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ABSTRACT

Composed Image Retrieval (CIR) retrieves relevant images using a reference im-
age and accompanying text that describes how the desired images differ from the
reference. However, the commonly used evaluation metric Recall@k only checks
if the target image is retrieved, without considering the relevance of other im-
ages to the query, potentially leading to user dissatisfaction. We introduce Com-
posed Image Retrieval Query Relevance Score (CIRQRS), an evaluation metric
that scores each retrieved image based on its relevance to the query, offering a
comprehensive evaluation. CIRQRS is trained using a reward model objective to
prefer highly relevant, positive images over less relevant, negative ones. We pro-
pose a strategy motivated by self-paced learning to dynamically adjust the nega-
tive set based on the relevance of each image by using CIRQRS’s current training
status. To validate CIRQRS’s ability to measure relevance, we created the human-
scored FashionIQ (HS-FashionlQ) dataset and compared it with scores from hu-
man evaluators. CIRQRS correlates with human scores 2.625 times better than
Recall @k, highlighting its superior ability to capture relevance. Additionally, by
ranking images based on their CIRQRS, we check if the target image appears in
the top k. The results show that CIRQRS achieves state-of-the-art performance on
two representative CIR datasets, CIRR and FashionIQ.

1 INTRODUCTION

Recent developments in multi-modal Al (Radford et al., 2021; Li et al., 2022; 2023) have trans-
formed image search by using text and images as inputs, moving beyond traditional text-only
queries. Using a bimodal query (a reference image and relevant text), Composed Image Retrieval
(CIR) (Lee et al., 2021; Bai et al., 2024; Chen et al., 2024) retrieves images from a large corpus
based on user-specified modifications. Figure | shows an example where a user provides a shirt
image with the text ‘blue t-shirt with short sleeves.” The system retrieves images that reflect these
queries, such as modifications in color or style. CIR enhances search precision, particularly in cases
where describing visual details is challenging with text alone, making it valuable for applications in
e-commerce and internet search.

Despite progress in CIR, the widely adopted evaluation metric, Recall@k, falls short of capturing
user satisfaction. While user satisfaction improves with the number of relevant items retrieved (Al-
Maskari & Sanderson, 2010), Recall @k only checks whether the target image is retrieved, ignoring
the relevance of other retrieved images. As shown in Figure |, Recall@k scores 0 despite retrieving
relevant images or 1 despite including irrelevant images. Defining relevance-based metrics in CIR is
challenging due to the complexity of attribute modifications (e.g., color and style) and the difficulty
of quantifying the relevance of each retrieved image.

We propose Composed Image Retrieval Query Relevance Score (CIRQRS), an evaluation metric that
addresses the limitation of Recall@k. CIRQRS assigns score to each retrieved image based on its
relevance to the query. To achieve this, we follow a reward model training objective (Ouyang et al.,
2022), where CIRQRS is trained to maximize the likelihood that a highly relevant image, positive
image, is preferred over a less relevant image, negative image. CIR datasets typically consist of
triplets (reference image, relative text, and target image), and we set the target image most relevant
to the query as positive. However, selecting appropriate negatives is challenging, as they are not
predefined and must be less relevant than the target, but not entirely irrelevant. To overcome this
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Figure 1: Results using Bi-BLIP4CIR (Liu et al., 2024) (top) and CLIP4CIR (Baldrati et al., 2023) (bottom)
with FashionlQ dataset (Wu et al., 2021). In the top example, Recall@5 is 0 despite retrieving relevant images
and in the bottom example, Recall@5 is 1, but the images are irrelevant. This misalignment highlights the
problem of Recall and the advantage of our new metric, CIRQRS, which better aligns with human judgments
and preferences.

problem, we propose a new training strategy inspired by self-paced learning, which dynamically
adjusts the negative set based on the difficulty and relevance of each image according to the current
training status of the model. This approach introduces increasingly difficult examples over time,
aiding convergence and enhancing the performance of CIRQRS.

To evaluate the validity of CIRQRS in measuring relevance, we created the human-scored FashionIQ
(HS-FashionlQ) dataset and compared CIRQRS with scores provided by human evaluators. Partici-
pants were shown two sets of retrieved images per query from different CIR models and rated their
relevance on a 5-point Likert scale (Likert, 1932). We analyzed the correlation between CIRQRS
and human scores, as well as Recall@k and human scores. The results show that CIRQRS achieves
a Spearman correlation (Spearman, 1961) of 0.42 with human scores, 2.625 times higher than 0.16
in Recall@k. Additionally, when CIRQRS was higher on a set of retrieved images, users preferred
that set 75% of the time, compared to 58% for Recall@k. This confirms CIRQRS’s better alignment
with user preferences. The HS-FashionlQ dataset will be publicly released, with additional survey
details provided in Section 4.

Additionally, we evaluate the effectiveness of CIRQRS using Recall@k by sorting the candidate im-
ages according to CIRQRS and retrieving the top-k images. If the goal of maximizing the preference
for relevant images is achieved, the target image should rank higher than others in the corpus. We
assess CIRQRS’s performance with Recall@k on two datasets: CIRR (Suhr et al., 2018) and Fash-
ionlQ (Wu et al., 2021). The results show that CIRQRS achieves state-of-the-art CIR performance
on both datasets.

In summary, our contributions are as follows:

* We propose CIRQRS, an evaluation metric in CIR that overcomes the limitations of Recall@k
by scoring each retrieved image’s relevance to the query, providing a user-centric performance
measure.

