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Abstract

The prevalent focus in graph learning research on theoretical challenges like over-1

smoothing and over-squashing may be misguiding, as their practical relevance in2

real-world scenarios is questionable. While Graph Neural Networks (GNNs) have3

achieved significant success across various applications, theoretical work has ex-4

tensively discussed issues such as over-smoothing and over-squashing for the past5

eight years. This paper argues that the continued emphasis on these problems might6

be misplaced. For node-level tasks, we suggest that performance decreases often7

stem from uninformative receptive fields rather than over-smoothing, as optimal8

model depths remain small even with mitigation techniques. For graph-level tasks,9

over-smoothing can even be beneficial if the smoothed state is label-informative.10

Similarly, we challenge the notion that over-squashing, i.e., the compression of11

exponentially growing information into fixed-size node embeddings, is always12

detrimental in practical applications. We argue that the distribution of relevant13

information over the graph frequently factorises and is often localised within a14

small k-hop neighbourhood, questioning the necessity of jointly observing entire15

receptive fields or engaging in an extensive search for long-range interactions. Our16

empirical findings demonstrate that while methods exist to mitigate over-smoothing17

and over-squashing, they often do not yield significant performance gains with18

increased model depth on standard benchmarks, and can lead to substantial com-19

putational costs. This position paper advocates for a paradigm shift in theoretical20

research, urging a diligent analysis of future learning tasks and datasets to better21

understand the localisation and factorisation of label-relevant information. This22

will ensure that theoretical advancements align with the real needs and challenges23

of real-world graph learning problems.24

1 Introduction25

A graph is a versatile data structure that is well-suited for describing complex systems, offering26

a mathematical foundation to analyse complex real-world systems using Graph Neural Networks27

(GNN). Gilmer et al. (2017) introduced the Message Passing Neural Network (MPNN) framework28

in 2017, which serves as the foundation for most modern GNNs, with powerful variants like graph29

convolutional networks (GCNs) (Kipf and Welling, 2017) and graph attention networks (GATs)30

(Veličković et al., 2018; Brody et al., 2022) achieving state-of-the-art results on many graph learning31

tasks. These advances have spurred a wide range of applications. For example, GNNs are now32

routinely applied in chemistry and drug discovery for molecular property prediction (Li et al., 2021),33

in large-scale recommendation engines in social networks (Ying et al., 2018; Zhao et al., 2025; Liu34

et al., 2024), and in spatial–temporal forecasting for traffic prediction like for Google Maps (Yu et al.,35

2017; Derrow-Pinion et al., 2021). Theoretical work on GNNs has explored several challenges that36

limit their capabilities for graph learning tasks. Most prominently, the problems of over-smoothing,37
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over-squashing, robustness and expressivity are discussed in many publications over the past eight38

years (Rusch et al., 2023a; Akansha, 2025; Zhang et al., 2025; Morris et al., 2019; Zhang et al., 2024;39

Günnemann, 2022). Over-smoothing occurs when node representations become indistinguishable40

after many layers, typically measured through concepts like Dirichlet Energy. Over-squashing refers41

to the issue where node embeddings of constant size struggle to represent information of exponentially42

growing receptive fields, often conceptualised through Jacobian matrices. Robustness examines a43

GNNs sensitivity to perturbations in input features or graph structure, with research focusing on44

adversarial attacks and defences. Finally, expressivity investigates the theoretical power of GNNs45

to distinguish between different graph structures and learn complex functions, often explored by46

comparing them to the Weisfeiler-Lehman test. While addressing all four challenges remains an active47

focus of current GNN research, this paper critically examines over-smoothing and over-squashing.48

In a recent position paper Bechler-Speicher et al. (2025) posit that Graph Representation Learning49

may lose relevance due to poor benchmarks. They criticise (1) the relevance and real-world impact50

of learning tasks on current benchmark datasets, (2) the suitability of certain benchmark datasets51

for the application of GNNs, and (3) the overall benchmarking culture. Consequently, they propose52

a paradigm shift towards driving impactful advances in graph learning research and call for new53

transformative real-world applications. We anticipate that this position paper will lead to an extensive54

search for such applications, potentially followed by introductions of new datasets and new learning55

tasks56

We believe diligent analysis of these learning tasks with statistics that measure the underlying57

distributions of relevant information is required to guide further directions of theoretical58

research. This position paper questions the practical relevance of over-smoothing and over-59

squashing in currently established learning tasks.60

Preliminaries. Let G = (V, E ) be an undirected graph with node set V and edge set E . The61

graph G can be represented via an adjacency matrix A ∈ R|V|×|V| with Av,u ̸= 0 if and only if62

