
Smurfs: Leveraging Multiple Proficiency Agents with Context-Efficiency
for Tool Planning

Anonymous ACL submission

Abstract

The emergence of large language models001
(LLMs) has opened up unprecedented possibili-002
ties for automating complex tasks that are often003
comparable to human performance. Despite004
their capabilities, LLMs still encounter difficul-005
ties in completing tasks that require high levels006
of accuracy and complexity due to their inher-007
ent limitations in handling multifaceted prob-008
lems single-handedly. This paper introduces009
"Smurfs," a cutting-edge multi-agent frame-010
work designed to revolutionize the application011
of LLMs. By transforming a conventional LLM012
into a synergistic multi-agent ensemble, Smurfs013
enhances task decomposition and execution014
without necessitating extra training. This is015
achieved through innovative prompting strate-016
gies that allocate distinct roles within the model,017
thereby facilitating collaboration among spe-018
cialized agents. The framework gives access019
to external tools to efficiently solve complex020
tasks. Our empirical investigation, featuring021
the mistral-7b-instruct model as a case study,022
showcases Smurfs’ superior capability in intri-023
cate tool utilization scenarios. Notably, Smurfs024
outmatches the ChatGPT-ReACT in the Tool-025
Bench I2 and I3 benchmark with a remarkable026
84.4% win rate, surpassing the highest recorded027
performance of a GPT-4 model at 73.5%. Fur-028
thermore, through comprehensive ablation stud-029
ies, we dissect the contribution of the core com-030
ponents of the multi-agent framework to its031
overall efficacy. This not only verifies the effec-032
tiveness of the framework, but also sets a route033
for future exploration of multi-agent LLM sys-034
tems.035

1 Introduction036

Tool manipulation has traditionally been seen as037

a distinctive human characteristic, dating back ap-038

proximately 2.5 million years (Oakley and Mu-039

seum, 1972; Ambrose, 2001). For large language040

models (LLMs), access to external tools can equip041

them with broader capabilities beyond their fixed 042

language modeling knowledge. For example, the 043

search engine API empowers ChatGPT to access 044

real-time information (Zhao et al., 2023). However, 045

LLMs still face many challenges when attempting 046

to use tools to solve tasks. These challenges include 047

computational expense and a lack of adaptability to 048

new tools (Hao et al., 2024; Guu et al., 2020; Qin 049

et al., 2024). 050

This paper addresses the critical research prob- 051

lem of enhancing the problem-solving capabilities 052

of LLMs through the adoption of a multi-agent sys- 053

tem (MAS) framework (Dorri et al., 2018; Van der 054

Hoek and Wooldridge, 2008). We posit that a MAS 055

approach can significantly augment the efficacy 056

of LLMs in handling tasks that require a high de- 057

gree of precision, adaptability, and comprehensive 058

knowledge integration. 059

ToolBench-all ToolBench-long Increase

ChatGPT-DFSDT 71.5 66.0 −7.69%
GPT4-ReACT 72.0 65.1 −9.58%
GPT4-DFSDT 77.5 69.8 −9.94%
Mistral-Smurfs 79.5 82.1 +3.27%

Table 1: Pass rate of models on the ToolBench bench-
mark I2 category subset with long settings and all set-
tings.

To this end, we introduce "Smurfs" an innova- 060

tive MAS framework inspired by the collabora- 061

tive and versatile nature of its namesake cartoon 062

characters. The Smurfs framework is based on 063

the principle that synergistic collaboration among 064

specialized agents can overcome the limitations 065

faced by individual LLMs. Each agent within the 066

Smurfs framework is designed to perform specific 067

sub-tasks, facilitating a more nuanced and effec- 068

tive approach to complex problem-solving. Our 069

research delves into the architectural design, coor- 070

dination mechanisms, and the operational dynam- 071

ics of integrating specialized agents into a cohesive 072

system. Through rigorous experimental evalua- 073

1

I need recommendations for
top Paris hotels with
breakfast included. Please
suggest ten, with ratings
and reviews.

Planning Agent
Subtask 2:
Ratings and reviews
of suggested hotels.

Subtask 1:
Ten hotels with
breakfast in Paris

xxxxxx
xxxxxx
xxxxxx

Executor Agent Answer Agent

Hotels:
1. xxx

....

TODO List

Verifier Agent

Reject & Redo

Accept & Continue

xxxxxx
xxxxxx
xxxxxx

Answer Agent

Review:
1. xxx

....

Verifier Agent

Reject & Redo

Max Try

Final Answer:
Here are the
hotels in Paris and
their reviews:…

WebPage

Booking

Accept & Answer

Executor Agent

Hint For Next Step

Hint For Next Step

Figure 1: Demonstration of the whole process of the Smurfs framework.