* We introduce a self-paced learning-inspired strategy that dynamically refines the negative im-
age set during training, based on the CIRQRS’s current perception of image relevance. This
enhances the CIRQRS’s ability to rank images based on the query relevance.

* We created the human-scored HS-FashionlQ dataset to evaluate the validity of CIRQRS by
comparing it with human-provided scores. The results show that CIRQRS correlates 2.625
times more strongly with human ratings than Recall@k.

L]

We evaluate CIRQRS’s effectiveness using Recall@k, demonstrating state-of-the-art perfor-
mance on the CIRR and FashionlQ datasets by ranking target image higher in the candidate
set.
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2 RELATED WORK

Vision-Language Foundation Model. Vision-Language Models (VLMs) have gained attention
for their ability to integrate multimodal data. Transformer-based architectures effectively handle
both visual and language inputs (Li et al., 2019; Lu et al., 2019). Contrastive learning methods,
which align visual and language modalities, have significantly improved performance in VLMs (Jia
et al.,, 2021; Radford et al., 2021). Research has also explored architectures that combine features
from both modalities. For instance, Flamingo (Alayrac et al., 2022) and BLIP (Li et al., 2022) use
cross-attention, where visual hidden states from the vision encoder are inserted into cross-attention
layers within the text encoder layers. BLIP2 (Li et al., 2023) and QWEN (Bai et al., 2023) utilize
pre-trained image and text encoders with learnable networks that bridge the gap between modalities.
CIRQRS adopts BLIP2, using its image and text encoders with the Q-former module to handle
modality gaps. We chose BLIP2 for its efficient combination of image and text processing, requiring
minimal training of the Q-former module.

Composed Image Retrieval. The CIR task retrieves images using multimodal input features.
A common approach is feature fusion, where the reference image and text are jointly embedded
and compared against embeddings of candidate images (Vo et al., 2019; Dodds et al., 2020; Liu
et al., 2021; Baldrati et al., 2023). Bi-BLIP4CIR (Liu et al., 2024) trains the text encoder using bi-
directional training to capture both text directions of a given relation. CASE (Levy et al., 2024) lever-
ages BLIP (Li et al., 2022) cross-attention architecture to perform an early fusion between the modal-
ities. Other approaches transform images into pseudo-word embeddings or sentence-level prompts
for text-to-image retrieval (Liu et al., 2023; Saito et al., 2023; Bai et al., 2024). MGUR (Chen et al.,
2024) introduces an uncertainty loss for coarse-grained retrieval, and SPN4CIR (Feng et al., 2024)
proposes a data generation method to scale positive and negative samples using multimodal LLMs.
However, all previous works are evaluated using the metric Recall@K, which has inherent limita-
tions in evaluating retrieved image sets. CIRQRS addresses this issue by proposing a new evaluation
metric that captures the overall relevancy of the retrieved set rather than relying solely on target
images as an anchor.

Self-Paced Learning. Curriculum learning trains models with progressively harder samples to im-
prove the model performance (Bengio et al., 2009). Self-paced learning extends this by dynamically
determining the difficulty of each sample during training based on the model perception (Kumar
et al., 2010). Further research explores application across tasks (Lee & Grauman, 2011; Tang et al.,
2012) with various criteria used to rank samples, such as objectness function (Jiang et al., 2014) or
prior knowledge (Jiang et al., 2015). To train CIRQRS as an accurate scoring model, it is crucial
to select an appropriate negative image that is less relevant than the target image. We use a self-
paced learning-inspired strategy that dynamically adjusts the negative set based on the difficulty and
relevance of each image according to the CIRQRS’s training progress.

3 METHODOLOGY

3.1 OVERVIEW

We denote a CIR datasetas D = {d; | i = 1, ..., N4}, where each data point consists of a reference
image, relative text, and a target image, i.e., d; = {z1,, xr,,ys, }. The goal of CIR is to retrieve a set
of images from the entire candidate image corpus I = {I; | j = 1,..., Nipg4}, including the target

image yr, where the retrieved images reflect the specified relative text 7 while preserving the visual
properties of the reference image x;. However, the current evaluation metric in CIR, Recall @k, only
checks if y7 is among the top-k retrieved images without considering the relevance of other retrieved
images to the query, potentially causing user dissatisfaction (Al-Maskari & Sanderson, 2010). We
propose CIRQORS, a new evaluation metric that scores each retrieved image based on its relevance
to the query. As shown in Figure 2, CIRQRS is trained to maximize the probability that the highly
relevant image is preferred over the less relevant, negative image. To select appropriate negatives,
we employ self-paced learning, defining the negative set as the highest CIRQRS images below the
target and progressively reducing the negative set size to focus on increasingly difficult negatives as
training progresses. The training algorithm for CIRQRS is provided in Appendix A.
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Figure 2: Overview of CIRQRS. During training, a negative image set is defined by scoring each candidate
image using the current CIRQRS and taking the top k images with CIRQRS lower than the target image. We
calculate the CIRQRS of the target image along with one random negative image and use a KL-div loss to
maximize the score of the positive (highly relevant) image and minimize the score of the negative (less relevant)
image.

3.2 SCORING MODEL

Building on recent trends in reinforcement learning with human feedback (Ouyang et al., 2022),
which uses a reward model to guide generative model training, we develop a scoring model that
emulates the objective of a reward model. For each candidate image I; € I, we define the relevance
score to the query as the inner product of the query and image embeddings:

QEimg(z1,), 71,) - Q(Eimg (1))

S(xlﬂxT“Ij): - . (1)

Here, Ejy,4 is the BLIP-2 image encoder, () denotes the Q-Former, and 7 is the learned BLIP-2
temperature. The reference image embedding serves as input to the Q-Former and the text, aligning
image and text modalities via cross-attention.

