
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

EXECUTION-GUIDED WITHIN-PROMPT SEARCH FOR
PROGRAMMING-BY-EXAMPLE WITH LLMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Soundness is an important property in programming-by-example (PBE) as it al-
lows synthesizers to perform a search over a domain-specific language (DSL) that
terminates when any sound program is found. Large language models (LLMs)
can generate code from examples without being limited to a DSL, but they lack
search, as samples are independent. One can sampling code until a sound program
is generated, but that is very inefficient. In this paper, we use an LLM as a pol-
icy that generates lines of code and then join these lines of code to let the LLM
implicitly estimate the value of each of these lines in its next iteration. We fur-
ther guide the policy and value estimation by executing each line and annotating
it with its results on the given examples. This allows us to search for programs
within a single, expanding prompt until a sound program is found by letting the
policy reason in both the syntactic (code) and semantic (execution) space. We
evaluate this approach on straight-line Python code generation using five bench-
marks across different domains (string transformations, list transformations, and
arbitrary Python programming problems). We show that the model effectively
uses the execution results to guide the search and that within-prompt search per-
forms well at low token budgets. We also analyze how the model behaves as a
policy and value, show that it can parallelize the search, and that it can implicitly
backtrack over earlier generations.

1 INTRODUCTION

Automatically synthesizing code from any form of intent or specification is considered as a grail
of computer science (Gulwani et al., 2017). One particularly challenging specification are a set of
inputs and their expected outputs, as the synthesizer has to not only detect a pattern between the
input and the output, but also write code for it. Large language models (LLMs) (Brown et al., 2020;
OpenAI, 2024) are trained to recognize patterns in text to predict the most likely next token. Their
training data contains significant amounts of code (Xu et al., 2022) and examples of how to use that
code, both through tutorials and unit tests.

Consider, for example, a prompt that consists of two assert statements and a function signature:

assert f(a = 'Program -Synthesis ') == 'PS'
assert f(a = 'Large -Language -Model ') == 'LLM'

def f(a):

Different versions of the gpt model series by OpenAI (4o, 4-turbo, 35-turbo) complete it with a
variation on return ''.join(i[0] for i in a.split('-')) to make f satisfy the assertions.1

When the patterns become more complicated, however, the LLM often fails. A first reason is the
model overfitting on a dominant (more common) pattern in the assertions. If we change the second
input to 'Large--Language--Models' we notice that gpt-4o does not change its answer, not realizing
that splitting on '-' in a string with '--' results in empty strings. The model then only considers the
syntactic space, rather than reasoning about the semantics of the program. A second reason is that
iteratively sampling tokens does not allow the model to reconsider earlier code like a human would

1At temperature 0, which we use for all demonstrations.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

do. Once the model has written return ''.join(i[0] for i in a.split()) —even if it would now
realize that i can be empty—it cannot easily2 recover. The model is thus not able to search for a
correct program, and search is indispensable in symbolic synthesizers (Gulwani et al., 2017).

We tackle the limitation on search by sampling multiple lines of code, combining them into a single
program, and implicitly letting the model choose which of these lines to continue from in a next
iteration. We call this within-prompt search as one prompt contains all states explored so far. We
tackle the limitation on reasoning about semantics by executing generated code and providing these
executions as comments to the model. The model then has access to both the syntax and semantics
of the program, and the within-prompt search is thus execution-guided.

Considering the previous example and appropriately prompting the model to generate options for
the next line of code, the model generates three unique statements:

v1 = a.split('-') v1 = a.split('-')[0][0] v1 = a[0]

These statements are de-duplicated and executed to yield a new prompt for the next iteration:

assert f(a = 'Program -Synthesis ') == 'PS' # e1
assert f(a = 'Large --Language --Model ') == 'LLM' # e2

def f(a):
v1 = a.split('-') # {'e1 ': ['Program ', 'Synthesis '],

'e2 ': ['Large ', '', 'Language ', '', 'Model ']}
v2 = a[0] # {'e1 ': 'P', 'e2 ': 'L'}
v

The model now completes it with v3 = ''.join((word[0] for word in v1 if word)) .

Relating this to existing neural program synthesizers, we observe that the model acts as both a
policy—by generating candidate lines—and a value—by choosing which previous lines to consider
the result of—by looking at both syntax and semantics of generated code. Core differences are
that it is not limited to a domain-specific language or even a specific domain—the same method
can be used on string transformations (Gulwani, 2011) and lists (Rule et al., 2024) without any
intervention—and does not require any training.

We evaluate the effect of within-prompt search and execution-guidance on straight-line program
synthesis on five benchmarks spanning three domains (string transformations, list functions, and
generic Python programming problems). We provide insights in how the model performs as a policy
and value, evaluate the effect of more diversity in sampling lines of code, and compare with a
baseline of unrestricted synthesis.

In summary, we make the following contributions:

• We propose execution-guided within-prompt search for programming-by-example, which
allows the model to reason about the semantics while exploring different candidate pro-
grams.