tion, the Smurfs framework, utilizing the mistral-074

7b-instruct model (Jiang et al., 2023), achieved a075

remarkable 84.4% win rate against the benchmark076

set by ChatGPT-ReACT (Yao et al., 2022) on the077

ToolBench I2 and I3 benchmark (Qin et al., 2024).078

This outcome not only sets a new state-of-the-art079

in the field, but also provides concrete evidence080

of the effectiveness of the multi-agent approach in081

enhancing LLM capabilities.082

The structure of this paper is as follows: Sec-083

tion 2 presents the motivation for utilizing a multi-084

agent system. The methodology employed within085

the framework is detailed in Section 3. Subse-086

quently, Section 4 provides an in-depth evaluation087

of the experiments conducted on Smurfs. Section 5088

then reviews the techniques currently related to089

our work. Lastly, we summarize and conclude our090

findings in Section 6.091

2 Motivation092

2.1 Limited Context Length in a Single Model093

LLMs face considerable challenges when tasked094

with managing extensive contexts. As highlighted095

by (Liu et al., 2024), these limitations become096

particularly noticeable in tasks requiring assimi-097

lation and processing of large inputs, like verbose098

tool documents and API responses. The situation099

worsens when LLMs are supplemented with ex-100

ternal information, such as document retrieval or101

online searching (Petroni et al., 2020; Ram et al.,102

2023; Mallen et al., 2022). Although numerous lan-103

guage models capable of handling larger contexts104

are emerging (Dai et al., 2019; Dao et al., 2022),105

they often face significant performance degradation 106

when the important information is located at some 107

positions (Liu et al., 2024; Shi et al., 2023). More- 108

over, within the MAS framework, the impact of 109

extended contexts on performance remains unclear. 110

To measure the impact of extended contexts on 111

the performance of LLMs in tool utilization tasks, 112

we conducted a pilot study on the ToolBench bench- 113

mark (Qin et al., 2024). Additional details can be 114

found in Appendix A.1. We selected the samples 115

with more than 3 steps performed by the ChatGPT- 116

DFSDT method as a subset, called "ToolBench- 117

long", to compare the performance difference with 118

the full set. As demonstrated in Table 1, there 119

is a significant decrease in the pass rate of exist- 120

ing frameworks when faced with tasks involving 121

lengthy questions. This result supports the hypoth- 122

esis that not only do extended contexts strain the 123

models’ computational efficiency, but they also hin- 124

der their ability to accurately interpret and respond 125

to the given instructions. The pilot study high- 126

lighted a major issue with current tool utilization 127

frameworks: the excessive context length adversely 128

impacts the models’ planning and execution capa- 129

bilities when using tools. 130

Advantages of MAS: The pilot study highlights 131

the need for a new approach beyond the traditional 132

single-agent LLM model. MAS offers a promising 133

solution by distributing tasks among specialized 134

agents. This approach enhances memory efficiency, 135

minimizes distractions, and allows for modular de- 136

sign and optimization of agents. Key benefits in- 137

clude: (1) Memory Efficiency: MAS manages 138

memory better by assigning distinct segments of 139

2

tasks to different agents, avoiding overload from140

processing lengthy contexts. (2) Reduced Distrac-141

tions: Specialized agents focus on specific tasks,142

reducing interference from irrelevant information143

and improving overall performance. (3) Modular144

Design: The modular framework enables individ-145

ual agent optimization, scalability, and adaptability146

to diverse tasks.147

2.2 Tools Using and Planning in LLMs148

0 10 20 30
Dialogue Turns

0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ac
cu

ra
cy

Accuracy vs Dialogue Turns
Mistral-7B-Chat
Qwen1.5-7B-Chat

Figure 2: A pilot study explores the relationship be-
tween dialogue turns and the accuracy of tool selection
for LLMs. It demonstrates that long-context instructions
undermine the ability of LLMs to select the right tools.

Using external tools in LLMs is a well-149

established method to enhance model capabilities.150

However, as the number of available tools grows,151

managing multiple tools effectively becomes a152

complex planning challenge (Qin et al., 2024). This153

complexity often results in longer texts for tasks154

involving multiple tools. In the second pilot study,155

see details in Appendix A.2, we investigate the156

relationship between conversation turns and the157

model’s tool selection accuracy. Figure 2 shows158

that as the number of dialogue rounds increases, the159

model’s tool selection accuracy decreases linearly,160

underscoring the performance impact of longer161

texts in tool-involved tasks.162

While numerous general MAS systems perform163

well, as shown in studies like (Du et al., 2023;164

Liang et al., 2023), there’s a noticeable absence165

of multi-agent frameworks specifically designed166

for tool calling tasks. As highlighted in our two167

pilot studies, tool usage and planning tasks are par-168

ticularly sensitive to context length and efficiency.169

Therefore, there’s a pressing need for an optimized170

multi-agent framework tailored to tool calling sce-171

narios.172

3 Smurfs: A framework with multiple 173

agents 174

The Smurfs, the beloved cartoon characters, sym- 175

bolize unity and resourcefulness, and are good at 176

using tools to overcome any challenge they en- 177

counter. 178

3.1 Framework Overview 179

Figure 1 illustrates the entire workflow for the 180

Smurfs framework. Initially, the Planning Agent 181

identifies the user’s complex request and breaks it 182

down into manageable sub-tasks. Executor Agents 183

are then tasked with collecting this specific infor- 184

mation, utilizing access to external tools. Answer 185

Agent compiles the findings into a cohesive re- 186

sponse, which is subsequently verified by the Veri- 187

fier Agent to ensure accuracy and relevance. This 188

process exemplifies the framework’s capability to 189

efficiently handle complex queries by leveraging 190

the specialized roles of multiple agents, thereby 191

ensuring both the precision of task execution and 192

the quality of the output. In the following sections, 193

the functions of each agent will be detailed. More 194

details about the memory of each agent can be seen 195

at B 196

Planning Agent The primary responsibility of 197

the Planning Agent is task decomposition. The 198

strategy known as least-to-most prompting (Zhou 199

et al., 2023) is highly effective in dissecting in- 200

tricate problems into manageable sub-tasks and 201

resolving them sequentially. This approach has 202

demonstrated significant effectiveness and broad 203

applicability. In scenarios involving complex rea- 204

soning tasks, we utilize the fundamental princi- 205

ples of the least-to-most strategy to break down 206

intricate tasks into multiple sub-tasks, thereby im- 207

proving management, efficiency and also the inter- 208

pretability. An example illustrating how the Plan- 209

ning Agent employs this strategy to decompose a 210

task is provided at Table 2, with the specific prompt 211

available in Appendix C. 212

Executor Agent The Executor Agent is respon- 213

sible for choosing and executing the tools to solve 214

the sub-tasks. The agent has access to an exter- 215

nal tool library (Qin et al., 2024). At each steps, 216

the agent can invoke one tool to tackle the given 217

task. As outlined in Algorithm 1, the agent, using 218

the ReACT format (Yao et al., 2022) to choose the 219

tool and arguments, then execute the tool. More 220

detailed information of the Executor Agent can be 221

3

Executor Agent

Answer Agent

Verifier Agent

hint

tool call

answer

answer

Answer Agent

Tool response normally

Tool Error:Delete tool at this step

Next Step:
Reset tool list

Backtrack when
tool list is empty

Won't restart

Reach max steps

Add history

Reject Accept

Tool Error: Restart this step

subtask local memory

global memory

tool list

Add history

Backtrack when
tool list is empty

Figure 3: Details of the subtask-solving process of the Smurfs framework. The dotted line represents that the agent
can see the memory and the full line stands for operation.

Task

I’m planning a trip to Turkey and need information about postal codes in Istanbul. Can you
provide me with the postal code and district for Istanbul province with plate number 34?
Additionally, I would like to know if there are any transit agencies available in Istanbul. Please
fetch their names and contact numbers.

Decomposed
Sub-tasks

1. Determine the postal code and district for Istanbul province with plate number 34.
2. Find out if there are any transit agencies in Istanbul.
3. Get the names of the transit agencies in Istanbul.
4. Obtain the contact numbers for the transit agencies in Istanbul.

Table 2: Example of task decomposition by Planning Agent.

found in B.2.222

Algorithm 1: Tool Call
Input: A task q, a hint from the verifier agent h,

problem solving history H and a set of
available tools T .

