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Abstract

Ki67 is a biomarker whose activity is routinely measured and scored by pathologists
through immunohistochemistry (IHC) staining, which informs clinicians of patient progno-
sis and guides treatment. Currently, most clinical laboratories rely on a tedious, inconsis-
tent manual scoring process to quantify the percentage of Ki67-positive cells. While many
works have shown promise for Ki67 quantification using computational approaches, the cur-
rent state-of-the-art methods have limited real-world feasibility: they either require large
datasets of meticulous cell-level ground truth labels to train, or they provide pre-trained
weights that may not generalize well to in-house data. To overcome these challenges, we
propose IHCScoreGAN, the first unsupervised deep learning framework for end-to-end Ki67
scoring without the need for any ground truth labels. IHCScoreGAN only requires IHC im-
age samples and unpaired synthetic data, yet it learns to generate colored cell segmentation
masks while simultaneously predicting cell center point and biomarker expressions for Ki67
scoring, made possible through our novel dual-branch generator structure. We validated
our framework on a large cohort of 2,136 clinically signed-out cases, yielding an accuracy
of 0.97 and an F1-score of 0.95 and demonstrating substantially better performance than a
pre-trained state-of-the-art supervised model. By removing ground truth requirements, our
unsupervised technique constitutes an important step towards easily-trained Ki67 scoring
solutions which can train on out-of-domain data in an unsupervised manner. Our code and
model weights are available at https://github.com/WenchaoHan0718/IHCScoreGAN.

Keywords: Generative Adversarial Networks, Unsupervised Learning, Computational
Pathology, Ki67 Scoring, Breast Cancer

1. Introduction

Ki67 is a protein biomarker whose percentage of Ki67-positive tumor cells has shown to be
effective for indicating tumor proliferation in breast cancer cases (Davey et al., 2021). In a
clinical setting, the Ki67 score is reported routinely for breast cancer IHC tissue samples to
aid in diagnosis and guide treatment decisions (Faneyte et al., 2003; Chang et al., 2000; Petit
et al., 2004). Currently, in most centers, Ki67 scoring is manually performed by pathologists,
which is time-consuming and subject to inter-observer variability (Reisenbichler et al., 2020).
Therefore, automatic Ki67 scoring for breast tissue samples are extremely desirable.
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Unfortunately, automatic stain scoring is challenging due to the prohibitive data de-
mands for training or fine-tuning supervised deep learning-based IHC scoring models. These
models require pixel-level annotations of hundreds of thousands of cells, painstakingly la-
beled by highly trained technicians (Abousamra et al., 2020; Fassler et al., 2020; Graham
et al., 2019; Wen et al., 2023; Van Eycke et al., 2018; Priego-Torres et al., 2022; Zhang
et al., 2020). DeepLIIF (Ghahremani et al., 2022) is a supervised framework which in-
stead trains using multiple co-registered multiplex immunofluorescence (mpIF) images as
its ground truth to eliminate cell annotation errors. However, mpIF assays are expensive
and not widely available. On the other hand, pre-trained supervised models are rarely pub-
licly available and not always applicable to in-house stain data: tissue stains are collected
from a particular area of the body with distinct tissue features, using a unique arrangement
of best practices, tissue scanners, chemical mixtures, and tissue qualities, resulting in a
unique in-house data distribution (Wagner et al., 2024; Therrien and Doyle, 2018).

Recently, several studies have emerged in an attempt to completely eliminate the need
for ground truth labels. To this end, unsupervised deep learning methods typically leverage
CycleGAN (Zhu et al., 2017), a well-known framework for unpaired and unsupervised do-
main transfer. One such example is automatic stain transfer, where the goal is to transfer
IHC stain images into hematoxylin-eosin (H&E) stain images in an unsupervised manner
(Liu et al., 2021; Trullo et al., 2022; Lin et al., 2023). However, performing a stain transfer
from IHC to H&E loses the biomarker expression information associated with the IHC stain,
making IHC scoring impossible. Unsupervised nuclear semantic segmentation (Le Bescond
et al., 2022) and instance segmentation (Wang et al., 2023) were recently shown to be possi-
ble by leveraging binary cell segmentation masks created from H&E images; however, both
of these approaches lack the ability to retain vital IHC biomarker expression information.
In the field, there remains an unmet need for an end-to-end IHC scoring method which can
avoid the need for ground truth labeling.