• We evaluate our approach on five datasets across various domains to highlight generality
of our approach, showing that the model uses execution-guidance to guide the search, and
that within-prompt search excels at low token budgets.

• We analyze properties of the model as a policy and value, showing that out-of-prompt
search with execution (which corresponds to tree-of-thought) scales better with more sam-
pled operations and thus higher budget, that the model can parallelize the search, and that
it can backtrack to earlier generations.

2It could still add a if '--'not in a else ... to the end of the line, but we never witnessed this.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 BACKGROUND

Given n input-output examples E = {(xi, yi)}ni=1 the goal of programming-by-example (PBE) is to
find a program P such that P (xi) = yi for all i. Typically, only a small subset of examples Eg ⊂ E
is given. We say that P is sound if P (xi) = yi for all (xi, yi) ∈ Eg and we write P |= Eg .

PBE with search Constraining P to a domain-specific language (DSL) L defined by a context-
free grammar allows us to easily—and sometimes even efficiently—search for programs. FlashFill,
likely the most popular application of PBE, traverses its grammar top-down by breaking down the
original problem into smaller sub-problems and recursively solving them (Gulwani, 2011). Recent
neural approaches perform a bottom-up search by using a policy network to predict one or more
production rules to follow, which either initialize a new sub-program (terminal) or combine two
subprograms (non-terminal) (Parisotto et al., 2017; Balog et al., 2017; Ellis et al., 2018; 2021; Odena
et al., 2021; Chen et al., 2018). Optionally, a separate value network can be used to prioritize or filter
candidates in subsequent iterations Ellis et al. (2019).

PBE with execution Since each node in a bottom-up search is a program without free variables,
it can be executed, and those execution results are a powerful signal for predictions in subsequent
search steps. One approach is to add the current execution state as an additional input to the model
(Ellis et al., 2019). Another approach is to use the execution of a candidate program P ′(xi) to define
a new problem specification {(P ′(xi), yi) | (xi, yi) ∈ Eg} for the next iteration (Chen et al., 2018).

PBE with large language models Instead of searching over a grammar, some neural approaches
generate programs by having the model directly predict tokens from the alphabet of the DSL (Devlin
et al., 2017; Bunel et al., 2018). Pre-trained language models also auto-regressively generate tokens
and typically see a lot of code during training (OpenAI, 2024). They can be prompted or fine-tuned
(Li & Ellis, 2024) to generate programs by example, without being limited to a DSL.

3 EXECUTION-GUIDED WITHIN-PROMPT SEARCH

We propose to use large language networks as both the (explicit) policy and (implicit) value network
to search for code in a bottom-up way, and inject the execution results of that code to guide the
model towards better predictions. An overview of this approach is shown in Figure 1. The following
sections describe (1) how the model acts as a policy, (2) how to prepare that code for the model to
implicitly consider the value of each line, (3) how to guide these results by executing the generated
code, and (4) how this constitutes an in-prompt search.

3.1 POLICY: PREDICTING LINES OF CODE

Consider a function P (x) = [o1, . . . , on] where each operation oi(o<i,x) is a function of the outputs
of the previous operations o<i and the input x that returns a single value (denoted as oi). The value of
on is the return value. An operation can be drawn from the grammar of any programming language.

Encoding the specification given by Eg and a partial program Pj = [o1, . . . , oj] in a prompt, we can
sample a new operation oj+1 ∼ pLLM(· | Eg, Pj , t) from the LLM with t the sampling temperature
(Ackley et al., 1985). If the temperature is set to 0, the model acts as a deterministic policy that
maps each state (Eg, Pj) to its most likely next operation oj+1. For higher temperatures, it acts as a
stochastic policy that maps (Eg, Pj) to a distribution of operations.

Instead of a learned policy π, the model is prompted to find argmaxoj∼π [Q
π(oj , Pj−1)] where the

value Qπ(oj , Pj−1) of considering an operation oj in program Pj−1 is the expectation that it can
be completed into a valid program, or Q(oj , Pj−1) = EPτ∼π [Pj−1 ◦ oj ◦ Pτ |= Eg] where Pτ is a
sequence of operations sampled from the (prompted) policy.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

When you create a new variable, add a comment.

assert f(a = '1 2 3', b = '2 3') == '13' # e1

def f(a, b):
 v1 = a[0] # { "e1": "1" }
 v2 = a.split() # { "e1": ["1", "2", "3"] }

 v3 = b.split()
 v4 = v3[-1]
 v5 = v3[0]

1

v3 = b.split() v3 = b[4] v3 = b.split()[0]v3 = b.split()[-1]

Model looks at previous nodes
and thus acts as value .

Combine, de-duplicate and
canonicalize code.

{ "e1": ["2", "3"] }
{ "e1": "3" }
{ "e1": "2" }

2

Model predicts production rules in the language
(Python) grammar and thus acts as policy .

