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Abstract

This paper investigates the enhancement of rea-001
soning capabilities in language models through002
token-level multi-model collaboration. Our003
approach selects the optimal tokens from the004
next token distributions provided by multiple005
models to perform autoregressive reasoning.006
Contrary to the assumption that more models007
yield better results, we introduce a distribu-008
tion distance-based dynamic selection strategy009
(DDS) to optimize the multi-model collabora-010
tion process. To address the critical challenge011
of vocabulary misalignment in multi-model col-012
laboration, we propose the concept of minimal013
complete semantic units (MCSU), which is sim-014
ple yet enables multiple language models to015
achieve natural alignment within the linguis-016
tic space. Experimental results across various017
benchmarks demonstrate the superiority of our018
method. The codes will be released soon.019

1 Introduction020

With the rapid development of large language021

models (LLMs), numerous impressive works such022

as GPT4 (Achiam et al., 2023), Llama3 (Dubey023

et al., 2024), and Qwen2 (Yang et al., 2024) have024

emerged. People are increasingly accustomed to025

seeking answers from LLMs when encountering026

problems, and even researchers consult LLMs dur-027

ing their scientific work. Although LLMs have028

demonstrated remarkable capabilities in many ar-029

eas of natural language processing (NLP), they of-030

ten show their inability to perform complex reason-031

ing tasks (Fu et al., 2022). Therefore, how to fur-032

ther improve the performance of LLMs in complex033

reasoning tasks has become a hot topic (Kojima034

et al., 2022; Liang et al., 2023). Enhancing model035

performance from training side is very costly, as036

training a language model requires significant re-037

sources. Furthermore, performance improvements038

have begun to plateau due to the slowing impact of039

scaling laws (Kaplan et al., 2020; Touvron et al.,040

Question: Bob buys 6 books a week. Each 3 books cost 10 dollars. How 
much does he spend on books every month?

Qwen + Llama
Bob will spend <<6/3*10*4=80>>80 dollars on 
books every month.

+

Qwen + Llama+GLM

He will spend 4*10*6/3=20 dollars on books 
every month.

+ +

Qwen 

Each book costs 10/3=3.3 dollars. There are four weeks 
in a month, so he will spend 3.3*6*4=79.2 dollars.

Figure 1: Motivation of the proposed DDS. For the
same mathematical problem, Single LLM Qwen gave
the wrong answer, token-level collaboration between
Qwen and Llama produced the correct answer, whereas
collaboration among Qwen, Llama, and GLM resulted
in an incorrect answer. This demonstrates that multi-
model collaboration can improve answer but having
more models in collaboration does not necessarily im-
prove outcomes; selecting the appropriate models for
collaboration is essential.

2023). Therefore, more and more research (Wei 041

et al., 2022; Kojima et al., 2022; Madaan et al., 042

2024; Liang et al., 2023; Xu et al., 2024) has begun 043

to focus on improving model performance with 044

some simple and low-cost methods. 045

Ensembling is a highly promising approach that 046

has been extensively studied since the early days of 047

deep learning. Recent studies have also confirmed 048

that ensembling multiple large language models 049

(LLMs) can further enhance their capabilities (Yao 050

et al., 2024; Shen et al., 2024). Different LLMs 051

usually have different knowledge boundaries and 052

their own strengths (Wan et al., 2024; Jiang et al., 053

2023). If their capabilities can be well synergized, 054

it will certainly enhance the reasoning ability of the 055

language model and break through the performance 056

bottleneck of a single LLM (Khan et al., 2024; Du 057

et al., 2023), which is also the expected goal of 058

multi-model collaboration. Previous multi-model 059

collaboration methods (Khan et al., 2024; Liang 060

et al., 2023; Du et al., 2023) mostly conduct ma- 061

jority voting or discuss at the level of the overall 062
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answer. For the same question, each LLM puts063

forward its own point of view and tries to convince064

other models, so as to finally reach a consensus065

among multiple models. The debate process usu-066

ally involves selecting the final answer based on067

certain rules or introducing a new referee model.068

This may require many rounds of debate and relies069

heavily on one of the models to give a strong cor-070

rect answer and convince the other debaters to get071

the final answer.072

It is generally believed that the knowledge of073

LLM is stored in its massive parameters, but the074

output next token distribution is the specific exter-075

nal manifestation of its knowledge 1 (Hinton, 2015;076

Wan et al., 2024; Radford et al., 2019). There-077

fore, a straightforward idea is to combine the078

knowledge of multiple LLMs by combining the079

next token distributions given by these models.080

Token-level multi-model collaboration is based on081

this approach to enhance the reasoning capabilities082

of LLMs. It not only avoids the need for complex083

interaction rules among multiple models but can084

also exhibit emergent abilities to a certain extent,085

offering correct answers when individual models086

cannot do so independently.087

Contrary to the assumption that more models088

yield better results, we find that not all model addi-089

tions will have a positive impact on the final results.090

As shown in Fig. 1, for three similarly capable091

LLMs, when Qwen and Llama collaborate to pro-092

vide the correct answer, the addition of GLM ac-093

tually results in an incorrect final outcome. This094

demonstrates that simply increasing the number of095

models does not necessarily lead to positive results.096

The key is to select the appropriate models for col-097

laboration. Based on the principle that “there is098

typically only one correct answer, whereas incor-099

rect answers can be numerous and varied”, we pro-100

pose a distribution distance-based dynamic selec-101

tion strategy (DDS) to solve this problem. Specifi-102

cally, we calculate the pairwise distances between103

the next token distributions provided by multiple104

LLMs. We filter out the outlier distributions that105

are far from the majority, retaining those that are106

closer together, which are considered to be near the107

correct answer.108

In addition, due to inherent differences in model109

architecture, training data, and training processes110

among different LLMs, they typically exhibit vo-111

1LLM’s output is obtained by autoregressive sampling
from this distribution, so LLM’s knowledge determines the
quality of its output.

cabulary discrepancies. For instance, the word 112

“Llama” might be tokenized into “Lla” and “ma” 113

by model A’s tokenizer, while model B’s tokenizer 114

could split it into “Ll” and “ama”. Such discrep- 115

ancies prevent us from performing integration by 116

simply averaging multiple probability vectors, as 117

is traditionally done in ensemble learning. Exist- 118

ing methods (Yu et al., 2024; Huang et al., 2024; 119

Yao et al., 2024) typically attempt to resolve this 120

issue by aligning different vocabularies. How- 121

ever, this alignment process often necessitates ad- 122

ditional computation and inevitably introduces cer- 123

tain noise, which can affect the final outcomes. 124

In this paper, we propose the concept of “mini- 125

mal complete semantic units (MCSU)” to achieve 126

natural alignment across different LLMs in natural 127

language. Specifically, we use MCSU to replace 128

token as the smallest semantic unit in the LLM au- 129

toregressive generation process. For instance, the 130

word “apple” is encoded as a single token, which 131

we consider to have complete semantic meaning, 132

while “Llama” might be split into “Lla” and “ma”, 133

where “Lla” and “ma” do not constitute a com- 134

plete semantic unit. For these exceptional cases, 135

we allow the LLM to continue generating tokens 136

until the generated tokens can be combined into 137

MCSU. We then use the product of joint proba- 138

bilities to represent the probability score for this 139

MCSU. Moreover, we find that about 90% of com- 140

mon English words are encoded as a single token 141

(see Appendix D), meaning that most commonly 142

used tokens are already MCSUs. Therefore, the in- 143

troduction of MCSUs does not result in significant 144

additional computation, providing a low-cost solu- 145

tion to the vocabulary misalignment issue during 146

token-level multi-model collaboration. 147

2 Related Works 148

2.1 Output-level Model Emsembling 149

Output-level model emsembling is usually done 150

by imitating some group collaboration behaviors 151

of humans to conduct multi-model collaboration 152

(Khan et al., 2024; Liang et al., 2023; Du et al., 153

2023; Yin et al., 2023; Sun et al., 2023). The goal 154

is to combine the advantages of multiple models 155

and introduce external feedback from other models 156

to break through the performance bottleneck of a 157

single model (Liang et al., 2023). The simplest 158

method of multi-model collaboration is to perform 159

majority voting based on the answers given by mul- 160

tiple LLMs. Jiang et al. (2023) developed an auxil- 161
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Figure 2: From the implementation point of view, the proposed DDS is an adjustment based on single model
autoregression. (a) A single LLM samples the next token from its output next token distribution and generates
the response autoregressively. (b) The proposed DDS selects the optimal next MCSU from multiple next MCSU
distributions given by multiple LLMs and generates the response autoregressively.