To train CIRQRS to assign higher scores to highly relevant images over less relevant ones, we model
the latent preference distribution p* using the Bradley-Terry model (Bradley & Terry, 1952), where
I, represents the positive (highly relevant) image and I,, the negative (less relevant) image:
exp(s(zr,ar,1,))
€$p(8($[,13T,Ip)) —|—ea:p(s(a:1,xT,In)) 2)
=o(s(xr,zr, Iy) — s(xr, zp, I,)).

Given the triplet dataset, we set the target image most relevant to the query as the positive I, = y;.
To include the negative image I,,, we define the dataset D* = {(z, 27, Ip, In) | (z1,27,1p) €
D, I, € I\ I,}. The model is trained by optimizing the negative log-likelihood (NLL) loss to
ensure query-relevant positive images score higher than negatives:

Lonateh = _E(asl,wT,Ip,In)N]D)* [10g(0’(3($1, T, Ip) - 5(-77[; xrT, In)))] 3)
Minimizing this NLL loss is the same as minimizing the KL divergence between p* and a target
distribution p = [1, 0] that indicates the positive image should always score higher than the negative.

p*(Ip = Iy | xp,xp) =

3.3 NEGATIVE SET DEFINITION

Due to the large size of D*, training on the full dataset is infeasible. To resolve this, we approximate
Lmatcn for each epoch by randomly selecting one image from a pool of negative images for each
query as the negative image I,,. However, setting the negative pool as I \ {I,} and optimizing
the approximated L,,q¢cp 1S likely to be sub-optimal, as it may continuously select easy negative
with a low CIRQRS. To address this, we build a smaller and more appropriate negative set for each
query. For the i-th data point d; = (zr,,z1,,y5,) € D, the set of excluded images is defined as
Heasyi = {I ‘ Iel \ {yfi}7 S(x1i7xTi7y1i) > S(quxTuI)}' NOtably’

VI € Heasyiv - IOg(U(S(xlia LT s yI,i) - S(xji,J?Ti,I))) ~ 0, “4)
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and the contribution of Icqsy t0 Linarcn is close to zero. Therefore, we approximate the original
loss (3) by focusing on the images in I \ L.qs,, for each query, which the model considers ‘hard’.
Thus, we define the hard-dataset D}, ., = {(zr, zny, Ip,, Iny) | (21,21, Ip,) = di € D, I, €
I\ Lgsy, } as our new negative set. Assuming further training keeps the model in parameter space
where the loss for D* \ D} . remains small, we reframe the original objective by minimizing the
following loss function:

’

‘Cmatch = ]E(:EnyL’T-,Ip-,In)ND;;aTd [_ IOg(O'(S(LL'[, LT, IIJ) - S(.’)L‘]7 rT, I’ﬂ)))] &)

Defining the boundary and obtaining I \L.4s,, is challenging. The most straightforward approach
would be to select n,., number of images with the highest CIRQRS for each query. However,
this increases the chance of false negatives (relevant but non-target images) being included in the
negative set, which disrupts model training (quantitative and qualitative evidences in Appendix B).
To address this, we define the negative set by selecting n,,., images with the highest CIRQRS that
are lower than the target image for each query, as shown below.

I \Heasyi = TOp-TLneg ({I ‘ Iel \ {yli}7 S(x1i7xTi7yIi) > s(xlml'TmI)}) (6)

Our novel approach to defining hard negatives stems from our training objective. By designating the
target image as the positive and a random image from the negative set as the negative, the model’s
objective is to increase the target image score while lowering the negative image score. Our approach
excludes images with higher scores than the target from the negative set, thus relevant images are
likely to retain high scores. This approach prevents well-matched images from being treated as
negatives, allowing relevant images to achieve higher scores even if they are not labeled as targets.

To further aid convergence, we employ a curriculum learning strategy that gradually increases data
difficulty. In the initial epochs, we define the negative set Dj . as I\ {I,}, randomly selecting
negatives from the entire candidate corpus. At regular intervals, we update the negative set using
the learned CIRQRS to form new D} .. The size of D} . is progressively reduced, exposing the
model to increasingly challenging examples, as larger D} . will include easier negatives.

4 HS-FASHIONIQ DATASET

Evaluating the effectiveness of a new metric such as CIRQRS is challenging, especially in assessing
how well the metric reflects the relevance of retrieved images to the given query. This highlights the
necessity of creating a human-scored dataset in CIR for accurate assessment. Hence, we conducted
a user survey with 61 participants to create the Human Scored-FashionIQ (HS-FashionlQ) dataset.
We selected the FashionlQ dataset due to its high relevance and applicability to a broad audience,
mirroring the search functionalities of e-commerce platforms.

Data Collection Method. Each question in the user survey consisted of two sets of retrieved im-
ages, each consisting of the top 5 results from different CIR models. For every question, two CIR
models were randomly selected from the following four: CLIP4ACIR (Baldrati et al., 2023), Bi-
BLIP4CIR (Liu et al., 2024), CoVR-BLIP (Ventura et al., 2024), and SPRC (Bai et al., 2024). We
provided queries and retrieved images from the ‘shirts’ or ‘top tees’ categories of the FashionIQ
dataset to participants. Each participant was given 50 questions with a total of 100 sets of retrieved
images, covering 3,050 queries in the FashionlIQ validation set.