3 Extract and annotate
variable values.

4 Extend prompt
for next iteration.

Figure 1: Overview of our approach for PBE with large language models. 1⃝ The model acts as a
policy by predicting next lines of code. 2⃝ We combine, de-duplicate and canonicalize that code in
order for the model to act as a value predictor. 3⃝ We execute code, extract values and add them as
comments. 4⃝ We extend the prompt with the newly generated code.

Example 1 The specification Eg and program P2 are en-
coded in the prompt on the right. An LLM will auto-
complete this program with new statements

o13 = b.split()[-1] o23 = b.split()

o33 = b[4] o43 = b.split()[0]

that correspond to operations.

assert f(a = '1 2 3', b = '2 3') == '13'

def f(a, b):
 v1 = a[0]
 v2 = a.split()
 v3 =

3.2 VALUE: COMBINING LINES OF CODE

Suppose we sample k operations Oj+1 = {o1j+1, . . . , o
k
j+1} from the language model with t > 0.

Instead of heuristically picking one operation o∗j+1 ∈ Oj+1 to extend Pj before sampling the next
operation—writing such heuristic is hard even without considering the different types of values that
each operation can return—we set Pj+k′ = fC(Pj ◦Oj+1) with k′ ≤ k and let the model act as that
heuristic in the next iteration (where ◦ denotes operation concatenation). Here, fC is a function that
de-duplicates and canonicalizes the given operations, resulting in a potential subset k′ of the k new
operations to be added.

Instead of a single program, Pj then represents all programs explored in all iterations ≤ j, where
each operation can be considered as its own root node. When writing an operation oj+1, the model
needs to select some nodes oi ∈ Pj to continue from. Ideally, it selects operations that are expected
to lead to a correct program by implicitly considering V π(oi) = Eo∼π [Q

π(o, Pi)] to estimate the
expected value of each operation oi ∈ Pj . We call this within-prompt search (WPS) as the search
happens within one prompt that is iteratively extended.

Example 2 Continuing the example, the implicit value function assigns a
high score to b, as it is used in all operations. Since o33 does not execute, it
is removed. Operation o23 is a subprogram of o13 and o43 and the substitution
o13 = o23.split()[-1] and o43 = o23.split()[0] is made by fC . P5 is shown
on the right. The value function can decide which state to continue from in
the next iteration.

def f(a, b):
 v1 = a[0]
 v2 = a.split()
 v3 = b.split()
 v4 = v3[-1]
 v5 = v3[0]

We can also use the model as an explicit value function by using a separate prompt to rank each
oij+1 ∈ Oj+1 and getting k next states P i

j+1 = Pj ◦oij+1 that we can explicitly search over based on
their value. This corresponds to Tree-of-Thought (Yao et al., 2024) with lines of code corresponding

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

to thought decompositions, the policy corresponding to the thought generator and the value prompt
being the state evaluator.

3.3 GUIDANCE: EXECUTING CODE

Understanding the execution semantics of Pj is crucial when deciding on a next operation oj+1—
especially since the specification Eg is in this semantic space. Previous work (Ellis et al., 2019) has
shown that executing code JPjK = {P (x) | x ∈ Eg} on the given examples Eg and conditioning
the policy and value on (JPjK, Eg) instead of (Pj , Eg) allows them to make better decisions in
this semantic (execution) space. The intuition is to mimic a human developer using code printing
statements to evaluate their progress so far, and then make decisions based on that progress.

We extend this idea to our prompted policy and, as LLMs have shown strong code understanding
capabilities, additionally allow the model to make decisions based on both the semantic and syntactic
representation of Pj . Instead of only the final output JPjK, we obtain the value of each operation
o ∈ Pj on the given examples and add JOjK = {{o(x) | x ∈ Eg} | o ∈ Oj} to the condition of our
policy—to the prompt.

Example 3 Before sampling new operations, we execute P5

and annotate each line (operation) with its output on the
given input (e1) to allow reasoning about both the syntax
(code) and semantics (output) of the current states.

def f(a, b):
 v1 = a[0] # { "e1": "1" }
 v2 = a.split() # { "e1": ["1", "2", "3"] }
 v3 = b.split() # { "e1": ["2", "3"] }
 v4 = v3[-1] # { "e1": "3" }
 v5 = v3[0] # { "e1": "2" }

3.4 SEARCH

Sampling multiple operations Oj and combining them into a new state (Eg, Pj+1, JOj+1K) allows
us to perform a within-prompt search. Each state (program) in the search is combined into a single
superstate, which the model can expand. We stop the search when ol |= Eg for any ol ∈ Pj and
remove all operations that are not used by ol. We can keep expanding the state until the context
window of the LLM is reached and rely on implicit backtracking where the (implicit) value function
simply ignores operations that cannot lead to a valid program.