In this paper, we propose IHCScoreGAN, the first unsupervised deep learning frame-
work to provide end-to-end scoring for IHC sample images. We leverage a domain transfer
strategy to formulate a novel learning task, along with a novel model architecture which
facilitates this task with a dual-branch generator. Our learning task seeks to transfer Ki67
images into synthetic cell segmentation masks extracted from an unpaired public dataset of
H&E tissue images, instilling cell center points and synthetic cell colors. Significantly, our
model automatically learns the correspondence between the Ki67-positive and -negative cells
and the synthetic cell colors while also generating center point predictions, which together
provides a predicted Ki67 score. We validated our framework on a large cohort of clini-
cal cases sourced from Mayo Clinic, demonstrating strong performance on 2,126 clinically
signed-out breast cancer cases collected over the span of 11 years, and further validated on
an external dataset for cell counting, yielding competitive performance against supervised
methods. Our proposed contributions are as follows:

• We propose a novel domain transfer strategy for unsupervised, unpaired end-to-end
IHC scoring, where the learning task is constructed from synthetic colored cell seg-
mentation masks and center points easily extracted from public H&E images.

• We propose a novel model architecture to accommodate our learning task, which
can generate colored cell segmentation masks as a proxy task while simultaneously
generating supplementary information for IHC scoring during inference.
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2. Methodology

Our proposed framework, IHCScoreGAN, is trained by leveraging a novel learning task con-
structed from unpaired, publicly-sourced H&E data. It does not require any preprocessing
or postprocessing of IHC stain images (Figure 1a). To facilitate our learning task, we build
a novel model architecture which achieves end-to-end Ki67 scoring by splitting our learning
task into two parts: 1) its primary goal is to generate a colored cell segmentation mask,
which serves as a proxy task for 2) predicting cell center points and biomarker expressions
(Figure 1b). From this information we can extract a Ki67 score, which is aggregated per
slide and evaluated against clinically-derived scores (Figure 1c).

2.1. Dataset

2.1.1. Internal IHC Dataset

Our internal dataset consists of 2,126 Ki67 digitized slides, each corresponding to a distinct
breast cancer case. All cases in this study are sourced from Mayo Clinic and collected
from 2012 through 2023, primarily by 6 pathologists. The Ki67 slides were scanned at 20×
(0.5µm/pixel) magnification by Aperio® AT scanners. Clinical diagnoses were performed
on selected invasive tumor regions. Typically, one pathologist is involved in the clinical
diagnosis for each case. We divided each Ki67 tissue slide into tiles of size 256× 256 pixels
within the selected regions, resulting in NIhc = 678, 134 total tiles. We formally define our
internal IHC dataset as SIhc = {xi}NIhc

i=1 , where x ∈ R256×256×3 is a Ki67 stain tile.

2.1.2. Target Dataset

We generated our target dataset using unpaired H&E-stained tissue slides sourced from
The Cancer Genome Atlas (TCGA) database (Weinstein et al., 2013), a public clinical data
repository. We randomly sampled H&E tissue slides of 20× magnification from the Breast
Invasive Carcinoma project (TCGA-BRCA) and manually selected slides to represent a
variety of cell sizes, structures, and shapes (i.e., to discourage the model from using these
features to discriminate real vs. fake data), resulting in 23 slides. We then divided each
slide into tiles of size 256×256 and sampled NMask = 10, 000 total tiles. Next, we passed the
H&E tiles through a publicly available HoVerNet (Graham et al., 2019) model, pre-trained
on the CPM-17 dataset (Vu et al., 2019) to predict cell instance contours.

We generated synthetic colored cell segmentation masks for each H&E tile by assembling
the predicted cell instance contours into a cell segmentation mask, drawing a ratio from a
uniform distribution U[0,1], and then randomly picking cells to color green based on the ratio
and coloring the rest red. We also draw a value from a uniform distribution U[0,1] for each
cell and multiply the cell’s pixel intensities by this value, in order to emulate different IHC
biomarker expression intensities (see “Real Y” in Figure A.1). We then generated distinct
binary masks for our two synthetic cell colors, which detach cell expression prediction from
the intensity values. Finally, we generated cell center point distance maps, instilling 2-norm
distances between each pixel in each cell and its corresponding predicted center point.

