
Under review as a conference paper at ICLR 2023

BINSGDM: EXTREME ONE-BIT QUANTIZATION FOR
COMMUNICATION EFFICIENT LARGE-SCALE DIS-
TRIBUTED TRAINING

Anonymous authors
Paper under double-blind review

ABSTRACT

To alleviate the communication bottleneck of large-scale distributed training, a
rich body of prior communication-compression optimizers have been proposed.
These methods focus mainly on a high compression ratio to expect acceleration.
However, some recent works pointed out, when running with distributed training
frameworks (e.g., DistributedDataParallel in Pytorch), these methods provide
no acceleration over the off-the-shelve uncompressed SGD/Adam in the typical
settings, due to heavy compression/decompression computation or incompatibil-
ity with efficient communication primitives or the requirement of uncompressed
warmup at the early stage. For these reasons, we propose a novel extreme one-bit
quantization optimizer, dubbed BinSGDM. The quantization of BinSGDM is com-
puted easily and lightly, and it does not need to resort to uncompressed optimizers
for warmup. We also theoretically prove that it promises the same convergence
speed as the original Adam. Moreover, we specially present a hierarchical 1-
bit All-Reduce technique to further lower the communication volume. Extensive
experiments are conducted on 8 to 64 GPUs (1 to 8 nodes) for distributed train-
ing with DistributedDataParallel, and the experimental results demonstrate that
BinSGDM with the communication scheme can achieve up to 2.5× speedup for
training ResNet-50 and 6.3× speedup for training BERT-Base, compared to the
full-precision optimizers.

1 INTRODUCTION

With the rapid development of computational power, ”bigger” and ”bigger” deep neural network
(DNN) models are proposed for expecting better performance, from the early classical models, such
as AlexNet(61M parameters) (Krizhevsky et al. (2017)), and ResNet (ResNet-50: 20.5M parame-
ters) (He et al. (2016)) to the current foundation models, such as BERT (BERT-Lagre: 340M pa-
rameters)(Devlin et al. (2018)), and GPT (GPT-3: 176B parameters)(Brown et al. (2020)). Scalable
parallelism across distributed computing workers for training these large-scale models becomes a ne-
cessity. During training, millions to billions of parameters need to be communicated among workers
at each iteration, and the expensive communication cost becomes a bottleneck.

To address the communication bottleneck, a wide variety of lossy gradient compression optimizers
have been proposed to lower the communication volume. These algorithms can be typically divid-
ed into three groups, including low-precision approximation (e.g., 1-bit SGD(Seide et al. (2014)),
SignSGD(Bernstein et al. (2018)), TernGrad (Wen et al. (2017)), and QSGD) (Alistarh et al. (2017)),
1-Bit Adam (Tang et al. (2021))), low-rank simplification (e.g., ATOMO(Wang et al. (2018)), Pow-
erSGD (Vogels et al. (2019)), and GradZip (Cho et al. (2019))), and sparsification (e.g., Random-k
(Stich et al. (2018)), Top-k (Aji & Heafield (2017)), and MSTop-k (Shi et al. (2021))).

While much of the research on gradient compression algorithms has focused mainly on the high
compression ratio, a more important yet underexplored problem is how to decrease the actual
system-level runtime and increase the distributed scaling efficiency. Actually, some recent works
(Xu et al. (2020),Agarwal et al. (2022)) pointed out, when distributedly training typical models (e.g.,
ResNet-50 and BERT-Base) with off-the-shelf DistributedDataParallel (DDP) at typical bandwidth-
s (e.g., 10Gbps), these existing gradient compression algorithms with high compression ratios are

1

Under review as a conference paper at ICLR 2023

still slower than the original uncompressed optimizers. This is because they exhibit one or more of
the following weaknesses (Xu et al. (2020),Agarwal et al. (2022)): (i) Some gradient compression
algorithms should perform compression/decompression and communication within the limited time
frame, and the time cost of compression/decompression, in some cases, is close to and even larger
than the savings by the reduces communications; (ii) some gradient compression algorithms cannot
take full advantage of overlapping between gradient computation and communication. Because if
the gradient computation and compression/decompression overlap, their intensive computation will
compete with each other for GPU resources, which can result in an overall slowdown; (iii) due to in-
herent structures, some algorithms can only use inefficient collective communication primitive, such
as All-Gather; (iv) some gradient compression algorithms need to harness uncompressed optimizers
to warm up at the early stage. The warm-up time is commonly nontrivial which to some extent ren-
ders their high compression ratios vacuous. Therefore, from a system-level perspective, the design
ethos of a system-efficient communication-compression algorithm is that we should guarantee that
the compression/decompression of the algorithm is computationally light and takes less time, and
that the corresponding communication should also be friendly to efficient collective communication
primitives. Additionally, there is no need to resort to an uncompressed optimizer for warm-up.

To this end, we propose a communication-compression optimization algorithm, referred to as Binary
SGD-Momentum (BinSGDM), in which the core updating rule is xt+1 = xt − αtQ

(
mt

bt

)
where

mt = βmt−1 + (1 − β)gt , bt = βbt−1 + (1 − β)|gt| and gt is the gradient, and Q(·) is a binary
quantization operator. The main difference between BinSGDM and existing gradient-quantization
algorithms is that we directly quantize the entire update mt

bt
rather than quantize the gradient gt or

the momentum mt. Due to −1 ≤ (mt)j
(bt)j

≤ 1 where (mt)j , (bt)j are the jth element of mt, bt , each
element of mt

bt
is easy to be randomly quantized to 1 or−1 in probability, so the quantization is com-

putationally light. Another advantage of BinSGDM is that it does not need a full-precision optimizer
to warm up at the early stage to ensure stable convergence. Besides, we theoretically demonstrate
BinSGDM’s convergence rate can match that of the original Adam. Moreover, according to the na-
ture of BinSGDM, we specifically devise an efficient hierarchical communication scheme to further
speed up communication, which sufficiently leverages the ultra-high intra-bandwidth among GPUs
within the same node and efficient commutation primitives rather than All-Gather.

In particular, we make the following key contributions:

• We propose a novel communication-compress distributed optimizer, dubbed BinSGDM. To
the best of our knowledge, it is the first algorithm that quantizes the entire model up-
date of an adaptive optimizer and does not need to leverage uncompressed optimizers
to warm up to address the convergence issue, which makes compression/decompression
computationally light and the extreme quantization ratio exert its best function (Section 2).

• We theoretically prove that even though extreme 1-bit quantization is employed, BinSGDM
still promise the same convergence speed as the full-precision Adam (Section 3).

• We present a new hierarchical communication scheme for 1-bit communication, called Hi-
erarchical 1-bit All-Reduce, which sufficiently harnesses the ultra-fast intra-connects to
accelerate the local communication, and utilize more efficient commutation primitives
to further reduce the communication overhead (Section 4).

• We perform extensive distributed training experiments to demonstrate the effectiveness of
the proposed algorithm. As far as we know, our algorithm is the first work to con-
sistently trump the uncompressed optimizers with the highly system-level optimized
DDP in overall running time at no inference performance cost, reaching up to 2.47×
speedup for Resnet-50 and 6.26× speedup for BERT-Base on 64 GPUs. The better scala-
bility makes BinSGDM promising to train more large-scale models (Section 5).

2 EXTREMELY ONE-BIT QUANTIZED BINSGDM

In this section, we focus on solving the following problem when training a DNN model distributedly:

min
x∈Rd

f(x) =
1

n

n∑
i=1

fi(x; ξ(i)) (1)

2

Under review as a conference paper at ICLR 2023

where x is the d-dimensional model parameter, n is the number of distributed workers. ξ(i) is the
sampled min-batch data on the i-the worker. The sampled min-batch data on all the workers is
independent and identically distributed (i.i.d.). fi(x; ξ(i)) is the loss function. Note that fi(x; ξi) is
commonly abbreviated as fi(x) in the following.

When we directly employ vallina full-precision and dense-computation optimizers to train a large-
scale DNN model on distributed workers, the gradient communication among workers at each it-
eration becomes a bottleneck. Elegant SignSGD was proposed to alleviate the bottleneck problem,
which merely takes the sign of each coordinate of the gradients. Although it can substantially re-
duce the communication overhead, its practical performance is still inferior to popular optimizers,
such as Adam. Fortunately, we observe that the mathematical formulations of SignSGD and Adam
have close connections, so it leaves us an opportunity to propose a new optimizer that can com-
bine their merits, i.e., considerably reducing the communication volume with light computation yet
maintaining fast convergence speed and high inference performance.

The mathematical update step of SignSGD can be formulated as:

xt+1 ← xt − αtSign(gt) = xt − αt
gt
|gt|

(2)

where αt is the learning rate, gt denotes the estimated unbias noisy gradient of f(xt) with random
samples. Note that the divider here is an element-wise divider.

Whereas the updating rule of vallina Adam can be expressed as:

mt ← β1mt−1 + (1− β1)gt,

vt ← β2vt−1 + (1− β2)g2t ,

xt+1 ← xt − αt
mt√
vt
,

(3)

where β1 and β2 represents the exponential moving average factors 1.