iary ranking model to evaluate and select the best162

candidate output from multiple LLMs’ responses.163

Similarly, Shnitzer et al. (2023) designed a router164

that determines the optimal candidate model based165

on the given question.166

Moreover, many methods begin to allow LLMs167

to interact with each other. Liang et al. (2023)168

and Du et al. (2023) enhanced the performance of169

LLM in specific tasks by allowing multiple LLMs170

to debate on the same problem and finally reach171

a consensus. Yin et al. (2023) proposed a cross-172

model exchange based on network topology to ob-173

tain feedback from other LLMs to improve their174

own output. Inspired by human behavior, Sun et al.175

(2023) proposed multiple collaboration modes, in-176

cluding discussion, review, and retrieval, to jointly177

work towards enhancing inference performance.178

Output-level model emsembling methods often179

require introducing additional components that180

need to be trained or an extra referee LLM to help181

select the final result. Some methods even neces-182

sitate designing complex interaction rules, all of183

which increase the complexity. Furthermore, the184

accuracy of the final result heavily depends on one185

of the models providing a strong correct answer.186

These issues have brought great limitations to the187

output-level model emsembling methods.188

2.2 Token-level Model Emsembling189

Unlike output-level ensembling methods that190

integrate at the final answer stage, token-191

levelensembling methods perform integration at192

each step of the LLM generation process. These 193

methods select the optimal next token by integrat- 194

ing the next token probability distributions output 195

by multiple LLMs. Shen et al. (2024) developed a 196

trainable classifier to help determine which LLM 197

should be utilized for completing the current step 198

in the autoregressive generation process. Wan et al. 199

(2024) leveraged output probability vectors from 200

various models during the training process, using 201

these vectors as labels to distill the knowledge. 202

Owing to the vocabulary discrepancies among 203

different LLMs mentioned previously, numerous 204

approaches (Yu et al., 2024; Xu et al., 2024; Huang 205

et al., 2024; Yao et al., 2024) concentrate on align- 206

ing their tokenizers to achieve improved ensemble 207

outcomes. Xu et al. (2024) proposed a method that 208

directly learns the projection matrices between dif- 209

ferent vocabularies, using overlapping tokens as 210

anchors to bridge the gap between heterogeneous 211

LLMs. Similarly, Huang et al. (2024) utilized an- 212

chors to calculate the relative representations to 213

different vocabularies, thereby enabling the vocab- 214

ulary projection indirectly. In another approach, Yu 215

et al. (2024) also relied on anchors to calculate the 216

relative representations, achieving a similar indirect 217

vocabulary projection. Yao et al. (2024) introduced 218

the UNITE, a novel approach that efficiently com- 219

bines models by focusing on the union of the top-k 220

tokens from each model, thereby avoiding the need 221

for full vocabulary alignment and reducing compu- 222

tational overhead. 223

However, this vocabulary alignment operation 224
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is bound to introduce noise, which can affect the225

final performance. The proposed MCSU aims to226

mitigate this impact.227

3 Method228

Given the same question, different LLMs usually229

give different answers. This is because they have230

learned different knowledge due to the difference231

in network architecture, training data and training232

process (Raiaan et al., 2024). As mentioned ear-233

lier, it is generally believed that the knowledge is234

stored in the huge parameters of LLMs (Radford235

et al., 2019), and the output next token probabil-236

ity distribution is the specific external manifesta-237

tion of their knowledge (Hinton, 2015; Wan et al.,238

2024). Therefore, our starting point is to combine239

the knowledge of different LLMs by combining240

these distributions:241

Pt = Combine(P 1
t , P

2
t , ..., P

K
t ),

KNt = Combine(KN1
t ,KN2

t , ...,KNK
t ),

(1)242

where Pt represents distributions, KN represents243

knowledge and Combine represents a certain com-244

bination.245

Fig. 2 provides an overview of the proposed246

method, which mainly consists of two parts. The247

first part achieves a natural alignment of differ-248

ent LLMs through the MCSU, thus avoiding the249

complex operations previously introduced for vo-250

cabulary alignment. In the second part, we intro-251

duce DDS. We hypothesize that not all probability252

vectors output by LLMs are beneficial to the final253

result. Therefore, at each step of autoregression,254

we dynamically select several appropriate probabil-255

ity distributions for integration. We will introduce256

them in detail in the following sections.257

3.1 Minimal Complete Semantic Units258

In LLMs, a token is the smallest semantic unit for259

calculation. Natural language is segmented into260

individual tokens by a tokenizer, and outputs are261

generated autoregressively by predicting the next262

token until the end token is encountered. However,263

some tokens may not always convey complete se-264

mantic meaning. To address this, we introduce265

the concept of a minimal complete semantic unit266

(MCSU), which is defined as a word, punctuation267

mark, or number representing the smallest unit of268

complete meaning. Tokens that only represent part269

of a word lack complete semantic meaning and con-270

tribute to vocabulary misalignment across different271

LLMs. 2 272

For alphabetic languages like English, the to- 273

kenization process often splits some words into 274

multiple subword tokens, which may result in indi- 275

vidual tokens lacking complete semantic meaning. 276

This is precisely why we proposed the Minimum 277

Complete Semantic Unit (MCSU) concept. In lan- 278

guages such as English or French, whitespace can 279

serve as a reliable delimiter for identifying MCSUs. 280

In contrast, for logographic languages like Chi- 281

nese, each token inherently represents either a sin- 282

gle character or a complete word, thus constitut- 283

ing an MCSU by definition without requiring addi- 284

tional segmentation criteria. We believe these two 285

cases adequately represent the majority of language 286

types. The experiments in this paper were mostly 287

conducted on English datasets, but the results in 288

Table 4 also demonstrate its good performance on 289

Chinese datasets. 290

During integration, if the next token produced 291

by an LLM does not form an MCSU, the model 292

continues generating tokens until a sequence of 293

consecutive tokens can form an MCSU. Since En- 294

glish words are typically separated by spaces or 295

punctuation marks, it is relatively straightforward 296

to determine whether a sequence constitutes an 297

MCSU. We represent the probability of an MCSU 298

using the product of the joint probabilities of its 299

constituent tokens. 300

For an MCSU M consisting of several tokens, 301

M = T1, T2, . . . , Tn, where T denotes a token, its 302

probability is expressed as: 303

PM =
n∏

i=1

P (Ti|T1, T2, . . . , Ti−1). (2) 304

We use MCSUs and their probabilities to replace 305

the original next token probability distribution for 306

subsequent multi-model collaboration, addressing 307

the issue of inconsistent tokens across different 308

LLM vocabularies. Additionally, to reduce compu- 309

tational complexity, we employ Top-k (Fan et al., 310

2018) sampling to select the top K MCSUs with 311

the highest probabilities. 312

3.2 Distribution Distance-based Dynamic 313

Selection Strategy 314

As mentioned earlier, not all probability distribu- 315

tions generated by LLMs have a positive impact 316

2For example, “Llama” might be split into the tokens “Lla”
and “ma” by model A, and into “Ll” and “ama” by model B.
These tokens are not MCSUs and are a primary reason for the
misalignment of vocabularies across different LLMs.
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Methods / Datasets SVAMP GSM8K AddSub AQuA Avg.

