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Cartoon summary of the benchmark framework. Multi-temporal, multi-modal, and multi-channel inputs x are compressed into fixed-size
embeddings z = E(x) by a user-defined encoder E. The embeddings are then linearly probed on a diverse set of regression and classification

downstream tasks to assess the general-purpose quality of z.

ABSTRACT

We introduce a novel benchmark framework for evaluating (lossy) neural com-
pression and representation learning in the context of Earth Observation (EO).
Our approach builds on fixed-size embeddings that act as compact, task-agnostic
representations applicable to a broad range of downstream tasks. Our benchmark
comprises three core components: (i) an evaluation pipeline built around reusable
embeddings, (ii) a new challenge mode with a hidden-task leaderboard designed
to mitigate pretraining bias, and (iii) a scoring system that balances accuracy and
stability. To support reproducibility, we release a curated multispectral, multitem-
poral EO dataset. We present initial results from a public challenge at a workshop
and conduct ablations with state-of-the-art foundation models. Our benchmark
provides a first step towards community-driven, standardized evaluation of neural
embeddings for EO and beyond.

1 INTRODUCTION

The rapid growth of visual data, from online media to scientific observation, has made efficient
compression a central challenge for storage, transmission, and large-scale analysis (Pouyanfar et al.,
2018; Wang et al., 2018a; Gomes et al., 2025). Traditional codecs such as JPEG2000 (Skodras
et al., 2001) and more recent learned autoencoders (Ballé et al., 2016) are optimized for pixel-level
distortion, largely reflecting human visual perception. However, many machine learning pipelines
care less about perceptual fidelity and more about semantic fidelity, retaining the information needed
to solve downstream tasks (Huang and Wu, 2024). This gap is particularly critical in domains like
Earth Observation (EO), where petabyte-scale datasets of multi-modal satellite imagery must support
diverse analytical tasks ranging from environmental monitoring to disaster response (Guo et al.,
2017). EO data are characterized by substantial redundancy and noise across multiple spectral bands
and temporal sequences, amplifying the need for compression strategies that efficiently capture
underlying, task-relevant information (Gomes et al., 2025). This gives rise to the question: How much
task-relevant information can be squeezed into compact data representations?
Recent work has shown that compressed latent representations can preserve rich semantic content,
enabling pipelines to operate directly on features without reconstructing the input image (Torfason
et al., 2018; Singh et al., 2020). Self-supervised foundation models (FMs) further demonstrate that
embeddings can transfer across tasks with minimal fine-tuning. Yet, their dimensionality often rivals
or exceeds the size of the original data, reintroducing storage and bandwidth bottlenecks (Gomes
and Brunschwiler, 2024; Lu et al., 2024). Despite these advances, there is currently no standardized
framework evaluating how effectively compressed representations retain semantic content across
multiple downstream tasks. Existing evaluations remain fragmented, often restricted to pixel fidelity,
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single-task utility, or unconstrained high-dimensional embeddings, making it challenging to compare
approaches on a common basis.
To address this, we introduce a model-agnostic benchmark for assessing the semantic quality of
embeddings in EO. Our frameworks is designed to (1) evaluate compressed embeddings under
strict size constraints, (2) probe semantic retention using linear models across diverse downstream
tasks, (3) support multi-modal and multi-temporal data typical of data-intensive EO settings, and (4)
foster community contributions, including new datasets and compressors—towards establishing open,
task-centric compression standards. Our key contributions are:
• Section 3 – Benchmarking Framework: We develop a standardized framework for evaluating

compressed embeddings via downstream tasks, aligning with task-centric machine-to-machine
workflows.

• Section 4 – Benchmark Tasks: We curate and release a suite of novel EO downstream tasks, span-
ning cloud analysis, agricultural monitoring, forest quantification, urban heat islands identification,
and land cover analysis.

• Section 5 – Benchmark Evaluation: We validate the utility of our benchmark through a data
challenge, introducing a novel hidden-task evaluation scheme. We further test embedding quality
under diverse compression strategies, including pre-trained neural compressors and FMs.

2 RELATED WORK

Below, we review research fields relevant to contextualize our benchmark framework:
Classical rate-distortion compression. Image and video codecs such as JPEG, JPEG2000,
H.264/HEVC (Wallace, 1991; Skodras et al., 2001; Sullivan et al., 2012; Richardson, 2010) ex-
ploit handcrafted transforms (Goyal, 2001; Bracewell, 1986; Daubechies, 1992) and entropy coding
to reduce statistical redundancy. Their performance is evaluated through the rate–distortion (RD)
trade-off between compressed bit rate and reconstruction fidelity (e.g., MSE, PSNR).
Neural image compression. Learned autoencoders replace handcrafted transforms with analysis
and synthesis networks jointly optimized for rate and distortion. Differentiable entropy models
enable superior RD performance compared to JPEG2000 (Ballé et al., 2016; Theis et al., 2022), with
subsequent extensions using hyperpriors (Ballé et al., 2018; Minnen et al., 2018), autoregressive
models (Minnen and Singh, 2020), and transformers (Qian et al., 2022). With automated vision
pipelines, the concept of compression for machines shifts focus from human-perceptual fidelity to
task-driven utility. End-to-end approaches jointly optimize compressors with task networks (Chamain
et al., 2020; 2021; Le et al., 2021; Codevilla et al., 2021; Wang et al., 2021; 2023a; Fischer et al.,
2025). Other methods enforce invariance to task-relevant augmentations through self-supervised
objectives (Dubois et al., 2022), or bypass reconstruction by training tasks directly on compressed
latents (Torfason et al., 2018; Duan et al., 2023; Singh et al., 2020).
Compression in EO. EO imagery presents unique compression challenges, with multi-spectral bands,
temporal sequences, and petabyte-scale archives (Guo et al., 2017; Wilkinson et al., 2024). Traditional
pipelines often rely on codecs like JPEG2000 (Yeh et al., 2005). Recent neural approaches extend
rate-distortion autoencoders to EO imagery, achieving significant rate-distortion improvements on
multispectral data (Alves de Oliveira et al., 2021; Kong et al., 2021; Cao et al., 2022), while temporal
compression remains underexplored (Du et al., 2024; Wang et al., 2018b). For a comprehensive
review, see (Gomes et al., 2025). Importantly, most works evaluate RD, not task relevance.
EO Foundation Models. Self-supervised learning has enabled large-scale vision foundation models
(FMs) pretrained on vast, unlabeled satellite datasets using masked reconstruction, contrastive, or
predictive tasks (Wang et al., 2022a; Sun et al., 2022; Wang et al., 2022b; Mai et al., 2022; Wang
et al., 2023b; Hong et al., 2023; Jakubik et al., 2023; Liu et al., 2024). These FMs produce versatile
high-dimensional embeddings for EO downstream applications, such as flood segmentation, land-use
mapping, and environmental monitoring. More recently, multimodal EO foundation models have
begun fusing data modalities, such as SAR and optical imagery, to capture diverse geophysical
characteristics and improve application performance (Li et al., 2022; Fuller et al., 2023; Xiong et al.,
2024; Jakubik et al., 2025; Brown et al., 2025). However, with the exception of (Brown et al., 2025),
the resulting latent representations often rival or exceed the original data size, creating data transfer
and data processing bottlenecks. Gomes and Brunschwiler (2024) addresses these challenges by
integrating neural compression into FM bottlenecks. On image level, Rolf et al. (2021) utilizes fixed,
random convolutional kernels to engineer features as basis for linear regression to predict user labels.
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Figure 1: Workflow diagram: The user of our benchmark compresses a set of downstream data into
fixed-length embeddings (size N = 1024 here). Our benchmark loads the embeddings for each of
the T downstream tasks, performs K evaluations, randomly sampling a training and test split from
the task data each evaluation, and scores the result compared to all previous experiments as stored in
the Scoring Database.

EO benchmarks. Current EO domain benchmarks, such as GEO-Bench (Lacoste et al., 2023) and
PANGAEA (Marsocci et al., 2025), evaluate FMs by fine-tuning backbones or training complex
decoders on intermediate features. These approaches typically require model access and significant
computational resources, with limited consideration given to factors such as embedding size and
workflow efficiency. In contrast, our benchmark evaluates fixed-size embeddings through task-
agnostic linear probing without any need for access to model backbones. In fact, our approach treats
the encoder as a black box that converts any input to a given number of features. Our benchmark
provides a lightweight, size-aware evaluation protocol for efficient local testing, and it is structured as
a flexible, extendable framework, designed to accommodate future downstream tasks and evaluation
methods. Moreover, our benchmark can be deployed as a novel challenge format that simulates
real-world scenarios by requiring participants to submit compressed EO embeddings without prior
knowledge of the specific downstream tasks. This setup reflects the demand for broadly generalizable
embeddings. As demonstrated in our data challenge, our benchmark integrates with established
platforms such as EvalAI (Yadav et al.), and is designed to support future competitions on new,
unseen tasks.