We formally define our external target dataset as SMask = {(yi, ki)}NMask
i=1 , where y ∈

R256×256×3 is a synthetic colored segmentation mask tile and k ∈ R256×256×3 is its matching
cell center point distance map and two binary cell expression masks.
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Figure 1: Overview of our proposed framework. a) Ki67 images, which have associated
diagnostic data, are tiled (top). Unpaired H&E slides are passed through a model which
predicts cell centers and contours; from this, we produce synthetic masks (bottom). b) The
flow of training our model, which generates a prediction of cell center points and biomarker
expressions (Fake K) for end-to-end Ki67 scoring. c) Scoring information is extracted from
generated Fake K, aggregated per slide, and compared with our diagnostic data.

2.2. IHCScoreGAN

2.2.1. Proxy Task

Unsupervised nuclear cell segmentation and biomarker expression identification is a proxy
task for our model, which builds off CycleGAN (Zhu et al., 2017). We train our model using
a domain transfer strategy to learn how to convincingly transform our Ki67 stain input tiles
x into synthetic colored segmentation masks y.

The objective of our model is to learn an unpaired domain transfer between domains X
and Y, where we seek to train a generator G : X → Y which can transform an input x ∈ X
following ŷ = G(x), where ŷ ∈ Ŷ. To enforce a robust mapping onto the distribution of Y,
an inverse generator F : Y → X is simultaneously trained to maintain “cycle consistency”.
Generator F can transform an input y ∈ Y following x̂ = F (y), where x̂ ∈ X̂ . The idea is
that an input x should be penalized for being different from its reconstruction x̂ = F (G(x))
through a cycle consistency loss, and similarly for an input y in the other mapping direction:

LCycX = Ex [||F (G(x))− x||1]
LCycY = Ey [||G(F (y))− y||1]

(1)

Next, the generated domain Ŷ is constrained to be indistinguishable from domain Y,
which is estimated by training discriminators DY and DX , which produce logits predicting
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whether an input is from Y or Ŷ, or from X or X̂ , respectively, through an adversarial loss:

LGanX
= Ex [log(1−DY (G(x))] + Ex [log(DX(x))]

LGanY
= Ey [log(1−DX(F (y))] + Ey [log(DY (y))]

(2)

where generators G and F are updated such that LGanX
and LGanY

are minimized, and
discriminators DX and DY are updated such that LGanX

and LGanY
are maximized.

Finally, an input x should be identical to itself after mapping onto its own distribution
x̂ = F (x), and similarly for y, constrained through an identity loss:

LIdtX = Ex [||F (x)− x||1]
LIdtY = Ey [||G(y)− y||1]

(3)

Our model’s generators are each composed of encoder-decoder architectures similar to a
four-block U-Net (Ronneberger et al., 2015). Our discriminators each resemble a contracting
convolutional neural network. Network details are further elaborated in Appendix A.1.

2.2.2. Center Point and Cell Type Generation

We previously defined our target dataset as SMask = {(yi, ki)}NMask
i=1 , where y is a synthetic

colored segmentation mask tile and k is its matching cell center point distance map and bi-
nary cell expression masks. In this section, we aim to predict k ∈ K from a given Ki67 input
tile x, which contains the critical information for achieving simple end-to-end quantification.

To generate k̂, we add a second decoder branch Deck to our generator G so that it
generates outputs {(ŷ, k̂)} = G(x) through its main and secondary branches simultaneously.
For clarity, we hereafter denote the output of G through Deck as k̂ = GK(x), where k̂ ∈ K̂.
Our generator thus resembles G : X → {(Y,K)}. Our second decoder branch Deck follows
the same structure and input as its main decoder branch Decy, but we detach the input
embeddings from the gradient graph in this branch, since the proxy task already embeds all
necessary information for Deck in its encoder embeddings (i.e., cell expression and shape).