Single LLM
Qwen-2-7B 90.0 82.3 90.8 65.5 82.1
Llama-3-8B 85.2 79.6 86.5 54.2 76.3
GLM-4-9B 88.6 79.6 87.5 58.1 78.4

Emsembling

Majority Voting 90.8 79.9 91.0 65.2 81.6
LLM-Blender 90.2 81.3 91.0 65.0 81.9

GAC 89.8 81.9 91.0 63.9 81.7
DEEPEN 89.9 82.1 91.3 64.9 82.1

Ours DDS 91.6 85.1 91.4 65.5 83.4
Table 1: Comparison of accuracy on four mathematical reasoning datasets using DDS and strong baselines. The best
results are highlighted in bold. All results are expressed as a percentage of accuracy, with the % symbol omitted.

on the final integration. This is understandable317

because the model may inherently struggle with318

answering the given question, leading to poten-319

tially erroneous probability distributions. Based320

on the principle that “there is typically only one321

correct answer, whereas incorrect answers can be322

numerous and varied”, we propose the distrition323

distance-based dynamic selection strategy to help324

filter out the probability distributions used for the325

final integration.326

According to this principle, we believe that if327

the distance between two distributions is closer,328

they are nearer to the correct answer, as incorrect329

answers typically exhibit greater variability. We330

use the probability distribution representing the331

next MCSU instead of the next token’s probability332

distribution because different LLMs are aligned on333

MCSUs. The probability distributions representing334

MCSUs can be integrated, and they are naturally335

aligned semantically.336

Given the large size of the vocabulary, for each337

LLM, we adopt a Top-k approach, retaining only338

the K MCSUs with the highest probabilities while339

ignoring the rest, which have lower probabilities.340

This significantly reduces computational complex-341

ity, especially considering that the vocabulary size342

is in the tens of thousands. We calculate the KL343

divergence between different probability distribu-344

tions, if the distance between two distributions is345

small, we consider them closer and retain them,346

discarding those with larger distances. During each347

autoregressive step, this method dynamically se-348

lects the distributions most beneficial for the final349

integration. The specific process is as follows:350

For each LLM i, define the probability distribu-351

tion of the next MCSU as Pi.352

For each Pi, retain only the top K items with the353

highest probabilities, setting the rest to zero:354

P
top-k
i (x) =

{
Pi(x) if x ∈ top-k items
0 otherwise

(3)355

Find the union U of all P top-k
i . For each P

top-k
i , set 356

the probabilities of items not in U to 1e−9 (the min- 357

imum value close to 0 is convenient for subsequent 358

calculations): 359

P ∗
i (x) =

{
P

top-k
i (x) if x ∈ U

1e−9 otherwise
(4) 360

For any two probability distributions P ∗
i and P ∗

j , 361

calculate the KL divergence between them: 362

DKL(P
∗
i ∥ P ∗

j ) =
∑
x∈U

P ∗
i (x) log

P ∗
i (x)

P ∗
j (x)

(5) 363

If DKL(P
∗
i ∥ P ∗

j ) < ϵ (where ϵ is a predefined 364

threshold), retain these distributions. Note that if 365

none of these distributions are close to each other, 366

then all of them should be retained, as there is no 367

reason to discard any of them. 368

We determine ϵ by computing the global mean 369

through statistical methods, and set its value to 0.1 370

in this paper (the detailed procedure can be found 371

in Appendix A). 372

Finally, we usually average the retained distribu- 373

tions and select the MCSU with the largest proba- 374

bility for subsequent iterations. 375

4 Experiments 376

4.1 Experiment Setup 377

Tasks ans datasets. We evaluate the performance 378

of our proposed method on the following bench- 379

marks: Arithmetic Reasoning. For this task, we 380

selecte four datasets of different difficulty, includ- 381

ing SVAMP (Patel et al., 2021), GSM8K (Cobbe 382

et al., 2021), AddSub (Hosseini et al., 2014) and 383

AQuA (Ling et al., 2017). Commonsense Rea- 384

soning. We select four datasets to evaluate the 385

performance of the prpoposed method, including 386

CommonseQA (Talmor et al., 2018), StrategyQA 387

(Geva et al., 2021), OpenBookQA (Mihaylov et al., 388

2018) and ARC-c (Clark et al., 2018). Symbolic 389

Reasoning. We select four datasets from BigBench 390
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Methods / Datasets CSQA StrategyQA OpenBookQA ARC-c Avg.

Single LLM
Qwen-2-7B 71.9 73.2 81.0 81.0 76.7
Llama-3-8B 67.9 70.2 75.3 76.3 72.4
GLM-4-9B 67.3 71.8 79.5 79.4 74.5

Emsembling

Majority Voting 72.3 72.0 80.5 83.2 77.0
LLM-Blender 72.0 72.8 80.1 83.0 76.9

GAC 73.1 73.0 79.9 83.2 77.3
DEEPEN 72.5 74.1 79.5 84.1 77.6

Ours DDS 76.0 75.5 83.5 84.0 79.8

Table 2: Comparison of accuracy on four commonsense reasoning datasets using DDS and strong baselines.

Methods / Datasets Date Penguin Colored Objects Logical Deduction Avg.

Single LLM
Qwen-2-7B 66.5 79.2 73.2 77.3 74.1
Llama-3-8B 69.6 76.1 66.4 70.1 70.6
GLM-4-9B 58.2 81.3 76.9 82.0 74.6

Emsembling

Majority Voting 65.1 82.2 79.4 81.2 77.0
LLM-Blender 65.5 82.5 79.3 81.4 77.2

GAC 65.0 83.1 79.2 81.3 77.1
DEEPEN 64.5 82.9 79.4 80.2 76.8

Ours DDS 68.8 83.0 79.4 83.0 78.5

Table 3: Comparison of accuracy on four symbolic reasoning datasets using DDS and strong baselines.

(Srivastava et al., 2022) for testing, including Date391

Understanding, Penguin, Colored Objects and Log-392

ical Deduction.393

Baselines. We compare the proposed method394

with three sets of widely used baselines: (1) source395

LLMs, including Qwen-2 7B (Yang et al., 2024),396

Llama-3 8B (Dubey et al., 2024) and GLM-4397

9B (GLM et al., 2024); (2) Output-level emsem-398

bling: majority voting, a widely used collaboration399

method, the answers of the three models are sub-400

jected to majority voting to select the most con-401

sistent answer. LLM-Blender (Jiang et al., 2023),402

sorts the answers given by multiple models and403

then selects the one with the highest ranking. (3)404

Token-level emsembling: DEEPEN (Huang et al.,405

2024) and GAC (Yu et al., 2024), mainly achieve406

multi-model collaboration by aligning vocabulary.407

Implementation details. We use the CoT (Wei408

et al., 2022) method and greedy decoding strategy409

to obtain the final results. The top 5 MCSUs are410

sampled in the Top-k sampling algorithm. We use411

regular expressions to extract the answers from412

LLM’s answers to calculate the accuracy. The413

whole method is training-free, and most experi-414

ments are completed on one Nvidia H800 GPU.415

4.2 Main Results416

Mathematical Reasoning. The quantitative results417

on four datasets are shown in Table 1. It can be418

seen that the proposed DDS achieves significant419

performance improvements in most cases. Com-420

paring the three single models, Qwen performs421

the best in mathematics, while Llama performs the422

Datasets Qwen Llama GLM
Majority
Voting

DEEPEN DDS

HumanEval 79.9 62.2 71.8 73.2 79.7 81.1
C-Eval 77.2 45.9 75.6 70.1 74.2 78.3

Table 4: Comparison of proposed DDS with other base-
line methods on the HumanEval and C-Eval datasets.