If taking the exponential moving average factors to zero, β1, β2 → 0, in Eq. (3), Adam will be equal
to SignSGD.

Given the observations above, we propose a new optimizer that is an intermediate between SignSGD
and Adam, referred to as BinSGDM, i.e.,

mt ← βmt−1 + (1− β)gt,

bt ← βbt−1 + (1− β)|gt|,

xt+1 ← xt − αtQ
(
mt

bt

)
,

(4)

where the j-th elements of mt, bt rigorously satisfies −1 ≤ (mt)j
(bt)j

≤ 1, Q(·) is an element-wise
quantization operator, and it quantizes the j-th element of mt

bt
as follows:

Q
(

(mt)j
(bt)j

)
=

{
1, with probability p = 1

2 (
(mt)j
(bt)j

+ 1)

−1, with probability 1− p
, (5)

where E
(
Q
(
mt

bt

))
= mt

bt
, so Q(·) is unbiased.

The detailed implementation of BinSGDM in a parameter-server model is illustrated in Algorithm
1. Some appealing characters of BinSGDM are summarized in the following:

• All the existing communication-efficiency optimizers are built upon gradient compression.
In contrast, to the best of our knowledge, we are the first to directly quantize the entire mod-
el update, which will streamline the quantization. Moreover, each element of mt

bt
bounds

1For simplicity, we omit the bias correction for mt and vt and the small constant in the numerator.

3

Under review as a conference paper at ICLR 2023

Algorithm 1. BinSGDM
1: Input: all workers’s model parameter x0, x1 , the ith worker’s momentumm

(i)
0 = 0 ,

b
(i)
0 = 0, the ith worker’s local error e(i)0 = 0, server’s global error ē0 = 0, exponential

moving average factor β, the threshold T0, and the learning rate sequence {αt}.
2: for t = 1, ..., T do
3: (On the ith worker)
4: Randomly sample ξ(i)t and compute local gradient: g(i)t = ∇fi(xt; ξ(i)t)

5: Update the local m(i)
t : m(i)

t = βm
(i)
t−1 + (1− β)g

(i)
t

6: Update the local b̂(i)t : b̂(i)t = βb̂
(i)
t−1 + (1− β)|g(i)t |

7: Update the local b(i)t : if t > T0 { b(i)t = max(b
(i)
t−1, b̂

(i)
t)} else {b(i)t = b̂

(i)
t } *

8: Quantize the local update: u(i)
t = Q(

m
(i)
t

b
(i)
t

+ e
(i)
t−1)

9: Update the local error feedback e(i)t : e(i)t = e
(i)
t−1 +

m
(i)
t

b
(i)
t

− u(i)
t

10: Send u(i)
t to the server

11: (On server)
12: Average all received qt and quantize it: ūt = Q(1

n

∑n
i=1 u

(i)
t + ēt−1)

13: Update the global error feedback ēt : ēt = ēt−1 + 1
n

∑n
i=1 u

(i)
t − ūt

14: Send back ūt to all workers
15: (On the ith worker)
16: Update the local model parameter xt+1: xt+1 = xt − αtūt

17: end for
* This step follows the technique in AMSGrad Reddi et al. (2018). It is more about theoretical significance, and we commonly do

not implement it in practice.

in the range [−1, 1], and then it is extremely quantized to binary 1 or −1. Thus, the quan-
tization in BinSGDM is computed easily and lightly, compared to the existing gradient-
quantized optimizers 2 .

• Unlike SignSGD, Adam adaptively preconditions the gradients with vt, which is the key
to ensuring a fast convergence rate in practice. BinSGDM also inherits the character of
adaptive preconditioning from Adam to accelerate the convergence speed. The difference
is that we keep the exponential moving average factor for mt and bt the same, so that each
element of mt

bt
bounding in the range [−1, 1] can be strictly guaranteed, which is crucial to

perform light quantization.

• When the model parameter xt is close to a local optimal value during training, an ideal
optimizer should make sure the updates gradually decay to zero, otherwise, xt will oscillate
around the optimum and cannot indeed approach it. SignSGD and Adam do not have this
appealing property, while, as for unquantized BinSGDM (we refer to it as SoftSignSGD,
and the implementation details for it please see Algorithm 2 in the Appendix), the gradient
gt will continually change its sign around the optimum of which the gradient is zero, so that
the update mt

bt
will damp to zero. An Example illustrating this phenomenon is provided in

Section C in the Appendix.

Remark. We have noticed that the prior works 1-bit Adam (Tang et al. (2021)) and its variants (Li
et al. (2021), Lu et al. (2022)) also quantize the communication data to 1-bit. However, the design
ethos of 1-bit Adam and the proposed BinSGDM are completely different. 1-bit Adam is still built
on gradient compression rather than the entire update. The motivation of 1-bit Adam is to harness
the error feedback (EF) technique (Seide et al. (2014), Stich et al. (2018)) to compensate for the
gradient information lost to alleviate the convergence issue. However, unlike SGD, the parameter
update in Adam no longer linearly depends on the gradient, so that EF cannot be directly employed.
Authors of 1-bit Adam observed that Adam’s variance (non-linear term) becomes stable after the
early stage, 1-bit Adam runs full-precision Adam in the beginning (warmup phase) and utilizes it

2The typical gradient-quantized optimizer QSGD quantizes the gradient as follows:

Q ((gt)j) =

{
‖gt‖2sign((gt)j) · rs , with probability pi =

s|(gt)j |
‖gt‖2

− r
‖gt‖2sign((gt)j) · r+1

s
, with probability 1− pi

where 0 ≤ r < s (r, l ∈ N) and s|(gt)j |
‖gt‖2

∈ [r
s
, r+1

s
].

4

Under review as a conference paper at ICLR 2023

as a precondition for SGDM during the rest of training (compression phase), and then EF in the
compression phase help 1-bit Adam to converge as rapidly as uncompressed Adam. There are two
aspects that influence 1-bit Adam to indeed accelerate communication. First, the warmup steps
commonly make up 15%-25% of the total steps in 1-bit Adam, which to some extent discounts the
high quantization ratio. Second, in the compression phase, 1-bit Adam should communicate the
signs of the gradients of each layer as well as the average scale of all the gradients in this layer,
while in DDP, raising communication efficiency, the gradients from many layers should be flatted
to 1-dimension and concatenated together, and then packed to one bucket to communicate, which
means the scale factor of each layer cannot be computed. Therefore, 1-bit Adam is not compatible
with DDP, which will also lower communication efficiency.

3 THEORETICAL ANALYSIS

In this section, we present the theoretical convergence guarantee for BinSGDM (Algorithm 1). We
first introduce some necessary assumptions.

Assumption 1.[Bounded infimum] For any x and a constant f∗, we have the objective value f(x) ≥
f∗.

Assumption 2. [Lipschitz continuous gradient] The gradient∇f(·) is L-Lipschitz continuous, i.e.,
, ‖∇f(x)−∇f(y)‖ ≤ L‖x− y‖2, ∀x, y ∈ Rd.

Assumption 3. [Unbias and indpendent noisy gradient] The gradient with respect to the random
samples on each worker and at a different time is independent identically distributed (i.i.d.), i.e.,
E[g

(i)
t] = ∇f(xt),∀t ≥ 1, g(i)t is independent of g(j)t for i 6= j, and g(i)t1 is independent of g(j)t2 for

t1 6= t2.

Assumption 4. [Bounded gradient] The noisy gradient and the full-set gradient are bounded i.e.,
‖g(i)t ‖ ≤ G, ‖∇ft(x)‖ ≤ G, ∀t ≥ 1.

Under the assumptions above, we then present the theoretical convergence for BinSGDM in Algo-
rithm 1.

Theorem 1. For BinSGDM in Algorithm 1, under Assumption 1-4, assuming (b
(i)
t)j ≥ ρ > 0 , ∀j ∈

[1, 2, ..., d]3, choosing αt = c√
t
, ∀t ∈ [1, 2, ..., T] and α0 = α1 , and defining z1 = x1 +α1(δ1−e1)

where δ1= 1
n

∑n
i=1

m
(i)
1

b
(i)
1

−
∑n

i=1m
(i)
1∑n

i=1 b
(i)
1

and e1= 1
n

∑n
i=1 e

(i)
1 + ē1, we then have the following

E

[
1

T

T∑
t=1

‖∇f(xt)‖

]2
≤ C1√

T
+
C2(1 + log T)√

T
, (6)

where

C1 = cG

(
E[f(z1)− f∗] +

3c2dL

16
+

βcdG2

(1− β)ρ
+

4cdG2

ρ
+
c2β2LG2d

ρ2(1− β)2

)
,

C2 = c3G

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2(1 + L)

2ρ2
+ 2dL

)
.

4 HIERARCHICAL 1-BIT ALL-REDUCE

The data in BinSGDM to communicate is one-bit, so it cannot be directly aggregated through the
efficient All-Reduce. Moreover, the intra-node bandwidth and inter-node bandwidth are severely im-
balanced. If we aggregate the data uniformly from intra-nodes and inter-nodes, the communication
will be slowed down by the inter-node data exchanges.

