = 1

𝑍
, we have𝑔′ (E[𝑍]) = − 1

E[𝑍]2 and𝑔
′′ (E[𝑍]) =

2

E[𝑍]3 . Thus, the expression simplifies to:

E[𝑔(𝑍)] ≈ 1

E[𝑍] +
1

2

2

E[𝑍]3
Var[𝑍]

=
1

E[𝑍]

(
1 + Var[𝑍]

E[𝑍]2

)
.

Since𝑍 = 𝑋 +𝑌 and𝑋 and𝑌 are independent, we use the properties

E[𝑍] = E[𝑋] + E[𝑌] and Var[𝑍] = Var[𝑋] + Var[𝑌]. Substituting
these into the above expression gives:

E
[

1

𝑋 + 𝑌

]
≈ 1

E[𝑋] + E[𝑌]

(
1 + Var[𝑋] + Var[𝑌]

(E[𝑋] + E[𝑌])2

)
,

which completes the proof. □

Proof of Theorem 1. For 𝑘 samples, let 𝑁 be the number of

normal samples and𝑀 be the number of noisy samples. We have:

E[𝑁] = 𝑘 · 𝑛

𝑛 +𝑚, Var[𝑁] = 𝑘 · 𝑛𝑚

(𝑛 +𝑚)2
,

E[𝑀] = 𝑘 · 𝑚

𝑛 +𝑚, Var[𝑀] = 𝑘 · 𝑛𝑚

(𝑛 +𝑚)2
.

When 𝑘 = 1, the sampling probabilities simplify to:

𝑃𝑖 = 𝑃 𝑗 =
1

𝑛 +𝑚 .

Therefore, the expected difference in sampling probabilities is:

E[Λ
normal

− Λnoise] =
𝑛 −𝑚
𝑛 +𝑚 .

Now, for 𝑘 > 1, let 𝑥𝑖 ∼ N(𝜇1, 𝜎2
1
) represent the loss of a normal

sample 𝑖 , and 𝑦 𝑗 ∼ N(𝜇2, 𝜎2) represent the loss of a noisy sample

𝑗 . According to Equation 1, the probability of selecting sample 𝑖 is:

𝑃𝑖 =
exp(−𝑥𝑖)∑𝑁

𝑖=1 exp(−𝑥𝑖) +
∑𝑀

𝑗=1 exp(−𝑦 𝑗)
.

Define:

𝑆𝑥 =

𝑁∑︁
𝑖=1

exp(−𝑥𝑖), 𝑆𝑦 =

𝑀∑︁
𝑗=1

exp(−𝑦 𝑗).

The sum of the sampling probabilities of normal interactions be-

comes:

Λ
normal

=

𝑁∑︁
𝑖=1

𝑃𝑖 =
𝑆𝑥

𝑆𝑥 + 𝑆𝑦
.

Then, we have:

E[Λ
normal

] = E[𝑆𝑥] · E
[

1

𝑆𝑥 + 𝑆𝑦

]
+ Cov

(
𝑆𝑥 ,

1

𝑆𝑥 + 𝑆𝑦

)
.

10

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

Personalized Denoising Implicit Feedback for Robust Recommender System WWW’25, Apri 28–May 02, 2025, Sydney, Australia

1219

1220

1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

Table 7: Method complexity comparison.

Methods Space Complexity Time Complexity

Base 𝑀 O(𝑁)
T-CE 𝑀 O(𝑁 log(𝑁))
BOD 𝑀 + 𝑑1 × 𝑑2 O((𝑑1 × 𝑑2)𝑁)
DCF 𝑀 O(𝑁 log(𝑁))

PLD (ours) 𝑀 O(𝑘𝑁)

Expanding the covariance term:

Cov

(
𝑆𝑥 ,

1

𝑆𝑥 + 𝑆𝑦

)
= E𝑁

[
Cov

(
𝑁∑︁
𝑖=1

exp(−𝑥𝑖) | 𝑁,
1

𝑆𝑥 + 𝑆𝑦

)]
+ Cov

(
E

[
𝑁∑︁
𝑖=1

exp(−𝑥𝑖) | 𝑁
]
,E

[
1

𝑆𝑥 + 𝑆𝑦

])
.