Example 4 Instead of keeping track of different states, the “search” consists of a single prompt
(superstate) that is iteratively expanded (for l iterations).

def f(a, b):
 v1 = a[0] # { ... }
 v2 = a.split() # { ... }
 v3 = b.split() # { ... }
 v4 = v3[-1] # { ... }
 v5 = v3[0] # { ... }

def f(a, b):
 v1 = a[0] # { ... }
 v2 = a.split() # { ... }

def f(a, b):
 v1 = a[0] # { ... }
 v2 = a.split() # { ... }
 v3 = b.split() # { ... }
 ...
 vK = v2[0] + v4

def f(a, b):

1 2

4 EXPERIMENTS

We evaluate the effect of execution and search, show insights in how the model behaves as a policy
and value, and describe other properties of the search.

4.1 IMPLEMENTATION DETAILS

We use Python as the programming language in which we synthesize programs.

Prompt The prompt consists of four parts: (1) an instruction, (2) a single static example, (3) a
set of assertions on a function f, and (4) the function f itself. The instruction instructs to generate
code without control flow statements, that any function from the standard library can be used, that
it can use variables as a scratchpad, and to create a comment each time a new variable is initialized.
The example contains one line that is not needed. We initialize each line with “ v” to ensure that
the model generates a straight-line program with variables (v1, v2, ...) as the model tokenizes digits
separately—v1 is always broken down into v and 1. A full example is shown in the Appendix.3

3See the supplementary material.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Sampling operations As the model is instructed to generate each statement on a single line, we
can sample a single operation by using the newline character “\n” as a stopping token. Operations
that do not parse or execute are skipped.

Canonicalization After ensuring that each generated line of code assigns its value to a unique
variable, we concatenate these lines and perform global canonicalization steps. All comparisons are
made on the abstract syntax tree (AST) level.

1. For every assignment v = r, we replace any occurrence of r in another operation with v
and ensure that the lines remain topologically sorted.

2. For every assignment v = r where r is a generator, which does not have a pretty printing
implementation due to lazy execution semantics, we wrap it in a list call as v = list(r).

3. We remove any duplicate lines of code based on their execution results.

Execution and comments We assign assertion assert f(x1) == y1 a unique identifier e1 as a
comment “# e1”. This allows us to easily anchor the execution result of each operation v = r(x)
on to that identifier in a dictionary by mapping { "e1": r(x1) }. Ensuring that each value can be
printed is done in the canonicalization step to not have a disconnect between the operation and the
commented values.

Search The search stops when any of the variable results matches the assertions or when a limit
on the number of iterations is reached.

4.2 EXPERIMENTAL SETUP

Datasets We use five popular datasets that span different domains. No changes are required to
apply our approach to these different datasets.

• PROSE (Microsoft) is a set of 354 benchmarks originally used to evaluate FlashFill Gul-
wani (2011)—the first widely adapted application of PBE. We filter it down to 332 non-
trivial problems (no empty values, three or more examples).

• SyGuS (Alur et al., 2019) is a set of 205 benchmarks from the string transformation track
of the SyGuS Alur et al. (2013) competition.

• Playgol (Cropper, 2019) is a set of 327 benchmarks from inductive logic programming.

• Lists (Rule et al., 2024) is a dataset of 251 list understanding problems, where each task
transforms a list of integers.

• MBPP (Austin et al., 2021) is a dataset of basic Python problems, where each problem
consists of both a description in natural language and a set of assertions. These assertions
are given as part of the input, mostly to provide any synthesizer with information about the
expected signature of the function to be synthesized. We only use the assertions, remove
any that are not simply evaluating f(x) == y with x ∈ x and y constants that can be
evaluated with eval without additional imports and that are json serializable (no set, no
datetime). Across the train and test set, this leaves us with 382 problems.

To save on cost of prompting for experiments, we filter trivial benchmarks by using a simple prompt
conditioned on the first example (x1, y1) ∈ E to sample five programs P i at t = 0.6 and do not
include a benchmark if P i |= E for all of them. This leaves 238 benchmarks from PROSE, 94
benchmarks for SyGus, 170 benchmarks for Playgol, 211 for Lists, and 268 for MBPP.

Hyperparameters Unless specified otherwise, we sample k = 4 operations at each line at a
temperature of 0.6, which is a common value that achieves a nice balance between exploration and
exploitation. The model is gpt-4o. We set the maximal number of iterations to 8.

Baselines and variations We consider four baselines on the task of straight-line code generation.

• Straight directly asks the model to generate the code.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

• Chain-of-thought (CoT) (Wei et al., 2022) asks the model to first explain its thoughts and
then generate code. This does not use any execution feedback or search.

• Self-debug (Chen et al., 2023; Wang et al., 2024) executes the code on the examples and
iteratively asks the model to refine based on the outcome. When an exception is thrown,
only exceptions are shown. When no exception is thrown, all wrong outputs are reported
as f(x) = y’ (expected y). We only show the last iteration to the model, so any prompt
in iteration i > 1 is structured as [system, user1, assistanti−1, useri−1] with assistanti−1

program after i−1 iterations and useri−1 the feedback on that program. We use 8 iterations.