In light of the problems above, we propose a hierarchical communication scheme, called Hierarchi-
cal 1-bit All-Reduce, to efficiently aggregate our 1-bit data, which can hierarchically take advantage

3We commonly add a small constant to bt to avoid zero denominators for numerical stability, which guar-
antees this assumption holds in practice.

5

Under review as a conference paper at ICLR 2023

Figure 1: Paradigm of Hierarchical 1-bit All-Reduce

of the ultra-high intra-node bandwidth and reduce the inter-node communication overhead. Assum-
ing we have n nodes and each node contains m GPUs and the overall volume for each GPU needs
to communicate is P , as visually illustrated in Figure 8, the steps of Hierarchical 1-bit All-Reduce
is as follows: (i) Each GPU conducts Reduce-Scatter to locally aggregate the scatter the data within
a node, and the communication volume for each GPU is (m−1)P

m . (ii) Each GPU performs BinS-
GDM to quantize the data, and then volume becomes P

32m on each GPU. (iii) Each GPUs conducts
1-bit All-Reduce to inter-aggregate data. This step includes two sub-steps: 1) Each GPU performs
All-to-All to collect the data of corresponding GPUs in other nodes, and the communication volume
is (n−1)P

32mn ; 2) each GPU averages and re-quantizes the data, and then conducts All-Gather to gather
the data, and the communication volume is also (n−1)P

32mn . (iv) Each GPU performs All-Gather to
intra-aggregate data, and the communication volume is (m−1)P

32m .

Compared to the time cost of inter-node communication, the time cost of inter-node communication
is trivial. Hence, when leveraging Hierarchical 1-bit All-Reduce, the most communication cost
comes from 1-bit All-Reduce in Step (iii), and then the communication volume across nodes for
all GPUs is approximately 2(n−1)P

32 . In contrast, if we simply utilize the original All-Gather to

aggregate data, the communication volume across nodes for all GPUs is approximately m2n(n−1)P
32 .

Therefore, Hierarchical 1-bit All-Reduce is considerably more efficient than the original All-Gather.

5 EXPERIMENTS

Table 1: System throughput and Test Accuracy of SGDM, 1-bit Adam and BinSGDM for training ResNet-50
on ILSVRC2012 from scratch with 8, 16, 32, 64 GPUs.

Optimizer #GPUs 32 samples per GPU 128 samples per GPU
Throughput
(samples / s)

Top-1 Acc. (%) Throughput
(samples / s)

Top-1 Acc.(%)

SGDM
8

3693 (1.00×) 76.19 5272 (1.00×) 75.05
1-bit Adam 3243 (0.83×) 75.55 5229 (0.99×) 75.42
BinSGDM 3462 (0.94×) 75.98 5251 (0.99×) 75.45
SGDM

16
2959 (1.00×) 75.96 6189 (1.00×) 74.61

1-bit Adam 4745 (1.60×) 75.33 8836 (1.42×) 75.05
BinSGDM 6015 (2.03×) 75.53 9633 (1.56×) 75.09
SGDM

32
4270 (1.00×) 75.47 9909 (1.00×) 74.54

1-bit Adam 7268 (1.70×) 75.18 13827 (1.40×) 74.82
BinSGDM 9416 (2.21×) 75.27 15950 (1.61×) 74.82
SGDM

64
6189 (1.00×) 75.37 16640 (1.00×) 74.22

1-bit Adam 5546 (0.89×) 75.54 16426 (0.99×) 74.34
BinSGDM 15253 (2.47×) 75.30 23727 (1.43×) 74.24

6

Under review as a conference paper at ICLR 2023

(a) Epoch-wise, ResNet-50, batch size=32× 64 (b) Time-wise, ResNet-50, batch size=32× 64

(c) Epoch-wise, ResNet-50, batch size=128× 64(d) Time-wise, ResNet-50, batch size=128× 64

(e) Epoch-wise, Bert-Base, batch size=3× 64 (f) Time-wise, Bert-Base, batch size=3× 64

Figure 2: Epoch-wise and time-wise convergence speed for training ResNet-50 with 32 samples per GPU,
ResNet-50 with 128 samples per GPU, and fine tuning BERT-Base with 3 samples per GPU with 64 GPUs.

Table 2: System throughput and F1-Score / Excat-Match of AdamW, 1-bit Adam and BinSGDM for fine tuning
BERT-base on SQuAD 1.1 with 8, 16, 32, 64 GPUs.

Optimizer #GPUs Throughput
(samples/s)

F1-Score (%) Exact Match (%)

AdamW
8

413 (1.00×) 88.13 80.59
1-bit Adam 358 (0.87×) 88.05 80.06
BinSGDM 412 (1.00×) 88.71 81.18
AdamW

16
84 (1.00×) 88.47 81.07

1-bit Adam 213 (2.54×) 87.87 80.31
BinSGDM 431 (5.13×) 88.31 80.80
AdamW

32
119 (1.00×) 88.38 80.94

1-bit Adam 274 (2.30×) 87.78 80.08
BinSGDM 730 (6.13×) 88.08 80.50
AdamW

64
158 (1.00×) 88.13 80.94

1-bit Adam 252 (1.59×) 87.33 79.67
BinSGDM 990 (6.26×) 88.28 80.75

Recently, some recent works [Xu et al. (2020),Agarwal et al. (2022)] have demonstrated that when
running with the system-level optimized distributed data-parallel frameworks(e.g., DDP), the ex-
isting typical communication-compression optimizers (not including 1-bit Adam) runs still slow-
er than the full-precision original SGD/Adam (the reasons please refer to the section of Introduc-
tion). Hence, we only evaluate the performances of BinSGDM, the uncompressed original SGDM
/AdamW, and the closely relevant 1-bit Adam based on performing distributed training experiments
with the benchmark model ResNet-50 (CNN) and BERT-Base (Transformer). We show that running
with the distributed data-parallel framework DDP in Pytorch, BinSGDM with the proposed specific
commutation scheme is up to 2.47 times faster for ResNet-50 and 6.26 times faster for BERT-Base
than the uncompressed optimizers with highly system-level optimized all-reduce at no accuracy
cost.

7

Under review as a conference paper at ICLR 2023

(a) ResNet-50, 32 samples / GPU (b) ResNet-50, 128 samples / GPU (c) BERT-Base, 3 samples / GPU

Figure 3: System throughput of optimizers for training (a) ResNet-50 with 32 samples per GPU, (b)ResNet-50
with 128 samples per GPU, and (c) fine tuning BERT-Base with 3 samples per GPU with 8, 16, 32, 64 GPUs.

5.1 EXPERIMENTAL SETTINGS

Testbed. Our experiments are implemented on {1, 2, 4, 8} nodes connected with 10Gbps Ethernet,
and each node is equipped with 8 Nvidia Tesla A100-80GB GPUs. The hardware and software are
the same in all instances. The operating system in each node is Ubuntu 20.04.4 LTS. Our exper-
iments are performed in Pytorch 1.11.0, and other related libraries are CUDA-11.6, cuDNN-8.2,
NCCL-2.10.3 and Pytorch 1.11.0. Notably, to be compatible with DDP of Pytorch, parts of BinS-
GDM and our hierarchical communication scheme are implemented in the customized communica-
tion hook of DDP in Pytorch.

Training details. For the experiments over ResNet-50, we evaluate the convergence and perfor-
mance of SGDM, 1-bit Adam and BinSGDM on ILSVRC2012. The batch size per GPU is set to
32 or 128 with the standard input resolution 224 × 224. When employing SGDM (baseline), the
learning rate starts at 0.1 × batch size

256 with momentum of 0.9 and weight decay of 0.0001. When
employing 1-bit Adam and BinSGDM, the learning rate starts at 0.001× batch size

256 with weight decay
of 0.0001, and [β1, β2] for 1-bit Adam is set to [0.9, 0.999] and β for BinSGDM is set to 0.95. Then,
the learning rate is divided by 10 after 30, 60 and 90 epochs, and training is finally terminated after
100 epochs. Specifically, the first 15 epochs are used as the warmup stage for 1-bit Adam. For the
experiments over BERT-Base, we access the convergence and performance of AdamW (baseline),
1-bit Adam and BinSGDM for SQuAD 1.1 fine-tuning task using a pre-trained BERT-Base model
checkpoint from HuggingFace 4. The batch size per GPU is set to 3. We perform fine-tuning for 2
epochs. The learning rate linearly increases to 0.3× steps in the early 500 steps and then linearly
decreases to 0 in the rest iteration. Specifically, the first 0.2× steps are used as the warmup stage for
1-bit Adam. [β1, β2] for AdamW, and 1-bit Adam is set to [0.9, 0.999] and β for BinSGDM is set to
0.9.

5.2 EXPERIMENTAL RESULTS

Figure 2 shows the sample-wise and time-wise training convergence behaviors for SGDM / AdamW
(baseline), 1-bit Adam and BinSGDM with ResNet-50 and BERT-Base running on 64 GPUs. The
experimental results demonstrate that BinSGD can achieve a similar sample-wise convergence rate
to the baseline, while its actual speed is substantially faster than the baseline and 1-bit Adam, up
to about 2.5× speedup for ResNet-50 with batch size 32 per GPU on and about 6.3× speedup for
BERT-Base fine-tuning on SQuAD 1.1.