3 BENCHMARKING FRAMEWORK

At the heart of our benchmark framework resides (i) an embedding evaluation workflow and (ii) a
ranking method to fairly compare performance across multiple tasks of varying difficulty.
Evaluation workflow. Figure 1 visualizes the pipeline for an Experiment p compressing the samples
indexed by i of Benchmark data to create a set of fixed-size embeddings (Embedding set) through an
Encoder E(p): These embeddings X(p) are provided to our benchmark, which performs the evaluation
given corresponding Task labels (aka downstream tasks t = 1 . . . T ) to return the Benchmark results
through a Leaderboard. For each Experiment, our benchmark framework performs an Embedding
Evaluation given Multimodal, multitemporal datacubes across a set of downstream tasks undisclosed
to the developers of a given Compression Model comprising an Experiment p. Correspondingly, our
framework aggregates scores st,k per training and test split k to gather statistics for the quality score
Qt per downstream task t. Consequently, a Scoring algorithm applies a task difficulty-dependent
ranking scheme.

3
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Evaluating embeddings. For our benchmark, each input sample must be represented as a fixed-size
embedding to compress an input data cube, e.g., our EO downstream tasks as detailed in Section 4,
or future extensions, cf. Section 6. Currently, image-level linear regression and binary (softmax)
classification are supported. Our benchmark enforces embeddings of fixed, but configurable, size
but otherwise does not constrain how embeddings are generated. Following Fig. 1, our benchmark
evaluates the compressed embeddings X(p) of an experiment p as follows: For each task t = 1 . . . T ,
K linear classifiers (with N tunable parameters a1...N plus bias term a0) are trained to fit the
downstream task labels yID. Each k = 1 . . .K denotes a separate, randomly generated split of the
downstream task t into a training and testing set. For each tuple (t, k) our benchmark computes
an accuracy measure st,k, utilizing R2 (R-squared) for regression tasks and the F1 score for (binary)
classification. From the set {st,k}k=1...K , our benchmark derives a signal-to-noise-like quality score
Q

(p)
t as the mean performance on task t sensitive to the variability in performance of experiment p:

Q
(p)
t = 100ϵ

⟨st,k⟩k
stdk (st,k) + ϵ

. (1)

Here, ⟨·⟩k denotes averaging and stdk (·) the standard deviation as calculated over the K splits. The
parameter ϵ > 0 acts as a regulator avoiding high variability in Q

(p)
t for small stdk (st,k). The quality

score Eq. (1) varies in [0, 100] for both, classification and regression. Thus, Q(p)
t allows for an

interpretation of mean accuracy in percent. Compared to using the mean R2 over the K splits, Q(p)
t

penalizes methods with larger variance in the R2. Further details on the quality score is provided in
Section A.1 of the suplpementary material. We note: experiments that perform worse than simply
predicting the mean of labels yID for regression tasks result in negative st,k degrading the mean
performance. In fact, compression models with negative Q

(p)
t should be flagged unreliable—they

seriously underperform.
Task difficulty-dependent ranking. A novel scoring method is introduced by our benchmark. It is
designed to compare the overall performance of multiple participants over multiple tasks. Based on a
rank-then-aggregate approach (Wiesenfarth et al., 2021), our benchmark dynamically weights the
performance across tasks depending on their relative difficulty: Each experiment initially receives a
rank R

(p)
t per task, with the best rank given to the experiment with highest Q(p)

t . To break ties, all
tied experiments are given the lower (better) rank. An experiment’s final rank is calculated from the
weighted mean rank across all tasks:

s(p) =

T∑
t=1

wtR
(p)
t with wt = stdp

(
Q

(p)
t

)/ T∑
t=1

stdp
(
Q

(p)
t

)
(2)

where the tasks are weighted by the standard deviation of the Q
(p)
t of all experiments on the task.

The weighting scales the importance of the tasks such that (a) tasks where all participants perform
similarly receive low importance, and (b) tasks where the participants differentiate between each
other are weighted highly. Our benchmark also provides the mean Q value ⟨Q(p)

t ⟩t as an experiment-
specific measure of performance. For scenarios with few experiments where the interpretation of
a ranking is limited in terms of task difficulty, ⟨Q(p)

t ⟩t serves as an alternative metric to compare
(individual) experiments. Section A.1 provides additional analysis of the ranking scheme.

4 BENCHMARK TASKS

Our benchmark provides a set of pre-processed, heterogeneous downstream tasks designed for
continuous extension in the future. The initial release provides regression labels that are easily turned
into binary classification tasks through a threshold.
We utilize 13 channels of Sentinel-2 Level-1C Top-of-the-Atmosphere (S2L1C) and 12 channels of
multi-spectral Sentinel-2 Level-2A surface reflectance (S2L2A). On top we spatially align 2 channels
of radar Sentinel-1 (S1) GRD product polarizations (VV and VH). For a given geolocation we retrieve
four timestamps, one per season: winter (Dec–Feb), spring (Mar–May), summer (Jun–Aug), and fall
(Sep–Nov). Figure 1 depicts these four seasonal data cubes, with each containing 27 bands. Google
Earth Engine (Gorelick et al., 2017; GEE) (GEE) was utilized to download all relevant satellite data.
All labels, except for the Clouds use case, have been retrieved from GEE, too. The processed data
was stored as cloud-ready ZIP-Store of the Zarr file format.

4
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Table 1: Summary of spatial coverage for current set of data cubes and associated number of
downstream tasks.

Dataset Spatial
Coverage

Temporal
Coverage

Years
of Labels # Samples # Tasks

Crops US Corn Belt 2022 20231 3355 1
Landcover Europe 2018 2018 4691 2
Biomass Global 2019 2019 2415 2
Clouds Global 2018 - 2020 2018 - 2020 1140 1

Heatisland Northern Hemisphere 2022 2021 - 2024 1659 2

Landcover
Biomass
Crops
Heatisland
Clouds

Figure 2: Spatial distribution of the downstream tasks.

The downstream tasks contain between 1100 and 4691 samples (locations/labels), which are dis-
tributed globally (Fig. 2). The associated satellite data cubes are pre-processed and filtered to ensure
UTM-projected patches with a size of 264 × 264 pixels without spatial overlap.
The crops task covers cropland in the US Corn Belt and is provided by the US Department of
Agriculture (USDA) (Boryan et al., 2011). Soybean and corn were selected as primary focus classes
for this downstream task, with the fraction of corn and soybean within each patch serving as the label.
The Crop Data Layer is published annually with a spatial resolution of 30 meters. The labels are
available as post-processed data1.
The landcover tasks leverages aggregated land use data from the European Environment Agency
(EEA), which includes various land cover classes such as forests, urban areas, water areas, and
agricultural land (European Environment Agency (EEA), 2018). These labels represent the dominant
land cover within each patch at a spatial resolution of 100 meters within Europe. Based on this data,
two downstream tasks are provided for forests and agricultural land 2018 within the challenge.
The biomass tasks uses above-ground biomass estimates derived from LIDAR measurements from the
Global Ecosystem Dynamics Investigation (GEDI) instrument. GEDI provides structural information
on vegetation height and density, allowing robust models to estimate above-ground biomass in
megagrams per hectare (Mg/ha) (Dubayah et al., 2022). Within our benchmark, the GEDI Level 4A
biomass estimates were spatially aggregated to the satellite patches with 264x264 pixels, providing a
mean biomass value and its standard deviation as regression targets.
The clouds provides cloud cover fractions based on CloudSen12+ (Aybar et al., 2024) as labels and
pre-processed Sentinel-1 and Sentinel-2 data cubes as corresponding observations. Although the
SAR data is not affected by clouds, Sentinel-1 is included alongside Sentinel-2 to ensure a consistent
data structure for all downstream tasks.
For the heatisland use case, Landsat-8 Land Surface Temperature (LST) provides surface temperature
data that are used as labels for urban areas (Observation and Center, 2020). This is particularly
relevant in the context of heat events and future urban planning, and contains 1659 samples. The
corresponding tasks address the mean surface temperature and its standard deviation per data cube
stack. Further information on the data and their downstream tasks during the competition can be
found in the Section B.1.

1 e.g., the label year 2023 corresponds to crops cultivated during the 2022 growing season

5
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Random Classification
Random Regression
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Biomass Mean
Heatisland Std

Heatisland Mean
Crops
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Landcover Agriculture
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Quality score per task
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Figure 3: Quality score Q
(p)
t of the participants of the data challenge evaluation phase with corre-

sponding task weight used for ranking. Teams are ordered by their final leaderboard rank, with the
winner as Team 1. Team 10 is a simple averaging baseline described in Section 5.3 and 11 denotes a
baseline of normally distributed random embeddings.