(v, u) ∈ E . Each node v ∈ V has a neighbourhood N (v) = {u : (v, u) ∈ E}, a k-hop neighbourhood63

N k(v) = {u ∈ V | dG(v, u) ≤ k} , where dG(v, u) denotes the shortest path distance between v and64

u in the graph G, and features h(0)
v ∈ Rd0 , which are placed on the rows of the matrix H(0) ∈ R|V|×d0 .65

Graph Neural Networks (GNNs) are neural networks designed to process graph-structured data. Most66

GNNs fall into the class of MPNNs, in which layers of message passing functions M(·) and update67

functions U(·) are iteratively composed. In layer ℓ, a new hidden embedding is computed as68

h(ℓ+1)
v = U

(
h(ℓ)
v ,M

(
h(ℓ)
v , {h(ℓ)

u : u ∈ N (v)}
))

.

To exemplify this abstract function class, we consider the model equation of the GCN (Kipf and69

Welling, 2017) below70

H(ℓ) = σ
(
ÃH(ℓ)W (ℓ)

)
,

where the update step is defined by the non-linearity σ and learnable weight matrix W (ℓ), and the71

message passing step is implemented via the message passing operator Ã = (D + I)−1/2(A +72

I)(D + I)−1/2. Note that we omit trainable bias vectors here and will continue to do so throughout73

our discussion for brevity. For a MPNN, the receptive field of a node v refers to the set of nodes74

whose initial features h(0) influence the final embedding h
(ℓ)
v , i.e., all nodes with dG(v, u) ≤ ℓ.75

2 Over-smoothing76

We believe that the continued focus of theoretical research on over-smoothing within the graph77

learning community constrains the practical relevance of recent contributions. In this section, we78

substantiate our position by first reviewing the extensive body of literature on over-smoothing, which79

in our view indicates that the phenomenon is both well-understood and effectively mitigated. Based80

on the literature, we call into question the importance of working with arbitrarily large receptive81

fields in current GNN research. We back our position with experimental results demonstrating that82

even GNNs designed to avoid over-smoothing do not yield significant performance gains on standard83

benchmarks.84
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2.1 Related Work85

Over-smoothing refers to the phenomenon wherein node representations converge to a single repre-86

sentation with an increasing number of message passing steps and become therefore indistinguishable.87

In many publications, this is assumed to be the main reason for a relatively small optimal number88

of message passing layers compared to other neural architectures. Convolutional Neural Networks89

(CNNs), for example, gain performance by increasing the number of convolutions, resulting in CNN90

state-of-the-art architectures with hundreds of layers.91

Theory and Quantification of Over-smoothing. Kipf and Welling (2017) first discovered a92

performance peak of GNNs, here the Graph Convolution Network (GCN), at around 7–8 message-93

passing layers. Li et al. (2018) further investigated this phenomenon and demonstrated empirically94

for a small graph dataset (Zachary’s karate club network (Zachary, 1977)) that repeated graph95

convolutions first improve the class separation in the latent space before collapsing the representations.96

Based on the simplification of graph convolutions as a special form of Laplacian smoothing, they97

show that infinitely repeated applications of the message passing operator lead node embeddings to98

converge to a constant vector.99

Chen et al. (2019) approached the problem of over-smoothing by measuring (over-)smoothness. They100

propose to use the Mean Average Distance (MAD) as a quantitative metric for the smoothness of101

the graph. The MAD applies the cosine distance to the representations of each node pair after the102

final layer L of the GNN. Based on this distance, they define the MADGap, the difference between103

remote node pairs MADrmt and neighbours MADe, as an over-smoothness metric. Their experiments104

suggest a connection between over-smoothness, performance, and the information-to-noise ratio,105

quantified by the proportion of same-class nodes in a k-hop neighbourhood, where k corresponds to106

the number of GNN layers.107

Oono and Suzuki (2019) investigated the asymptotic behaviour of the expressive power of GCN as108

the number of layers tends to infinity. They show that the node representations converge to a single109

signal determined by the node’s connected component and degree, as well as the exponential nature110

of this asymptotic behaviour, which is defined as111

dM(h(ℓ)) ≤ s λ dM(h(ℓ−1)),

where dM(h(ℓ)) denotes the distance of the node representation h in layers ℓ to the mean represen-112

tation of subspace M of the same connected component and node degree. This distance measures113

the smoothness of the graph. The over-smoothing factor sλ comprises the non-trivial eigenvalue114

of the propagation matrix λ with the largest absolute value and the largest singular value of all115

weight matrices Wℓ, or in other words, the maximum amplification factor. For most graphs, sλ < 1,116

implying inevitable over-smoothing.117

Keriven (2022) provided a theoretical analysis of the effect of message passing, focusing not just on118

the asymptotic behaviour but also the optimal GNN depth. With a simplified theoretical model, he119

showed that a limited number of message passing layers improves learning due to faster shrinking of120

non-principal than of principal components and compression of inter-communities variance before121

complete collapse occurs.122

Building on the curvature-based framework for over-squashing introduced by Topping et al. (2022),123