Figure 3 presents the system throughput for different optimizers running with ResNet-50 and BERT-
Base on 8 GPUs to 64 GPUs. When training on 8 GPUs, since computation rather than communi-
cation dominates the running time, the throughput performance for BinSGDM is slightly inferior to
SGDM and AdamW, but when the number of GPUs is growing, BinSGDM consistently outperforms
the counterparts, and the more the number of GPUs is, the more the superiority becomes obvious.
Furthermore, the system throughput for SGDM, AdamW and 1-bit Adam even decreases with GPUs
increasing in some cases, whereas the throughput for BinSGDM steadily grows, which indicates that
BinSGDM can offer better scalability efficiency.

In terms of inference performance for ResNet-50, we evaluate the Top-1 accuracy after training on
ILSVRC2012 from scratch. As the inference performance for BERT-Base, we measure the F1-score

4https://github.com/huggingface/transformers

8

Under review as a conference paper at ICLR 2023

(a) ResNet-50, 32 samples / GPU (b) ResNet-50, 128 samples / GPU (c) BERT-Base, 3 samples / GPU

Figure 4: Computation time, communication time and compression/decompression time per iteration of opti-
mizers for training (a) ResNet-50 with 32 samples per GPU, (b)ResNet-50 with 128 samples per GPU, and (c)
fine tuning BERT-Base with 3 samples per GPU with 8, 16, 32, 64 GPUs.

and exact-match score after fine-tuning on SQuAD 1.1. As shown in Table 1, when the batch size
is set to 32 samples per GPU, the accuracy for BinSGDM is slightly lower than SGDM. For CNN
architecture, some works (Keskar & Socher (2017), Zhou et al. (2020)) pointed out that adaptive
optimizers commonly generalize worse than SGDM. However, when the batch size becomes larger
(Table2), 1-bit Adam and BinSGDM achieve better accuracy. The reason for it is that a certain
level of noise can be helpful for generalization (Smith & Le (2018)), biasing the optimizer towards
wider valleys. Large batch size will reduce the randomness, while quantization errors in BinSGDM
increase the randomness. Table 2 exhibits BinSGDM obtains similar or higher F1-score and exact-
match score, compared to AdamW and 1-bit Adam, which validates the inferencing effectiveness of
the proposed BinSGDM.

5.3 COMMUNICATION EFFICIENCY ANALYSIS

As illustrated in Figure 4, when we perform training on a single node, the baseline full-precision
SGDM and Adam is slightly faster than BinSGDM and 1-bit Adam. Since the inter-GPU bandwidth
within a node is ultra-high, the communication time becomes negligible, and the newly introduced
compression/decompression by communication-compression optimizers takes up extra time. Due
to the light-computation quantization, BinSGDM with ResNet-50 and BERT-Base only takes about
15ms and 8ms respectively for compression/decompression. When we perform distributed training
on two nodes, the bandwidth between nodes is limited (10Gbps in our experimental testbed), and
the communication time should be reckoned with. For the uncompressed SGDM and Adam, the
communication time considerably exceeds the computation time for ResNet with 32 samples per
GPU and BERT-Base, which makes the system throughput even lower than that on a single node
(shown in Figure 2). Since extreme quantization in BinSGDM substantially reduces the commu-
nication overhead (up to 32× reduction), the compunction time for BinSGDM increases slightly.
When the number of nodes is further increasing, a good communication scheme becomes signifi-
cant. Leveraging our proposed Hierarchical 1-bit All-Reduce, the overall inter-node communication
volume exchanged is proportional to the number of nodes, while, for CompressedAllreduce utilized
by 1-bit Adam, the overall communication volume exchanged among nodes is proportional to the
number of GPUs (8 times number of nodes in our experiment). Therefore, with the number of nodes
increasing, the communication time for BinSGDM raises gently, but the communication time for
1-bit Adam grows abruptly.

6 CONCLUSION

In this work, we present a novel communication compression optimizer for distributed training. The
optimizer is not only easy and light to compute but also quantizes the communication data to an ex-
treme one bit. We also theoretically demonstrate that BinSGDM can converge as fast as the original
Adam. To further accelerate the communication. will specifically present a novel communication
scheme for BinSGDM to replace the inefficient naive All-Gather. Extensive experiments on train-
ing the benchmark ResNet-50 and BERT-Base have validated the effectiveness and efficiency of
BinSGDM over the uncompressed SGD,Adam and the most relevant 1-bit Adam.

9

Under review as a conference paper at ICLR 2023

REFERENCES

Saurabh Agarwal, Hongyi Wang, Shivaram Venkataraman, and Dimitris Papailiopoulos. On the util-
ity of gradient compression in distributed training systems. In Proceedings of Machine Learning
and Systems, volume 4, pp. 652–672, 2022.

Alham Fikri Aji and Kenneth Heafield. Sparse communication for distributed gradient descent.
arXiv preprint arXiv:1704.05021, 2017.

Dan Alistarh, Demjan Grubic, Jerry Li, Ryota Tomioka, and Milan Vojnovic. Qsgd:
Communication-efficient sgd via gradient quantization and encoding. In Advances in neural in-
formation processing systems, volume 30, 2017.

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar. Signs-
gd: Compressed optimisation for non-convex problems. In International Conference on Machine
Learning, pp. 560–569, 2018.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Minsik Cho, Vinod Muthusamy, Brad Nemanich, and Ruchir Puri. Gradzip: Gradient compres-
sion using alternating matrix factorization for large-scale deep learning. In Advances in Neural
Information Processing Systems, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778, 2016.

Nitish Shirish Keskar and Richard Socher. Improving generalization performance by switching from
adam to sgd. arXiv preprint arXiv:1712.07628, 2017.

Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
lutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

Conglong Li, Ammar Ahmad Awan, Hanlin Tang, Samyam Rajbhandari, and Yuxiong He. 1-bit
lamb: Communication efficient large-scale large-batch training with lamb’s convergence speed.
arXiv preprint arXiv:2104.06069, 2021.

Yucheng Lu, Conglong Li, Minjia Zhang, Christopher De Sa, and Yuxiong He. Maximizing com-
munication efficiency for large-scale training via 0/1 adam. arXiv preprint arXiv:2202.06009,
2022.

Sashank J Reddi, Satyen Kale, and Sanjiv Kumar. On the convergence of adam and beyond. In
International Conference on Learning Representations, 2018.

Frank Seide, Hao Fu, Jasha Droppo, Gang Li, and Dong Yu. 1-bit stochastic gradient descent and
its application to data-parallel distributed training of speech dnns. In Fifteenth annual conference
of the international speech communication association, 2014.

Shaohuai Shi, Xianhao Zhou, Shutao Song, Xingyao Wang, Zilin Zhu, Xue Huang, Xinan Jiang,
Feihu Zhou, Zhenyu Guo, Liqiang Xie, et al. Towards scalable distributed training of deep learn-
ing on public cloud clusters. In Proceedings of Machine Learning and Systems, volume 3, pp.
401–412, 2021.

Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic gradient
descent. In International Conference on Learning Representations (ICLR), 2018.

Sebastian U Stich, Jean-Baptiste Cordonnier, and Martin Jaggi. Sparsified sgd with memory. In
Advances in Neural Information Processing Systems, volume 31, 2018.

10

Under review as a conference paper at ICLR 2023

Hanlin Tang, Shaoduo Gan, Ammar Ahmad Awan, Samyam Rajbhandari, Conglong Li, Xiangru
Lian, Ji Liu, Ce Zhang, and Yuxiong He. 1-bit adam: Communication efficient large-scale training
with adams convergence speed. In International Conference on Machine Learning, pp. 10118–
10129, 2021.

Thijs Vogels, Sai Praneeth Karimireddy, and Martin Jaggi. Powersgd: Practical low-rank gradient
compression for distributed optimization. In Advances in Neural Information Processing Systems,
volume 32, 2019.

Hongyi Wang, Scott Sievert, Shengchao Liu, Zachary Charles, Dimitris Papailiopoulos, and Stephen
Wright. Atomo: Communication-efficient learning via atomic sparsification. In Advances in
Neural Information Processing Systems, volume 31, 2018.

Wei Wen, Cong Xu, Feng Yan, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Terngrad:
Ternary gradients to reduce communication in distributed deep learning. In Advances in neural
information processing systems, volume 30, 2017.

Hang Xu, Chen-Yu Ho, Ahmed M Abdelmoniem, Aritra Dutta, El Houcine Bergou, Konstantinos
Karatsenidis, Marco Canini, and Panos Kalnis. Compressed communication for distributed deep
learning: Survey and quantitative evaluation. Technical report, 2020.

Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Chu Hong Hoi, et al. Towards theoreti-
cally understanding why sgd generalizes better than adam in deep learning. Advances in Neural
Information Processing Systems, 33:21285–21296, 2020.

A THEORETICAL ANALYSIS FOR ALGORITHM 1

In practice, we implement BinSGDM in a non-parameter-server model to further reduce the com-
munication overhead, but the data exchange is essentially equivalent to that in a parameter-server
prototype. Hence, we provide the theoretical analysis for BinSGDM in a parameter-server model as
shown in Algorithm 1.