To train Deck, we add three learning objectives to the model. First, we introduce an
additional cycle consistency loss between real k ∈ K and reconstructed k̂ ∈ K̂:

LCycK = Ey,k [||GK(F (y))− k||1] (4)

To encourage generation of realistic cell center points and expressions, we add a new
discriminator DK which produces logits predicting whether an input is from domain K or
K̂, along with a new adversarial loss:

LGanK
= Ex [log(1−DK(GK(x)] + Ek [log(DK(k))] (5)

where generator GK is updated such that LGanK
is minimized, and discriminator DK

is updated such that LGanK
is maximized. Discriminator DK follows the same internal

structure as discriminators DX and DY .
Finally, we tie our identity constraint to the encoding of y by evaluating k̂ = GK(y) and

comparing it with its matching k:

LIdtK = Ey,k [||GK(y)− k||1] (6)

The model architecture and loss constraints introduced in this section encourage gener-
ation of convincing k̂ through k̂ = GK(x), which is a simple, single-stage process.
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2.3. Objective Function

Our model’s overall objective function combines Equations 1 through 6:

Lmodel = λLCycX + βLGanX
+ γLIdtX

+λLCycY + βLGanY
+ γLIdtY

+λLCycK + βLGanK
+ γLIdtK

(7)

where λ, β, and γ are scaling terms. We use λ = 10, β = 1, and γ = 10 in this paper,
following CycleGAN (Zhu et al., 2017). Lmodel is simultaneously minimized with respect to
generators G and F and maximized with respect to discriminators DX , DY , and DK .

2.4. End-To-End Scoring

During inference, we extract predicted cell center points and cell expressions from the gen-
erated k̂ = GK(x) using a local maxima algorithm (see Appendix A.2). We then aggregate

the cell counts at the slide level and calculate the slide-level scoring following Ki67+

Ki67++Ki67−
.

3. Results

3.1. Experiment Design

Model Comparison We compared our method against a state-of-the-art supervised model,
DeepLIIF (Ghahremani et al., 2022), and a supervised U-Net (Ronneberger et al., 2015),
both trained on the public Breast Tumor Cell Dataset (BCData) (Huang et al., 2020)
using identical settings as their original paper. Dataset details are provided in Section 3.4.

Error Metrics Mayo Clinic pathologists used a 20% cut-off for diagnosing Ki67-high vs.
Ki67-low cases based on the ASCO guideline (Giordano et al., 2022) in the clinical diagnosis
reports. Therefore, in our internal data experiments, we used the same cut-off value to
classify a case from each method’s case-level Ki67 score prediction. We then compared
results by evaluating precision, recall, accuracy, and F1 score. For our experiments on the
public BCData dataset, we instead evaluated mean absolute error (MAE) of cell counts
across images, used in the BCData paper. In the tables, arrows represent the direction of
optimal performance for each metric. Error metric details are provided in Appendix A.3.

3.2. Internal Dataset Experiments

We performed a two-split experiment to reflect the performance for the model in a general
use-case, where we randomly drew 1,532 cases in the train split and 594 cases in the test
split, with tiles corresponding to the cases aggregated into their split. Our framework
outperformed both supervised models on all error metrics except precision (Table 1).

We also evaluated the clinical use case of our proposed framework, mimicking deploy-
ment in a real-world setting where the model was trained on older data collected from 2012
to 2018 and then evaluated on cases collected after 2018. This division resulted in 1,532
cases in the train split and 594 cases in the test split, with tiles corresponding to the cases
aggregated into their split. Each model exhibited a reduction in performance in this exper-
iment – we observed that the after-2018 samples were more challenging due to an increase
in background noise, such as darker stroma staining (Table 2 and Figure 2).
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Table 1: Random train/test split; comparison against clinical diagnosis

Model Precision↑ Recall↑ Accuracy↑ F1↑

UNet 1.00 0.67 0.92 0.80
DeepLIIF 0.95 0.71 0.92 0.81

IHCScoreGAN 0.94 0.96 0.97 0.95

Table 2: Chronological train/test split; comparison against clinical diagnosis

Model Precision↑ Recall↑ Accuracy↑ F1↑

UNet 0.98 0.46 0.88 0.63
DeepLIIF 0.90 0.53 0.88 0.66

IHCScoreGAN 0.89 0.95 0.96 0.92

Figure 2: Qualitative comparison. Red and blue indicates positive and negative cell predic-
tion, respectively; magenta indicates situations where the supervised model failed.