• Tree-of-Thought (ToT) (Yao et al., 2024) uses an explicit value prompt to perform a
search. As opposed to our within-prompt search, this perform an outside-prompt search.
The value prompt asks the model to reason about each line (including its execution) and rate
it with sure, maybe or impossible (like the original ToT). Nodes are scored by value of their
last line first and depth second, meaning that the search backjumps to the last unexplored
node in which the last line has the highest score.

Metrics The pass@k rate——the probability that at least one out of k samples is correct— is a
common metric in code generation (Chen et al., 2021a). Because each method implicitly generates a
different number of programs to arrive at one completion, we compute the aligned pass@8 rate. For
example, straight only generates one program per completion, but within-prompt search generates 4
programs with k = 4, so we compare their pass@4 and pass@1 rates, respectively. This corresponds
to using a generate-and-test strategy for cheaper methods until the same budget is reached. We set
the budget to 8 and align the metrics as follows. Straight: pass@8 over 32 completions. CoT:
pass@4 (the thought counts as one program, despite consuming significantly more tokens) over 16
completions. Self-debug: pass@1 repeated over 4 folds. ToT: pass@1 (the value prompt counts as
one program as it includes reasoning) repeated over 3 folds. WPS: pass@2 repeated over 4 folds.

4.3 RESULTS

Search and execution yields better programs. Figure 2 shows the aligned pass@4 rate of
straight-line code generation with search, execution, and both. Execution without search is per-
formed at k = 1 with temperature 0 and is thus deterministic (pass@1). Without execution, the
implicit value function does not help the model select better completions, and the performance is
similar to straight-line code generation. With execution and search, within-prompt search (pass@1)
allows the model to perform better than the generate-and-test strategy (pass@4) in 4 out of 5 bench-
marks. On the Lists benchmark, where the problem statement is less clear from looking at the
examples, generating candidates as a single program is more effective than trying to reason about
the intermediate values.

Within-prompt search generates good code on a budget. Figure 3 shows the aligned pass@8
of all approaches. Within-prompt search is either the best (3/5) or second-best (2/5) generation
strategy. SyGus has a set of similar problems with long strings, where different variations of splitting
are generated in the first iteration, which results in many small value tokens that confuse WPS. By
reasoning about which is the correct split, ToT performs better at these. Conversely, on Lists, it is
often less clear what the problem is, and either trying different things (WPS) or getting directed,
end-to-end feedback (self-debug) perform better. Thinking about the problem (CoT) or a generate-
and-test strategy (straight) are also effective.

Explicit value prompt scales better with number of operations. Figure 4 shows how the
pass@1 changes in function of the number of lines sampled for a diverse—where we sampled lines
with increasing temperature until exactly k syntactically unique lines are obtained—and default
sampling strategy. First, we observe that in most settings, the performance improves with k, show-
ing that the model can serve as both an explicit (ToT) and implicit (WPS) value function. Second,
we observe that for the same k, the explicit policy (with higher budget) performs better, especially
as k increases. The number of choices scales linearly with the iteration i, and the number of tokens
scales as i ∗ n with n the number of examples, both of which make the problem of selecting good
nodes more difficult.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

SyGuS
FlashFill

Playgol
Lists

MBPP
0.2

0.3

0.4

0.5

0.6

0.7

0.8

al
ig

ne
d

pa
ss

@
4

Straight
+ Search
+ Execution
WPS

Figure 2: Without execution results, search
(pass@1) does not improve over straight-line
code generation (pass@4). Execution helps
both without search (deterministic pass@1) and
especially if the model can perform within-
prompt search (pass@1).

Playgol
SyGuS

FlashFill Lists
MBPP

0.4

0.5

0.6

0.7

0.8

0.9

al
ig

ne
d

pa
ss

@
8

Approach
Straight
CoT
Self-debug
ToT
WPS

Figure 3: Comparing different baselines on
straight-line code generation. Within-prompt
search (WPS) is consistently among the top-
performers, achieving best scores on 3/5 bench-
marks.

2 4 8
k

0.4

0.5

0.6

0.7

0.8

0.9

pa
ss

@
1

Diverse

2 4 8
k

Non-diverse
Benchmark

SyGuS
FlashFill
Playgol
Lists
MBPP

Approach
ToT
WPS

Figure 4: pass@1 in function of k for diverse (left) and non-
diverse (right) policy. Explicitly computing the value of new
lines (ToT) scales better with increasing the number of op-
erations.

2 4 6 8
Iterations

0

500

1000

1500

2000

To
ke

ns

k
2
4
8
Approach
WPS
ToT

Figure 5: Number of emitted to-
kens in function of number of it-
erations for different k. The ex-
plicit value function (ToT) requires
roughly twice the amount of to-
kens.