Output: Tool response that is useful for solving the
task.

thought← gen_thought(q, h, T);
tool← choose_tool(q, thought, T);
args← gen_arguments(q, tool, H , tool_doc);
response← call_tool(tool, args);

223

Answer Agent To mitigate the performance224

degradation caused by lengthy contexts, we in-225

troduce the ‘Answer Agent‘ role, designed to ex-226

tract crucial content for each step and subtask. As227

demonstrated in the pilot study presented in Sec-228

tion 2.1, retaining all information may not always229

be beneficial, particularly in cases where the solu-230

tion path is challenging to discern. Therefore, the231

primary role of the Answer Agent is to succinctly232

summarize the generated answers. 233

Verifier Agent Similar to current reasoning 234

frameworks (Wei et al., 2022; Yao et al., 2022), 235

sequential task reasoning may lead to high compu- 236

tational and tool resource waste within the frame- 237

work (Qin et al., 2024). Therefore, inspired by (Qin 238

et al., 2024), we employ a depth-first search with 239

an early stopping strategy to find the solution path. 240

The Verifier Agent serves as an early-stopping and 241

reflection mechanism in the intelligent multi-agent 242

ensemble, allowing for a balance between effec- 243

tiveness and efficiency. This mechanism not only 244

ensures the accuracy of the generated responses but 245

also optimizes resource use by preventing unneces- 246

sary computations. Moreover, if the Verifier Agent 247

thinks the answer at this step isn’t accurate and 248

reasonable enough, it will provide hints for the Ex- 249

ecutor Agent to get the missing information for the 250

next steps. This dual role of the Verifier Agent en- 251

4

hances the overall performance of the framework,252

making it more robust and reliable for handling253

complex tasks.254

3.2 Subtask Solving Process255

After introducing the function of each agent, this256

section outlines how the agents collaborate to solve257

sub-tasks, as shown in Figure 3. Upon receiving258

a subtask or entering a new step, the tool list is259

refreshed, allowing the use of all available tools.260

The Executor Agent then calls the tools according261

to the task instruction. If a tool call fails, that tool is262

marked as unusable for this task at this step and the263

Executor Agent will try using other tools to solve264

the subtask at this step. This system also introduces265

a backtracking mechanism similar to DFSDT (Qin266

et al., 2024) to handle the situation where errors267

frequently occur. Once the executor agent gets a268

correct response from a tool, the Answer Agent269

will refine the information, filtering out irrelevant270

details such as lengthy web pages and generate271

the answer for the subtask at this step using the272

local memory. After this, the Verifier Agent checks273

the answer’s accuracy. If it’s incorrect, the process274

returns to the Executor Agent with the hint from the275

Verifier Agent for the next step; Otherwise, the final276

answer is provided. If the Executor Agent reaches277

its retry limit without success, Answer Agent will278

review the entire process from the global memory279

to produce an answer. More details of the subtask280

solving process can be seen at B281

4 Experiments282

To evaluate the effectiveness and efficiency of the283

Smurfs framework, we carried out a series of thor-284

ough experiments. In addition to the main experi-285

ment designed to assess the entire framework, we286

conducted an ablation study to test the capabilities287

of each component within the multi-agent frame-288

work. This section offers a detailed description of289

the experimental setup, methodologies employed,290

and key findings. Our goal is to showcase how the291

Smurfs framework, through the cooperative work292

of its multi-agent ensemble, effectively manages293

complex tasks while optimizing resource use. The294

experiments were designed with the following re-295

search objectives:296

• To validate the capability of the entire frame-297

work in managing tool planning tasks;298

• To independently assess the impact of each299

component on the overall performance, and300

identify the key factors influencing the multi- 301

agent framework; 302

4.1 Evaluation 303

Our experiments are conducted on ToolBench (Qin 304

et al., 2024), which encompasses multi-step tool us- 305

age tasks across over 16,000 APIs. To evaluate the 306

planning and reasoning capabilities of the LLMs, 307

we focused our experiments on intra-category 308

multi-tool instructions (I2) and intra-collection 309

multi-tool instructions (I3). These instructions 310

involve selecting 2-5 tools from the same category 311

or collection and sampling up to 3 APIs from each 312

tool to formulate the instructions. We employed 313

two metrics for evaluation: (1) Pass Rate mea- 314

sures the percentage of instructions successfully 315

executed within the allocated budget, evaluated by 316

ChatGPT. (2) Win Rate represents the preference 317

selection by a ChatGPT evaluator when presented 318

with two solution paths. All other settings are kept 319

consistent with those of the ToolBench benchmark. 320

4.2 Baselines 321

To investigate the varying impacts of the agent 322

framework on models with different capabilities, 323

we categorize our baseline into three groups. The 324

first group consists of models that are fine-tuned 325

based on the tool dataset, represented by ToolL- 326

LaMA (Qin et al., 2024). The second group encom- 327

passes untrained general language models such as 328

Vicuna (Chiang et al., 2023), and Mistral-Instruct- 329

7B (Jiang et al., 2023). The third category repre- 330

sents the closed-source model, embodied by GPT4. 331

We subsequently contrast our approach with two 332

agent frameworks, ReACT (Yao et al., 2022) and 333

DFSDT (Qin et al., 2024), both of which are uti- 334

lized for multi-step reasoning and model invoca- 335

tion. Notably, all methods employ the ground truth 336

toolset for tool selection, thereby eliminating the 337

influence of the tool retriever. 338

4.3 Main Experiments 339

Table 3 displays the results of the comprehensive 340

evaluation of our proposed framework on Tool- 341

Bench. For the untrained LLMs, it is clear that 342

existing agent frameworks do not improve their 343

performance in tool planning tasks; Vicuna, and 344

Mistral-Instruct-7B all failed at the given tasks with 345

the ReACT and DFSDT frameworks. However, 346

Smurfs exhibits exceptional performance: Mistral 347

combined with Smurfs achieves the highest score 348

5

Models Method I2-Inst. I2-Cat. I3-Inst. Average
Pass Win Pass Win Pass Win Pass Win

ToolLLaMA-7B
ReACT 30.5 50.8 31.5 41.8 25.0 55.0 29.0 49.2
DFSDT 77.0 68.5 77.0 58.0 66.0 69.0 73.3 65.2

Vicuna-7B
ReACT & DFSDT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Smurfs (ours) 77 73 70.5 64.25 78.0 87.0 75.2 74.8

Mistral-Instruct-7B
ReACT & DFSDT 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Smurfs (ours) 77.5 80.0 79.5 79.2 79.0 94.0 78.7 84.4

GPT4
ReACT 67.0 65.8 72.0 60.3 47.0 78.0 62.0 68.0
DFSDT 79.5 73.3 77.5 63.3 71.0 84.0 76.0 73.5

Smurfs (ours) 71.0 77.5 72.0 77.0 64.0 89.5 69.0 81.3

Table 3: ToolBench evaluation, with some results derived from (Qin et al., 2024; Yuan et al., 2024). The most
effective approach is highlighted in bold, while the second is underlined.