Model/Metric ROUGE BLEU BLEURT

Single LLM
Qwen-2 7B 0.548 0.532 0.659
Llama-3 8B 0.555 0.517 0.634
GLM-4 9B 0.587 0.536 0.660

Ours DDS 0.601 0.549 0.663

Table 5: Performance of DDS in reliability evaluation.
We report three metrics on the TruthfulQA benchmark,
where larger values indicate more truthful results.

worst. Furthermore, naive majority voting does not 423

guarantee performance improvement over the best- 424

performing single model. Finally, the other three 425

collaborative methods also do not show clear supe- 426

riority over the Qwen model in this benchmark. 427

Commomsense Reasoning. The quantitative 428

results on four datasets are shown in Table 2. It 429

can be clearly seen that the proposed DDS achieves 430

significant performance improvements. Compar- 431

ing the three single models, GLM performs the 432

best in this task, while Llama still performs the 433

worst. In addition, majority voting brings certain 434

performance improvements, which are generally 435

better than the best performance of a single model. 436

Finally, all other three collaborative methods are 437

improved compared to the single model. 438

Symbolic Reasoning. The quantitative results 439

on four datasets are shown in Table 3. The pro- 440

posed DDS still achieves the best performance in 441
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Model SVAMP CSQA Penguin
Qwen 90.0 71.9 79.2
Llama 85.2 67.9 76.1
GLM 88.6 67.3 81.5
Qwen+Llama 90.2 73.7 81.3
Qwen+GLM 91.0 74.1 81.4
Llama+GLM 87.3 71.7 81.7
Qwen+Llama+GLM 90.8 74.9 81.0
DDS (Qwen+Llama+GLM) 91.6 76.0 83.0

Table 6: Ablation on the number of used LLMs. The
multi-model collaboration represented by the “+” sign
in the second part does not use the DSS strategy, but
directly performs weighted averaging.

Dataset / ϵ 0.05 0.08 0.1 0.15 0.2 0.3 0.4 0.5
GSM8K 83.5 85.2 85.1 85.0 84.5 84.2 82.9 82.7
CSQA 75.1 75.5 76.0 75.7 75.8 75.5 75.3 74.9

Table 7: Ablation experiment of threshold ϵ. We
present the performance of DDS across varying ϵ on
the GSM8K and CSQA datasets.

most cases. Comparing the three single models,442

GLM performs the best in this task, while Llama443

still performs the worst. Moreover, it can be seen444

that majority voting brings certain performance im-445

provements, which are generally better than the446

best performance of a single model. Finally, all447

other three collaborative methods are improved448

compared to the single model.449

Analysis: From the above experiments, it can be450

seen that compared with the performance of single451

models and other baseline methods, the proposed452

DDS performs relatively well and has improved.453

Moreover, we can see that although majority voting454

is a very simple way of collaboration, it can still455

bring certain performance improvements compared456

to single models most of the time, which is also457

consistent with the experience of human collective458

wisdom. Other collaboration methods are relatively459

complex but do not bring further significant perfor-460

mance improvements.461

4.3 Evaluation on Cross-Task and462

Cross-Lingual Scenarios463

we have conducted additional evaluations in two464

key domains: code generation and Chinese knowl-465

edge quiz tasks. Specifically, we tested on the466

HumanEval (Chen et al., 2021) and C-Eval (Huang467

et al., 2023) datasets, with the detailed results pre-468

sented in the table 4.469

From the experimental results, it can be seen that470

DDS performs well on these two tasks. This further471

demonstrates the potential and robustness of our472

proposed DDS method, which shows promise for473

application in broader domains to enhance LLMs’474

reasoning capabilities. Moreover, the good perfor- 475

mance on the Chinese dataset C-Eval also indicates 476

that proposed MCSU is applicable to other lan- 477

guages, not just English. 478

4.4 Reliability Evaluation 479

The validity of LLM outputs is crucial, and their 480

reliability is equally indispensable. The main 481

experiments in Section 4.2 have already demon- 482

strated that our proposed DDS can significantly 483

enhance the reasoning performance of language 484

models. Therefore, we are also interested in ex- 485

ploring whether DDS can improve the reliability 486

of language models. For this purpose, we select 487

TruthfulQA (Lin et al., 2021), a classic and widely 488

used benchmark for evaluating the truthfulness of 489

language model outputs, which can reflect the reli- 490

ability of LLM outputs to some extent. 491

The results are shown in Table 5. The three 492

metrics in the table indicate higher truthfulness of 493

the model outputs when they are larger. It can be 494

clearly seen that the metrics for the three single 495

models are relatively close, while our proposed 496

DDS achieves significantly higher metrics, indicat- 497

ing that DDS enhances the reliability of language 498

model outputs to some extent. 499

4.5 Ablation Study 500

Ablation on the number of used LLMs. We show 501

the results of using different numbers of LLMs 502

in Table 6. It can be seen that as the number of 503

LLMs increases from one to three, the overall per- 504

formance gradually improves. The magnitude of 505

this change is different in different tasks. We also 506

notice that in some cases, the effect of using two 507

models is better than that of using three. We think 508

this is reasonable. When human groups collaborate, 509

it is not always the case that more participants lead 510

to better outcomes, the ability of the participants 511

is a key factor, which is also the motivation for us 512

to propose DDS. We hope to improve the quality 513

of the results by selecting participants with better 514

abilities. But in general, using more models will 515

expand the knowledge boundary and thus improve 516

performance. 517

It can be clearly seen that DDS performs best 518

on the three datasets, better than single mod- 519

els and those directly integrated methods, which 520

also proves the effectiveness of the strategy and 521

achieves our expected goal. In addition, we also 522

conducted experiments using more LLMs, which 523

can be found in the Appendix B. 524
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GSM8K CSQA

Question The book is printed on paper that, when stacked, is 100 pages to the
inch. Each paper is printed on both sides, with one page of the book
printed on each side. How many pages are in the book, if it is 1.5
inches thick?

Kramer wrote a self-referential book. What might that book
be about? (A) counter (B) coffee table (C) school room (D)
backpack (E) bedside table

Qwen To find out how many pages are in the book, we need to understand
that each inch of the book’s thickness represents 100 pages (since
the paper is 100 pages per inch). Given that the book is 1.5 inches
thick, we can calculate the total number of pages as follows:
Total pages = Thickness of the book in inches × Pages per inch
Total pages = 1.5 × 100 = 150
Therefore, the book has **150 pages**.

Analysis: A self-referential book is one that refers to itself,
often discussing its own structure, content, or writing pro-
cess. Given this context, the book would likely delve into
themes related to literature, writing, or the act of creating a
book. Answer: (E) bedside table

Llama The book is 1.5 inches thick. Each inch has 100 pages. So 1.5 inches
will have 1.5 x 100 = 150 pages. The answer is 150.

Analysis: The question is asking what Kramer might write
a self-referential book about. A self-referential book is a
book that refers to itself, often in a humorous or ironic way.
Kramer is a character from the TV show “Seinfeld", known
for his eccentricities and witty remarks. Correct answer:
(A) The Kramer

GLM If the paper is 100 pages to the inch and each paper is printed on both
sides, then each inch of thickness corresponds to 50 pages (since one
side of the paper is one page). If the book is 1.5 inches thick, then
the number of pages in the book would be: 1.5 inches * 50 pages per
inch = 75 pages. So, the book has 75 pages.

Among the options, “bedside table" (E) is the closest to a
book, as it is a piece of furniture that could be associated
with a book (books are often placed on bedside tables).
Given the limitations of the options, the most appropriate
answer would be: (E) bedside table

DDS If the book is 1.5 inches thick and each paper is 1/100 of an inch
thick, then the number of papers in the book is 1.5 inches * 100
papers/inch = 150 papers. Since each paper has two sides, and each
side is a page, the total number of pages in the book is 150 papers *
2 sides/paper = 300 pages.