5 BENCHMARK EVALUATION

We describe how we tested our benchmark in a real-world setting, by detailing the experimental setup
in Section 5.1, as well as discussion of outcomes and learnings in Section 5.2. We further present
baseline evaluations exploring our set of downstream tasks in Section 5.3.

5.1 DATA CHALLENGE VALIDATION

To validate our benchmark under realistic conditions, we utilized it in a data challenge. Participants
were tasked with compressing multi-modal, multi-temporal EO imagery, cf. Section 4, into 1,024-
dimensional embeddings. Given the benchmark input data cubes, this amounts for a compression ratio
of approx. 7,000. Crucially, participants did not know which or the number of downstream tasks their
embeddings would be evaluated on; this hidden-task design discourages overfitting and encourages
the development of general-purpose EO representations. Participants were ranked, according to
Section 3, across two sets of downstream tasks. One modification was made to the dataset compared
to the dataset described in Section 4; the clouds task targets were mainly replaced by zeros, causing
heavy skewness in the labels and basically random connection between the imagery and labels.
Phases. In a three-week development phase, teams developed embedding methods using a publicly
available dataset. A partial release of 5 tasks, each with a subset of its samples but no information of
the task type, allowed participants to receive initial feedback for development. Submissions returned
only the mean Q value to prevent leakage of task-specific performance and information.
In the subsequent three-day evaluation phase, an extended set of 9 tasks, and new data on the tasks also
used in the development phase, was released. The teams had three days and up to three submissions
to encode and submit embeddings; these runs defined the final leaderboard standings. By the end,
two winning teams were chosen; The first based on the dynamic ranking scheme, and the other as the
team with highest mean Q score.
Platform and infrastructure. The benchmark framework was modified to utilize Eval.AI (Yadav
et al.) to collect submissions. Our benchmark ran on a separate 8-vCPU server, retrieved new
submissions via API, executed the evaluation, and pushed results to a custom leaderboard hosted on
GitHub, displaying the dynamic ranking described in Section 3, as well as back to Eval.AI. Additional
details are available in Section A.2.

5.2 DATA CHALLENGE RESULTS

Participation and ranking. Twenty-three teams submitted to the development phase; sixteen went
on to the final evaluation, nine of which shared their submissions publicly. The quality scores Q(p)

t ,
shown in Fig. 3 for the evaluation phase, varied widely from 0–5 on some tasks to 5–40 on others. The
evaluation method efficiently scaled task importance ensuring that the tasks impacted the leaderboard
relative to their differentiating effect across the teams. Notably, the weighting reduced the impact of
the tasks with zero/random labels. Further, the dynamic ranking caused a swap between the original
first and second place methods due to a third team, highlighting the impact of adaptive weighting.

6
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Top methods. The team that achieved the best overall rank and the team with the highest average
Q-Score both built their embeddings by ensembling multiple FM representations, although with
different approaches; One pre-training backbones, and the other training a bottleneck based on frozen
FM backbones. The fourth-place team took a different path, forgoing any pre-training and instead
generating embeddings using the MOSAIKS method (Rolf et al., 2021).
Key takeaways. Running our data challenge demonstrated that our benchmark efficiently evaluates
and ranks the performance of compact embeddings over multiple downstream tasks. The scoring
method produced a more balanced and discriminative ranking compared to uniformly weighting
the tasks, particularly noticeable in the down-weighting of the two random tasks. Hiding the tasks
efficiently prevented overfitting, ensuring fairness between the participants. Both winning solutions
were based on FMs, indicating these can indeed provide semantically rich, general embeddings.
However, also non-FM based solutions scored high.

5.3 GENERAL EVALUATIONS

We assess our framework through a series of experiments spanning three perspectives. First, we follow
the challenge setup by constraining all methods to produce 1,024-dimensional embeddings from the
input EO data cubes (see Section 4). We introduce and test approaches including (i) learned neural
compressors optimized for rate–distortion trade-offs, and (ii) self-supervised FMs, spanning both uni-
and multimodal architectures. Second, we relax this requirement to analyze the impact of embedding
dimensionality on downstream performance. By varying the size of CNN- and ViT-based embeddings,
we investigate whether larger or smaller representations alter relative performance, motivating the
1,024-dimension default and demonstrating the flexibility of the benchmark for exploring embedding
size as an additional axis of evaluation. Lastly, we revisit and explore the assumption of linear probes
as decoder models.
Data and assumptions. Each input consists of four seasonal snapshots from Sentinel-1 (radar)
and Sentinel-2 (optical L1C and L2A). To meet the embedding-size constraint, we employ frozen,
pretrained backbones followed by downsampling, and adopt simplifying assumptions: (1) although S1
and S2 capture complementary signals, substantial correlation justifies unimodal baselines, reflecting
common practice in neural compression and FM development on EO data; (2) We fuse the four
seasonal views into a single tensor, either before encoding (pre-encoding aggregation) or after
encoding (post-encoding aggregation), to produce one 1,024-dimensional vector per sample.
Methods and baselines. We include a simple averaging baseline, which applies spatial down-
sampling, channel-wise averaging, and flattening to yield a 1,024-dimensional vector; this serves
as a minimal reference point. Next, our neural rate–distortion compressors are implemented
via Factorized Prior autoencoders (Ballé et al., 2016) pretrained on S2L1C data. We extract latent
bottleneck features before entropy coding (cf. (Torfason et al., 2018)) and subsequently downsample
them to conform to the 1,024-dimensional limit. Finally, we evaluate several FMs based on ResNet
(He et al., 2015) and ViT (Dosovitskiy et al., 2020) backbones pretrained on data cubes with masked-
autoencoding (MAE (He et al., 2021)) or contrastive (DINO (Caron et al., 2021)) objectives, as well

Biomass
Mean

Biomass
StdCrops

Clouds

Landcover
Agriculture

Landcover
Forest

Heatisland
Mean

Heatisland
Std

0.6
0.8
1.0

0.53

0.39

0.88

0.73

0.92

0.91
0.69

0.23

Method
TerraMind (FM)
MAE ViT (FM)

DINO ViT (FM)
DINO ResNet (FM)

Factorized Prior
Averaging Baseline

Method Pretraining Loss Backbone Input Downsampling Original
latent dim.

TerraMind
(FM)

TerraMesh Cross-
Entropy

Multi-modal
ViT-B/16

All
(S1,S2)

Patch averaging 196× 768

MAE ViT
(FM)

SSL4EO MAE ViT-B/16 S2L1C Patch averaging 196× 768

DINO ViT
(FM)

SSL4EO DINO ViT-B/16 S2L1C Patch averaging 196× 768

DINO
ResNet
(FM)

SSL4EO DINO ResNet-50 S2L1C Global avg., pairwise
channel mean

2048×7×7

Factorized
Prior

SSL4EO Rate-
Distortion

CNN S2L1C Adaptive pool (4× 4),
pairwise channel mean

128×14×14

Averaging
Baseline

– – – All
(S1,S2)

bilinear avg., flatten 4×4×8×8

Figure 4: (Left) Radar plot of per-task R2 performance for a rep. subset of embedding–compression
methods. Each axis corresponds to one downstream prediction task; the center denotes R2 = 0,
negative values are clipped to zero for clarity. (Right) Summary of method configurations.
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Figure 5: (a) Average downstream R2 as a function of embedding size logN . Largest size is the full
channel count (CNN) or native patch-token dimension (ViT). (b) Average downstream R2 comparing
linear probing against one-layer and two-layer MLP probes on 1024-dimensional embeddings.

as multimodal architectures like TerraMind (Jakubik et al., 2025), which are pretrained jointly on
radar and optical inputs.
Results and discussion. Figure 4 presents the linear-probing performance in terms of R2 for all
downstream tasks assembled and a representative subset of compression methods. Downsampled
embeddings from our neural rate–distortion compressors outperform the simple averaging baseline
but remain below R2 = 0.5. This observation highlights the characteristics of our setup with high
compression rate ∼7,000 while testing against linear-probe. FM embeddings reveal a task-dependent
trend: FMs in general, with contrastive (DINO) and multimodal models (TerraMind) in particular,
achieve high R2 on semantic tasks where multi-pixel context is relevant (e.g., land-cover proportion).
However, certain FMs struggle on geophysical predictions of quantities resolved at the sub-pixel level
(e.g., biomass estimation), whereas multimodal and MAE FMs strike a better balance across tasks.
Temporal aggregation. Across all methods, post-encoding aggregation consistently outperforms
pre-encoding aggregation. Accordingly, the results in Figure 4 employ post-encoding aggregation
exclusively, despite incurring a ×4 increase in embedding-generation runtime. The performance gains
are modest for static-feature tasks (e.g., land-cover), yet substantial for temporally sensitive tasks
(e.g., cloud-fraction estimation), underscoring the importance of preserving per-snapshot details.
Embedding size. In Fig. 5a we numerically study how the embedding size impacts performance
testing the models introduced above.