Annotation Methodology. For each question in the
survey, participants rated each set of retrieved im-  Table 1: HS-FashionIQ Dataset: Each query has
ages on a 5-point Likert scale (Likert, 1932), where two sets of retrieved images from different CIR
a score of 5 indicates a strong match with the query. models, scored based on their relevance to the
This allows us to analyze the correlation between hu-  query.

man scores and metrics such as recall and CIRQORS.

Additionally, participants chose the preferred set be- #Total  #Shirts #Toptee #Invalid
tween the two sets provided, further assessing the Queries Queries Queries Queries
alignment of recall and CIRQRS with human prefer- 3.050 1.800 1.250 307

ences. To our knowledge, this is the first CIR dataset
with human-scored retrieved images. An example of
data from HS-FIQ is shown in Figure 5, with a detailed explanation of the data collection process in
Appendix C.
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Modality Redundancy Check. While CIR should consider both the reference image and relative
text, some examples focus solely on either the image or the text. CASE (Levy et al., 2024) high-
lighted modality redundancy in FashionlQ, indicating that text can sometimes be more influential
than the image. We instructed participants to consider both input modalities equally. We asked them
to flag instances where one modality seemed irrelevant to the retrieved images, to exclude data un-
clear for human evaluation. A total of 307 queries are treated as irrelevant and excluded, leaving us
with 2,743 valid queries in the HS-FashionIQ Dataset.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate the validity of CIRQRS on the HS-FashionIQ dataset to assess how well it
scores retrieved images based on their relevance to the query, measuring correlation with human
scores and alignment with human preferences. Additionally, we evaluate CIRQRS with Recall @k
by selecting the top-k CIRQRS images to check if the target is included, as higher scores for rel-
evant images should result in a higher ranking among candidates. For Recall@k evaluation, two
benchmarks are used: FashionIlQ (Wu et al., 2021) and CIRR (Suhr et al., 2018).

Implementation. We used BLIP-2 (Li et al., 2023) with a ViT-G image encoder. Following previous
work (Baldrati et al., 2023), we resized images to 224x224 with a 1.5 padding ratio. CIRQRS
is trained with AdamW optimizer (Loshchilov, 2017) for 50 epochs on CIRR and 30 epochs on
FashionlQ. We defined the negative set ng.y times, warming up CIRQRS with the entire candidate
corpus as negatives for the first | nepoch/Mde fj epochs. After the warmup, we initially defined the
negative set with a size of n,,.4, then redefined it every |nepoch /Mdes ] epochs, halving its size each
time. We set ngey to 5 and 6 for FashionIQ and CIRR, respectively. We conducted our experiments
using a single Nvidia RTX 3090 GPU.

5.2 EVALUATION WITH HS-FASHIONIQ DATASET

Correlation with Human Score. We evaluate CIRQRS correlation to human scores. Given a query
{z1,, xT, }, each participant received two different sets of retrieved images, S1, and S,,, and Irated
them based on their relevance to the query. To calculate the overall CIRQRS of a set, we averaged
the CIRQRS of the five retrieved images within the set as the overall score. The following equation
calculates for the i-th query and the j-th retrieved set:

1
CIRQRS(S;,) = & > s(xr,xr, 1) (7)
IESji

With 2,743 valid queries, we obtained 5,486 sets with Recall@5, CIRQRS, and human scores. Since
all metrics deviate from normality based on the Shapiro-Wilk test (Shapiro & Wilk, 1965) (p <
.05), we used the Spearman correlation (Spearman, 1961), which is suitable for non-parametric
comparison. Table 2 presents the correlation results for Recall@5 and CIRQRS with human scores,
where a higher statistic indicates stronger alignment with human judgments, and a p-value' below
.05 indicates statistical significance.

Table 2: Spearman correlation of human score

with Recall@5 and CIRORS. Table 3: Preference rate of Recall and CIRQRS.

Metric Statistic P-value Metric Preference Rate
o Recall@5 0.58
Recall@5 0.16 p < .001 CIRORS 075

CIRORS 042  p<.001***

Table 2 shows that both CIRQRS and Recall @5 are statistically significance based on their p-values.
However, CIRQRS demonstrates a stronger correlation with human scores, with a correlation value
of 0.42, compared to Recall@5, which has a weaker correlation of 0.16. Since human scores are
based on the relevance of the retrieved image to the query, this substantial difference suggests that

*** in Table 2 indicates p < 0.001
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Table 4: Performance comparison on the FashionlQ validation dataset across different methods, The best
results are highlighted in bold, and the second-best are underlined.

Method Dress Shirt Toptee Average

R@10 R@50 | R@10 R@50 | R@10 R@50 | R@10 R@50  Avg.
CoSMo (Lee et al., 2021) 25.64 50.30 2490  49.18 29.21 57.46 26.58 5231 3945
CASE (Levy et al., 2024) 47.44 69.36 48.48 70.23 50.18 72.24 48.70  70.61  59.66
AMC (Zhu et al., 2023) 31.73 59.25 30.67 59.08 36.21 66.06 32.87 61.46  47.17

CoVR-BLIP (Ventura et al., 2024) ~ 44.55 69.03 48.43 67.42 52.60 74.31 48.53 70.25  59.39
CLIP4CIR (Baldrati et al., 2023) 33.81 59.40 39.99 60.45 41.41 65.37 38.40 61.74  50.07