Coffee table could be a possibility, as a coffee table is a
common piece of furniture that Kramer might have written
about in a self-referential manner. Answer: (B) coffee table

Table 8: Examples where DDS is able to answer correctly even though all three models answer incorrectly. Incorrect
answers are shown in red and correct answers are shown in blue. Since some answers are too long, we have made
some adjustments to facilitate presentation, but the core content remains unchanged.

Ablation on the KL Divergence threshold ϵ.525

As shown in the Table 7, the optimal results were526

achieved when ϵ approached 0.1. DDS is highly527

sensitive to the threshold ϵ. Both excessively large528

or small values of ϵ can render the DDS strategy529

ineffective. A larger threshold weakens the filtering530

effectiveness, allowing harmful distributions to in-531

fluence decisions, and a smaller threshold reduces532

the number of qualified distributions, forcing the533

retention of all distributions (equivalent to DDS534

being inactive).535

4.6 Examples of Emergent Capabilities536

The goal of DDS is to combine the capabilities of537

multiple LLMs to break through the performance538

bottlenecks of a single LLM. Traditional multi-539

model collaboration methods rely on most models540

providing the same correct answer for majority541

voting, or rely on one model providing a highly542

confident answer to convince the others to reach543

a consensus. However, we are surprised to find544

that our DDS can provide the correct answer even545

when each individual model answers incorrectly,546

demonstrating a certain level of emergent ability,547

akin to the saying “two heads are better than one”.548

Typical examples are shown in Table 8. It can549

be clearly seen that for the same math problem, the550

three LLMs give wrong answers of 150, 150 and551

75 respectively, ignoring the fact that a piece of552

paper has two sides or confusing the logical rela-553

tionship, while DDS gives the correct answer of 554

300; for another question, the three single LLMs 555

fail to figure out the meaning of “a self-refine book” 556

and thus can not give a correct answer, but DDS 557

understands and gives the correct answer. We spec- 558

ulate that the token-level collision of ideas in DDS 559

has brought some different inspirations, and may 560

sometimes achieve the effect of 1+1 being greater 561

than 2. More examples and discussion can be seen 562

in Appendix E. 563

We also present and analyze some failure cases, 564

which can be found in Appendix F. 565

5 Conclusion 566

We propose DDS, a distribution distance-based 567

token-level multi-model collaborative dynamic in- 568

tegration strategy. By selecting the most suitable 569

models for integration at each step of autoregres- 570

sion, DDS effectively enhances the reasoning ca- 571

pabilities of language models. Additionally, we 572

introduce the concept of the “minimum complete 573

semantic unit”, which provides a simple and effec- 574

tive solution to the vocabulary misalignment issue 575

between different LLMs, laying the groundwork 576

for effective collaboration among multiple models. 577

We hope that our approach can bring some inspira- 578

tion to the community and further promote the use 579

of some low-cost ways to enhance the reasoning 580

ability of LLM. 581
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Limitations582

Since the forward process of multiple models needs583

to be calculated during integration, the reasoning584

time and amount of calculation will increase com-585

pared to single model reasoning. How to further586

improve efficiency is an issue that needs atten-587

tion. Moreover, compared to answer-level ensem-588

ble methods that can directly invoke multiple APIs589

to perform asynchronous inference, our method re-590

quires loading multiple models locally to obtain the591

probability distributions of their intermediate out-592

puts, which imposes certain hardware requirements593

and limits its deployment on resource-constrained594

devices. Notably, we also must pay attention to595

whether this multi-model collaboration approach596

might bypass some of the restrictions of single-597

model generated answers, leading to the production598

of unethical or harmful content. This is an area that599

requires further research in our future work.600

Ethical Statement601

This paper adheres to the ACL Code of Ethics.602

Firstly, we ensure thatthe datasets used do not603

contain sensitive personalinformation and pose no604

harm to society. Secondlyany pre-trained mod-605

els employed have been dulylicensed.Furthermore,606

our code will be releasedunder a suitable license.607

Lastly, the proposed multi-model collaborative ap-608

proach aims to enhance the reliability and perfor-609

mance of LLMs, contributing positively to the ro-610

bustness and integrity of natural language process-611

ing applications, thereby supporting a safer and612

more trustworthy computational environment for613

users worldwide.614
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A Determination of the KL Divergence859

Threshold860

The Kullback-Leibler (KL) divergence ranges from861

zero to infinity. In statistics:862

1) A value of 0 indicates identical distributions;863

2) Values between 0 and 1 typically suggest high864

similarity between distributions;865

3) Values exceeding 1 generally indicate signifi-866

cant divergence.867

We determined this threshold ϵ through data-868

driven statistical analysis by:869

The reference KL divergence values were com-870

puted by measuring distributional discrepancies in871

the validation dataset, implementing the following872

procedure:873

a) Collected large number of sample pairs (P, Q)874

and calculated their KL divergence.875

b) Plotted the distribution of KL values (his-876

togram / CDF).877

c) Selected the mean value as threshold based on878

distribution characteristics.879

This process yielded a value near 0.1. We set880

this as the default threshold in our experiments, and881

it demonstrated satisfactory performance.882

B Scaling to More Models883

As shown in Table 9, it can be observed that as884

the number of participants in the collaboration in-885

creases, the performance improves slightly, but the886

extent of improvement is not significant. We be-887

lieve this is reasonable because Qwen-2-7B, Llama-888

3-8B, and GLM-4-9B are already the three best-889

performing models of similar parameter scale dur-890

ing the same period. As pointed out in paper (Yao891

et al., 2024), the capabilities of the models involved892

in the collaboration are also an important factor,893

and it does not depend solely on the quantity. This894

also demonstrates that the DDS strategy can be895

applied to LLMs with diverse architectures, high-896

lighting its strong generalizability.897

On one hand, we will conduct a deeper inves-898

tigation into how DDS scales with an increasing899

number of models. On the other hand, we will900

explore new strategies to better integrate the capa-901

bilities of these models.902

C Theoretical Analysis of why903

Token-level Model Emsembling Is904

Effective905

The knowledge of a large language model (LLM)906

is primarily stored in its vast number of parameters,907

Number DDS (3) DDS (4) DDS (5)
GSM8K 85.1 84.9 85.4
CSQA 76.0 76.3 76.2

Table 9: The relationship between the performance of
DSS in GSM8K and CSQA datasets and the number of
participating collaborative models. DDS (3) refers to
the default three models Qwen-2-7B, Llama-3-8B, and
GLM-4-9B, DDS (4) is the addition of Internlm-2-7B
(Cai et al., 2024), and DDS (5) is the further addition of
Yi-1.5-9B (AI et al., 2024).

which encode a broad understanding of language 908

and domain-specific knowledge. However, the ex- 909

ternal manifestation of this knowledge is the next 910

token probability distribution generated at each step 911

of autoregressive sampling. Formally, given a con- 912

text x<t, an LLM generates a probability distribu- 913

tion over the next possible tokens: 914

PLLM(wt | x<t) = softmax(fθ(x<t)), 915

where fθ represents the internal computation of 916

the LLM parameterized by θ. This probability dis- 917

tribution reflects the LLM’s internal knowledge 918

and informs the quality of the generated answers. 919

Higher-quality knowledge results in a higher proba- 920

bility assigned to tokens that contribute to better an- 921

swers. The final output from the model is sampled 922

from this next token distribution, and the sequence 923

of sampled tokens constitutes the generated text. 924

The answer space derived from this autoregres- 925

sive process is defined by the cumulative sampling 926

across multiple steps. Let the space of possible 927

answers be denoted as A, with each potential an- 928

swer having an associated probability based on the 929

product of next-token probabilities. Hence, the 930

probability of an answer a ∈ A being generated by 931

the LLM is: 932

PLLM(a | x) =
T∏
t=1

PLLM(wt | x<t), 933

where T is the length of the generated answer. Im- 934

portantly, the better the model’s knowledge, the 935

higher the probability assigned to higher-quality 936

answers in this space. Theoretically, LLM can 937

output any answer, but since some answers have 938

extremely low probability of occurrence, we be- 939

lieve that LLM is not capable of making certain 940

answers at this time. We believe that the answer 941

space only contains answers with probability reach- 942

ing a certain threshold. 943
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Combining Knowledge from Multiple LLMs.944