According to Algorithm 1, the update ūt can be recursively formulated as

ūt =Q

(
1

n

n∑
i=1

u
(i)
t + ēt

)

=
1

n

n∑
i=1

u
(i)
t + ēt − ēt+1

=
1

n

n∑
i=1

Q

(
m

(i)
t

b
(i)
t

+ e
(i)
t

)
+ ēt − ēt+1

=
1

n

n∑
i=1

(
m

(i)
t

b
(i)
t

+ e
(i)
t − e

(i)
t+1

)
+ ēt − ēt+1

=
1

n

n∑
i=1

m
(i)
t

b
(i)
t

+
1

n

n∑
i=1

(
e
(i)
t − e

(i)
t+1

)
+ ēt − ēt+1

(7)

11

Under review as a conference paper at ICLR 2023

Denote

gt
4
=

1

n

n∑
i=1

g
(i)
t , (8)

mt
4
=

1

n

n∑
i=1

m
(i)
t = βmt−1 + (1− β)gt, (9)

bt
4
=

1

n

n∑
i=1

b
(i)
t , (10)

δt
4
=

1

n

n∑
i=1

m
(i)
t

b
(i)
t

− mt

bt
, (11)

et
4
=

1

n

n∑
i=1

e
(i)
t + ēt (12)

(13)

Hence, the updating rule can be summarized as

xt+1 = xt − αtūt

=xt − αt
(
mt

bt
+ δt + et − et+1

)
(14)

A.1 AUXILIARY LEMMAS

Lemma 1. Let ut = mt

bt
, the element-wise quantization function is defined in Eq.(5) can be reformu-

lated as

Q ((ut)j) =

{
1, with probability p =

(ut)j+1
2

−1, with probability 1− p (j ∈ {1, 2, ..., d}, − 1 ≤ (ut)j ≤ 1). (15)

We have et = ut −Q (ut), and then the following holds true

E [et] = 0, E
[
‖et‖2

]
≤ d. (16)

Proof. From Eq.(15), we know

E [(et)j] = E [ut −Q (ut)]

=
1

2
((ut)j + 1) ((ut)j − 1) + (1− 1

2
((ut)j + 1))((ut)j + 1) = 0,

(17)

and,

E
[
(et)

2
j

]
= E

[
((ut)j −Q ((ut)j))

2
]

=
1

2
((ut)j + 1) ((ut)j − 1)2 + (1− 1

2
((ut)j + 1))((ut)j + 1)2

= 1− ((ut)j)
2 ≤ 1.

(18)

Hence,
E [et] = 0, E

[
‖et‖2

]
≤ d. (19)

Lemma 2. Let x0 = x1 and α0 = α1 in Algorithm 1, defining the sequence

z1 = x1 + α1(δ1 − e1) (20)

zt = xt +
β

1− β
(xt − xt−1) +

αt−1
1− β

(δt−1 + βet−1 − et),∀t ≥ 2. (21)

12

Under review as a conference paper at ICLR 2023

Then the following equality will hold, i.e.,

zt+1 = zt +
β

1− β

(
αt−1
bt−1

− αt
bt

)
�mt−1 − αt

gt
bt
− αt−1δt−1 − (αt − αt−1)et. (22)

Proof. For t = 1, we have

z2 − z1 = x2 +
β

1− β
(x2 − x1) +

α1

1− β
(δ1 + βe1 − e2)− (x1 + α1(δ1 − e1))

= (
β

1− β
+ 1)(x2 − x1) +

α1

1− β
(δ1 + βe1 − e2)− α1(δ1 − e1)

= − α1

1− β

(
(1− β)g1

b1
+ δ1 + e1 − e2

)
+

α1

1− β
(δ1 + βe1 − e2)− α1(δ1 − e1)

= −α1
g1
b1
− α0δ1

(23)

where the second equality follows the updating rule in Eq.(14).

For t ≥ 2, following the updating rule in Eq.(14), we have

xt+1 − xt + αt(δt + et − et+1) =− αt
mt

bt

=− αt
βmt−1 + (1− β)gt

bt
=β (xt − xt−1 + αt−1(δt + et−1 − et))

+ β

(
αt−1
bt−1

− αt
bt

)
�mt−1 − (1− β)αt

gt
bt

(24)

We know xt+1 − xt + αt(et − et+1) = (1− β)(xt+1 +−αt(et+1 − δt))− (1− β)(xt − αtet) +
β(xt+1 − xt + αt(δt + et − et+1)), so Eq. (24) can be rearranged as

(1− β)(xt+1 + αt(δt − et+1)) + β(xt+1 − xt + αt(δt + et − et+1))

=(1− β)(xt − αtet) + β (xt − xt−1 + αt−1(δt−1 + et−1 − et))

+ β

(
αt−1
bt−1

− αt
bt

)
�mt−1 − (1− β)αt

gt
bt

(25)

Divided both sides by 1− β, we obtain

xt+1 + αt(δt − et+1) +
β

1− β
(xt+1 − xt + αt(δt + et − et+1))

=xt + αt−1(δt−1 − et) +
β

1− β
(xt − xt−1 + αt−1(δt−1 + et−1 − et))

+
β

1− β

(
αt−1
bt−1

− αt
bt

)
�mt−1

− αt
gt
bt
− αt−1δt−1 − (αt − αt−1)et

(26)

Rearranging Eq. (26), we have

xt+1 +
β

1− β
(xt+1 − xt) +

αt
1− β

(δt + βet − et+1)

=xt +
β

1− β
(xt − xt−1) +

αt−1
1− β

(δt−1 + βet−1 − et)

+
β

1− β

(
αt−1
bt−1

− αt
bt

)
�mt−1

− αt
gt
bt
− αt−1δt−1 − (αt − αt−1)et

(27)

13

Under review as a conference paper at ICLR 2023

Define the sequence

zt = xt +
β

1− β
(xt − xt−1) +

αt−1
1− β

(δt−1 + βet−1 − et) (28)

We finally obtain

zt+1 = zt +
β

1− β

(
αt−1
bt−1

− αt
bt

)
�mt−1 − αt

gt
bt
− αt−1δt−1 − (αt − αt−1)et. (29)

Recalling x1 = x0 and α1 = α0, we have α1

b1
= α0

b0
. Then, combining Eq.(23) and Eq.(29), we

obtain the conclusion.

A.2 PROOF OF THEOREM 1

Proof. By the the gradient Lipschitz continuous in Assumption 2 and Lemma 2, we obtain

E[f(zt+1)− f(zt)] ≤ E〈∇f(zt), zt+1 − zt〉+
L

2
E‖zt+1 − zt‖2

=E
[

β

1− β
〈∇f(zt),

(
αt−1
bt−1

− αt
bt

)
�mt−1〉

]
− E

[
〈∇f(zt), αt

gt
bt
〉
]

− E [〈∇f(zt), αt−1δt−1〉]− E [〈∇f(zt), (αt − αt)et−1〉]

+ E

[
L

2

∥∥∥∥ β

1− β

(
αt−1
bt−1

− αt
bt

)
�mt−1 − αt

gt
bt
− αt−1δt−1 − (αt − αt−1)et−1

∥∥∥∥2
]

=E
[

β

1− β
〈∇f(zt),

(
αt−1
bt−1

− αt
bt

)
�mt−1〉

]
− E

[
〈∇f(zt), αt

gt
bt
〉
]

+ E

[
L

2

∥∥∥∥ β

1− β

(
αt−1
bt−1

− αt
bt

)
�mt−1 − αt

gt
bt
− αt−1δt−1 − (αt − αt−1)et−1

∥∥∥∥2
]

≤E
[

β

1− β
〈∇f(zt),

(
αt−1
bt−1

− αt
bt

)
�mt−1〉

]
− E

[
〈∇f(zt), αt

gt
bt
〉
]

+ LE

[∥∥∥∥ β

1− β

(
αt−1
bt−1

− αt
bt

)
�mt−1

∥∥∥∥2
]

+ LE

[
α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

+
L

2
E
[
‖αt−1δt−1‖2

]
+
L

2
E
[
‖(αt−1 − αt)et‖2

]
(30)

where the second equality holds due to E [δt−1] = 0 and E [et−1] = 0. The last inequality holds
owing to E[‖a+ b‖2] = E[‖a‖2] +E[‖b‖2] if E[a] = 0 or E[b] = 0, and E[‖a+ b‖2] ≤ 2E[‖a‖2] +
2E[‖b‖2] if E[a] 6= 0 and E[b] 6= 0.