• CNN backbones. Performance peaks for embedding sizes 128 ≲ N ≲ 1024, with accuracy
dropping outside. Larger embeddings add computational cost without gain in performance.

• ViT backbones. We find the best performance at N = 1024, the upper limit allowed by
the embedding dimension. A lower N consistently reduce accuracy—except for certain
regression tasks such as for Biomass.

• Trade-offs. While larger embeddings increase the number N = |A| of (linear) probe
parameters A (cf. Fig. 1), smaller N often fail to retain task-relevant semantics.

Our experiments support an embedding size of N = 1024 as a balanced default across downstream
tasks, cf. Fig. 2. The benchmark framework is flexible to explore size–utility trade-offs, analogous
to rate–distortion analysis in neural compression. Section B.3.3 provides additional and detailed
per-task performance plots.
Linear probing assumption. We evaluate embedding quality using linear probing, a widely adopted
practice in representation learning (Xu and Tewari, 2021) to focus on embeddings without fine-tuning
encoder backbones. While non-linear probing (e.g., small MLP heads) can in principle capture richer
structures, it risks compensating for poor embedding quality Plachouras et al. (2025). Our experiments
in Fig. 5b and Section B.3.3 demonstrate: Replacing linear probing by small, non-linear decoders
yields only marginal gains for top-performing embeddings, while providing larger improvements
for weaker ones. Further, non-linear probing substantially increases computational cost. Thus,
linear probing remains an (energy-)efficient and reliable measure of how much semantically relevant
information is directly accessible from an embedding space. Linear probing efficiency enabled our
benchmark to run over 400 submissions within minutes on commodity hardware.
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6 FUTURE WORK

Reproducibility. Data contributions to our benchmark demands a permissive CC-BY 4.0 license.
Our data challenge required the winners to release their solution under Apache 2.0 license2. The same
holds for any future extension of our benchmark where Section B.5 provides further details. While
Section A.1 has background on the theoretical basis of our evaluation metric with references to code,
Sections A.2 and B.4 share specifics on the hardware, the software environment, and hyperparameter
settings our benchmark runs on. Section A.3 provides some additional elements of running the data
challenge. Sections B.1 and B.2 gathers general facts on the benchmark data and code framework,
respectively. Section B.3.2 is dedicated to additional model performance metrics for downstream
tasks provided by our benchmark.
Fixed-size compression. Our current evaluation emphasizes fixed-size embeddings, as fixed-size
vectors enable fast retrieval, comparison, and inference, critical for machine-oriented downstream
tasks. Nevertheless, the framework can be naturally extended to incorporate entropy coding, where
embeddings are further losslessly compressed for transmission before decoding and use. In this setting,
the proposed performance scores directly evaluate utility as a function of the final entropy-coded
bitrate, thereby bridging task performance with classical rate–distortion analysis.
Choice of tasks. The discriminative power of results depends on downstream tasks. We curated
diverse, image-level tasks focused on global semantic content, together with a dynamic ranking
scheme. Future extensions will include spatially structured tasks such as pixel-level segmentation or
time-sensitive predictions, which may require less aggressive compression ratios than the current
value of ∼7,000. Probing strategies may also evolve as tasks grow in complexity.
Downstream data. Although the current benchmark is rooted in EO, its design is domain-agnostic.
Extensions can cover multi-modal, spatio-temporal data across domains such as weather forecasting,
medical imaging, or autonomous driving. Our experiments leveraged SSL4EO-S12 as an initial sweet
spot (multi-modal, multi-temporal, multi-spectral). The same concept readily transfers along the axes
of domain, modality, time, and channels.
Building a community. With our benchmark, we provide a seed to grow an eco-system cen-
tered around benchmarking highly-compressed embeddings on a set of standardized, community-
contributed downstream tasks. To avoid contributing to an ever-growing number of benchmark
datasets, we intend to harmonize with existing ones, such as GEO-Bench and PANGAEA. Our bench-
mark’s mission is to provide a standardized framework of benchmarking embeddings. We warmly
welcome contributions from all research areas involved in neural compression. Future extensions of
the benchmark framework include pixel-wise and temporal downstream tasks.

7 CONCLUSION

We presented the first of its kind, task-driven benchmarking framework for compression that evaluates
neural embeddings by downstream task performance, rather than pixel fidelity. The framework
introduces a novel rank-then-aggregate scoring method which dynamically determines the task
complexity based on score statistics. We demonstrated our benchmark framework by setting up a
data challenge on multi-modal, multi-temporal, and open-source EO data. We introduced a novel set
of real-world downstream tasks which remained undisclosed at the time of the data challenge, and
have been publicly released after the conclusion of the competition. Our benchmark encourages the
development of methods that generate semantically-rich, general-purpose embeddings.
For our setup, experiments demonstrated that multi-modal foundation models yields strong overall
performance—particularly on semantic land-cover tasks. Post-encoding fusion of seasonal views
resulted in notable gains for temporally sensitive tasks such as cloud cover prediction. We also
observed that smaller and, in some cases, larger embedding sizes degrade performance. This
observation highlights compact embeddings as a practical choice for image-level tasks when high-
quality annotations and compute resource become scarce.
Our benchmark is open source and ready for extension—either by novel evaluation methods or
additional downstream tasks without any conceptual restriction to Earth observation. Currently, our
benchmark framework is limited to image-level tasks, but future work aims to extend our benchmark’s
functionalities to include pixel-wise outputs, options beyond linear probing, and an assessments of
bit-rate efficiency.

2
https://creativecommons.org/licenses/by/4.0 and https://www.apache.org/licenses/LICENSE-2.0.html
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A TECHNICAL DETAILS OF THE DATA CHALLENGE

Before we delve into generic considerations regarding our benchmark in Section B, we introduce its
origin spared by the innocent question:

If Geospatial Foundation Models claim to generate informative, generic feature
vectors for a broad range of use cases, why can’t we put that claim to the test in a
data challenge? Catch: We will not disclose the downstream tasks, but simply ask
to embed /compress Earth observation data.

A.1 CHALLENGE EVALUATION METHOD AND CONFIGURATION

An individual, local score of embedding quality. As detailed in the main article, the central
evaluation metric serving as quality score to answer the question above reads like

Q
(p)
t = 100ϵ

⟨st,k⟩k
stdk (st,k) + ϵ

≡ Q = 100ϵ
s̄

∆s+ ϵ
with ϵ = 0.02 . (3)

For fixed ϵ > 0, the maximum value of Q reaches 100ϵϵ−1s̄ = 100s̄ when the statistical fluctuations
vanish, ∆s → 0. Given ∆s ≥ 0 and s̄ ∈ [0, 1]3 derived from a measure such as the F1-score or
R-squared, the range of the quality score can be interpreted as a percentage of quality.
The numerical value of the regulator ϵ determines the scale at which Q becomes insensitive to
statistical fluctuations ∆s: As long as ∆s ≫ ϵ, in zero-order approximation, we have q = Q/100 ≈
s̄/∆s a measure of signal-over-noise for the quantity s. At the other end of the spectrum when
ϵ ≫ ∆s dominates the noise, we conclude q ≈ (1−∆s/ϵ)s̄ < s̄ in first order of ∆s/ϵ. However,
when ∆s ≈ ϵ, q ≈ s̄/2 is relatively insensitive to the noise ∆s. In particular, when the score s varies
about ∆s ≈ 0.02 = 2%≈ ϵ across the set of validations indexed by k, then Q ≈ 50s̄, i.e. for almost
perfect s ≈ 1 values across the board, we obtain a Q close to 50%. Only, when ∆s significantly
drops below the fixed ϵ = 2%, Q-scores close to 100% are possible (given close to perfect s-scores).
In order to gather sufficient statistics to fairly compare the challenge participants, the number of
linear classifiers trained on separately-sampled training and test sets was varied from k = 1, 2, . . . , 40
during the development phase and k = 1, 2, . . . , 200 during the final evaluation phase. While the
seed for the random number generator used for the training and test set splits is kept constant for
our benchmark in Section B, for the data challenge it was initialized at random. Our choice was
motivated by the effort to minimize information leakage about the hidden downstream tasks to the
data challenge participants. During the development phase, submissions could test the constant set of
predefined downstream tasks over a three-week period and submit 10 times a day.
Global ranking relative to other challenge participants. On top of a single participants p’s (local)
performance score Q