Prompted model behaves as a trained policy Figure 6 shows the correctness in function of the
average number of statements sampled in the first or any iteration by the policy. There is a clear
negative correlation: if the policy is certain and samples with less diversity, the model is more likely
to solve a problem in the end. Conversely, if the policy samples many diverse lines, it is less likely
to solve the problem in the end. This indicates that the model does behave like a policy that was
trained to prefer lines with higher values.

Within-prompt search works in parallel Figure 7 shows the number of iterations required to
find a successful program of a given length. Some of the weight is above the identity line, where the
final program uses two or more nodes from the same iteration at least once. The stochastic policy
thus allows within-prompt search to consider different leaf nodes in parallel. This is confirmed
by Figure 8, which shows a distribution of the number of iterations taken to solve success cases.
Within-prompt search solves more of its cases in fewer iterations.

Within-prompt search can backtrack Cases below the line in Figure 8 have iterations without
any effect: either the policy failed to generate a (valid) new line or the value backtracked and com-

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

ToT

1 2 3 4

WPS

Average #(statements)

Benchmark
FlashFill
Lists
MBPP
Playgol
SyGuS

(a) all iterations

1 2 3 4
0.0

0.2

0.4

0.6

0.8

1.0

C
or

re
ct

ToT

1 2 3 4

WPS

Average #(statements)

Benchmark
FlashFill
Lists
MBPP
Playgol
SyGuS

(b) first iteration

Figure 6: Regression lines and 95% confidence interval of pass@1 rate in function of the average
number of unique operations sampled in (a) any or (b) the first iteration. The first operation (b) is
less important, as there is still room to recover.

1 2 3 4 5 6 7 8
Iterations

1

3

5

7

9

11

13

Li
ne

s o
f c

od
e

WPS

1 2 3 4 5 6 7 8
Iterations

1

3

5

7

9

11

13 ToT

Figure 7: Length of successful programs versus the iteration
in which they were found for WPS (left) and ToT (right).
Above the line, the policy returned multiple operations that
were used in the final program. Below the line, the policy
either failed to generate any new results or the value back-
tracked and completely ignored the results from one iteration.

2 3 4 5 6 7 8
Iterations

0.0

0.1

0.2

0.3

0.4
WPS
ToT

Figure 8: Distributions of num-
ber of iterations to solve prob-
lems for WPS and ToT. Paral-
lelism in within-prompt search al-
lows problems to be solved in
fewer iterations.

pletely ignored the results from one iteration. Figure 9 shows how often ToT explicitly backtracked
and how often ToT and WPS implicitly backtracked, where an implicit backtrack is defined as an
iteration that did not yield any operations that were kept in the final program.

1 2 3 4 5 6 7
0.000

0.025

0.050

0.075

0.100

Pr
op

or
tio

n

(a) ToT: implicit

1 2 3 4 5 6 7
0.000

0.025

0.050

0.075

0.100

Pr
op

or
tio

n

(b) ToT: explicit

1 2 3 4 5 6 7
0.000

0.025

0.050

0.075

0.100

Pr
op

or
tio

n

FlashFill
Lists
MBPP
Playgol
SyGuS

(c) WPS: implicit

Figure 9: (a) Implicit and (b) explicit backtracking for ToT, and implicit (c) backtracking for WPS
in successful solves. In general, backtracking is quite rare, happening in around 10% of problems.
It happens slightly more for WPS, where having more nodes to choose from causes more dead ends.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Example 5 On the problem of determining whether two
lists contain the same number of elements, the model takes
three iterations (with many duplicate lines) to figure out that
it does simply need to compare the lengths of the inputs. In
the fourth iteration, it immediately suggests the correct line,
backtracking over iterations (2) and (3).

assert f(['r', 'g',], ['a', 'b']) == True # e1
assert f(['r', 'r',], ['a', 'b']) == False # e2

def f(a, b):
(1) v1 = len(a) # { "e1": 2, "e2": 2 }
(2) v2 = len(b) # { "e1": 2, "e2": 2 }
(3) v3 = v1 == v2 # { "e1": True, "e2": True }

(4) v4 = len(set(a)) == len(set(b))

5 RELATED WORK

Programming-by-example with search Two popular search-based strategies for programming-
by-example approaches are bottom-up synthesis and top-down synthesis (Gulwani et al., 2017).
In forward synthesis, the search space is traversed by combining subprograms into more complex
programs through enumeration (Alur et al., 2017) or enumeration with priority defined by a neural
network (Odena et al., 2021; Ellis et al., 2021) or through an incomplete search powered by neural
network heuristics (Ellis et al., 2019; Shi et al., 2022; 2023).

Programming-by-example with language models Without search, auto-regressive neural net-
works can also be trained to output the program token by token (Devlin et al., 2017; Bunel et al.,
2018). This is particularly interesting with large, pre-trained language models, which can be fine-
tuned on synthetic data (Li & Ellis, 2024). Models that are large enough to exhibit in-context learn-
ing abilities, such as the GPT family (Brown et al., 2020; OpenAI, 2024), can program by example
through prompts. One can use chain-of-thought prompting too by first asking the model to describe
the transformation problem in natural language (Wang et al., 2024).