Taking telescope sum from 1 to T on the both sides of Eq.(30) , we then have

E[f(zT)− f(z1)] ≤ β

1− β
E

[
T∑
t=1

〈∇f(zt),

(
αt−1
bt−1

− αt
bt

)
�mt−1〉

]
︸ ︷︷ ︸

T1

−E

[
T∑
t=1

〈∇f(zt), αt
gt
bt
〉

]
︸ ︷︷ ︸

T2

+ LE

[
T∑
t=1

∥∥∥∥ β

1− β

(
αt−1
bt−1

− αt
bt

)
�mt−1

∥∥∥∥2
]

︸ ︷︷ ︸
T3

+ LE

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

+
L

2
E[

T∑
t=1

‖αt−1δt−1‖2] +
L

2
E[

T∑
t=1

‖(αt−1 − αt)et‖2]︸ ︷︷ ︸
T4

(31)

14

Under review as a conference paper at ICLR 2023

Now we focus on bounding T1 below. From Assumption 4, we know ‖gt‖ ≤ G (t = 1, 2, ..., T) and
‖∇f(zt)‖ ≤ G . Due to mt = βmt−1 + (1− β)gt and m1 = g1, it is easy to obtain ‖mt‖ ≤ G by
complete induction.

Since ‖∇f(zt)‖ ≤ G and ‖mt‖ ≤ G, we have

T1 =
β

1− β
E

[
T∑
i=1

〈∇f(zi),

(
αt−1
bt−1

− αt
bt

)
�mi−1〉

]
(i)

≤ β

1− β
E

[
T∑
i=1

‖∇f(zt)‖‖mt‖
∥∥∥∥αt−1bt−1

− αt
bt

∥∥∥∥
1

]
(ii)

≤ β

1− β
G2E

[
T∑
i=1

∥∥∥∥αt−1bt−1
− αt
bt

∥∥∥∥
1

]
(iii)
=

β

1− β
G2E

[∥∥∥∥∥
T∑
i=1

(
αt−1
bt−1

− αt
bt

)∥∥∥∥∥
1

]

≤ β

1− β
G2E

[∥∥∥∥α0

b0

∥∥∥∥
1

]
(iv)

≤ α0βd

(1− β)ρ
G2,

(32)

where (i) holds sice ‖a � b‖ ≤ ‖a‖maxj |(b)j | ≤ ‖a‖‖b‖1, (ii) holds due to ‖∇f(zt)‖ ≤ G
and ‖mt‖ ≤ G, (iii) holds because αt−1

(bt−1)j
− αt

(bt)j
≥ 0 for any j ∈ [1, 2, ..., d], (iv) holds due to

minj(bt)j ≥ ρ > 0 for any j ∈ [1, 2, ..., d].

Let us turn to bound T2,

T2 = −E

[
T∑
t=1

〈∇f(zt), αt
gt
bt
〉

]

= −E

[
T∑
t=1

〈∇f(zt)− f(xt), αt
gt
bt
〉

]
︸ ︷︷ ︸

T5

−E

[
T∑
t=1

〈∇f(xt), αt
gt
bt
〉

]
︸ ︷︷ ︸

T6

(33)

15

Under review as a conference paper at ICLR 2023

We now analyze T5 below,

T5 = −E

[
T∑
t=1

〈∇f(zt)− f(xt), αt
gt
bt
〉

]
(i)

≤ 1

2
E

[
T∑
t=1

‖f(zt)− f(xt)‖2
]

+
1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

(ii)

≤ L2

2
E

[
T∑
t=1

‖zt − xt‖2
]

+
1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

(iii)
=
L2

2
E

[
T∑
t=1

∥∥∥∥ β

1− β
(xt − xt−1) +

αt−1
1− β

(δt−1 + βet−1 − et)
∥∥∥∥2
]

+
1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

(iv)

≤ β2L2

(1− β)2
E

[
T∑
t=1

‖xt − xt−1‖2
]

+
L2

(1− β)2
E

[
T∑
t=1

‖αt−1δt−1‖2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1et−1‖2
]

+
L2

(1− β)2
E

[
T∑
t=1

‖αt−1et‖2
]

+
1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

(v)
=

β2L2

(1− β)2
E

[
T∑
t=1

α2
t−1

∥∥∥∥(mt−1

bt−1
+ δt−1 + et−1 − et

)∥∥∥∥2
]

+
L2

(1− β)2
E

[
T∑
t=1

‖αt−1δt−1‖2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1et−1‖2
]

+
L2

(1− β)2
E

[
T∑
t=1

‖αt−1et‖2
]

+
1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

=
β2L2

(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1mt−1

bt−1

∥∥∥∥2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1δt−1‖2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1et−1‖2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1et‖2
]

+
L2

(1− β)2
E

[
T∑
t=1

‖αt−1δt−1‖2
]

+
β2L2

(1− β)2
E

[
T∑
t=1

‖αt−1et−1‖2
]

+
L2

(1− β)2
E

[
T∑
t=1

‖αt−1et‖2
]

+
1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

=
β2L2

(1− β)2
E

[
T∑
t=1

α2
t−1

∥∥∥∥mt−1

bt−1

∥∥∥∥2
]

+
(1 + β2)L2

(1− β)2
E

[
T∑
t=1

α2
t−1 ‖δt−1‖

2

]

+
2β2L2

(1− β)2
E

[
T∑
t=1

α2
t−1 ‖et−1‖

2

]
+

(1 + β2)L2

(1− β)2
E

[
T∑
t=1

α2
t−1 ‖et‖

2

]
+

1

2
E

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

(vi)

≤
(
β2L2d

(1− β)2
+

4(1 + β2)L2d

(1− β)2
+

2β2L2d

(1− β)2
+

(1 + β2)L2d

(1− β)2
+
G2

2ρ2

) T∑
t=1

α2
t−1

=

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2

2ρ2

) T∑
t=1

α2
t−1

(34)
where (i) holds by following 〈a, b〉 ≤ 1

2‖a‖
2 + 1

2‖a‖
2, (ii) holds due to Assumption 1, (iii) holds

due to Assumption 1 owing to Eq.(21), (iii) holds since E[‖a+b‖2] = E[‖a‖2]+E[‖b‖2] if E[a] = 0

or E[b] = 0, (v) holds resulting from the updating rule in Eq. (14), (vi) holds due to
∣∣∣ (mt)j
(bt)j

∣∣∣ ≤ 1,

|(δ)j | ≤ 2 (the definition of δtin Eq. (11)), E[‖et‖2] ≤ d in Lemma 1, ‖gt‖ ≤ G in Assumption 2
and minj(bt)j ≥ ρ > 0.

16

Under review as a conference paper at ICLR 2023

We then bound T6

T6 =− E

[
T∑
t=1

〈∇f(xt), αt
gt
bt
〉

]

=− E

[
T∑
t=1

〈∇f(xt), αt
∇f(xt)

bt
〉

]
− E

[
T∑
t=1

〈∇f(xt), αt
gt −∇f(xt)

bt
〉

]
(i)

≤ − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ E

[
T∑
t=1

〈∇f(xt), αt
∇f(xt)− gt

bt
〉

]

=− 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ E
[
〈∇f(x1), α1

∇f(x1)− g1
b1

〉
]

+ E

[
T∑
t=2

〈∇f(xt),∇(f(xt)− gt)�
(
αt
bt
− αt−1
bt−1

)
〉

]
+ E

[
T∑
t=2

〈∇f(xt), αt−1
∇f(xt)− gt

bt−1
〉

]
(ii)
= − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ E
[
〈∇f(x1), α1

∇f(x1)− g1
b1

〉
]

+ E

[
T∑
t=2

〈∇f(xt), (∇f(xt)− gt)�
(
αt
bt
− αt−1
bt−1

)
〉

]
(iii)

≤ − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ E
[
‖∇f(x1)‖‖∇f(x1)− g1‖

∥∥∥∥α1

b1

∥∥∥∥
1

]

+ E

[
T∑
t=2

‖∇f(xt)‖‖∇f(xt)− gt‖
∥∥∥∥αtbt − αt−1

bt−1

∥∥∥∥
1

]
(iv)

≤ − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ 2G2E

[∥∥∥∥α1

b1

∥∥∥∥
1

+

T∑
t=2

∥∥∥∥αtbt − αt−1
bt−1

∥∥∥∥
1

]
(v)
= − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ 2G2E

[∥∥∥∥∥α1

b1
+

T∑
t=2

αt−1
bt−1

− αt
bt

∥∥∥∥∥
1

]
,

=− 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+ 4G2E
[∥∥∥∥α1

b1

∥∥∥∥
1

]
,

(vi)

≤ − 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+
4G2α1d

ρ

(35)
where (i) holds due to maxj(bt)j ≤ ‖bt‖ ≤ G , (ii) holds owing to E[∇f(xt) − gt] = 0 in
Assumption 2 and gt, bt−1 are independent, (iii) holds sice ‖a� b‖ ≤ ‖a‖maxj |(b)j | ≤ ‖a‖‖b‖1,
(iv) holds resulting from ‖∇f(xt)‖ ≤ G and ‖∇f(xt) − gt‖ ≤ ‖∇f(xt)‖ + ‖gt‖ ≤ 2G, and (v)
holds because αt−1

(bt−1)j
− αt

(bt)j
≥ 0 for any j ∈ [1, 2, ..., d], (vi) holds due to minj(bt)j ≥ ρ > 0 for

any j ∈ [1, 2, ..., d].