(p)
t , we added a global ranking scheme as follows: Both local and global

rankings assign rank R
(p)
t =1 to the highest performing participant and ascending rank R

(p)
t -values

for decreasing performance. Ties are broken such that all tied participants get the lower (best) rank.
The algorithmic design of our approach is best illustrated in a Python code implementation like:

1 q = {
2 ’team1’: 13.223,
3 ...,
4 ’teamP’: -3.55677
5 }
6

7 def rank(q:dict, descending:bool = True) -> dict:
8 sign = 1
9 if descending:

10 sign = -1
11 return {
12 p: 1 + len(
13 [ s_sub for s_sub in q.values() if sign*s_sub < sign*s ]
14 )
15 for p, s in q.items()

3For an R-squared score (regression task), s < 0 penalizing good, positive values s ∈ [0, 1]. In fact, negative
s–values indicate that the downstream task prediction is worse than a model simply predicting the value of the
mean label.
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16 }
17

18 ranked_q = rank(q)

where the Python dictionary q serves as input to rank() to generate R
(p)
t =ranked_q and the

boolean parameter descending triggers whether the highest or lowest value is deemed best.
Utilizing rank(), the local ranking R

(p)
t orders participant p on task t with the highest (best) score

Q
(p)
t , descending=True. The second, global ranking across tasks assigns rank R(p) =1 to the

participant with the lowest (best) weighted average rank score

s(p) =

T∑
t=1

wtR
(p)
t where wt = stdpQ

(p)
t

/ T∑
t=1

stdpQ
(p)
t (4)

by setting descending=False. In contrast to stdk over cross-validation folds k in Eq. (3), here,
stdp runs over the number of participants p of a fixed task t, i.e., the weight wt computes the variation
of our evaluation metric Q

(p)
t for a given task t across all data challenge participants p. Thus, wt

serves as a measure of task competitiveness to characterize and automatically distinguish tasks t.
Our design rationale of the weighted_score for the data challenge was as follows:

• reward participants scoring well for a given downstream task
• discount the quality score Q depending on the task competitiveness of a downstream task,

i.e., measure relative performance among challenge participants for a given downstream
task.

The std-based weighting achieves this by discounting downstream tasks where all teams perform
similarly, in analogy to:

A football match is a draw regardless if the end result is 1-1 or 8-8 — although the
number of goals can have a marginal effect in a tournament.

We assign more importance to downstream tasks where participants score high AND when they
distinguish themselves from the rest. More formally speaking: For a weight wt = δt/

∑
τ δτ with

δt = stdpQ
(p)
t and the commonly accepted definition of variance

(stdpAp)
2 = ⟨A2

p⟩p − Ā2 = ⟨(Ap − Ā)2⟩p (5)

where

⟨f(Xp)⟩p =
1

P + 1

P∑
p=0

f(Xp) and Ā = ⟨Ap⟩p (6)

such that
Ap = Ā ⇔ stdpAp = 0 , (7)

the case δt → 0 for all t may generate a numerical instability. However, our two distinct competition
baselines

• p = 1: simple data aggregation of data cubes termed Baseline mean embeddings in the data
challenge with leaderboard mean Q-score ⟨Q(1)

t ⟩t =-0.786
• p = 0: random embeddings termed Baseline random embeddings in the data challenge with

leaderboard mean Q-score ⟨Q(0)
t ⟩t =-7.092

prevent δt = 0 in practice as verified by running the data challenge over a month with more than 400
submissions from over 20 teams.
From a theoretical perspective, one may want to stabilize wt by adding a ghost task t = 0 with
variance 0 < δ0 = ϵ ≪ 1 such that

δ0 =

√〈
Q

(p)2
0

〉
p
> 0 setting Q̄0 = 0 and defining R

(p)
0 = 0 . (8)

Abbreviating
∑

=
∑

t δt we distinguish the cases

•
∑

≫ ϵ: where w0 = ϵ/
∑

≪ 1 and wt = δt/
∑

leaving s(p) of Eq. (4) intact to 0th order
in ϵ
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Figure 6: Components and interaction of thedata challenge. The community platform Eval.AI (a)
interacts with a virtual machine hosted at a cloud service (b). The virtual machine returns the quality
score of the submission to the Eval.AI leaderboard and pushes updates to the custom leaderboard (c).

•
∑

≈ ϵ: where w0 ≈ 1
2 and wt ≈ 1

2δt/
∑

such that with R
(p)
0 = 0 the score s(p) in Eq. (4)

receives a discount factor 1
2 which further increases for

∑
→ 0 where w0 → 1

For the data challenge we ran our benchmark with task weighting with 1 =
∑

t wt. When users
simply want to benchmark their neural compression methodologies on a (sub)set of downstream
tasks with known complexity without competing against other teams, the unweighted averaging is
the preferred mode of operation for our benchmark. In Section A.3 we report on operational insights
related to task weighting as observed in the context of the data challenge. The results underline that
the concept of task competitiveness bears further opportunities for continued research.

A.2 PLATFORM AND INFRASTRUCTURE

The core evaluation pipeline was implemented on a virtual machine (VM) with specifications:
• Operating System/OpenStack Image: Ubuntu Jammy 22.04 LTS
• CPU: 8 vCPUs, no GPU
• RAM: 16GB
• Disk: 20GB (OS) + 200GB (data storage)

running on top of OpenStack4 cloud environment. The communication with the Eval.AI API for
fetching submission data and writing results back to the Eval.AI leaderboard was based on the Eval.AI
GitHub remote challenge evaluation template utilizing the requests Python library.5 Figure 6
illustrates the entire setup: (a) the Eval.AI web interface and a supplementary repository on one end,
and (b) the evaluation procedure which runs on the VM at JSC, on the other end.
As evaluation method (Evaluate.py), our benchmark framework was incorporated into the
Eval.AI remote challenge evaluation template running on the VM, cf. Local Repository – Evaluation

4https://www.openstack.org
5https://docs.python-requests.org
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Figure 7: The evolution of participant rankings in the challenge test phase. Lines correspond to
participating teams and dots to submissions by the corresponding team. Team 10 is the simple mean
baseline described in Section B.3.1, and Team 11 is a randomized baseline with randomly sampled,
normally distributed embeddings.

Codebase in Fig. 6. Updates to the Eval.AI challenge web interface got triggered by GitHub Actions.6
In addition, the Supplementary Repository serves two purposes:

• for the challenge participants to provide instructions and code examples with options to
raise issues, and

• to host a Custom Leaderboard implementing the global ranking introduced in Section A.1,
not natively supported by Eval.AI

The VM runs a cronjob to restart Evaluate.py in case the application terminated. In fact, every
minute our benchmark framework polls Eval.AI for new Submissions to score. Thereafter, the VM
reports Q of the evaluated submission to the Eval.AI Leaderboard. It also updates the global Custom
Leaderboard in the GitHub Supplementary Repository.

A.3 COMPETITION ANALYSIS

The interaction between participants and organizers through GitHub issues allowed for transparent
and traceable communication. In particular, we highlight an update to the challenge that improved
comparability between participants by reducing variability in case the same submission is submitted
multiple times.
Other learnings from the develploment phase are:

• Normalization of the target labels across all downstream tasks may be necessary to avoid
hyperparameter tuning of the linear probe.

• Before normalizing the target labels, the range of the target labels heavily affected the ability
of the linear probe to learn a specific task within the given network initialization, learning
rate and number of epochs.

In total, nine teams participated publicly in the final phase of the data challenge, competing over
scoring top rank and highest mean Q value across all tasks.
In general, the ranking and the mean Q value are close to identical. However, the team achieving third
place upended the order of first and second place, with the effect that the runner-up team achieved
a slightly higher mean Q-score than the winners. This effect is driven by a change in task weights
caused by the third-place team’s performance. We note the dynamics around Submissions 14 and
15 as illustrated in Fig. 7 where the ranking dynamics given a sequence of Submissions (dots) is
documented: Team 1 through 9 are competing numerically indexed by their final position in the
challenge ranking. Team 10 represents the simple mean baseline case described in Section 5.3 with
additional details in Section B.3.1, and Team 11 is a randomized baseline submitting randomly
sampled, normally distributed embeddings.
A hallmark of our dynamic (global) ranking R(p) can be observed as follows: At submission 14, the
submission of Team 3 modified the task weights such that the position of Team 4 and 5 were swapped,

6https://docs.github.com/en/actions
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Figure 8: Visualisation of downstream-task labels (top row) and corresponding Sentinel-2 images
(bottom row). The biomass labels have been sourced from Karaman et al. (2025). Although Sentinel-1
is included in every data cube, it was excluded from this visualisation. The cloud and heat island
labels are based on aggregated images.