6 LIMITATIONS AND FUTURE WORK

Empirical, small-scale experiments show that older models (like gpt-35-turbo) and smaller models
(like CodeLlama (Roziere et al., 2023)) perform significantly worse, because they either do not fol-
low the instruction to generate code line by line or because they are unable to properly reason about
code and comments. For this reason, we did not perform experiments on these models. A poten-
tial solution is fine-tuning these smaller models as a policy, for example, on straight-line programs
obtained by a teacher model on synthetic data (Li & Ellis, 2024).

Our implementation considers only straight-line code generation, as this allows a controlled environ-
ment for evaluating different search strategies. Extending within-prompt search to any code requires
streaming access to the language model, which allows dynamically stopping when a full operation is
sampled, and special care for control flow statements, where we can take inspiration from previous
work on teaching LLMs to reason about code execution for program repair (Ni et al., 2024).

Within-prompt search can be applied to other problems, like program repair (Ni et al., 2024) or code
auto-completion in environments where inputs are available, like spreadsheets (Chen et al., 2021b)
or data science notebooks (Huang et al., 2024). As there is no test for soundness, the model then
also serves as an implicit reward model when stopping the search.

7 CONCLUSION

We introduce execution-guided within-prompt search for programming-by-example with LLMs,
where the premise is to sample multiple atomic operations, combine them into a single program, and
repeat the process from that combined program. Sampling multiple operations, where the model acts
as a policy that explores different next states, allows us to perform a search. Combining operations
into a single program enables the search to happen within one expanding prompt. This allows the
model to act as a value function that evaluates which of these operations are promising candidates to
extend in next iterations. Our evaluation shows that within-prompt search performs consistently well
across benchmarks for the same token budget. If we allow more budget and explicitly compute the
value of completions for an out-of-prompt search, which corresponds to tree-of-thought, it achieves
a better pass@1 score.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

David H Ackley, Geoffrey E Hinton, and Terrence J Sejnowski. A learning algorithm for boltzmann
machines. Cognitive science, 9(1):147–169, 1985.

Rajeev Alur, Rastislav Bodik, Garvit Juniwal, Milo MK Martin, Mukund Raghothaman, Sanjit A
Seshia, Rishabh Singh, Armando Solar-Lezama, Emina Torlak, and Abhishek Udupa. Syntax-
guided synthesis. IEEE, 2013.

Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. Scaling enumerative program synthesis via
divide and conquer. In International conference on tools and algorithms for the construction and
analysis of systems, pp. 319–336. Springer, 2017.

Rajeev Alur, Dana Fisman, Saswat Padhi, Rishabh Singh, and Abhishek Udupa. Syntax-guided
synthesis competition. https://github.com/SyGuS-Org/benchmarks/tree/master/comp/
2019/PBE SLIA Track, 2019.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan,
Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language
models. arXiv preprint arXiv:2108.07732, 2021.

Matej Balog, Alexander L Gaunt, Marc Brockschmidt, Sebastian Nowozin, and Daniel Tarlow.
Deepcoder: Learning to write programs. In International Conference on Learning Represen-
tations, 2017.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agarwal, Ariel
Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh, Daniel Ziegler,
Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Mateusz Litwin, Scott Gray,
Benjamin Chess, Jack Clark, Christopher Berner, Sam McCandlish, Alec Radford, Ilya Sutskever,
and Dario Amodei. Language models are few-shot learners. In H. Larochelle, M. Ranzato,
R. Hadsell, M.F. Balcan, and H. Lin (eds.), Advances in Neural Information Processing Systems,
volume 33, pp. 1877–1901, 2020.

Rudy Bunel, Matthew Hausknecht, Jacob Devlin, Rishabh Singh, and Pushmeet Kohli. Leveraging
grammar and reinforcement learning for neural program synthesis. In International Conference
on Learning Representations, 2018.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared
Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large
language models trained on code. arXiv preprint arXiv:2107.03374, 2021a.

Xinyun Chen, Chang Liu, and Dawn Song. Execution-guided neural program synthesis. In Interna-
tional Conference on Learning Representations, 2018.

Xinyun Chen, Petros Maniatis, Rishabh Singh, Charles Sutton, Hanjun Dai, Max Lin, and Denny
Zhou. Spreadsheetcoder: Formula prediction from semi-structured context. In International
Conference on Machine Learning, pp. 1661–1672. PMLR, 2021b.

Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. Teaching large language models
to self-debug. In The Twelfth International Conference on Learning Representations, 2023.

Andrew Cropper. Playgol: learning programs through play. In International Joint Conference on
Artificial Intelligence, 2019.

Jacob Devlin, Jonathan Uesato, Surya Bhupatiraju, Rishabh Singh, Abdel-rahman Mohamed, and
Pushmeet Kohli. Robustfill: Neural program learning under noisy i/o. In International conference
on machine learning, pp. 990–998, 2017.