3.3. Cutoff Analysis

In practice, cases very close to the classification cutoff may be equivocal. Using the results
in the clinical simulation experiment in Section 3.2, we relaxed the classification of equivocal
cases by using each interval from ±1% to ±10% around the 20% ASCO cutoff point (Figure
3) and classifying cases both predicted and labeled within the interval as correct. Each
model improved as the cutoff interval was relaxed, but we note that IHCScoreGAN exhibited
near-optimal performance when relaxing the cutoff interval by just ±2%, reporting 0.93,
0.99, 0.98, and 0.96 in precision, recall, accuracy and F1 score, respectively (see Appendix
B.1 for precise values).
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Figure 3: Effect of relaxing the case classification cutoff interval.

3.4. External Dataset Experiments

We validated our framework on a public breast cancer dataset, BCData, which features
1,338 Ki67 stain images taken at 40× magnification by a Motic BA600-4 scanner, along
with 181,074 manually annotated cell center points and cell types (Huang et al., 2020).
BCData splits 803, 133, and 402 images for training, validation, and testing, respectively.
We compared cell counting of our framework against two supervised models, both of which
were trained using BCData’s training images and cell annotation labels. The results are in
Table 3, where ‘MP’, ‘MN’, and ‘MA’ represents the MAE of positive, negative, and the
average value, respectively. Our unsupervised framework did not outperform the supervised
state-of-the-art DeepLIIF, yet still achieved comparable performance without needing the
annotation labels. Both ours and DeepLIIF outperformed all supervised baseline models
reported in (Huang et al., 2020). It is possible that the training sample size limited our
framework’s performance, suggested by our sample size experiments in Appendix B.3.

Table 3: Experiments on the external BCData dataset; comparison of cell counting

Model Trained On MP↓ MN↓ MA↓

UNet BCData 7.88 22.89 15.39
DeepLIIF BCData 5.44 12.23 8.83

IHCScoreGAN Internal 9.91 17.88 13.89
IHCScoreGAN BCData 6.43 14.32 10.37

4. Discussion

In this work, we proposed the first unsupervised framework, IHCScoreGAN, for end-to-
end Ki67 scoring. We validated our method on 2,126 breast cancer cases and showed high
agreement with clinical diagnoses provided by our pathologists. Experimental comparison
against pre-trained supervised methods on our internal dataset showed the significant ad-
vantage of our framework; pre-trained DeepLIIF often erroneously segmented stroma tissue
and missed/misclassified challenging cells, likely resulting from differences from its training
domain (Figure 2). On external data, we yielded close cell counting performance to the
fully-supervised state-of-the-art DeepLIIF, and superior performance to other supervised
models, without needing the training annotations. This work is limited by lacking com-
parisons with supervised models which are fine-tuned on our dataset, which is out of the
scope of this work due to the complexity of fairly assessing such an experiment. We do not
consider inter-observer variability in our clinical diagnoses in this work.
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Löıc Le Bescond, Marvin Lerousseau, Ingrid Garberis, Fabrice André, Stergios
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Appendix A. Additional Implementation Details

A.1. Network Design

Our generators G and F follow encoder-decoder architectures similar to a four block U-Net
(Ronneberger et al., 2015). The encoders consist of four contracting “down-convolution”
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blocks, each consisting of a convolution layer (with a kernel size of 4, stride of 2, and padding
of 1), followed by a LeakyReLU activation layer and an instance normalization layer. There
are 64 convolution channels in the first encoder block, which increase by a factor of 2 in each
block (up to 512 channels). The encoders have 8 additional residual blocks, each consisting
of an in-place convolution (with kernel size 3), again followed by a LeakyReLU activation
layer and an instance normalization layer. The decoders consist of 8 residual blocks of
the same definition, followed by four expanding “up-convolution” blocks, each consisting
of a transposed convolution layer (with a kernel size of 4, stride of 2, and padding of 1),
followed by a LeakyReLU activation layer and an instance normalization layer. There are
512 convolution channels in the first decoder block, which decrease by a factor of 2 in
the first three blocks (down to 64 channels) and end with a convolution onto 3 channels
in the last decoder block. The outputs of each down-convolution block in the encoder is
given a skip-connection into the corresponding up-convolution block in the decoder (i.e.,
the output of the third down-convolution block is concatenated with the output of the first
up-convolution block, which is the input of the second up-convolution block). Finally, we
perform a tanh activation on the outputs of the last decoder block, representing the final
model prediction.