17

Under review as a conference paper at ICLR 2023

Then, we pay attention to T3,

T3 = LE

[
T∑
t=1

∥∥∥∥ β

1− β

(
αt−1
bt−1

− αt
bt

)
�mt−1

∥∥∥∥2
]

(i)

≤ β2L

(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1bt−1
− αt
bt

∥∥∥∥2 ‖mt−1‖2
]

(ii)

≤ β2LG2

(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1bt−1
− αt
bt

∥∥∥∥2
]

(iii)

≤ β2LG2

(1− β)2
E

[
T∑
t=1

max
j

∣∣∣∣ αt−1(bt−1)j
− αt

(bt)j

∣∣∣∣ ∥∥∥∥αt−1bt−1
− αt
bt

∥∥∥∥
1

]
(iv)

≤ α0β
2LG2

ρ(1− β)2
E

[
T∑
t=1

max
j

(
αt−1

(bt−1)j

)∥∥∥∥αt−1bt−1
− αt
bt

∥∥∥∥
1

]
(v)

≤ α0β
2LG2

ρ(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1bt−1
− αt
bt

∥∥∥∥
1

]
(vi)

≤ α0β
2LG2

ρ(1− β)2
E

[
T∑
t=1

∥∥∥∥αt−1bt−1

∥∥∥∥
1

−
∥∥∥∥αtbt

∥∥∥∥
1

]
(vii)

≤ α0β
2LG2

ρ(1− β)2
E
[∥∥∥∥α0

b0

∥∥∥∥
1

−
∥∥∥∥αTbT

∥∥∥∥
1

]
(viii)

≤ α2
0β

2LG2d

ρ2(1− β)2
,

(36)

where (i) holds due to ‖a � b‖ ≤ ‖a‖‖b‖, (ii) holds owing to ‖mt−1‖ ≤ G, (ii) holds due to
‖a‖2 ≤ maxj |(a)j |‖a‖1 , (iv) holds due to αt−1

(bt−1)j
− αt

(bt)j
≥ 0 and αt

(bt)j
> 0 for any j ∈ [1, 2, ..., d],

(v) holds resulting from minj(bt)j ≥ ρ > 0 for any j and αt is non-increasing, (vi) holds resulting
from αt−1

(bt−1)j
− αt

(bt)j
≥ 0 for any j ∈ [1, 2, ..., d], (vii) holds due to telescoping sum, and (viii)

holds due to minj(bt)j ≥ ρ > 0 for any j ∈ [1, 2, ..., d]..

Now we turn attention to T4,

T4 = LE

[
T∑
t=1

α2
t

∥∥∥∥gtbt
∥∥∥∥2
]

+
L

2
E[

T∑
t=1

‖αt−1δt−1‖2] +
L

2
E[

T∑
t=1

‖(αt−1 − αt)et‖2]

≤
(
L
G2

ρ2
+ 2dL

) T∑
t=1

α2
t +

dL

2

T∑
t=1

(αt−1 − αt)2,

(37)

where the inequality holds owing to ‖mt−1‖ ≤ G and minj(bt)j ≥ ρ > 0, ‖(δt−1)j‖ ≤ 2, and
E[‖et‖2] ≤ d.

Combining Eq.(31-37), we can obtain

E[f(zT)− f(z1)] ≤ α0βd

(1− β)ρ
G2 +

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2

2ρ2

) T∑
t=1

α2
t−1

− 1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]

+
4G2α1d

ρ
+
α2
0β

2LG2d

ρ2(1− β)2

+

(
L
G2

ρ2
+ 2dL

) T∑
t=1

α2
t +

dL

2

T∑
t=1

(αt−1 − αt)2.

(38)

18

Under review as a conference paper at ICLR 2023

Reformulating Eq.(38), we then have

1

G
E

[
T∑
t=1

αt‖∇f(xt)‖2
]
≤E[f(z1)− f(zT)]

+

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2(1 + L)

2ρ2
+ 2dL

) T∑
t=1

α2
t−1

+
dL

2

T∑
t=1

(αt−1 − αt)2

+
α0βd

(1− β)ρ
G2 +

4G2α1d

ρ
+
α2
0β

2LG2d

ρ2(1− β)2

(39)

It is known the learning rate saftifies αt = c√
t
,∀t ≥ 1 and α0 = α1 = c. Utiliz-

ing non-increasing αt and Cauchy-Schwarz inequality, we know E
[∑T

t=1 αt‖∇f(xt)‖2
]
≥

TαTE
[
1
T

∑T
t=1 ‖∇f(xt)‖

]2
=
√
T
c E

[
1
T

∑T
t=1 ‖∇f(xt)‖

]2
.
∑T
t=1 α

2
t−1 =

∑T
t=1

c2

t ≤ c2(1 +∫ T−1
1

1
t dt) ≤ c2(1 + log T), and

∑T
t=1(αt−1 − αt)2 =

∑T
t=2(αt−1 − αt)2 ≤

∑T
t=2

c2

4(t−1)3 ≤
c2

4 (1 +
∫ T−2
1

t−3dt) = c2

4 (3
2 −

1
2(T−2)) ≤

3c2

8 , we further have

E

[
1

T

T∑
t=1

‖∇f(xt)‖

]2
≤ C1√

T
+
C2(1 + log T)√

T
, (40)

where we define

C1 = cG

(
E[f(z1)− f∗] +

3c2dL

16
+

βcdG2

(1− β)ρ
+

4cdG2

ρ
+
c2β2LG2d

ρ2(1− β)2

)
, (41)

C2 = c3G

(
(8β2 + 10β + 5)L2d

(1− β)2
+
G2(1 + L)

2ρ2
+ 2dL

)
. (42)

B UNQUANTIZED BINSGDM

Algorithm 2. SoftSignSGD
1: Input: model parameter x0, x1 , the momentum m

(i)
0 = 0, b(i)0 = 0, the

exponential moving average factor β, the learning rate sequence {αt}
2: for t = 1, ..., T do
3: Randomly sample ξt and compute the gradient: gt = ∇f(xt; ξt)
4: Update the momentum mt: mt = βmt−1 + (1− β)gt
5: Update the momentum bt: bt = βbt−1 + (1− β)|gt|
6: Update the model parameter xt+1: xt+1 = xt − αt

mt
bt

7: end for

We refer to BinSGDM without quantization as SoftSignSGD. The implementation details for Soft-
SignSGD are shown in Algorithm 2. The gradients need to be aggregated among different workers
before SoftSignSGD is performed, just like full-precision SGD and Adam. Compared to Adam,
the first difference is that we utilize the exponential moving average of the absolute gradient, i.e.,
bt = (1−β)bt−1+|gt|, as the denominator of the updating amount for SoftSignSGD rather than con-
ventionally adopt the squared root of the exponential moving average of the squared gradient, i.e.,√
vt =

√
(1− β2)vt−1 + (1− β2)g2t . Another difference is that the exponential moving factors for

the nominatormt and the denominator bt are the same in SoftSignSGD. Both of the distinctions make
each element of the updating amount in SoftSignSGD satisfies −1 ≤ (mt

bt
)j ≤ 1,∀j ∈ [1, 2, ..., d].

B.1 EXPERIMENTAL RESULTS FOR TRAINING VGG16

We assess the performances of Adam, SoftSignSGD and BinSGDM with VGG-16 on CIFAR100.
We sample a set of 128 examples with the replacement for each batch. β for SoftSignSGD and

19

Under review as a conference paper at ICLR 2023

BinSGDM is set to 0.95, and β1, β2 for Adam is set to 0.9, 0.999. The weight decay is uniformly
set to 0.05. To simplify the tuning process and ensure fair comparisons, in each case, we start with
the same learning rate of 0.005, divide the learning rate by 10 after 75 and 130 epochs, and finally
terminate the procedure after 150 epochs. As visually illustrated in Figure 5, the convergence speed
and the test accuracy of SoftSignSGD and BinSGDM are comparative to Adam for training VGG-16
on CIFAR100.

(a) Train Loss (b) Test Accuracy

Figure 5: Training loss and test accuracy for VGG-16 on CIFAR100.

B.2 EXPERIMENTAL RESULTS FOR TRAINING VIT

We train ViT-B with Adam, SoftSignSGD and BinSGDM on the ILSVRC2012. We use the Pytorch
official implementation for ViT 5, and all experimental settings follow the recommended, expect that
β is to 0.95 for SoftSignSGD and BinSGDM and total epoch for all optimizers is set to 150 rather
than 300. As shown in Figure 6, the convergence speed and the test accuracy of SoftSignSGD and
BinSGDM can match Adam for training ViT-B-16 on ILSVRC2012.

(a) Train Loss (b) Test Accuracy

Figure 6: Training loss and test accuracy for ViT-B-16 on ILSVRC2012.

B.3 EXPERIMENTAL RESULTS FOR TRAINING LSTM

We perform experiments for training a 3-layer LSTM on the Penn TreeBank dataset to validate the
effectiveness of SoftSignSGD. Our implementations are built upon the codes of the paper AdaBelief
6, and we use the default experimental settings for adaptive optimizers in the code, expect that we
set β to 0.99 for SoftSignSGD and BinSGDM and the weight decay to 0.3 for all the optimizers.
Figure 7 indicates that the convergence speed and the inference performance of SoftSignSGD and
BinSGDM are competitive to the widely-used Adam.