We propose to improve the overall answer qual-945

ity by combining the knowledge of multiple LLMs,946

leveraging their individual next token distributions.947

Let P (i)(wt | x<t) represent the next-token proba-948

bility distribution generated by the i-th LLM. By949

combining these distributions, we create a new,950

enhanced distribution that incorporates the knowl-951

edge encoded in multiple models. Specifically, we952

aggregate the distributions as:953

Pcombined(wt | x<t) = Aggregate(P (1)(wt | x<t),

P (2)(wt | x<t),

. . . ,

P (K)(wt | x<t)),

954

where K is the number of models and the aggre-955

gation function is designed to effectively combine956

the distributions. The resulting answer space from957

this combination is strictly larger and of higher958

quality than any individual model’s answer space,959

as it benefits from the union of knowledge across960

models. In theory, any answer contained in the961

single model answer space can be sampled from962

this answer space.963

For example, consider two LLMs, MA and MB ,964

answering two different questions. In some cases,965

MA may provide the correct answer, while in other966

cases, MB might be more accurate. By merging967

their answer spaces, we can capture the correct968

answers from both models with higher probability,969

ensuring that:970

Pcombined(a
∗ | x) ≥ max

(
P (A)(a∗ | x), P (B)(a∗ | x)

)
971

where a∗ is the optimal answer. In this way, the972

combined space encompasses the high-quality an-973

swers from both models and assigns them higher974

probabilities than the individual models would on975

their own. This probability is from a general per-976

spective, because the probability that the merged977

answer space contains the correct answer is def-978

initely greater than the answer space of a single979

LLM.980

Sampling from the Combined Answer Space.981

In order to efficiently sample high-quality an-982

swers from this enhanced space, we designed the983

DSS ensemble method, which uses distribution sim-984

ilarity to filter out those distributions with large dif-985

ferences, thereby retaining distributions with higher986

similarity because they are more likely to cluster987

Model Qwen Llama GLM
Ratio 88.9 92.1 91.4

Table 10: The probability of 5000 commonly used En-
glish words being encoded as a token by different LLMs.

near the correct answer, which is also our basic 988

assumption, and we have demonstrated its effec- 989

tiveness through a large number of experiments. 990

In conclusion, by combining the next-token dis- 991

tributions of multiple LLMs and introducing so- 992

phisticated sampling strategies, we create a richer 993

and more reliable answer space that enhances the 994

probability of producing high-quality answers. The 995

combined knowledge from multiple models over- 996

comes the limitations of any single model and sig- 997

nificantly improves the robustness and performance 998

of generated responses. 999

D Vocabulary Statistics 1000

We show the probability of the 5000 most com- 1001

monly used English words being encoded as a sin- 1002

gle token in Table 10. It can be seen that for these 1003

three models, almost 90% of the words are encoded 1004

as a single token. This also shows that most com- 1005

monly used tokens are MCSUs themselves, and 1006

our introduction of MCSU does not bring too much 1007

additional computation. 1008

E More Examples 1009

We show more specific examples in Table 11, Table 1010

12 and Table 13, corresponding to examples where 1011

DDS correctly answered questions when only one, 1012

two, and three single models answered correctly. 1013

Combined with Table 8, we can find that DDS can 1014

effectively aggregate the capabilities of multiple 1015

models. As long as one member can give the cor- 1016

rect answer, DDS has the ability to give the correct 1017

answer, and can even give the correct answer when 1018

all member models give incorrect answers. 1019

F Faillure Examples and Analysis 1020

DDS can also make mistakes. As can be seen from 1021

Table 14, DDS can also give wrong answers when 1022

some member models can answer correctly. More- 1023

over, it cannot always exhibit emergent capabilities 1024

when none of the member models answer correctly. 1025

This also shows that DDS still has room for im- 1026

provement and its potential has not been fully ex- 1027

plored. This is also the goal of our further research. 1028
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Table 11: Examples where only one of the three single LLMs answers correctly. Incorrect answers are shown in
red and correct answers are shown in blue. Since some answers are too long, we have made some adjustments to
facilitate presentation, but the core content remains unchanged.

GSM8K CSQA

Question John runs 60 miles a week. He runs 3 days a week. He runs 3 hours
the first day and half as much the other two days he runs. How fast
does he run?

Aside from water and nourishment what does your dog
need? (A) bone (B) charm (C) petted (D) lots of attention
(E) walked

Qwen John runs 3 hours on the first day, and half as much on the other two
days. This means he runs 3/2 = 1.5 hours on each of the other two
days. So in total, he runs 3 + 1.5 + 1.5 = 6 hours per week. He runs
60 miles in 6 hours, so his speed is 60/6 = 10 miles per hour. The
answer is: 10

Analysis: Dogs, like all animals, require various needs
to maintain their health and happiness. While water and
nourishment are essential, dogs also need physical activity,
mental stimulation, and affection. Among the given op-
tions, "walked" (Option E) is directly related to the physical
exercise that dogs need.
Answer: (E) walked

Llama John runs 60 miles a week. He runs 3 days a week. So he runs 60 /
3 = 20 miles a day. He runs 3 hours the first day, and half as much
the other two days. So he runs 3 hours the first day, and 1.5 hours
each of the other two days. 3 + 1.5 + 1.5 = 6 hours. So he runs 20
miles in 6 hours. 20 / 6 = 3.33 miles per hour. The answer is 3.33.

Analysis: Dogs need a variety of things to stay happy
and healthy, aside from water and nourishment. One of
the most important things they need is exercise, which is
closely related to option (E) walked.
Correct answer: (E) walked

GLM The total distance he runs in a week is 60 miles, and the total time
he runs is:
3 hours (first day) + 3 hours (second day) + 3 hours (third day) = 9
hours
Now, we can calculate his average speed for the week:
60 miles / 9 hours = 6.67 miles per hour
So, John’s average speed for the week is approximately 6.67 miles
per hour.

Analysis: To determine the correct answer, we need to
consider the basic needs of a dog, which include physical,
emotional, and social requirements.
Answer: (D) lots of attention

DDS John runs 60 miles a week. He runs 3 days a week. On the first day,
he runs 3 hours. On the other two days, he runs half as much as the
first day, which is 3/2 = 1.5 hours each day.
So, the total hours he runs in a week is: 3 hours (first day) + 1.5
hours (second day) + 1.5 hours (third day) = 6 hours
To find out how fast he runs, we divide the total miles he runs by the
total hours he runs: 60 miles / 6 hours = 10 miles per hour
John runs at a speed of 10 miles per hour.