As mentioned in Section 2.2.2, generator G additionally has a second decoder which
follows identical structure to the main decoder described above, including identical skip-
connections coming from the encoder, except that its gradients do not flow into the encoder
during backpropagation.

Our discriminators DX , DY , and DK consist of similar four-block encoders, described
above, followed by a convolution layer (with a kernel size of 4, stride of 1, and padding of
1) onto a single output channel. The result is a patch-wise real/fake logit prediction.

A.2. End-To-End Scoring Details

During inference, we achieve end-to-end scoring from the generated k̂ = GK(x) by using
a simple local maxima algorithm on the cell center point maps for instance detection,
followed by an argmax operation for each detected instance across the binary type maps
for cell expression prediction. We stitch together k̂ before we run the extraction algorithm,
which resolves prediction artifacts at the tile borders.

To formally define the local maxima algorithm, we further define {(m̂, b̂)} ∈ k̂, where
m̂ is the center point distance map and b̂ is the group of binary type segmentation masks.
The local maxima algorithm can then be defined as:

T = {argmax(b̂ij) : (m̂ij > ω) ∧ (m̂ij = max
i−δ≤h≤i+δ,j−δ≤w≤j+δ

m̂hw)} (8)

where δ is a given neighborhood size, ω is a given threshold, and (i, j) are indices of pixels
within the center point distance map m̂.

This is a common, simple 2D local maxima algorithm (e.g., (Brieu et al., 2019)). We used
the maximum_filter function implemented in the scipy package in Python and assigned a
pixel as a cell instance if it is its own local maxima (within δ pixels) and if it exceeds the
threshold ω. In our experiments, we used a neighborhood size δ of 25 and a threshold ω of
0.5.
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A.3. Formal Definition of Error Metrics

For our internal dataset experiments, we compare classification against a two-class ground
truth, based on counting of cell types. For this binary classification problem, we evaluate
precision, recall, accuracy, and F1 score, which are commonly used binary classification
metrics. Let us define correctly-classified positive cases as True Positive (TP), correctly-
classified negative cases as True Negative (TN), incorrectly-classified positive cases as False
Negative (FN), and incorrectly-classified negative cases as False Positive (FP). We then
formally define our binary classification error metrics:

Precision =
TP

TP + FP

Recall =
TP

TP + FN

Accuracy =
TP + TN

TP+ TN+ FP + FN

F1 Score =
2 ∗ TP

2 ∗ TP + FP + FN

(9)

For external dataset experiments on BCData, we used Mean Absolute Error (MAE) to
compare cell counting performance. MAE was used by BCData authors to evaluate cell
counting on their dataset (Huang et al., 2020), formally defined as:

MAEcategory =

∑n
i=1 |c

category
i − ĉcategoryi |

n
(10)

where category represents cell counts per biomarker expression or total cell counts on a
per-image basis, and ccategoryi and ĉcategoryi are the ground truth and predicted cell counts
per category, respectively.

A.4. Training Hyperparameters

In each experiment, we trained our model using 40,000 training iterations, a learning rate of
0.0002, a batch size of 4, and an Adam optimizer. Each value was selected through a multi-
run grid search in order to optimize the model’s quantitative performance on a separate
internal test dataset which is distinct from the data used in the experiments in this work.

A.5. Hardware Details

We trained our model and performed all experimental validations in this paper using an
NVIDIA® RTX™ A4000 GPU with 16GB memory. Our CPU was a 12-core, 3.2 Ghz Intel®

Xeon® w5-3435X.