among the baselines. Through its task decom-349

position mechanism, Smurfs transforms a long-350

context task into several simpler tasks, enabling351

the untrained model to effectively utilize external352

tools to manage complex tasks. Regarding the353

closed-source models, specifically GPT4 in these354

experiments, Smurfs also demonstrates competi-355

tive performance on the benchmark compared to356

other agent frameworks. A high win rate suggests357

that Smurfs is more adept at finding better solution358

paths than ChatGPT, a success that can likely be359

credited to the verifier agent.360

4.4 Ablation Study361

4.4.1 Importance of each component in MAS362

Average
Pass Win

Mistral 0.0 0.0
Mistral with Smurfs 79.3 86.6

w/o Verifier Agent 74.5↓6.0% 83.8↓3.2%
w/o Answer Agent 73.3↓7.6% 81.7↓5.7%
w/o Planning Agent 64.0↓19.3% 82.9↓4.3%

Table 4: Ablation study on ToolBench I2-Cat., I3-Inst.
with Mistral-Instruct-7B.

We performed an ablation study to investigate363

the impact of each agent in our framework. We re-364

moved each agent individually, except for the indis-365

pensable Executor Agent, and compared the results366

to the complete framework. Table 4 shows that367

the Planning Agent is the most crucial component,368

followed by the Answer Agent and the Verifier369

Agent. (1) Verifier Agent Removal: Without ver-370

ification, the framework uses a general depth-first371

search, leading to increased computational demand372

and more tool invocations. (2) Answer Agent Re- 373

moval: Removing this agent means the Executor 374

Agent’s answer won’t be summarized, risking the 375

’lost-in-the-middle’ problem due to lengthy tool 376

responses. (3) Planning Agent Removal: With- 377

out this agent, the global path searching strategy is 378

affected. Models with Smurfs may show reduced 379

performance without preliminary planning, as seen 380

in current frameworks like ReACT and DFSDT. 381

4.4.2 Effect of number of agents 382

Models
of I2-Cat. I3-Inst. Average

Agents Pass Win Pass Win Pass Win

Vicuna
1 49.5 53.0 60.0 86.0 54.8 69.5
2 71.0 66.0 75.0 83.0 73.0 74.5
3 70.5 64.3 78.0 87.0 74.3 75.6

Mistral
1 65.5 70.5 56.0 94.0 60.8 82.3
2 76.0 75.5 73.0 92.0 74.5 83.8
3 79.5 79.2 79.0 94.0 79.3 86.6

GPT4
1 60.5 71.8 57.0 89.0 58.8 80.4
2 69.5 77.8 59.0 94.0 64.3 85.9
3 72.0 77.0 64.0 89.5 68.0 83.3

Table 5: The impact of MAS complexity on the perfor-
mance of different models. More agents don’t always
bring more benefits.

In addition to evaluating the importance of each 383

component, another relevant question arises: Can 384

a fixed agent system effectively accommodate every 385

model? Our hypothesis suggests that larger lan- 386

guage models possess comprehensive intelligence, 387

and employing complex agent systems may poten- 388

tially hinder their performance compared to sim- 389

pler ones. As shown in Table 5, we conducted 390

an ablation study on Vicuna, Mistral-Instruct-7B, 391

6

Subtask 1

Answer:
Based on the Star Wars Characters
tool, some character details have
been provided. For example, Luke
Skywalker is a character with blond
hair and fair skin. C-3PO is
...However, to provide the precise
details you're interested in, the name
of the specific Star Wars character is
needed. Once the specific
character's name is provided, more
detailed information including their
name, hair color and skin color can
be presented.

Tool response:
[{'id': 1, 'mass': '77', 'name': 'Luke
Skywalker', 'gender': 'male', 'height':
'172', 'species': 'Human', 'eye_color':
'blue', ...}, ...]

Action input: {}

Action: get_all_characters

Subtask 1:
Provide the details of a specific
Star Wars character, including...

Planner

Question: I'm planning a Star
Wars-themed cosplay event and
I want to gather information
about the characters. Can you
provide me with the details of a
specific character, including their
name, hair color, and skin color?
Additionally, suggest some OTT
platforms that offer Star Wars
movies for inspiration.

Subtask 2:
Suggest some OTT platforms
that offer Star Wars movies.

Subtask 2

Answer:
Based on the results from the API
tool, several Star Wars themed
movies and series were identified.
These include 'Disney Gallery: Star
Wars: The Book of Boba Fett'...
However, the specific OTT platforms
offering these movies were not
identified. Therefore, to find out
which OTT platform the Star Wars
movies are available on, you will
need to manually check these
platforms. Depending on your region
and subscription, availability may
also vary.

Tool response:
[{'imdbid': 'tt19881256', 'genre':
['Documentary'], 'released': 2022,
'title': 'Disney Gallery: Star Wars:
The Book of Boba Fett', 'type':
'tvSeries'},...]

Action input: {"title": "Star Wars"}

Action: search_for_ott_details Based on the information
provided, we have some details
about several Star Wars
characters. To name a few, we
have Luke Skywalker, who is a
character with blonde hair...Note
that these are general
descriptions, and for more specific
details about a particular
character, we would need the
name of that character. In terms of
finding inspiration from Star Wars
movies and series, we have
several options, such as 'Disney
Gallery: Star Wars: The Book of
Boba Fett',... However, we don't
have information on which OTT
platforms these movies and series
are offered. It would be best if you
manually check your preferred
OTT platforms as the availability
of these movies could vary
depending on your region and
subscription.

Final Answer

The details for the character 'Luke
Skywalker' are as follows:...For
your Star Wars-themed cosplay
event, Star Wars titles are
streaming on the following
platforms:\\n- Disney Gallery: Star
Wars: The Book of Boba Fett
(Documentary, 2022)\\n-
Doraemon the Movie: Nobita's
Little Star Wars 2021 (Action,
Adventure, Animation, 2022)\\n-
Star Wars Galactic Pals
(Animation, 2022)\\n- Revan: A
Star Wars Fan Film (Action,
Fantasy, Sci-Fi,
2022).\\n\\nPlease note that these
vary by region. You might want to
check them out for inspiration.
Enjoy your event!

Final AnswerAction 1

Tool response:
[{'id': 1, 'mass': '77', 'name': 'Luke
Skywalker', 'gender': 'male', 'height':
'172', 'species': 'Human', 'eye_color':
'blue', ...}, ...]