Bi-BLIPACIR (Liu ct al., 2024) 4209 6733 | 4176 6428 | 4661 7032 | 4349 6731  55.40
FAME-ViL (Han ct al., 2023) 4219 6738 | 47.64 6879 | 50.69  73.07 | 46.84 6975 5829
TG-CIR (Wen et al., 2023) 4522 69.66 | 52.60 7252 | S6.14  77.10 | 5132 73.09 6221
DRA (Jiang et al., 2023) 3398 60.67 | 4074 6193 | 4209 6697 | 3894 63.19 5106
Re-ranking (Liu et al., 2023) 48.14 7143 | 5015 7125 | 5523 7680 | 5117 7316  62.17
CompoDiff (Gu et al., 2023) 4065 57.14 | 36.87 5739 | 4393 6117 | 4048  58.57  49.53
SPRC (Bai et al., 2024) 49.18 7243 | 5564 73.89 | 59.35 78.58 | 5472 7497 64.85
CIRQRS-Model 4844 7204 | 5658 7424 | 59.66 78.63 | 54.89 7497 64.93

CIRQRS aligns more consistently with human evaluations, providing a more reliable measure of
relevance than Recall @5.

Alignment with Human Preferences. We evaluate CIRQRS by comparing its alignment with hu-
man preferences by analyzing the preference rate, which is the conditional probability that Set 1 is
preferred when either CIRQRS or Recall@5 for Set 1 is greater than or equal to Set 2. Specifically,
we define preference rate as:

P(Set 1 > Set 2| fevai(Set 1) > fevar(Set 2)), 8)
where feyar € {CIRQRS,Recall@5}.

Table 3 shows that Set 1 is preferred 58% of the time when its Recall @5 is greater than or equal to
Set 2, but is preferred 75% of the time in CIRQRS. This indicates CIRQRS aligns more closely with
human preferences than Recall@5.

P(Set 1 > Set 2| C(Set 1) > C(Set 2) AR(Set 1) = R(Set 2)), )

where C and R represent CIRQRS and Recall @K, respectively. The result of 0.73 indicates Set 1
is preferred 73% of the time when CIRQRS is higher, even when Recall@k is equal. This occurs
because Recall@k only checks whether the target image is present in the set, without considering
how relevant images are. As a result, when both sets either include or exclude the target image,
Recall @k fails to capture any differences in the quality of relevance of the other images. In contrast,
CIRQRS takes these factors into account, providing a more detailed assessment that better aligns
with human preferences.

5.3 COMPARISON WITH STATE-OF-THE-ART CIR MODELS

We evaluate CIRQRS using Recall@k. Although CIRQRS is not designed as a CIR model, if it
accurately scores images based on query relevance, the target image should rank high among the
candidates. To test this, we sort all candidate images based on their CIRQRS and check whether the
target image appears in the top k. This evaluation is performed on two benchmarks: FashionIQ and
CIRR. We denote our approach as CIRQRS-Model, as it was originally designed as a metric rather
than a model, to avoid confusion.

Table 4 summarizes the performance of various methods on the FashionlQ dataset. CIRQORS-
Model consistently ranks first or second across all categories and achieves the best overall average.
CIRQRS-Model achieves an improvement in Recall@10, gaining 0.96% on ’shirt’ and 0.17% on
average Recall@ 10 over the second best method, indicating the advantage of its training objective
to highly score and rank the preferred target image and relevant images. Previous work (Levy et al.,
2024) highlights the issue that the FashionlQ dataset has high modality redundancy, where text is
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Table 5: Performance comparison on the CIRR test dataset across different methods, where Recall; @K repre-
sents Recallsubset@K. The best results are highlighted in bold, and the second-best are underlined.

Method Recall @K Recall; @K Average

K=1 K=5 K=10 K=50 | K=I K=2 K=3 | R@5+Rs@1 Overall
CLIP4CIR (Baldrati et al., 2023) 38.53 6998 81.86 9593 | 68.19 85.64 94.17 69.09 76.33
Bi-BLIP4CIR (Liu et al., 2024) 40.15  73.08 83.88 96.27 | 72.10 88.27 9593 72.59 78.53
CompoDiff (Gu et al., 2023) 2235 5436 7341 91.77 | 3584 56.11 76.60 45.10 58.63
CASE (Levy et al., 2024) 48.00 79.11 87.25 97.57 | 75.88 90.58  96.00 77.50 82.06
CASE Pre-LaSCo.Ca (Levy et al., 2024) 4935 80.02 88.75 97.47 | 7648 90.37 9571 78.25 82.59
TG-CIR (Wen et al., 2023) 4525 7829 87.16 97.30 | 72.84 89.25 95.13 75.57 80.75
DRA (Jiang et al., 2023) 39.93  72.07 8383 9643 | 71.04 87.74 94.72 71.56 77.97
CoVR-BLIP (Ventura et al., 2024) 49.69 78.60 86.77 9431 | 75.01 88.12 93.16 76.81 80.81
Re-ranking (Liu et al., 2023) 50.55 81.75 89.78 97.18 | 80.04 91.90 96.58 80.90 83.97
SPRC (Bai et al., 2024) 5196 82.12 89.74 97.69 80.65 92.31  96.60 81.39 84.44
CIRQRS-Model 53.81 8330 9092 98.27 | 79.59 92.15 96.39 81.45 84.92

dominant in retrieval tasks. This advantages text-based methods such as Bi-BLIP4CIR (Liu et al.,
2024) and SPRC (Bai et al., 2024). Despite this, CIRQRS-Model achieves state-of-the-art perfor-
mance, improving the overall average recall by 9.53% and 0.08% compared to Bi-BLIP4CIR and
SPRC, respectively. This demonstrates CIRQRS’s ability to accurately score image relevance to the
query.