Appendix B. Supplementary Experimental Results

B.1. Cutoff Analysis Details

This table corresponds to the exact values of the points in the plot in Figure 3.
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Table 4: Effect of relaxing 20% Ki67-positive cutoff threshold for case stratification

Cutoff
DeepLIIF IHCScoreGAN

Precision Recall Accuracy F1 Precision Recall Accuracy F1

20% 0.39 0.86 0.67 0.53 0.89 0.95 0.96 0.92
20± 1% 0.39 0.86 0.67 0.53 0.90 0.96 0.97 0.93
20± 2% 0.40 0.88 0.68 0.55 0.93 0.99 0.98 0.96
20± 3% 0.41 0.90 0.68 0.57 0.93 0.99 0.98 0.96
20± 4% 0.43 0.93 0.69 0.59 0.94 0.99 0.98 0.97
20± 5% 0.46 0.94 0.70 0.62 0.95 0.99 0.98 0.97
20± 6% 0.48 0.95 0.70 0.64 0.96 0.99 0.99 0.98
20± 7% 0.51 0.97 0.71 0.67 0.96 1.00 0.99 0.98
20± 8% 0.53 0.98 0.72 0.69 0.97 1.00 0.99 0.98
20± 9% 0.56 1.00 0.73 0.72 0.97 1.00 0.99 0.98
20± 10% 0.60 1.00 0.75 0.75 0.98 1.00 0.99 0.99

B.2. Ablation Studies

We evaluated the effectiveness of 1. including random color intensities when creating the
synthetic color masks, and 2. detaching gradients from the inputs of the DecK branch. We
otherwise trained and evaluated our model in the same way as Section 3.2. We show overall
better performance by including these elements of our proposed approach (Table 5).

Table 5: Model ablation studies; comparison against clinical diagnosis

Model Precision Recall Accuracy F1

IHCScoreGAN, no color variation 0.98 0.82 0.96 0.90
IHCScoreGAN, no detach 0.98 0.77 0.95 0.86
IHCScoreGAN 0.89 0.95 0.96 0.92

B.3. Sample Size Experiments

We evaluated the data dependency of IHCScoreGAN by gradually increasing the number
of randomly-selected samples seen by the model during training. We used the same train
and test splits as in Section 3.2. To evaluate model stability, we trained our framework five
separate times with the same training samples and then calculated the mean and standard
deviation of each error metric. Our results are in Table 6, where N represents the number
of unique samples seen by the model during training.

B.4. Cross Validation Studies

We evaluated a 5-fold cross validation of our model for case-level classification, where case-
level folds are chosen randomly across our entire internal dataset. Specifically, our training
splits consisted of approximately 1701 cases, and our testing splits consisted of approxi-
mately 425 cases, with the corresponding tiles aggregated into the respective split in each
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Table 6: IHCScoreGAN sample size experiments; comparison against clinical diagnosis

N Precision Recall Accuracy F1

100 0.81±0.18 0.93±0.10 0.81±0.17 0.74±0.16
250 0.85±0.17 0.91±0.09 0.87±0.14 0.82±0.13
500 0.94±0.04 0.96±0.06 0.89±0.07 0.86±0.06
800 0.94±0.06 0.91±0.09 0.94±0.03 0.87±0.04
1000 0.91±0.05 0.94±0.08 0.90±0.06 0.89±0.03
2000 0.93±0.04 0.95±0.07 0.93±0.06 0.90±0.04
4000 0.89±0.07 0.92±0.08 0.93±0.05 0.89±0.02
8000 0.97±0.01 0.94±0.06 0.95±0.01 0.88±0.03
16000 0.96±0.05 0.95±0.06 0.93±0.03 0.88±0.03
32000 0.96±0.05 0.96±0.06 0.94±0.03 0.90±0.01
40000 0.95±0.06 0.95±0.06 0.94±0.03 0.89±0.03

K-fold experiment. We additionally evaluated DeepLIIF and U-Net on each testing split,
for reference. The averaged results across all five splits is shown in Table 7.

Table 7: Cross-validation studies; comparison against clinical diagnosis

Model Precision Recall Accuracy F1

UNet 0.99±0.01 0.63±0.03 0.91±0.01 0.77±0.02
DeepLIIF 0.96±0.02 0.67±0.04 0.92±0.01 0.79±0.02

IHCScoreGAN 0.94±0.09 0.90±0.06 0.96±0.02 0.91±0.03
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