Nguyen et al. (2023) connected positive edge curvature to over-smoothing. They showed that higher124

neighbourhood overlap between adjacent nodes implies higher curvature:125

|N (v) ∩N (u)|
max(deg(v),deg(u))

≥ κ(v, u),

and hence contributes to the smoothing of node features.126

In a comprehensive survey, Rusch et al. (2023a) compare different metrics and mitigation strategies127

for over-smoothing empirically. They advocated for the use of Dirichlet energy as a measure for128

smoothness of H
(ℓ)
G the matrix of all hidden vectors h

(ℓ)
v in graph G, which has a comparable129

behaviour to MAD and is defined as130
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E(H
(ℓ)
G ) =

1

|V|
∑
i∈V

∑
j∈N (i)

∥∥∥h(ℓ)
i − h

(ℓ)
j

∥∥∥2
2
.

Further, they categorise existing mitigation approaches into: (1) normalisation and regularisation, (2)131

change of the GNN dynamics, and (3) architectural enhancement through residual connections. Even132

though they show empirically the suitability of all three approaches for mitigating over-smoothing,133

the performance decreases or stagnates on the actual learning task as GNN depth increases.134

Methodology Addressing Over-smoothing. Several architectural interventions have been proposed135

to counter over-smoothing. Zhao and Akoglu (2020) introduced PairNorm to reduce the effect of136

over-smoothing by stabilising the sum of the distances between node pairs with and without edges.137

Chen et al. (2020) show that simple skip connections can enable deep GCNs. Specifically, they138

introduced GCNII, which adds the initial embedding to each hidden embedding by a proportion139

α and an identity mapping to each weight matrix W (ℓ) by a proportion β, where α and β are140

hyperparameters. Scholkemper et al. (2025) proved theoretically that both batch-normalisation and141

residual connections prevent over-smoothing in GCN. These theoretical findings are supported by142

empirical results on GNN with the most common message passing methods. Rusch et al. (2023b)143

further developed the idea of residual layers to gradient gating (G2) by replacing the fixed proportion144

β with learnable element-wise rates τ (ℓ). In the G2 model, τ (ℓ) is given by a learnable function of145

the hidden features and the graph structure.146

The most influential contributions on over-smoothing with experimental results investigate this147

phenomenon only on node-level tasks, i.e., node classification. The effect on the performance of148

graph classification has not been explored much to the best of our knowledge.149

2.2 Position150

We question the negative influence of over-smoothing in real-world datasets. We consider two151

different cases of learning tasks with regard to the possible influence of over-smoothing, node-level152

tasks and graph-level tasks. For node-level tasks, we suspect the performance decrease on real-world153

data arises not from over-smoothing, but as a consequence of uninformative receptive fields. For most154

learning tasks, a small receptive field is sufficient to encode the relevant information, which indicates155

a small problem radius. If the problem radius is smaller or similar to the number of message passing156

steps to achieve optimal smoothing, as described by Keriven (2022), the performance will not suffer157

from over-smoothing. We support this position with experimental results in Section 2.3, which show158

optimal model depths even for methods that diminish the effect of over-smoothing. For graph-level159

tasks, over-smoothing can even be considered beneficial if the common node representation aligns160

with the label distribution (Southern et al., 2025).161

We furthermore want to specify that the problem of oversmoothing is known to originate from162

the repeated application of message passing functions. Consequently, one can still fit arbitrarily163

deep GNNs without encountering oversmoothing, by applying a limited number of message passing164

functions while working with arbitrarily deep update functions. Since, especially for large graph165

structures, the implementation of message passing comes at a significant computational expense, we166

posit that the desire to perform arbitrarily many message passing operations is not aligned with the167

practical deployment of GNNs.168

Finally, we furthermore want to highlight that scaling the performance of GNNs to a very large169

number of message passing operations, may be misguided due to the methodological alternatives170

that have been developed over the past years. Specifically, for problems with a very large problem171