We also evaluate CIRQRS-Model on CIRR, a general domain dataset. Table 5 reports various
model performances on the CIRR dataset. CIRQRS-Model achieves the best performance across
Recall@k metrics, especially on Recall@1 and Recall@5, where it outperforms the current SoTA
of SPRC (Bai et al., 2024) by 1.85% and 1.18% respectively. This shows that CIRQRS-Model fol-
lows its training objective well and can place the target image on a high rank even compared with
traditional CIR models. Despite having a high performance on Recall, @k, which retrieves from a
subset containing relevant images with the target, CIRQRS-Model did not perform the best out of
the other methods. This stems from the design of CIRQRS-Model, where even non-target images
can score higher than the target if they match the query well. The negative set is defined as images
with lower CIRQRS than the target, preventing relevant images from being selected as negatives
and allowing them to be ranked higher than the target. Despite this, CIRQRS-Model achieves SoTA
performance on both the Recall@5 + Recall; @1 average and the overall average. These results
highlight CIRQRS’s ability to score images accurately.

5.4 EVALUATION OF CIR MODELS WITH CIRQORS

We demonstrates the applicability of CIRQRS as a metric by evaluating four CIR mod-
els—CLIP4CIR, Bi-BLIP4CIR, CoVR-BLIP, and SPRC—on the FashionlQ dataset. For a given
query (xy,, z7,), where S; denotes the set of retrieved images, CIRQRS is computed as:

1
CIRQRS(S;) = Bl > s(ar, o, 1) (10)
U res;

Table 6 shows the results and highlights that CIRQRS decrease as the size of the retrieved image
set increases. This decrease occurs because the inclusion of irrelevant images reduces the average
relevance of the retrieved set. The ranking of the CIR models based on CIRQRS scores is SPRC >
CoVR-BLIP > Bi-BLIP4CIR > CLIP4CIR, demonstrating that higher-ranked models align more
closely with human preferences.

To validate these findings, human preference rates for the four CIR models were computed us-
ing the metric defined in Equation 8. Since these CIR models do not inherently assign scores to
retrieved images, their cosine similarity scores were used as proxies. The computed human pref-
erence rates for the models are as follows: SPRC (0.7339), CoVR-BLIP (0.7276), Bi-BLIP4CIR
(0.6700), and CLIP4CIR (0.6608). Two key conclusions arise: (1) human preference rates align
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Table 6: Performance comparison on the FashionIQ validation dataset using metric CIRQRS.

D Shirt Topt A
Method ress ir optee verage

CIRQRS@10 CIRQRS@50 ‘ CIRQRS@10 CIRQRS@50 ‘ CIRQRS@10 CIRQRS@50 ‘ CIRQRS@10 CIRQRS@50  Avg.

CLIP4CIR 67.97 66.35 68.61 66.51 67.62 65.88 68.07 66.25 67.16
Bi-BLIP4CIR 71.03 68.86 69.90 67.51 70.16 67.64 70.36 68.00 69.18
CoVR-BLIP 72.07 69.78 71.41 68.76 71.38 68.64 71.62 69.06 70.34
SPRC 72.26 69.99 71.89 69.27 71.76 69.07 71.97 69.44 70.71

with CIRQRS-based rankings, confirming that CIR models with higher CIRQRS scores correspond
to higher human preference rates, and (2) CIRQORS achieves the strongest correlation with human
preference rates (0.7524), highlighting its reliability as an evaluation metric. Based on these results,
we believe that evaluating CIR models with CIRQRS in future research will effectively reflect human
preferences, making it well-aligned with the practical applications of CIR.

5.5 ABLATION STUDIES

Effect of Negative Set Definition Strategy. To evaluate the effectiveness of our approach to defin-
ing the negative set, we compare three different strategies. The Baseline method defines the negative
set as the entire candidate corpus I\ {I,}. The Top method selects the top n,,., images with the
highest CIRQRS as the negative set, initializing n,.4 at 1000, which yields the best performance.
We compared our strategy, which defines the negative set as the top n,,.4 images with CIRQRS lower
than the target.

Table 7 shows the baseline method performs reasonably well compared with other methods in Sec-
tion 5.3. The Top approach improves performance by sampling from a predefined negative set,
demonstrating the effectiveness of training with harder negatives. On average, CIRQRS further im-
proves by 0.40% in CIRR and 1.54% in FashionlQ than Top. The correlation between human scores
and preference rates is consistent across all three approaches. This improvement in Recall @k sug-
gests that, despite similar human score correlations, CIRQRS ranks the target image higher than
other approaches. This can be attributed to the fact that as CIRQRS learns, many high-scoring im-
ages tend to closely match the query, making training with the 7op method unstable and suboptimal.
Our strategy mitigates this by selecting images with lower scores than the target image, which pre-
vents highly relevant images from being selected as negative.

Figure 3 illustrates the impact of different strategies, showing Recall@1 performance on the CIRR
validation set and training loss across all epochs. As described in Section 5.1, we redefine the
negative set every eight epochs for the CIRR dataset in both Top and CIRQRS. Performance improves
immediately after the first hard negative set is defined, compared to Baseline. CIRQRS shows more
consistent, stable improvement, particularly in early training, while the sharp rise in loss after each
negative set redefinition reflects the model facing harder negatives. Despite higher loss, CIRORS
maintains superior performance over Top.