Action input: {}

Action: get_all_characters

Action 2

Tool response:
[{'imdbid': 'tt19881256', 'genre':
['Documentary'], 'released': 2022,
'title': 'Disney Gallery: Star Wars:
The Book of Boba Fett', 'type':
'tvSeries'},...]

Action input: {"title": "Star Wars"}

Action: search_for_ott_details

Question

Question: I'm planning a Star
Wars-themed cosplay event and
I want to gather information
about the characters. Can you
provide me with the details of a
specific character, including their
name, hair color, and skin color?
Additionally, suggest some OTT
platforms that offer Star Wars
movies for inspiration.

GPT4-
Smurfs

GPT4-
DFSDT

Figure 4: The illustration of how GPT4-Smurfs and GPT4-DFSDT solve long context problem. The two sub-
questions and their corresponding answers are marked in two colors.

and GPT4, varying the number of agents 1. The392

findings indicate that as the number of agents in a393

MAS increases, leading to increased complexity of394

the MAS, the system’s performance enhancement395

does not scale linearly. In certain instances, GPT4396

with a 2-agent MAS outperforms the one with a397

3-agent MAS, suggesting that larger language mod-398

els do not consistently benefit from more complex399

Multi-Agent Systems. Smaller language models400

can benefit more from the agent system, as seen401

with Vicuna increasing from 69.5 to 75.6.402

4.5 Case Study403

As shown in Figure 4, even though GPT4-DFSDT404

and GPT4-Smurfs use the same tool calls to solve405

the problem, GPT4-DFSDT only answers the first406

sub-question correctly while GPT4-Smurfs an-407

swers both sub-questions accurately. In the process408

of addressing the second sub-question, it is notable409

1Agents are incrementally added to the system based on
their importance.