Table 2: Qualitative comparison of our benchmark, PANGAEA, and GEO-Bench

ours PANGAEA GEO-Bench
Domain General purpose compression Geo. foundation models Geo. foundation models
Compute commodity hardware AI accelerator AI accelerator
Model access Not required Intermediate features Backbone finetuning
Tasks Classification Classification Classification

Regression Regression -
- Segmentation (focus) Segmentation

Leaderboard API JSON JSON -

even though Team 3 ranked below the two other teams. The same occurred at submission 15, where
the submission of team 3 changed the task weights to the benefit of Team 1. The adaptations of the
task weights were small compared to the weights of the four tasks with highest weights—on the order
of a few percent of the task weights. This drastic effect on the rank of the first two positions is partly
due to Team 1 and 2 being neck and neck, Team 1 winning with a weighted average rank 2.31 and
Team 2 coming second with 2.44, even though Team 2 scored 15.2 mean Q, ahead of Team 1 on 14.9.
The proposed task weighting method as defined by Eq. (4) achieved to balance the importance of
tasks. We noted that the agriculture and forest related tasks were well solved by several teams. The
other tasks turned out more challenging. As expected, the (random) baselines were indicated low
performers according to R(p). A limitation of the weighting we observed: Since the weighting of
the tasks t in Eq. (4) is based on the variations of the participants for that given task t, a participant
p very poorly performing by design—such as the random baseline (Team 11)—artificially inflates
the task weight when all the other participants perform well. A sensible extension of our benchmark
framework as discussed in Section B will depend on a careful design of downstream tasks and
corresponding baselines.

B AN EXTENDABLE FRAMEWORK

Based on our insights from the data challenge, we took our approach to the next level with the
intention to build a community around benchmarking neural compression. Table 2 provides a
high-level comparison on how our benchmark fits into existing, popular geospatial benchmarking
frameworks. In summary, our benchmark fills the following gaps:

• Quantifies the quality of small embeddings based on a variety of downstream tasks without
fine-tuning of any neural network backbone.
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• Provides a standalone toolkit for rapidly benchmarking any compressed embeddings beyond
foundation models. In contrast to GEO-Bench and PANGAEA, our benchmark framework
is readily adapted to any compression scenario given:

– Users provide embeddings z where their encoder E takes care of data formats.
– Downstream tasks are shared with our benchmark framework as simple CSV files.

• Supplies a multi-task performance metric that quantifies embedding size (N ) vs. downstream
accuracy (Q).

It is worth iterating that our dataset downstream dataset builds on data structures part of GEO-
Bench—thus, serving as a potential interface regarding synergies. We are currently forming the
Earth2Vec community around our benchmark framework where more than 30 organizations from
academia, the corporate world, and governments have joined.

B.1 BENCHMARK TASKS

Figure 8 illustrates examples of Sentinel-2 inputs alongside the corresponding labels. Table 3 lists a
detailed overview of the derived 11 tasks, whereby 9 of these were used in the data challenge and are
highlighted with green check marks. Clouds and Nodata were not included in the competition but
are provided with the release of our benchmark framework. The task Random provides randomly
generated labels and associated data cubes from the Cloud task, which introduced an additional
quality assessment.
The processing pipeline for all presented datasets utilized GEE GEE to download data cubes, applying
a maximum cloud coverage filter of 10%, as provided by the GEE property CLOUD_COVER, except
for the clouds task where no restrictions on cloud cover were enforced. Each data cube was aligned
to the center of the corresponding label and processed to a size of 264 x 264 pixels. All sample
locations with less than 4 images were discarded. Whenever possible, only locations that cover all
four seasons for Sentinel-1 and Sentinel-2 were chosen. In case of missing latitude and longitude,
locations were randomly selected from shapefiles representing regions such as mainland Europe
or areas within the US Corn Belt. show one major difference. In January 2022, ESA introduced a
new baseline for Sentinel-2 data, effectively shifting all pixel intensities by 1000 units upward. The
dataset presented in this work follows the format of GEE, i.e. removing this translation such that the
minimum value for Sentinel-2 pixels are 0 both before and after the change by ESA. To allow for
seamless integration between the two datasets, the dataloaders provided in our benchmark includes a
setting that toggles a shift by 1000, aligning the distributions of the two datasets.
The Heat-island task required additional pre-processing, as Landsat-8 band 10 (B10) was utilized for
label generation. This dataset considers only cities with populations exceeding 20,000 and a latitude
between 8◦ and 70◦ north. The labels are based on all available Landsat-8 observations from June to
the end of August for the years 2021 to 2024 inclusive. In addition, to reduce the impact of remaining
clouds, any pixel with a combined brightness (red channel + blue channel + green channel) exceeding
30% of the maximum possible value or with a B10 temperature lower than 273 K are removed.
Images with more than 10% removed pixels were dropped. The northernmost locations were verified
to have average summer temperatures above freezing. For each location, the remaining images are
flattened and concatenated over time, and then the mean and standard deviation are calculated from
all pixels. The task is to estimate these spatio-temporal statistics.
Public vs. Secret Downstream Tasks. We released the hidden downstream tasks (cf. Table 3 with
green check mark) after the conclusion of the workshop to make publicly accessible the standalone
downstream dataset for reasons of transparency, and to be used and contributed to by the neural
compression community. As common with public benchmarks designed for standalone usage, we
assume that benchmark users would not jeopardize the developments of their own compressor E
by willingfully exploiting knowledge of the downstream tasks they test on. Removing and adding
(mix-and-match) downstream tasks for a new competition avoids overfitting of a state-of-the-art
compressor E. The process is as straightforward as uploading such data x to a file sharing service,
i.e.,

1. public: Each data point xi just needs a unique (identified by hash i) name (cf. e.g., directory
data/ of downstream dataset) to upload corresponding . . .

2. secret till conclusion of competition: . . . label CSV files (cf. e.g., directory labels/ of
downstream dataset, id column of CSV file) . . .

. . . for the benchmark engine to perform its downstream task evaluations.
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Table 3: Descriptions of the downstream tasks provided by the initial release of our benchmark. The
tasks used in thedata challenge are indicated with green check marks in the “Challenge” column. The
task names correspond to the identifiers as used in the corresponding dataset released.

Task file Challenge Description

Biomass biomass_mean__regr ✓ Regression tasks: Biomass density (Mg/ha)
mean and standard deviation estimated for
pixel-level labels derived from GEDI.

biomass_std__regr ✓

Crops crops__regr ✓ Regression task: Combined fraction of Soy-
bean and Corn in the label image.

Landcover landcover_agriculture__regr ✓ Regression task: Percentage of agriculture
pixels in the Corine Land cover image.

landcover_forest__regr ✓ Regression task: Percentage of forest pixels
in the Corine Land cover image.

Clouds clouds_reg__regr # Regression task: Average cloud cover frac-
tion across four seasons in one year.

Heatisland heatisland_mean__regr ✓ Regression tasks: Summer surface tempera-
ture mean and standard deviation in Kelvin.

heatisland_std__regr ✓

Nodata nodata__regr # Regression task: Fraction of pixels with
value zero in a Sentinel-2 image (based on
all 13,260 available samples).

Random random_reg__regr ✓ Regression task: Random task with a ma-
jority of zero labels. The data cubes are the
same as for Clouds.

random_cls__cls ✓ Classification task: Random binary classi-
fication for a majority of zero labels. The
data cubes are the same as for Clouds.

B.2 STANDALONE PYTHON IMPLEMENTATION

In order for a clean separation of code from the open-source platform Eval.AI, we developed a
minimal viable standalone Python code base to serve as plug-and-play for any larger ecosystem
integrating of the core framework. In fact, as Fig. 6 demonstrates, the scoring for the Eval.AI
leaderboard is entirely taken care of by our benchmark. Correspondingly, our framework commits an
additional, customized leaderboard that globally depends on all submissions to a dedicated GitHub
repository.
The benchmark core evaluation.py functionality separately fetches

• the user’s embeddings (submission), /path/to/submission_file.csv, and
• the downstream task annotation data (labels), /path/to/annotation_directory/

as ASCII-formatted CSV files given predefined local paths and directories as simple interface entirely
independent of Eval.AI. Given any ranking procedure implemented, the resulting leaderboard is
saved as human-readable JSON file in a corresponding /path/to/results_directory/. For
downstream (binary) classification tasks, the confusion matrix and related scores such as precision,
recall, F1, and overall accuracy are calculated along with the ROC-AUC-score (area under Receiver-
Operator-Characteristic graph). For regression, the R-squared, mean squared, and mean absolute
errors are computed.
To serve as seed towards an open-source and open science community, we designed the standalone
Python implementation of our benchmark modular for easy extension. Depending on compute
resources, we encourage future contributions to add novel probing models, cross validation schemes,
and performance scores (cf. Eq. (3)) beyond the current. As a bonus, our standalone implementation
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Figure 9: Illustration of pre-encoding vs. post-encoding aggregation. In post-encoding, each seasonal
image is encoded separately before combining embeddings, which mitigates outlier effects (e.g.,
snow) but increases runtime fourfold.