Analysis: Dogs are social animals that require attention,
exercise, and affection to maintain their physical and mental
health. While bones can be a treat, they are not a necessity
for a dog’s overall well-being. Charm is not a requirement
for a dog’s needs. Petting can be a form of affection, but it
is not a fundamental need. Walking is essential for a dog’s
physical health and exercise, which is a crucial aspect of
their care.
Answer: (D) lots of attention

We have selected several failure cases and ana-1029

lyzed their internal autoregressive generation pro-1030

cesses. We found that in most cases, the failures1031

were due to significant distribution differences be-1032

tween models, especially during the critical stages1033

of autoregression (e.g., key numbers or key op-1034

tions). In these instances, one model provided an1035

MCSU with excessively high confidence for an in-1036

correct answer, which ultimately affected the final1037

result.1038

According to the article’s description of DDS’s1039

dynamic selection process, if the similarity be-1040

tween multiple distributions during the autoregres-1041

sive process is low, we retain all distributions be-1042

fore proceeding with ensemble integration. There-1043

fore, failures mostly occur when there are substan-1044

tial differences between model answers, and the1045

incorrect answer happens to have the highest confi-1046

dence.1047

The root cause, we believe, may stem from vari-1048

ations in response styles and reasoning processes1049

across different models, which sometimes invali-1050

date our assumption that "there is typically only1051

one correct answer, whereas incorrect answers can1052

be numerous and varied," leading to DDS failures.1053

Nevertheless, it is undeniable that DDS remains1054

effective in most cases, as evidenced by our experi- 1055

mental results. 1056

Here’s a concrete example to illustrate this sce- 1057

nario: 1058

Prefix: "The final option is" 1059

Model 1 generates option B (incorrect) with a 1060

confidence score of 0.8. 1061

Model 2 generates option D (correct) with a con- 1062

fidence score of 0.7. 1063

Model 3 produces an irrelevant adverb, "actu- 1064

ally," with a confidence score of 0.75. 1065

Since the three models’ outputs diverge signif- 1066

icantly (B, D, and an unrelated word “actually”), 1067

the system retains all three distributions and ulti- 1068

mately selects the highest-confidence answer—B 1069

(0.8), despite it being incorrect. 1070

G Discussion 1071

During operation, DDS requires loading all models 1072

simultaneously because each step of its autoregres- 1073

sive process necessitates the next MCSU distribu- 1074

tions from every model. However, the computa- 1075

tions across these models are mutually independent. 1076

This means the parameters and computational load 1077

required by the DDS strategy scale linearly with the 1078
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Table 12: Examples where two of the three single LLMs answer correctly. Incorrect answers are shown in red and
correct answers are shown in blue. Since some answers are too long, we have made some adjustments to facilitate
presentation, but the core content remains unchanged.

GSM8K CSQA

Question Josh decides to try flipping a house. He buys a house for $80,000
and then puts in $50,000 in repairs. This increased the value of the
house by 150%. How much profit did he make?

An underrated thing about computers is how they manage
workflow, at one time it was a big deal when they could
first do what? (A) share files (B) do arithmetic (C) turn on
(D) cost money (E) multitask

Qwen Josh bought a house for $80,000 and spent $50,000 on repairs, so
the total cost of the house is $80,000 + $50,000 = $130,000.
The value of the house increased by 150% of its original value. The
original value of the house was $80,000, so the increase in value is
150/100 * $80,000 = $120,000.
This means that the new value of the house is $80,000 + $120,000 =
$200,000.
To find the profit, we subtract the total cost from the new value of
the house: $200,000 - $130,000 = $70,000. The answer is $70000.

Analysis: The question is asking about an underrated as-
pect of computers that was once considered a significant
achievement. Among the options, “multitasking" (option
E) is often seen as an advanced feature that wasn’t neces-
sarily a big deal in the early days of computing. However,
considering the context of the question, which seems to
focus on early milestones, the most fitting answer would
be “do arithmetic" (option B). In the early days of comput-
ers, their ability to perform basic arithmetic operations was
indeed a significant achievement, as it demonstrated their
computational capabilities beyond simple data processing
or file management. Answer: (B) do arithmetic

Llama Josh bought the house for 80,000. He put in 50,000 in repairs. So
the total cost is 80,000 + 50,000 = 130,000. The house increased in
value by 150%. So the new value is 130,000 * 2.5 = 325,000. The
profit is the difference between the new value and the cost. 325,000 -
130,000 = 195,000. The answer is 195,000.

Analysis: The question is asking about an underrated thing
about computers, which is their ability to manage workflow.
The correct answer is the option that was a big deal when
computers first started doing it. Multitasking was a signif-
icant advancement in computer technology, as it allowed
computers to perform multiple tasks simultaneously, mak-
ing them more efficient and productive. Correct answer:
(E) multitask

GLM To calculate the profit Josh made, we first need to determine the new
value of the house after the repairs.
The value of the house increased by 150%, which means the increase
is 150% of the original value of the house. To find this, we calculate:
150% of $80,000 = 1.5 * $80,000 = $120,000
This $120,000 is the amount by which the value of the house in-
creased. To find the new value of the house, we add this increase to
the original value:
New value of the house = Original value + Increase New value of
the house = $80,000 + $120,000 New value of the house = $200,000
Now, to find the profit, we subtract the total cost (original purchase
price + repair costs) from the new value of the house:
Profit = New value of the house - (Original purchase price + Repair
costs) Profit = $200,000 - ($80,000 + $50,000) Profit = $200,000 -
$130,000 Profit = $70,000
Josh made a profit of $70,000.

Analysis: The question is asking about an "underrated thing
about computers" that was a significant development when
computers first had the capability to do it. Let’s analyze
each option:
(A) share files: While sharing files is a crucial aspect of
computer networking, it was not the first significant devel-
opment when computers were first introduced.
(B) do arithmetic: Computers have always been capable
of doing arithmetic, and this was not a groundbreaking
development when they were first introduced.
(C) turn on: The ability to turn on a computer is a fun-
damental feature, but it is not something that would be
considered an "underrated thing about computers" or a sig-
nificant development when computers were first created.
(D) cost money: The fact that computers cost money is a
given, and it is not a feature that would be considered a
significant development or an "underrated thing."
(E) multitask: Multitasking refers to the ability of a com-
puter to perform multiple tasks simultaneously. This was a
significant development when computers first gained this
capability, as it allowed for more efficient use of the sys-
tem’s resources and improved productivity.
Based on the analysis, the correct answer is:
(E) multitask

DDS To calculate the profit Josh made, we first need to determine the new
value of the house after the repairs. The value of the house increased
by 150%, which means the new value is 150% of the original value
plus the original value itself.
The original value of the house is $80,000. The increase in value is
150% of $80,000, which is:
150% of $80,000 = 1.5 * $80,000 = $120,000
So, the new value of the house after the repairs is:
$80,000 (original value) + $120,000 (increase) = $200,000
Josh spent $50,000 on repairs, so the total cost of the house after
repairs is:
$80,000 (original purchase price) + $50,000 (repairs) = $130,000
Now, to calculate the profit, we subtract the total cost from the new
value of the house:
$200,000 (new value) - $130,000 (total cost) = $70,000
Josh made a profit of $70,000.

Analysis: The question is asking about an underrated aspect
of computers and a significant milestone in their develop-
ment. The correct answer should be something that was a
major achievement in the early days of computing.
(A) Share files: While file sharing is an important feature,
it’s not a groundbreaking achievement that was a big deal
in the early days of computers.
(B) Do arithmetic: This is a fundamental capability of com-
puters, but it’s not something that was particularly ground-
breaking or a big deal in the early days of computing.
(C) Turn on: This is a basic function of any electronic
device, not a significant achievement in the development
of computers.
(D) Cost money: This is not a feature or capability of
computers, but rather a factor that affects their accessibility.
(E) Multitask: This is a significant achievement in the
development of computers, as it allows them to perform
multiple tasks simultaneously, which was not possible in
the early days of computing.
Answer: (E) Multitask
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Table 13: Examples where all of the three single LLMs answer correctly. Incorrect answers are shown in red and
correct answers are shown in blue. Since some answers are too long, we have made some adjustments to facilitate
presentation, but the core content remains unchanged.

GSM8K CSQA

Question Janet’s ducks lay 16 eggs per day. She eats three for breakfast every
morning and bakes muffins for her friends every day with four. She
sells the remainder at the farmers’ market daily for $2 per fresh duck
egg. How much in dollars does she make every day at the farmers’
market?

A revolving door is convenient for two direction travel, but
it also serves as a security measure at a what? (A) bank
(B) library (C) department store (D) mall (E) new york

Qwen Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast, so
she has 16 - 3 = 13 eggs left. She uses 4 eggs to bake muffins, so
she has 13 - 4 = 9 eggs left to sell. She sells each egg for $2, so she
makes 9 * $2 = $18 from selling eggs every day. The answer is: $18

Analysis: Revolving doors are commonly used in public
places to control access and maintain a certain level of
security. They are particularly useful in areas where there
is a need to control who enters and exits, such as banks,
where sensitive transactions occur, and large buildings with
high foot traffic. Answer: (A) bank

Llama Janet lays 16 eggs per day. She eats 3 and bakes 4, so she has 16 - 3
- 4 = 9 eggs left. She sells these 9 eggs for 2 dollars each. 9 x 2 = 18.
The answer is 18.