that the tool response only mentions titles of film 410

and television products related to "Star Wars", with- 411

out addressing OTT platforms. GPT-4-DFSDT er- 412

roneously interprets these titles as responses to the 413

question, while GPT-4-Smurfs adeptly identifies 414

this discrepancy and provides a more appropriate 415

response. This case highlights that in situations 416

where tool responses are lengthy and questions are 417

complex, the single agent framework like DFSDT 418

may be susceptible to distractions from irrelevant 419

information, leading to erroneous answers. Con- 420

versely, the context-efficient Smurfs framework 421

demonstrates a reduced susceptibility to irrelevant 422

information, thereby generating more accurate an- 423

swers. 424

5 Related Work 425

In this section, we review the literature related 426

to multi-agent collaboration, tool-augmented lan- 427

guage models, and complex task planning and rea- 428

soning. Each subsection provides an overview of 429

7

the topic, discusses recent advancements, identi-430

fies challenges, and suggests avenues for future431

research.432

5.1 Multi-Agents Collaboration433

Multi-agent systems have garnered significant at-434

tention due to their applicability in various do-435

mains such as robotics, economics, and computer436

networking. One of the key challenges in multi-437

agent systems is achieving effective collaboration438

among autonomous agents. Recent studies have439

focused on understanding collaborative behaviors440

and developing coordination strategies to enable441

agents to work together towards common goals.442

For example, research in reinforcement learning443

has explored techniques for emergent coordination,444

where agents learn to collaborate through interac-445

tion with the environment and other agents. (Du446

et al., 2023; Liang et al., 2023) carry out multi-447

agent interaction in the form of debate, which im-448

proves mathematical and strategic reasoning tasks.449

(Li et al., 2023; Wang et al., 2023) uses role-playing450

to conduct the interaction between multi-agents.451

5.2 Tool-Augmented Language Models452

Language models augmented with external knowl-453

edge sources, often termed as tool-augmented lan-454

guage models, have demonstrated promising out-455

comes in a variety of natural language processing456

tasks. These models utilize external knowledge457

bases, ontologies, or pre-trained models to enhance458

their contextual understanding and boost perfor-459

mance in tasks such as text generation, summa-460

rization, and question answering. Recent advance-461

ments in this field include techniques for integrat-462

ing structured knowledge into language models,463

such as graph-based representations or semantic464

parsing. For instance, (Qin et al., 2024) introduces465

ToolBench, an instruction-tuning dataset for tool466

usage, along with a fine-tuned tool-oriented model,467

ToolLLaMA. Another significant contribution is468

Gorilla (Patil et al., 2023), which excels at writ-469

ing API calls and also introduces a benchmark for470

evaluating LLMs with tools.471

5.3 Complex task planning and reasoning472

Problem decomposition ((Zhou et al., 2023; Droz-473

dov et al., 2022; Khot et al., 2022; Press et al.,474

2022)) is a popular paradigm used in the LLM475

and leads to good performance in challenging rea-476

soning tasks. This divide-and-conquer strategy477

provides sufficient explanation of how the model478

works. The current trend is that when model size 479

reaches some limit, people start looking for a way 480

to make the most of the limited model. Chain-of- 481

thought prompting (Wei et al., 2022) is one of the 482

strategy that lead models to divide the tasks into 483

a chain, and solve the task step by steps. (Chen 484

et al., 2022) propose a program of thoughts struc- 485

ture to enhance the reasoning ability. (Yao et al., 486

2024) simulate thought as tree structure to solve 487

task. (Besta et al., 2024) using graph to simulation. 488

6 Conclusion 489

In this study, we present a novel MAS frame- 490

work, Smurfs, tailored to enhance the planning 491

and reasoning capabilities of LLMs in handling 492

complex tasks that involve lengthy contexts and 493

tools. We conducted experiments on the multi- 494

step tool usage benchmark, ToolBench, and the 495

results demonstrated the overall effectiveness of 496

the Smurfs framework compared to the baseline 497

models. 498

Ablation studies are carried out to investigate 499

and compare the significance of different compo- 500

nents within the MAS framework. The findings 501

revealed that preliminary planning was the most 502

crucial element. Content summarizing also played 503

a key role in mitigating the ’lost-in-the-middle’ is- 504

sue often encountered in long-context multi-step 505

reasoning scenarios. While verification was not 506

as influential on effectiveness, it proved valuable 507

in enhancing computational efficiency by identi- 508

fying the optimal solution path for complex task 509

resolution. By dissecting and comparing the dif- 510

ferent aspects of the MAS framework, we aim to 511

offer insights that could inspire advancements in 512

the applicability and accuracy of LLMs. 513

In conclusion, this research contributes to the ex- 514

panding field of study focused on enhancing LLM 515

capabilities, particularly for multi-step tool usage 516

tasks. It emphasizes the importance of task decom- 517

position, preliminary planning, and efficient verifi- 518

cation for improving task execution performance. 519

We are confident that the knowledge gained from 520

this study will lay the groundwork for the devel- 521

opment of more sophisticated and efficient LLM 522

frameworks in the future. 523

7 Limitations 524

Generalization Ability: While our empirical in- 525

vestigation has demonstrated promising results for 526

the Mistral-7b-instruct model, additional bench- 527

8

mark evaluations may be needed to validate the gen-528

eralization ability of the proposed Smurfs frame-529

work across various LLM architectures and tasks.530

Model Size Constraints: Due to device limi-531

tations and computational constraints, our experi-532

ments primarily focused on the 7B models. Further533

evaluations with larger and smaller LLMs are re-534

quired to assess the impact of the Smurfs frame-535

work on models of different sizes.536

Computational Efficiency: Although prelimi-537

nary findings suggest that the Smurfs framework538

can enhance computational efficiency through ef-539

ficient verification, a more detailed analysis is540

needed to quantify the computational overhead in-541

troduced by the multi-agent architecture.542

Acknowledging these limitations, future re-543

search should aim to address these gaps to pro-544

vide a more comprehensive understanding of the545

Smurfs framework’s capabilities and potential ar-546

eas for improvement.547

References548

Stanley H Ambrose. 2001. Paleolithic technology and549
human evolution. Science, 291(5509):1748–1753.550

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,551
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei552
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,553
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,554
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,555
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong556
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-557
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,558
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,559
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-560
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang561
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang562
Zhu. 2023. Qwen technical report. arXiv preprint563
arXiv:2309.16609.564

Maciej Besta, Nils Blach, Ales Kubicek, Robert Gersten-565
berger, Michal Podstawski, Lukas Gianinazzi, Joanna566
Gajda, Tomasz Lehmann, Hubert Niewiadomski, Pi-567
otr Nyczyk, et al. 2024. Graph of thoughts: Solving568
elaborate problems with large language models. In569
Proceedings of the AAAI Conference on Artificial570
Intelligence, volume 38, pages 17682–17690.571

Wenhu Chen, Xueguang Ma, Xinyi Wang, and572
William W Cohen. 2022. Program of thoughts573
prompting: Disentangling computation from reason-574
ing for numerical reasoning tasks. arXiv preprint575
arXiv:2211.12588.576

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng,577
Zhanghao Wu, Hao Zhang, Lianmin Zheng, Siyuan578
Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion579

Stoica, and Eric P. Xing. 2023. Vicuna: An open- 580
source chatbot impressing gpt-4 with 90%* chatgpt 581
quality. 582

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car- 583
bonell, Quoc V Le, and Ruslan Salakhutdinov. 584
2019. Transformer-xl: Attentive language mod- 585
els beyond a fixed-length context. arXiv preprint 586
arXiv:1901.02860. 587

Tri Dao, Dan Fu, Stefano Ermon, Atri Rudra, and 588
Christopher Ré. 2022. Flashattention: Fast and 589
memory-efficient exact attention with io-awareness. 590
Advances in Neural Information Processing Systems, 591
35:16344–16359. 592

Ali Dorri, Salil S Kanhere, and Raja Jurdak. 2018. 593
Multi-agent systems: A survey. Ieee Access, 594
6:28573–28593. 595

Andrew Drozdov, Nathanael Schärli, Ekin Akyürek, 596
Nathan Scales, Xinying Song, Xinyun Chen, Olivier 597
Bousquet, and Denny Zhou. 2022. Compositional 598
semantic parsing with large language models. In 599
The Eleventh International Conference on Learning 600
Representations. 601

Yilun Du, Shuang Li, Antonio Torralba, Joshua B. 602
Tenenbaum, and Igor Mordatch. 2023. Improving 603
factuality and reasoning in language models through 604
multiagent debate. Preprint, arXiv:2305.14325. 605

Kelvin Guu, Kenton Lee, Zora Tung, Panupong Pasu- 606
pat, and Mingwei Chang. 2020. Retrieval augmented 607
language model pre-training. In International confer- 608
ence on machine learning, pages 3929–3938. PMLR. 609

Shibo Hao, Tianyang Liu, Zhen Wang, and Zhiting Hu. 610
2024. Toolkengpt: Augmenting frozen language 611
models with massive tools via tool embeddings. Ad- 612
vances in neural information processing systems, 36. 613

Albert Q Jiang, Alexandre Sablayrolles, Arthur Men- 614
sch, Chris Bamford, Devendra Singh Chaplot, Diego 615
de las Casas, Florian Bressand, Gianna Lengyel, Guil- 616
laume Lample, Lucile Saulnier, et al. 2023. Mistral 617
7b. arXiv preprint arXiv:2310.06825. 618

Tushar Khot, Harsh Trivedi, Matthew Finlayson, Yao 619
Fu, Kyle Richardson, Peter Clark, and Ashish Sab- 620
harwal. 2022. Decomposed prompting: A modular 621
approach for solving complex tasks. arXiv preprint 622
arXiv:2210.02406. 623

Guohao Li, Hasan Abed Al Kader Hammoud, Hani 624
Itani, Dmitrii Khizbullin, and Bernard Ghanem. 2023. 625
Camel: Communicative agents for "mind" explo- 626
ration of large language model society. Preprint, 627
arXiv:2303.17760. 628

Tian Liang, Zhiwei He, Wenxiang Jiao, Xing Wang, 629
Yan Wang, Rui Wang, Yujiu Yang, Zhaopeng Tu, and 630
Shuming Shi. 2023. Encouraging divergent thinking 631
in large language models through multi-agent debate. 632
Preprint, arXiv:2305.19118. 633

9

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2305.14325
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2303.17760
https://arxiv.org/abs/2305.19118
https://arxiv.org/abs/2305.19118
https://arxiv.org/abs/2305.19118

Nelson F Liu, Kevin Lin, John Hewitt, Ashwin Paran-634
jape, Michele Bevilacqua, Fabio Petroni, and Percy635
Liang. 2024. Lost in the middle: How language mod-636
els use long contexts. Transactions of the Association637
for Computational Linguistics, 12:157–173.638

Alex Mallen, Akari Asai, Victor Zhong, Rajarshi Das,639
Daniel Khashabi, and Hannaneh Hajishirzi. 2022.640
When not to trust language models: Investigating641
effectiveness of parametric and non-parametric mem-642
ories. arXiv preprint arXiv:2212.10511.643

Kenneth Page Oakley and London British Museum.644
1972. Man the tool-maker. 538. British Museum645
(Natural History) London.646

Shishir G Patil, Tianjun Zhang, Xin Wang, and647
Joseph E Gonzalez. 2023. Gorilla: Large language648
model connected with massive apis. arXiv preprint649
arXiv:2305.15334.650