allows to store plots of loss curves, linear correlation of regression tasks, and a confusion matrix for
classification on disk.
Running our benchmark standalone on the command line reduces to something as simple as:

1 python main.py \
2 --annotation_path /path/to/annotation_directory/ \
3 --submission_file /path/to/submission_file.csv \
4 --output_dir /path/to/results_directory/ \
5 --config /path/to/config.yaml \
6 --method_name ’your-method-name’ \
7 --phase ’phase-name’

where your-method-name and phase-name are free strings to define an output (sub-)directory

/path/to/results_directory/phase-name/your-method-name_YYYYMMDD_HHmmSS

with YYYYMMDD a date of year YYYY and zero-padded numerical month MM and day DD. HHmmSS
indicates a time of the day in hours HH, minutes mm, and seconds SS, accordingly. A YAML file
/path/to/config.yaml specifies details of the evaluation such as:

1 embedding_dim: 1024 # number of embedding dimensions
2 batch_size: 64 # batch size for (linear) probing
3 epochs: 20 # number of epochs to optimize the (linear) probe for
4 learning_rate: 0.001 # learning rate to optimize with
5 k_folds: 40 # number of cross-validations to generate statistics over
6 standardize_embeddings: true # standardize embeddings by their global mean and std
7 normalize_labels: true # normalize in range [0,1]
8 task_filter: false # all in /path/to/annotation_directory/ per default
9 # example: ["biomass_mean", "biomass_std"]

10 # etc.

B.3 GENERAL EVALUATION SETUP

We expand on the methods introduced in Section 5.3, applying off-the-shelf embedding methods
to the downstream tasks defined in Section B.1. Unlike the challenge, where data were partitioned
into development and evaluation phases, results here are computed on the entire downstream dataset.
Unless otherwise stated, evaluation follows the challenge protocol and used hyperparameters: E = 20
epochs, k = 50 training and test set splits, and a learning rate of 10−4. We report raw R2 scores,
clipping negatives to [0, 1] for figures.
For the results in Section B.3.1, we use embeddings of size N = 1024, consistent with the challenge
setup. In Section B.3.3, we relax this requirement to investigate the effect of varying embedding
dimensionality and explore decoder choices beyond the linear probes proposed as default.

B.3.1 METHOD DETAILS

Averaging Baseline. As a simple informative reference, we construct a Mean baseline by strongly
downsampling and averaging the data cubes. First, we reduce the spatial resolution of each of the
27 channels from 264x264 pixels to 8x8 by bi-linear interpolation. Next, we exploit correlation as
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Figure 10: Pearson correlation coefficient matrix of the 27 data cube channels. In here, we abbreviate
the channels of the Sentinel-2 L1C and L2A products as L1C and L2A, respectively appending the
channel name (B1, B2, . . . ).

visualized by Fig. 10 reducing the number of channels from 27 down to four. We average the channels
B1 through B9 of both S2L1C and S2L2A and we do similar for channels B11 and B12, respectively.
Channel B10 of S2L1C is kept separate since no corresponding band exists in S2L2A. Seasonal
snapshots are kept separate, yielding 8×8×4×4 values, flattened to N = 1024. This baseline
indicates how much task-relevant information survives coarse spatial and spectral aggregation.
Neural rate–distortion compressors. We adopt the Factorized Prior autoencoder of Ballé et al.
(2016) for Sentinel-2 L1C imagery. Models use 256 intermediate channels and 128 latent channels,
trained with loss L = R + λD, where D is MSE distortion and λ ∈ {0.025, 0.1, 0.5}. These
compressors match or exceed JPEG2000 PSNR at roughly half the bitrate (Fig. 11). At inference, we
pool latents to 4× 4, flatten to 2048, and average adjacent channels to yield 1024-dim embeddings.
Self-supervised foundation models (FMs). We evaluate unimodal FMs pretrained on Sentinel-2
L1C (Wang et al., 2023b), as well as multimodal FMs (DOFA (Xiong et al., 2024), TerraMind
(Jakubik et al., 2025)). CNN backbones are downsampled by spatial averaging to 2048 dims, then
halved to 1024. ViT-B/16 backbones average patch embeddings, padding from 768 to 1024 dims.
Temporal aggregation. Each sample contains four seasonal snapshots. In pre-encoding, channels
are averaged across seasons before encoding. In post-encoding, each snapshot is encoded separately
and averaged. As shown in Fig. 9, post-encoding better handles seasonal outliers (e.g., snow), at the
cost of increased compute.

B.3.2 KEY RESULTS ACROSS EMBEDDING METHODS

Table 4 summarizes linear-probe R2 scores with pre- and post-encoding aggregation.
Temporal aggregation. Post-encoding aggregation yields absolute R2 gains for almost every method
and task. For instance, the TerraMind cloud performance increases from 0.434 to 0.731 (+0.297), and
landcover tasks by +0.011–0.016.
Neural compressors. Reducing λ from 0.1 to 0.025 yields small average improvements, whereas
λ = 0.5 degrades performance and produces negative R2 on several tasks.
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Neural Compression vs JPEG2000 (SSL4EO S2L1C)

Figure 11: Rate–distortion performance of the Factorized Prior neural compressor, demonstrating
superior compression quality over the JPEG 2000 baseline.

Table 4: Full per-task R2 scores for all tested embedding methods. For all methods, we report
scores for Pre-Encoding Temporal Aggregation (Pre-Enc) and Post-Encoding Temporal Aggregation
(Post-Enc). Methods are grouped into the main categories: Multimodal (Terramind, DOFA), ViT
FMs, CNN FMs, Neural Compressors, and Averaging Baseline.

Method Biomass
Mean

Biomass
Std Crops Clouds Landcover

Agriculture
Landcover

Forest
Heatisland

Mean
Heatisland

Std

Averaging Baseline -0.552 -0.426 -0.061 -2.293 0.126 0.216 -0.962 -1.157

Neural Compressors
(Factorized Prior)
λ = 0.025 (Pre-Enc) 0.186 0.132 0.423 0.244 0.463 0.246 0.321 -0.114
λ = 0.025 (Post-Enc) 0.195 0.140 0.338 0.288 0.449 0.256 0.315 -0.113

λ = 0.1 (Pre-Enc) 0.127 0.078 0.388 0.222 0.447 0.278 0.238 -0.246
λ = 0.1 (Post-Enc) 0.129 0.078 0.357 0.266 0.464 0.333 0.219 -0.270

λ = 0.5 (Pre-Enc) -0.037 -0.062 0.364 0.129 0.464 0.319 0.067 -0.563
λ = 0.5 (Post-Enc) -0.036 -0.071 0.325 0.200 0.478 0.343 0.033 -0.628

CNN FMs (Unimodal)
DINO (Pre-Enc) -0.031 0.015 0.749 -0.171 0.855 0.838 0.396 -0.334
DINO (Post-Enc) 0.117 0.088 0.826 0.147 0.879 0.865 0.483 -0.221

MoCo (Pre-Enc) -0.164 -0.111 0.688 -0.228 0.835 0.808 0.236 -0.502
MoCo (Post-Enc) -0.048 -0.030 0.780 0.216 0.864 0.844 0.345 -0.334

ViT FMs (Unimodal)
DINO (Pre-Enc) 0.159 0.157 0.755 0.061 0.822 0.812 0.446 -0.169

MoCo (Pre-Enc) 0.294 0.229 0.706 0.242 0.790 0.778 0.477 0.113
MoCo (Post-Enc) 0.338 0.259 0.751 0.409 0.825 0.814 0.506 0.133

Multimodal FMs
TerraMind (Pre-Enc) 0.492 0.366 0.836 0.434 0.907 0.892 0.676 0.193
TerraMind (Post-Enc) 0.528 0.390 0.879 0.731 0.918 0.908 0.691 0.226
DOFA (Pre-Enc) 0.311 0.234 0.622 0.409 0.762 0.747 0.521 0.156
DOFA (Post-Enc) 0.373 0.269 0.587 0.518 0.777 0.773 0.560 0.207

ViT backbones. MAE achieves balanced performance across tasks, while contrastive DINO and
MoCo excel on semantic landcover tasks (e.g., DINO post-encoding achieves R2 = 0.863 on crop
fraction) but are less competitive on geophysical regression.
CNN backbones. Although CNN variants perform strong on landcover tasks, they fall behind ViTs
on geophysical regressions. They benefit from post-encoding aggregation—for instance, DINO
CNN’s biomass mean improves from negative scores to 0.117.
Multimodal models. TerraMind consistently outperforms all other embeddings, achieving the
highest R2 across tasks. DOFA, while generally scoring below TerraMind, still achieves consistent
performance across all task.
Intermediate Layers. To probe how different layers capture task-relevant features, we extracted
intermediate embeddings from the contrastive ViTs. As shown in Fig. 12, low-level regression tasks
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Figure 12: Layer-wise R2 performance of ViT-based foundation models across downstream tasks.
Shallow layers capture low-level signals useful for regression tasks (e.g., biomass, heat-islands,
clouds), while deeper layers improve performance on semantic classification tasks (e.g., crops,
landcover).