(4)

Assuming a linear dependence between 𝑆𝑥 + 𝑆𝑦 and exp(−𝑥𝑖), we
introduce a constant 𝐶 ∈ [𝛽, 𝛼] such that:

𝑆𝑥 + 𝑆𝑦 ≈ exp(−𝑥𝑖) + (𝑘 − 1)𝐶.

This leads to:

Cov

(
exp(−𝑥𝑖),

1

𝑆𝑥 + 𝑆𝑦

)
≈ Cov

(
exp(−𝑥𝑖),

1

exp(−𝑥𝑖) + (𝑘 − 1)𝐶

)
.

Using the approximation:

1

exp(−𝑥𝑖) + (𝑘 − 1)𝐶 ≈ 1

(𝑘 − 1)𝐶 − exp(−𝑥𝑖)
(𝑘 − 1)2𝐶2

,

we find:

Cov

(
exp(−𝑥𝑖),

1

𝑆𝑥 + 𝑆𝑦

)
≈ Cov

(
exp(−𝑥𝑖),

1

(𝑘 − 1)𝐶

)
− Cov

(
exp(−𝑥𝑖),

exp(−𝑥𝑖)
(𝑘 − 1)2𝐶2

)
= −Var [exp(−𝑥𝑖)]

(𝑘 − 1)2𝐶2
.

Consequently:

E[Λ
normal

] = E[𝑆𝑥] · E
[

1

𝑆𝑥 + 𝑆𝑦

]
− 𝑘𝑛

𝑛 +𝑚 · Var [exp(−𝑥𝑖)]
(𝑘 − 1)2𝐶2

.

Finally, applying the definitions of 𝛼, 𝛽,𝛾, 𝜂, Γ, and 𝜒 , we derive
the expression for E[Λ

normal
− Λnoise] as:

E[Λ
normal

− Λnoise] =
𝑛𝛼 −𝑚𝛽
(𝑚 + 𝑛)𝜂 + Γ

𝑘
− 𝜒

𝐶2

𝑘

(𝑘 − 1)2
,

where the term
𝜒

𝐶2

𝑘
(𝑘−1)2 arises from the covariance component of

the variance term. □

A.2 Model Discussion

This section compares various reweight-based denoising methods,

including T-CE [26], BOD [30], DCF [8], and our PLD, focusing

on space and time complexities. The comparison is summarized in

Table 7.

Space Complexity. The space complexity of the base model is

determined by the number of parameters, denoted as𝑀 . T-CE, DCF,

and our PLD do not introduce any additional modules, so their space

complexity remains unchanged. In contrast, BOD introduces extra

components, specifically a generator and decoder (i.e., EN ∈ R𝑑1×𝑑2

and DE ∈ R𝑑2), which significantly increases its complexity.

Time Complexity. The time complexity of the base model is

determined by the number of interactions, denoted as 𝑁 , resulting

in a complexity of O(𝑁). Both T-CE and DCF require sorting the

loss values, increasing their complexity to O(𝑁 log𝑁). BOD needs

to encode and decode the weights of each edge, leading to a time

complexity of O((𝑑1×𝑑2+𝑑1)𝑁). Our PLD introduces a resampling

process, adding an additionalO(2𝑘𝑁) to the time complexity, where

𝑘 ≪ 𝑁 .

In summary, our PLD does not significantly increase the space

or time complexity of the base model. Compared to other reweight-

based denoising methods, our approach demonstrates clear advan-

tages.

11

	Abstract
	1 INTRODUCTION
	2 RELATED WORK
	2.1 Collaborative Filtering
	2.2 Denoising Implicit Feedback

	3 PRELIMINARY
	4 METHOD
	4.1 Motivation
	4.2 PLD Methodology
	4.3 Theoretical Analysis

	5 EXPERIMENTS
	5.1 Experimental Setup
	5.2 Performance Comparison (RQ1)
	5.3 Argumentation Study (RQ2)
	5.4 Hyper-Parameters Analysis (RQ3)

	6 CONCLUSION
	References
	A APPENDIX
	A.1 Proofs
	A.2 Model Discussion