Analysis:A revolving door is a type of door that allows
people to enter and exit through the same door, but in
opposite directions. It is often used in high-security areas
to control the flow of people and prevent unauthorized entry.
In this context, the correct answer would be an option that is
typically associated with high-security measures. Answer:
(A) bank

GLM Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast, so
she has 16 - 3 = 13 eggs left.
She bakes muffins for her friends using 4 eggs, so she has 13 - 4 = 9
eggs remaining.
She sells these 9 eggs at the farmers’ market for $2 per egg, so she
makes 9 * $2 = $18 every day at the farmers’ market.

Analysis: A revolving door is designed to allow people to
enter and exit in both directions smoothly, which can be
particularly convenient in high-traffic areas. However, it
also serves as a security measure by controlling the flow
of people in and out of a building. This can be particularly
important in places where security is a priority, such as
financial institutions. Options Analysis:
(A) Bank - Banks are known for their security measures,
and controlling access is crucial. A revolving door could
serve as a security measure here.
(B) Library - While libraries may have security concerns,
they are not typically as high as those in financial institu-
tions.
(C) Department store - Security is important, but it is not
as critical as in a bank.
(D) Mall - Similar to a department store, while security is
important, it is not as critical as in a bank.
(E) New York - This is not a specific location where a
revolving door would serve as a security measure.
Based on the analysis, the correct answer is: (A) bank

DDS Janet’s ducks lay 16 eggs per day. She eats 3 eggs for breakfast and
uses 4 eggs for baking muffins. So, she uses a total of 3 + 4 = 7 eggs
for personal use.
This leaves her with 16 - 7 = 9 eggs to sell at the farmers’ market.
She sells each egg for $2, so she makes 9 * $2 = $18 every day at
the farmers’ market.

Analysis: A revolving door is a type of door that allows
people to enter and exit in both directions, but it also serves
as a security measure. This is because it can help to control
the flow of people entering and exiting a building, making
it more difficult for unauthorized individuals to enter. This
is particularly useful in places where security is a concern,
such as financial institutions. Answer: (A) bank
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Table 14: Examples where DDS answers incorrectly. Incorrect answers are shown in red and correct answers are
shown in blue. Since some answers are too long, we have made some adjustments to facilitate presentation, but the
core content remains unchanged.

GSM8K CSQA

Question Elliott is trying to walk 10,000 steps a day. He finished half of his
steps on his walks to and from school and did another 1,000 steps
going for a short walk with his friend. He also went for a short jog
around the block and realized that after he had finished his jog, he
only had 2,000 steps left to take. How many steps did Elliott take
during his jog?

What would vinyl be an odd thing to replace? (A) pants (B)
record albums (C) record store (D) cheese (E) wallpaper

Qwen Elliott finished half of his steps on his walks to and from school,
which means he took 10,000/2 = 5,000 steps on those walks. He
also took 1,000 steps going for a short walk with his friend. So far,
he has taken 5,000 + 1,000 = 6,000 steps. After his jog, he still had
2,000 steps left to take. This means that the number of steps he took
during his jog is the total number of steps he needs to take (10,000)
minus the steps he has already taken (6,000) and the steps he still
needs to take (2,000). So, the number of steps he took during his jog
is 10,000 - 6,000 - 2,000 = 2,000. The answer is: 2000.

Analysis: Vinyl is a type of material that was commonly
used in the production of record albums and, less frequently,
for certain types of wallpaper. It is not typically associated
with clothing or food items like cheese. Therefore, the most
unlikely option for replacing something with vinyl would
be (D) cheese.
Answer: (D) cheese

Llama Elliott started with 10,000 steps. He did half of that, which is 5,000
steps. Then he did another 1,000 steps. So he did 5,000 + 1,000 =
6,000 steps. He had 2,000 steps left. So he must have done 6,000 +
2,000 = 8,000 steps. The answer is 8,000.

Analysis: The word “vinyl" is often associated with records,
as vinyl records are a type of phonograph record made of
polyvinyl chloride (PVC). Therefore, it would be an odd
thing to replace something that is not related to records.
Correct answer: (B) record albums

GLM Elliott has a goal of 10,000 steps a day. He has already completed
half of his steps on his walks to and from school, which is 10,000 /
2 = 5,000 steps.
He also did another 1,000 steps going for a short walk with his friend,
so in total, he has completed 5,000 + 1,000 = 6,000 steps.
After his jog, he has 2,000 steps left to take, which means he has
taken 10,000 - 2,000 = 8,000 steps so far.
To find out how many steps he took during his jog, we subtract the
steps he took before the jog from the total steps he has taken so far:
8,000 - 6,000 = 2,000 steps.
Therefore, Elliott took 2,000 steps during his jog.

Analysis: The term “vinyl" is commonly associated with a
few specific items. It is a type of plastic material that has
been used in various applications over the years. Here’s
a brief analysis of each option: (A) pants - While “vinyl
pants" are not common, they do exist, and vinyl can be
used in the production of certain types of clothing. So, it’s
not an odd thing to replace pants with vinyl. (B) record
albums - Vinyl is the material traditionally used for record
albums, so replacing them with vinyl would not be odd.
(C) record store - A record store is a place where vinyl
records are sold, so replacing a record store with vinyl
would be odd because vinyl is a material, not a place. (D)
cheese - Cheese is a food product, and vinyl is a material.
Replacing cheese with vinyl would be odd because they are
completely different types of items. (E) wallpaper - Vinyl
can be used to make wallpaper, so replacing wallpaper with
vinyl is not an odd thing. Based on the analysis, the odd
thing to replace would be: (D) cheese

DDS Elliott has a goal of 10,000 steps a day. He has already completed
half of his steps on his walks to and from school, which is 5,000
steps. He also did another 1,000 steps going for a short walk with
his friend. So, he has completed 5,000 + 1,000 = 6,000 steps so far.
He has 2,000 steps left to reach his goal of 10,000 steps. This means
that the steps he took during his jog must be the difference between
the steps he has completed and the steps he has left to complete his
goal.
So, the steps he took during his jog are 10,000 - 6,000 = 4,000 steps.

Analysis: Vinyl is a type of material that is often used to
make records, which are used to play music. It is also
used in some other applications, such as in the production
of certain types of clothing and accessories. However, it
is not typically used to make pants, cheese, or wallpaper.
Therefore, the odd thing to replace with vinyl would be
something that is not typically made from vinyl.
Answer: (A) pants
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number of participating models, effectively approx-1079

imating the sum of all individual models’ require-1080

ments, without introducing higher-order complex-1081

ity. Model interactions occur exclusively during1082

distribution similarity computation, which incurs1083

negligible computational overhead. All other com-1084

putations proceed independently across models.1085

DDS is a method that leverages multi-model1086

collaboration to improve model performance from1087

the inference side. It can break through the per-1088

formance bottleneck of a single model without1089

training and without consuming a large amount1090

of resources. Compared to previous multi-model1091

collaboration methods, DDS does not require man-1092

ually designing prompts to enable collaboration1093

among multiple models, nor does it involve the1094

hassle of multiple rounds of interaction to reach1095

a consensus. A single round of autoregression is1096

sufficient to produce a complete and deterministic1097

answer.1098

Furthermore, we believe that DDS can be used1099

for high-quality annotation, as it can integrate the1100

knowledge boundaries of multiple models to pro-1101

vide high-quality pseudo-labels for unlabeled data.1102

The annotation quality is likely to be superior to1103

that of a single model and could help address the1104

current shortage of high-quality data.1105
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