(biomass mean/std, heat-island mean/std, cloud fraction) peak at shallow layers (layer 1), whereas
higher-order semantic tasks (crop fraction, landcover proportion) reach their best performance at
deeper layers.

B.3.3 ABLATIONS AND EXTENDED ANALYSES

Decoder Analysis (Linear vs. Non-Linear Probes). As part of our evaluation design, we explored
the impact of decoder complexity on downstream task performance. While linear probing is the
default protocol, we deliberately investigated non-linear alternatives to assess whether additional
decoder capacity meaningfully improves results.
Figures 5b and 13 compare linear probes with one- and two-hidden-layer MLP decoders. We observe
three consistent findings:

• Stable rankings. The relative ranking of embedding methods remains nearly the same
across probe types, indicating that differences between methods are not an artifact of probe
capacity.

• Marginal gains for strong embeddings. Top-performing embeddings (e.g., TerraMind,
MAE) improve by less than 0.06 R2 on average when switching to non-linear probes,
demonstrating that these embeddings are already highly linearly expressive.

• High computational overhead. Increasing decoder depth leads to ∼170× and ∼464×
more parameters for one and two hidden layers, respectively, with only small performance
gains.

Interestingly, weaker embeddings benefit disproportionately from non-linear probes, suggesting that
added decoder complexity can compensate for lower-quality representations. However, this comes at
substantial computational cost.
Taken together, these results highlight that linear probing is not only efficient but also a discriminative
evaluation strategy: it faithfully reflects the intrinsic quality of embeddings while enabling scalable
benchmarking. Non-linear decoders may be useful for future extensions to more complex tasks (e.g.,
pixel-wise segmentation), but for the image-level tasks studied here, linear probing provides a robust
and interpretable measure of embedding quality.

Embedding Size Ablations. Figures 14 and 15 show ablation results on embedding dimensionality
for ViT-based and CNN-based models, respectively. For CNN backbones, performance generally
peaks in the range of 128–1024 dimensions, with larger or smaller embeddings leading to consistent
performance drops. ViT-based embeddings, by contrast, are most effective at their natural patch-
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Figure 13: Per-task results for linear vs. non-linear probes. Non-linear decoders benefit weaker
embeddings but have little effect on top-performing methods.

Figure 14: Embedding size ablation for ViT-based models. Performance peaks at the native patch
embedding size and drops with reduced dimensions.

Figure 15: Embedding size ablation for CNN-based models. Optimal performance occurs between
128–1024 dimensions, with degradation outside this range.
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Table 5: Empirical runtime (in seconds) for different tasks under varying embedding size (N ), number
of epochs (E), and number of CV folds (k) on single-CPU commodity hardware. Vertical lines
separate configurations with different embedding sizes.

Task
(# samples)

N = 1024 N = 512 N = 2048
E = 10
k = 40

E = 20
k = 20

E = 20
k = 40

E = 40
k = 40

E = 20
k = 80

E = 20
k = 20

E = 20
k = 40

E = 20
k = 20

E = 20
k = 40

Biomass
(2415) 4.23 4.24 7.98 16.01 16.54 3.87 7.54 4.25 8.32

Crops
(3355) 5.60 5.56 11.26 22.15 22.00 5.09 10.35 5.94 12.34

Clouds
(1140) 2.04 2.03 3.94 7.76 7.59 1.91 3.69 2.13 4.12

Landcover
Agriculture

(4691)
7.70 8.06 15.75 31.03 30.75 7.08 14.26 8.07 16.40

Landcover
Forest
(4691)

7.86 7.81 15.48 31.06 30.47 7.08 14.37 8.06 16.64

Heatisland
(1659) 2.79 2.80 5.53 10.84 10.83 2.66 5.25 2.89 5.85

No-data
(13260) 22.45 22.45 44.30 88.68 88.18 20.46 42.03 23.18 46.60

token dimension, and reductions tend to degrade task performance. Notably, the benefit of larger
embeddings is limited: increases beyond 1024 dimensions yield negligible accuracy improvements
while substantially raising computational demands and probe parameter counts. These results justify
the use of 1024-dimensional embeddings as a balanced default in the run data challenge, while also
illustrating our benchmark’s flexibility for exploring embedding-size vs. utility trade-offs in future
studies.

B.4 COMPUTE RESOURCES & TUNING PARAMETERS

At the data challenge, our benchmark completed evaluations for a single submission within about 10
minutes for the embedding dimension of N = 1024, the number of epochs per fold are E = 20, the
number of training- and test set splits had been set to k = 40 in the development phase and k = 200
in the evaluation phase. The evaluation script ran across a diverse set of eight downstream tasks for
real-world geospatial applications. As alluded in Section B.2, users can flexibly adjust evaluation
parameters in order to tune the runtime of the standalone implementation:

• Embedding dimension (N , embedding_dim)
• Number of epochs per CV fold (E, epochs)
• Number of CV folds (k, k_folds)
• Choice of tasks included (task_filter)

Empirical runtime measurements confirm an approximately linear scaling w.r.t. both, the number of
epochs E and the number of cross-validation folds k. A similar scaling behavior was numerically
verified for the dataset size (# samples) for fixed downstream task. Runtimes are further influenced–
—though to lesser extent—–by the embedding dimensionality N . For example, increasing the
embedding size from 512 to 1024 dimensions results in a runtime increase of approximately 5%
to 10% across tasks. For N = 1024 to N = 2048 dimensions implies an additional increase of
about 5% to 15%—depending on the task dataset size. Such a sub-linear scaling may be attributed to
computation overheads and system-level inefficiencies. Those may reduce the relative computational
costs when increasing the embedding dimensionality N . Table 5 lists a collection of recorded
execution times (in seconds) for various parameter configurations per downstream task. All runtimes
were measured on a single commodity ARM64 CPU with 16 cores (4.06 GHz) and 64 GB of RAM.

B.5 LICENSES FOR DATA & SOFTWARE

Our benchmark builds on open-source software and is released under the Apache 2.0 license. All
package dependencies are listed in the requirements.txt file, and those are licensed under
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Table 6: List of licenses related to datasets currently included in our benchmark. All of these, except
Clouds, are available in GEE. Table 1 lists years of target labels, ranging from 2018 through 2024.

Dataset Origin of Data License
Sentinel-1 & -2 ESA / Copernicus CC BY-SA 3.0 IGO
Landsat-8 USGS (Observation and Center, 2020) Public Domain
CDL USDA NASS Cropland Data Layers (Boryan et al.,

2011)
Public Domain

CORINE European Environment Agency (EEA), European Union Full, Open,
Copernicus Land Monitoring Service (European Envi-
ronment Agency (EEA), 2018)

and Free Access

CloudSen12+ CloudSEN12 project (Aybar et al., 2024) CC0 1.0
GEDI NASA (Dubayah et al., 2022) Public Domain

widely-accepted open-source terms7, including BSD, MIT, PSFL, The Unlicense8, MPL-2.09, and
Apache. These permissive licenses allow academic research and commercial use, making them
fully compatible with the chosen Apache 2.0 license. Table 6 lists all data currently included in
our benchmark along with their origin. Google Earth Engine (GEE) (GEE) was utilized as the
primary platform for downloading downstream task data as introduced in Section B.1. Future data
and code contributions to our benchmark are required to be licensed under CC-BY 4.0 and Apache
2.0, respectively.
We note that the current implementation of our benchmark lists CUDA packages covered by a
proprietary NVIDIA license10. However, we do neither bundle nor redistributes corresponding
binaries. Users and contributors to our benchmark that share related docker containers need to
explicitly attribute NVIDIA’s license. Fortunately, and as alluded in Table 5 and Section A.2, our
benchmark runs swiftly in a VM with commodity hardware specifications on CPU compute, only.
Accordingly, the standalone implementation introduced in Section B.2 can be started with (Bash)
environment variable CUDA_VISIBLE_DEVICES=” to avoid usage of GPU resources.

7https://opensource.org/licenses
8code-equivalent to CC0 data licenses
9weak copy-left that allows for integration with non-copyleft licenses

10https://docs.nvidia.com/cuda/eula/index.html
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