Fabio Petroni, Patrick Lewis, Aleksandra Piktus, Tim651
Rocktäschel, Yuxiang Wu, Alexander H Miller, and652
Sebastian Riedel. 2020. How context affects lan-653
guage models’ factual predictions. arXiv preprint654
arXiv:2005.04611.655

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt,656
Noah A Smith, and Mike Lewis. 2022. Measuring657
and narrowing the compositionality gap in language658
models. arXiv preprint arXiv:2210.03350.659

Yujia Qin, Shengding Hu, Yankai Lin, Weize Chen,660
Ning Ding, Ganqu Cui, Zheni Zeng, Yufei Huang,661
Chaojun Xiao, Chi Han, Yi Ren Fung, Yusheng Su,662
Huadong Wang, Cheng Qian, Runchu Tian, Kunlun663
Zhu, Shihao Liang, Xingyu Shen, Bokai Xu, Zhen664
Zhang, Yining Ye, Bowen Li, Ziwei Tang, Jing Yi,665
Yuzhang Zhu, Zhenning Dai, Lan Yan, Xin Cong,666
Yaxi Lu, Weilin Zhao, Yuxiang Huang, Junxi Yan,667
Xu Han, Xian Sun, Dahai Li, Jason Phang, Cheng668
Yang, Tongshuang Wu, Heng Ji, Zhiyuan Liu, and669
Maosong Sun. 2023. Tool learning with foundation670
models. Preprint, arXiv:2304.08354.671

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan672
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,673
Bill Qian, Sihan Zhao, Lauren Hong, Runchu Tian,674
Ruobing Xie, Jie Zhou, Mark Gerstein, dahai li,675
Zhiyuan Liu, and Maosong Sun. 2024. ToolLLM:676
Facilitating large language models to master 16000+677
real-world APIs. In The Twelfth International Con-678
ference on Learning Representations.679

Ori Ram, Yoav Levine, Itay Dalmedigos, Dor Muhlgay,680
Amnon Shashua, Kevin Leyton-Brown, and Yoav681
Shoham. 2023. In-context retrieval-augmented lan-682
guage models. Transactions of the Association for683
Computational Linguistics, 11:1316–1331.684

Freda Shi, Xinyun Chen, Kanishka Misra, Nathan685
Scales, David Dohan, Ed Chi, Nathanael Schärli,686
and Denny Zhou. 2023. Large language models can687
be easily distracted by irrelevant context. Preprint,688
arXiv:2302.00093.689

Wiebe Van der Hoek and Michael Wooldridge. 2008. 690
Multi-agent systems. Foundations of Artificial Intel- 691
ligence, 3:887–928. 692

Zhenhailong Wang, Shaoguang Mao, Wenshan Wu, 693
Tao Ge, Furu Wei, and Heng Ji. 2023. Unleash- 694
ing cognitive synergy in large language models: 695
A task-solving agent through multi-persona self- 696
collaboration. arXiv preprint arXiv:2307.05300, 697
1(2):3. 698

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten 699
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, 700
et al. 2022. Chain-of-thought prompting elicits rea- 701
soning in large language models. Advances in neural 702
information processing systems, 35:24824–24837. 703

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, 704
Tom Griffiths, Yuan Cao, and Karthik Narasimhan. 705
2024. Tree of thoughts: Deliberate problem solving 706
with large language models. Advances in Neural 707
Information Processing Systems, 36. 708

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak 709
Shafran, Karthik Narasimhan, and Yuan Cao. 2022. 710
React: Synergizing reasoning and acting in language 711
models. arXiv preprint arXiv:2210.03629. 712

Siyu Yuan, Kaitao Song, Jiangjie Chen, Xu Tan, 713
Yongliang Shen, Ren Kan, Dongsheng Li, and De- 714
qing Yang. 2024. Easytool: Enhancing llm-based 715
agents with concise tool instruction. arXiv preprint 716
arXiv:2401.06201. 717

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, 718
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen 719
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A 720
survey of large language models. arXiv preprint 721
arXiv:2303.18223. 722

Denny Zhou, Nathanael Schärli, Le Hou, Jason Wei, 723
Nathan Scales, Xuezhi Wang, Dale Schuurmans, 724
Claire Cui, Olivier Bousquet, Quoc Le, and Ed Chi. 725
2023. Least-to-most prompting enables complex 726
reasoning in large language models. Preprint, 727
arXiv:2205.10625. 728

A Pilot Study Settings 729

A.1 Pilot Study 1 730

We conducted the first pilot study using the Tool- 731

Bench benchmark (Qin et al., 2024), which com- 732

prises over 16,000 APIs focused on tool usage and 733

planning. We divided the benchmark into two sub- 734

sets: "ToolBench-long," containing samples requir- 735

ing more than three steps for ChatGPT-DFSDT, 736

and "ToolBench-all," which includes all samples 737

from ToolBench. On average, we consider the 738

"ToolBench-long" subset to be more complex than 739

the "ToolBench-all" set. We maintained all other 740

settings consistent with the original source settings. 741

10

https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354
https://arxiv.org/abs/2304.08354
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://openreview.net/forum?id=dHng2O0Jjr
https://arxiv.org/abs/2302.00093
https://arxiv.org/abs/2302.00093
https://arxiv.org/abs/2302.00093
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625
https://arxiv.org/abs/2205.10625

thought 1
answer 1

global memory

thought 2
answer 2

thought 3
answer 3

...

tool name 1
tool description 1

tool list

tool name 2
tool description 2

tool name 3
tool description 3

...

thought 1
answer 1

local memory

thought 2
answer 2

thought 3
answer 3

...

tool name

tool description

required parameters

optional parameters

tool doc

Figure 5: Demonstration of the memory of the Smurfs framework.