— Baseline —Top — CIRQRS -=FashionlQ —-CIRR
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Figure 3: Graph of Recall@1 on the validation set and loss on ~ Figure 4: Graph of average recall for dif-
the training set for the CIRR dataset. ferent sizes of the initial negative pool.

Effect on Size of Negative Set. The difficulty of images that the model is trained on depends
heavily on the size of the negative set, where a larger negative set would include easier images. In
Figure 4, we compare different initial negative set sizes of 1,4 following the experiment setting in
Section 5.1. We see that a lower initial n,,.4 results in higher Recall @k, as it corresponds to a harder
negative set and improves performance than a larger n,,.4. Since we define negatives as images with
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Retrieved Images A

Te

CIRQRS 39.8 337

Recall@5: 1
Set CIRQRS: 36.3

User Score: 3
User Preference X

Retrieved Images B

""""" Recall@5: 1
+ = % Set CIRQRS: 40.1
Is black and slim and K ] : i, User Score : 4
422 39.8 337 42.0

Is black and has a different graphic cRaRs | 428 User Preference (4

Figure 5: Qualitative analysis of CIRQRS using sample from HS-FashionlQ. Sets A and B consist of images
retrieved by two different models, with the red box highlighting the target image for the given query. The
human annotator preferred Set B, which aligns with the CIRQRS.

Table 7: Ablation study on defining the negative image set. (1) Baseline: The negative set is the whole
candidate image corpus. (2) Top: The negative set is nney images with the highest CIRQORS in the whole
corpus for each query. (3) Ours: The negative set is 1,4 images with the highest CIRQRS in the set of images
with a lower CIRQORS than the target image for each query.

Method CIRR FashionIQ

R@5+R,@1 Avg. | AvygR@10 AvgR@50 Avg.

Baseline 75.96 81.46 52.22 73.51 62.86
Top 80.96 84.52 5292 73.87 63.39
CIRQRS-Model 81.45 84.92 54.89 74.97 64.93

lower CIRQRS than the target, even a small n,,., could properly select the set of negative images.
We used an initial negative pool size of 50 for FashionIQ and 100 for CIRR.

Qualitative Analysis. To visualize the use of CIRQRS in evaluating CIR queries, we applied it to
an example from the HS-FashionlQ dataset. When the target image appears in both retrieved image
sets, Recall@5 of both sets is 1. However, humans can still recognize which set matches the query
better, as reflected by the higher score of 4 for set B compared with 3 for set A. Using our CIRQRS
and Equation 7, the set CIRQRS for set A is lower than set B’s, aligning with human annotators.
This difference is attributed to a purple shirt in set A, which CIRQRS scored lower, reducing the
overall set score. Additionally, CIRQRS assigned a lower score to the non-black shirt than the black
shirt in both sets, indicating its ability to accurately assess relevance to the query.

6 CONCLUSION

We introduced CIRQRS, a new evaluation metric that overcomes the limitation of Recall @k in CIR.
Unlike Recall@k, CIRQRS evaluates the relevance of individual retrieved images to the query, pro-
viding a comprehensive assessment of retrieval quality. Our approach employs a reward model train-
ing objective and a self-paced learning strategy to refine the negative set, improving relevance scor-
ing dynamically. To evaluate the effectiveness of CIRQRS, we created the HS-FashionlQ dataset, the
first human-scored dataset in CIR. Experimental results show that CIRQRS achieves a significantly
higher correlation with human scores than Recall@k. Using CIRQRS as a CIR model outperforms
state-of-the-art methods across multiple CIR benchmarks, including FashionIQ and CIRR datasets.

10
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REPRODUCIBILITY STATEMENT

We have provided a stripped down version of our experiment codes to highlight our contribution,
which includes our model, training pipeline, and evaluation. We followed the dataset preprocessing
procedure outlined in SPRC (Bai et al., 2024). Our model is based on the BLIP2 (Li et al., 2023)
implementation and pretrained weight. We will publicly release our codes and pretrained model
upon acceptance.

ETHICS STATEMENT

The HS-FashionlQ dataset was annotated by 61 human annotators, and received IRB approval. We
ensured participant anonymity and do not retain any personal data beyond payment information,
which will be deleted later.
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A ALGORITHM

Algorithm 1 Training Flow of CIRQRS

Inputs: Parameters ¢, Dataset D, Candidate Images I, Number of defining negative set n4. s, Initial
negative set size 7,4, Total epochs nepoch

1: for each epoch e do
2 if e == 0 then > Warmup by defining negative set as whole candidates
3 Sneg 1 \ Yr
4: elseif e > 0 and e mod [nepoch /Tineg ] == 0 then > Define negative set using CIRQRS
5: Sheg < DefineNegativeSet(0,1,D, nyey) > Section (3.3)
6: Nneg < Nneg//2
7 end if
8 for each batch b do
9 I, < RandomSample(Syeg) > Randomly sample one negative per query
10: L en < —log(o(s(xr,, v, Ipy) — (1,27, Iny ) > Equation (5)
11: 00—Vl ron
12: end for
13: end for

B EVIDENCES OF DEFINING HARD NEGATIVES

B.1 QUANTITATIVE EVIDENCE

We conducted experiment with FashionlQ dataset, which compared two different versions of train-
ing. (1) CIRQRS, which defines the negative set as the top n,., images that have lower score than
the target, (2) INCLUDE, which defines the negative set as the top n,,., images. Here, INCLUDE
indicates the case where relevant (false-negative) image is selected as a negative. Figure 6 shows
that INCLUDE drastically ruined the model training, indicating that images with higher CIRQRS
are likely to be highly relevant.