Kevin Ellis, Lucas Morales, Mathias Sablé-Meyer, Armando Solar-Lezama, and Josh Tenenbaum.
Learning libraries of subroutines for neurally–guided bayesian program induction. Advances in
Neural Information Processing Systems, 31, 2018.

11

https://github.com/SyGuS-Org/benchmarks/tree/master/comp/2019/PBE_SLIA_Track
https://github.com/SyGuS-Org/benchmarks/tree/master/comp/2019/PBE_SLIA_Track

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Kevin Ellis, Maxwell Nye, Yewen Pu, Felix Sosa, Josh Tenenbaum, and Armando Solar-Lezama.
Write, execute, assess: Program synthesis with a repl. Advances in Neural Information Processing
Systems, 32, 2019.

Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales, Luke Hewitt,
Luc Cary, Armando Solar-Lezama, and Joshua B Tenenbaum. Dreamcoder: Bootstrapping in-
ductive program synthesis with wake-sleep library learning. In International Conference on Pro-
gramming Language Design and Implementation, pp. 835–850, 2021.

Sumit Gulwani. Automating string processing in spreadsheets using input-output examples. In
Principles of Programming Languages, pp. 317–330, 2011.

Sumit Gulwani, Oleksandr Polozov, Rishabh Singh, et al. Program synthesis. Foundations and
Trends® in Programming Languages, 4(1-2):1–119, 2017.

Junjie Huang, Daya Guo, Chenglong Wang, Jiazhen Gu, Shuai Lu, Jeevana Priya Inala, Cong Yan,
Jianfeng Gao, Nan Duan, and Michael R Lyu. Contextualized data-wrangling code generation
in computational notebooks. In Proceedings of the 39th IEEE/ACM International Conference on
Automated Software Engineering, pp. 1282–1294, 2024.

Wen-Ding Li and Kevin Ellis. Is programming by example solved by llms? arXiv preprint
arXiv:2406.08316, 2024.

Microsoft. PROSE public benchmark suite. https://github.com/microsoft/
prose-benchmarks/tree/main/Transformation.Text. Accessed: 2010-09-30.

Ansong Ni, Miltiadis Allamanis, Arman Cohan, Yinlin Deng, Kensen Shi, Charles Sutton, and
Pengcheng Yin. NExt: Teaching large language models to reason about code execution. In Forty-
first International Conference on Machine Learning, 2024. URL https://openreview.net/
forum?id=B1W712hMBi.

Augustus Odena, Kensen Shi, David Bieber, Rishabh Singh, Charles Sutton, and Hanjun Dai. Bus-
tle: Bottom-up program synthesis through learning-guided exploration. In International Confer-
ence on Learning Representations, 2021.

OpenAI. Gpt-4 technical report, 2024.

Emilio Parisotto, Abdel-rahman Mohamed, Rishabh Singh, Lihong Li, Dengyong Zhou, and Push-
meet Kohli. Neuro-symbolic program synthesis. In International Conference on Learning Rep-
resentations, 2017.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi
Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation models for
code. arXiv preprint arXiv:2308.12950, 2023.

Joshua S Rule, Steven T Piantadosi, Andrew Cropper, Kevin Ellis, Maxwell Nye, and Joshua B
Tenenbaum. Symbolic metaprogram search improves learning efficiency and explains rule learn-
ing in humans. Nature Communications, 15(1):6847, 2024.

Kensen Shi, Hanjun Dai, Kevin Ellis, and Charles Sutton. Crossbeam: Learning to search in bottom-
up program synthesis. In International Conference on Learning Representations, 2022.

Kensen Shi, Hanjun Dai, Wen-Ding Li, Kevin Ellis, and Charles Sutton. LambdaBeam: Neural
program search with higher-order functions and lambdas. In Conference on Neural Information
Processing Systems, 2023.

Ruocheng Wang, Eric Zelikman, Gabriel Poesia, Yewen Pu, Nick Haber, and Noah Goodman.
Hypothesis search: Inductive reasoning with language models. In International Conference on
Learning Representations, 2024.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

12

https://github.com/microsoft/prose-benchmarks/tree/main/Transformation.Text
https://github.com/microsoft/prose-benchmarks/tree/main/Transformation.Text
https://openreview.net/forum?id=B1W712hMBi
https://openreview.net/forum?id=B1W712hMBi

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Josua Hellendoorn. A systematic evaluation of
large language models of code. In Proceedings of the 6th ACM SIGPLAN International Sympo-
sium on Machine Programming, pp. 1–10, 2022.

Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik
Narasimhan. Tree of thoughts: Deliberate problem solving with large language models. Ad-
vances in Neural Information Processing Systems, 36, 2024.

13

	Introduction
	Background
	Execution-guided within-prompt search
	Policy: predicting lines of code
	Value: combining lines of code
	Guidance: executing code
	Search

	Experiments
	Implementation Details
	Experimental setup
	Results

	Related work
	Limitations and future work
	Conclusion