5https://github.com/pytorch/vision/tree/main/references/classification
6https://github.com/juntang-zhuang/Adabelief-Optimizer

20

Under review as a conference paper at ICLR 2023

(a) Train Loss (b) Test Perplexity

Figure 7: Training loss and test perplexity (the lower, the better) for 3-layer LSTM on Penn TreeBank.

Figure 8: The convegence behaviors for Adam and SoftSignSGD. The loss function is f(x) = 0.5x2. The
learning rate is set to 0.5, x0 is initialized to 1.0. β1 and β2 for Adam is set to 0.9 and 0.99, and β for
SoftSignSGD is set to 0.95.

C THE POTENTIAL OSCILLATION FOR Adam

Compared to SoftSignSGD (Please refer to Algorithm 2 in Section B), Adam may oscillate around the
optimum and cannot approach it. As for SoftSignSGD, in the final optimizing stage, the elements of
gt will frequently change their signs in the neighborhood of the optimal gradient g∗ = 0. The more
frequently the sign of the element of the gradient, (gt)j ,∀j ∈ [1, 2, ..., d], change, the according
(mt)j will be smaller than the according (bt)j . Hence, when the loss approaches a local optimum,
mt

bt
will be gradually close to 0. As for Adam, the update amount is mt√

vt
wheremt = β1mt−1+β1gt

and vt = β2vt + (1 − β2)v2t . Although the elements of the gradient will frequently change their
signs in the final optimizing stage, the relationship of size between (mt)j and (

√
vt)j for any j ∈

[1, 2, ..., d] is uncertain. Hence when the loss is close to a local optimum, the updating amount mt√
vt

may not damp to 0, which may lead the loss to be oscillating and not indeed converge to a local
minimum. We provide an example in Figure 8 to visually illustrate the convergence behaviors for
Adam and SoftSignSGD.

21

Under review as a conference paper at ICLR 2023

Table 3: System throughput (samples/s) of AdamW, 1-bit Adam and BinSGDM for training ResNet-50 on
ILSVRC2012 with 10Gbps Ethernet and 200Gbps InfiniBand.

#GPUs Optimizer Ethernet (10Gbps) InfiniBand (200Gbps)
Throughput
(samples/s)

Speedup Scale
Efficiency

Throughput
(samples/s)

Speedup Scale
Efficiency

8
SGDM 3693 1.00× 100% 3693 1.00× 100%
1-bit Adam 3243 0.83× 100% 3243 0.83× 100%
BinSGDM 3462 0.94× 100% 3462 0.94× 100%

16
SGDM 2959 1.00× 40.1% 4673 1.00× 63.2%
1-bit Adam 4715 1.60× 72.7% 5708 1.22× 88.0%
BinSGDM 6015 2.03× 86.9% 6784 1.45× 97.9%

32
SGDM 4270 1.00× 28.9% 9063 1.00× 61.3%
1-bit Adam 7268 1.70× 56.0% 10249 1.13× 79.0%
BinSGDM 9416 2.21× 68.0% 12131 1.34× 87.6%

32
SGDM 6189 1.00× 20.9% 16608 1.00× 56.2%
1-bit Adam 5546 0.89× 21.3% 16920 1.02× 65.2%
BinSGDM 15253 2.47× 55.1% 19956 1.21× 72.1%

Table 4: System throughput (samples/s) of AdamW, 1-bit Adam and BinSGDM for fine tuning BERT-Base on
SQuAD 1.1 with 10Gbps Ethernet and 200Gbps InfiniBand.

#GPUs Optimizer Ethernet (10Gbps) InfiniBand (200Gbps)
Throughput
(samples/s)

Speedup Scale
Efficiency

Throughput
(samples/s)

Speedup Scale
Efficiency

8
AdamW 413 1.00× 100% 413 1.00× 100%
1-bit Adam 358 0.87× 100% 358 0.83× 100%
BinSGDM 412 1.00× 100% 412 0.94× 100%

16
AdamW 84 1.00× 10.1% 272 1.00× 32.9%
1-bit Adam 213 2.54× 29.7% 522 1.92× 72.9%
BinSGDM 431 5.13× 52.3% 776 2.85× 94.1%

32
AdamW 119 1.00× 7.20% 543 1.00× 32.8%
1-bit Adam 274 2.30× 19.1% 903 1.66× 63.1%
BinSGDM 730 6.13× 44.2% 1365 2.51× 82.9%

32
AdamW 158 1.00× 4.78% 998 1.00× 30.2%
1-bit Adam 252 1.59× 8.80% 1496 1.50× 52.2%
BinSGDM 990 6.26× 30.0% 2299 2.30× 69.8%

22

Under review as a conference paper at ICLR 2023

D EXPERIMENTS WITH INFINIBAND CONNECTIONS

To further evaluate the communication efficiency of SGDM/Adam, SoftSignSGD and BinSGDM
with high bandwidth connections, we implement experiments for training ResNet-50 and BERT-
Base with distributed nodes connected with 200Gbps InfiniBand. All the experimental settings are
the same as we perform experiments with Ethernet in Subsection 5.1, and the experimental results
are listed in Table 3 and Table 4.

As shown in Table 3 and Table 4, compared with the baseline SGDM/Adam, BinSGDM can still
reach up to 1.45× speedup for ResNet-50 on ILSVRC2012 and 2.85× speedup for BERT-Base on
SQuAD 1.1, although the speed advantage is not so obvious as that with lower-bandwidth Ethernet
connections. An interesting phenomenon is that the system throughput of BinSGDM with 10Gbps
Ethernet can match that of SGDM/Adam with 200Gbps InfiniBand.

The experimental results in Table 3 and Table 4 also show that as the number of GPUs is increasing,
the scale efficiency of SGDM/Adam, SoftSignSGD and BinSGDM becomes lower. The reason for
this phenomenon can be summarized in the following. When the number of GPUs doubles, the
number of communication trips also multiplies. We take the communication schemeAll-Reduce
for example. If the number of GPUs is n, each GPU requires 2(n − 1) trips across the network
confections. When the number is non-trivial, the computation time of the communication primitives
may exceed the time of the pure communication itself and dominate the overall communication
time, since the total communication overhead does not change with the number of GPUs. Notably,
All-reduce is more efficient than All-to-All which is the core of our Hierarchical 1-bit . Hence, as
shown in in Table 3 and Table 4, the scale efficiency of BinSGDM decreases more quickly than
SGDM/Adam with the number of GPUs growing.

E DISCUSSION

In the original 1-bit Adam paper (Tang et al. (2021)), it reports that 1-bit Adam runs significantly
(up to 3.8×) faster than the full-precision Adam. Moreover, as the number of GPUs grows, the
speed advantage is more obvious. In contrast, in our experiments, 1-bit Adam does not exhibit clear
speed advantages over the original Adam, and when running on 64 GPUs, 1-bit Adam is not only
slower than the original Adam, but also its throughput rate is even lower than that on 32 GPUs.
The reason for this phenomenon can be summarized in the following. First, in (Tang et al. (2021)),
the speedup of 1-bit Adam is obtained by comparing the throughput at the compression phase with
the throughput at the warm-up phase. The warmup phase is excluded for assessing throughput,
while, in our experiments, we evaluate the overall average throughput of the warm-up phase and
the compression phase for 1-bit Adam. Second, the baseline original Adam in (Tang et al. (2021))
does not run with system-level efficient DDP. Third, in (Tang et al. (2021)), the authors customized
highly efficient communication primitives for 1-bit Adam. For the sake of fairness, we just utilize
the off-the-shelf communication primitives in Pytorch for all the optimizers.

As shown in Figure 4, when the number of GPUs continually, the communication time for BinSGDM
also grows superlinearly. One of the reasons is that the communication primitive All-to-All accounts
for more and more communication time. But the native All-to-All in Step (iii) in Hierarchical 1-bit
All-Reduce is not less efficient than the native All-Reduce. Hence, we will further optimize All-to-All
and All-Gather to further accelerate BinSGDM.

When training large-scale DNNs, the mix-precision technique is used to reduce the memory, which
allows us to further increase the model size. In optimizers, we still use the full-precision state and
full-precision computation which commonly accounts for 33-75% of the total memory footprint
(Tim Dettmers, et al. 8-bit Optimizer via Block-wise Quantization, ICLR 2022.). BinSGDM does
not need full-precision state and full-precision computation. Moreover, due to randomly quantizing
the update to 1 or −1, BinSGDM may leverage lower precision than FP16 gradients to estimate the
update. Therefore, BinSGDM is promising to find more applications in reducing memory.

23

	Introduction
	Extremely One-Bit Quantized BinSGDM
	Theoretical Analysis
	Hierarchical 1-bit All-Reduce
	Experiments
	Experimental Settings
	Experimental Results
	Communication Efficiency Analysis

	Conclusion
	Theoretical Analysis for Algorithm 1
	Auxiliary Lemmas
	Proof of Theorem 1

	Unquantized BinSGDM
	Experimental Results for training VGG16
	Experimental Results for training ViT
	Experimental Results for training LSTM

	The Potential Oscillation for Adam
	Experiments with InfiniBand connections
	Discussion