A.2 Pilot Study 2742

The second pilot study is conducted using the BM-743

Tools (Qin et al., 2023) test datasets. We aug-744

mented each sample by adding random, irrelevant745

test samples as prefix prompts to increase their in-746

put length. We used tool selection accuracy as the747

metric to evaluate the LLMs’ model selection capa-748

bilities. The experiment uses Mistral-7B-Instruct-749

v0.1 (Jiang et al., 2023) and Qwen1.5-7B-Chat (Bai750

et al., 2023) for evaluation.751

B Details of the Smurfs752

B.1 Memory management of Smurfs753

When each agent performs a task, the prompt infor-754

mation they receive varies. We refer to this as the755

memory management system of Smurfs. As illus-756

trated in Figure 5, information is primarily divided757

into four categories. The first category is local758

memory, consisting of the thought and answer from759

the previous steps. When backtracking happens,760

the thought and answer of the backtracking step761

will be popped out from the local memory. The762

second category is global memory, which stores all763

the previous steps history including those that have764

been backtracked. The third category is the tool765

list, similar to other tool-using frameworks, storing766

brief information about all accessible tools. Lastly,767

the tool document provides detailed usage informa-768

tion like the parameters infomation for each tool769

listed. As illustrated in 3, each agent has its own770

memory context. The Executor Agent’s memory771

will be discussed in the next section. The Answer772

Agent takes in the subtask, the tool response and773

the local memory to generate the answers to the774

subtask using all the local memory so far. Then the775

thought and answer of this step will be added to the776

local memory and the global memory. The Verifier777

Agent takes in the subtask, the answer from the778

Answer Agent and return the status of the subtask.779

If the status is solved, then the system will return 780

the subtask’s answer and process to the next sub- 781

task; If the status is pending, the Verifier Agent will 782

give hint to the Executor Agent to process to the 783

next step. When the max steps have been reached 784

for a subtask, the answer agent will generate the 785

answer for the subtask using the global memory 786

and process to the next subtask. 787

B.2 Executor Agent Workflow 788

Next, let’s illustrate how memory is accessed dur- 789

ing the Executor Agent’s working process, as 790

shown in Figure 6. When a subtask arises, the Ex- 791

ecutor Agent first receives the hint (task instruction) 792

from the Verifier Agent, the subtask, the available 793

tool list to generate the thought(a strategy for task 794

execution) at this step. It then takes in the subtask, 795

the thought and the tool list to generate an action 796

with a specific action name. Subsequently, it takes 797

in the subtask, the thought, the tool document of 798

the chosen action and the local memory to generate 799

the input of the chosen action. 800

B.3 Backtracking Mechanism 801

Smurfs uses a backtracking mechanism similar to 802

DFSDT (Qin et al., 2024). As illustrated in 3, 803

when tool responses error, the system will delete 804

the tool from the tool list and retry this step. How- 805

ever, when all tools have reported error or the 806

model thinks the available tools can’t solve the 807

subtask at this step, the system will pop out the 808

latest local memory and the latest step, delete the 809

tool used by the popped out step from the tool list 810

of the current step and retry the the other solution 811

path. 812

11

Executor Agent

thought action action input
subtask

Executor Agent Executor Agent

hint

tool list tool doc

local memory

Figure 6: Details of the executor agent working process

C Prompts for multi-agent813

implementation814

C.1 Task Decomposition815

Figure 7 is an example of a task decomposition816

prompt.817

12

Task Decomposition

Prompt:
You need to decompose a complex user’s question into some simple sub-tasks and let the model execute it step by step.
Please note that:
1. You should only decompose this complex user’s question into some simple sub-tasks which can be executed easily by
using a single tool.
2. Each simple subtask should be expressed into natural language.
3. Each subtask should contain the necessary information from the original question and should be complete, explicit and
self-consistent.
4. You must ONLY output in a parsible JSON format. An example output looks like:
”’
{"Tasks": ["Task 1", "Task 2", ...]}
”’

This is the user’s question: I’m planning a trip to Turkey and need information about postal codes in Istanbul.
Can you provide me with the postal code and district for Istanbul province with plate number 34? Additionally, I would like
to know if there are any transit agencies available in Istanbul. Please fetch their names and contact numbers.
Output: "Tasks": ["Find the postal codes and districts for plate number 34 in Istanbul.", "Search for transit agencies and their
contact numbers in Istanbul."]

This is the user’s question: I recently moved to a new address and I need to update my information. Can you
retrieve my address details using the postal code 75094080? Additionally, I would like to know the companies that offer
shipping services.
Output: {"Tasks": ["retrieve the address details using the postal code 75094080", "search for companies that offer shipping
services to my address"]}

This is the user’s question: I’m planning a trip to Turkey and need information about postal codes in Istanbul.
Can you provide me with the postal code and district for Istanbul province with plate number 34? Additionally, I would like
to know if there are any transit agencies available in Istanbul. Please fetch their names and contact numbers.
Output:

Expected Output:
{"Tasks": ["Determine the postal code and district for Istanbul province with plate number 34.", "Find out if there are any

transit agencies in Istanbul.", "Get the names of the transit agencies in Istanbul.", "Obtain the contact numbers for the transit

agencies in Istanbul."] }

Figure 7: An example prompt for task decomposition in the framework.

13

Tool Check

Prompt:
As a powerful language model, you’re equipped to answer user’s question with accumulated knowledge.

However, in some cases, you need to use external APIs to answer accurately.

Thus, you need to check whether the user’s question requires you to call an external API to solve it.

Here are some tips to help you check:

1. If the user’s question requires real-time information, since your knowledge base isn’t updated in real-time, any such question will demand an API call.

2. If you need to obtain information (e.g., ID, name, phone number, geographical location, rank, etc.), you need to call the database APIs if you are not sure.

3. If the question demand a database search or internet research to generate an answer, this is another situation where an API call is necessary.

If need, please output ’YES’; If not, please output ’NO’

You need to give reasons first and then decide whether to keep it or not. You must only output in a parsible JSON format. Two example outputs look like:

Example 1: "Reason": "The reason why you think you do not need to call an external API to solve the user’s question", "Choice": "No"

Example 2: "Reason": "The reason why you think you need to call an external API to solve the user’s question", "Choice": "Yes"

This is the user’s question: question: Determine the postal code and district for Istanbul province with plate number 34.

Output:

Expected Output:
{"Reason": "To determine the postal code and district for a specific location based on a plate number, we would typically need to access a combination of

databases, including vehicle registration databases and postal code databases. Since we do not have direct access to these databases, we will need to call external

APIs to retrieve this information. Therefore, the user’s question requires an API call.", "Choice": "Yes"}

Figure 8: An example prompt for tool check in the framework.

14

	Introduction
	Motivation
	Limited Context Length in a Single Model
	Tools Using and Planning in LLMs

	Smurfs: A framework with multiple agents
	Framework Overview
	Subtask Solving Process

	Experiments
	Evaluation
	Baselines
	Main Experiments
	Ablation Study
	Importance of each component in MAS
	Effect of number of agents

	Case Study

	Related Work
	Multi-Agents Collaboration
	Tool-Augmented Language Models
	Complex task planning and reasoning

	Conclusion
	Limitations
	Pilot Study Settings
	Pilot Study 1
	Pilot Study 2

	Details of the Smurfs
	Memory management of Smurfs
	Executor Agent Workflow
	Backtracking Mechanism

	Prompts for multi-agent implementation
	Task Decomposition