Note that this experiment is similar to the setting with Figure 3. However, previously we Set 1,4
to 1000 which yields the best performance. In this experiment, to directly observe the impact of
selecting image with higher CIRQRS than the target as a negative, we set 1,4 to 50, matching the
configuration of the original CIRQRS training.

— INCLUDE — CIRQRS

(o))
(%]
|
|

Average Recall
9] [e)]
w9

%3]
o
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Epoch

Figure 6: Result of three different training strategies based on how to define the negative set : (1) CIRQRS,
as the highest score of n,.y images with lower than the target, (2) INCLUDE, as the highest score of ny.cq
images.

B.2 QUALITATIVE EVIDENCE

We conducted qualitative experiments using the FashionIQ dataset, specifically the ‘shirt’ and
‘dress’ categories, to visually analyze our approach. Using trained CIRQRS, we extracted images

14
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with higher score than the target as well as those with the lowest scores. As shown in Figures 7 and
8, images with scores higher than the target are often relevant to the query, indicating they should
not be included in the negative set. Additionally, images with the lowest scores are highly irrelevant
to the query, which would result in suboptimal training if included in the negative set. Note that in
the 4th row of Figure 7 and the 2nd and 4th rows of Figure 8, fewer than five images are shown
because only 4, 2, and 4 images, respectively, scored higher than the target.

C HS-FASHIONIQ DATASET

C.1 DATA STATISTICS OF HS-FASHIONIQ

Figure 9 shows the relevance score statistics from human annotations in the HS-FashionIQ dataset.
A total of 3,050 queries and 6,100 sets of retrieved images were annotated with corresponding
relevance scores.

C.2 DATA ANNOTATION EXAMPLES

We conducted a user survey via Google Forms. Each form consisted of instructions and 25 questions,
with each question including a query and two different sets of retrieved images. Each participant
completed two forms, covering 50 queries from the FashionIQ validation dataset, with no overlap
between participants. Fig 10 shows the guidelines provided to participants, who were asked to score
the retrieved image sets based on relevance to the query using a S-point Likert scale. Figure 12
illustrates an example of a reference image, relative text, and two sets of retrieved images from
different CIR models. Finally, (1) participants rated the relevance of each set, (2) indicated which
set they preferred, and (3) noted whether any results were irrelevant to the reference image or text,
as shown in Figure 11.
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Higher CIRQRS than the target
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Figure 7: Qualitative analysis with FashionIQ dress showing that images with higher CIRQRS scores are likely
false negatives, which should be excluded from the negative set, while images with the lowest CIRQRS scores
are overly irrelevant and noisy.
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Figure 8: Qualitative analysis with FashionlQ shirt showing that images with higher CIRQRS scores are likely
false negatives, which should be excluded from the negative set, while images with the lowest CIRQRS scores
are overly irrelevant and noisy.
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918
919
920
921
922
923 2000
924 1750 1
925 1500 1
926 1250
927 2
ERULE
928 8
750 4
929
930 500 4
931 01
o0
932 1 2 3 4 5
933 Human Score
934 . . . .
935 Figure 9: Statistics of scores in HS-FashionlQ dataset.
936
937
938
939
940
941
942
943
944
945
946 1. Original Image: The image you have.
2. User Text: A description of how the image you are looking for differs from the original image.
947 3. Two sets of image search results: Each set contains 5 images searched through two different shopping
048 malls.
949
Evaluation Method:
950 Please evaluate how well the two sets of image search results match the original image and the user text. Each
951 set consists of 5 images, and the higher the match with the original image and the user text, the higher the
score you should give. You should evaluate each set as a whole, not each individual image.
952
1: Does not match at all.
953 2: Does not match.
954 3: Matches to an average degree.
4: Matches.
955 5: Matches very well.
956 Notes:
957 - Recommend completing the survey on a PC rather than a mobile device to make it easier to view the images.
958 - The order of the 5 images within the image search result sets does not matter.
959

- The search results are not generated images but are found from a fixed set of images that best match the
960 original image and user text. Therefore, the quality of the search results may not meet user expectations.
Please score as consistently as possible.

961

962 - The user text in this survey is from the dataset as is, so there may be typos or duplicated expressions.
963 - There are questions throughout the survey where you will be asked to explain the reason for your score.
964 - There will be simple math problems before proceeding to the next question. If you get these problems wrong,
965 you cannot move on to the next page.

966

967 Figure 10: Guidelines for user survey.

968

969

970

971
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972
973
974
975
976
977
978
979
980
981
982
983
984
985 Score for shopping mall 1 *

986 1: Does not match at all, 2: Does not match, 3: Matches to an average degree, 4: Matches, 5: Matches very well

987

988 1 2 3 4 5
989

990 O O O O O
991

992

993 Score for shopping mall 2 *

994
995
996
997
998 O O O O O
999

1000

1001 Preference Question *

1002
1003
1004 | | shopping Mall 1
1005

1006 || shopping Mall 2
1007

1008

1009 (Optional) Irrelevance Check Question

1010

1011 D Two set of search results are irrelevant to original image or user text
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

1: Does not match at all, 2: Does not match, 3: Matches to an average degree, 4: Matches, 5: Matches very well

1 2 3 4 5

Which shopping mall's results do you prefer?

Figure 11: Example of questions in user survey.
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Original Image / User Text: is more green and has 3/4 sleeves and has more colors and is sportier

Shopping Mall 1

Shopping Mall 2

Figure 12: Example of query and two set of retrieved images in user survey.
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