radius, i.e., problems that justify the consideration of a very large receptive field per node, one may172

almost surely want to explore alternatives such as Graph Transformers (Kreuzer et al., 2021; Ying173

et al., 2021; Rampášek et al., 2022) or rewiring techniques (Topping et al., 2022; Nguyen et al., 2023)174

to consider these large receptive fields more efficiently than to perform as many or more message175

passing operations than the problem radius.176

Outlook. As a consequence of the questionable practical relevance of over-smoothing, the graph177

learning community should focus its efforts on problems of proven relevance implicated by the178

conditions in given learning tasks and datasets. We suggest it might be helpful to develop statistics179
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Table 1: Comparison of a GCN and three methods to mitigate over-smoothing for a range of model
depths. The accuracy is given in %, and the computational time is given in milliseconds in brackets.

Dataset Model Layers
2 4 8 16 32 64

Cora

GCN 85.3 (51) 85.3 (69) 80.6 (84) 60.9 (131) 30.4 (208) 15.7 (357)
Pairnorm 83.4 (54) 83.7 (69) 83.1 (91) 65.1 (137) 26.0 (229) 19.2 (386)
GCNII 86.2 (48) 87.0 (57) 87.4 (71) 87.4 (81) 87.3 (129) 87.1 (219)
G2 72.3 (74) 70.8 (96) 71.4 (135) 72.1 (229) 70.6 (396) 70.8 (682)

Citeseer

GCN 78.3 (50) 76.3 (60) 68.7 (75) 35.7 (76) 20.7 (149) 18.4 (291)
Pairnorm 76.4 (53) 71.6 (63) 54.2 (76) 31.9 (106) 22.5 (164) 21.4 (279)
GCNII 79.1 (47) 79.3 (58) 79.0 (75) 79.1 (104) 79.2 (169) 79.2 (221)
G2 59.8 (76) 61.2 (101) 61.8 (141) 63.9 (213) 64.5 (366) 64.6 (714)

Pubmed

GCN 86.6 (55) 86.4 (63) 84.6 (87) 84.1 (62) 49.5 (44) 36.0 (80)
Pairnorm 88.3(56) 87.4 (68) 84.7 (92) 84.1 (115) 82.9 (59) 72.6 (103)
GCNII 84.4 (49) 85.4 (56) 84.7 (75) 83.8 (97) 84.1 (166) 78.3 (265)
G2 74.3 (60) 77.8 (72) 79.0 (107) 70.6 (167) 73.6 (275) 78.3 (506)

GCN 28.7 (17) 19.7 (20) 13.3 (24) 11.8 (31) 9.8 (48) 6.1 (81)
Roman- Pairnorm 42.6 (18) 22.7 (21) 16.6 (27) 12.2 (38) 9.1 (65) 8.3 (105)
Empire GCNII 34.6 (47) 34.5 (61) 32.5 (80) 32.0 (108) 31.7 (174) 31.7 (275)

G2 50.0 (28) 50.6 (35) 50.3 (47) 49.0 (73) 48.9 (121) 58.5 (214)

that quantify the label relevance of different-sized receptive fields. This quantification of the problem180

radius in combination with an observation of the optimal smoothing depth should guide our efforts in181

improving model architectures.182

2.3 Empirical Findings183

We back our position on over-smoothing with experimental results, which show that methods184

presented in Section 2.1 in most cases prevent the models from over-smoothing, but do not score185

significantly better results with increasing model depth.186

Set-up. We tested the performance of four architectures that were introduced to mitigate over-187

smoothing and compared the results to a regular GCN with a range of model depths on multiple188

commonly used benchmark datasets. We ran the experiments on the homophilic citation datasets189

Cora, Citeseer and Pubmed as used in (Yang et al., 2016) and the heterophilic Roman-Empire dataset190

from (Platonov et al., 2024). Even though these datasets have been criticised for a lack of real-world191

application (Bechler-Speicher et al., 2025), we apply them here, as they have been used to develop192

most methods against over-smoothing. On each dataset, we tested a regular GCN (Kipf and Welling,193

2017), a GCN with PairNorm (Zhao and Akoglu, 2020), a GCNII (Chen et al., 2020), and a G2-GCN194

with gradient gating (Rusch et al., 2023b). Each of the models was tested with an exponentially195

increasing number of message passing layers from 2 to 64 layers. Each model was trained for 500196

epochs with a learning rate of 0.001 with 20 random parameter initialisations. We set a fixed hidden197

dimension of 32 features and used early-stopping for regularisation.198

Discussion. The accuracy of the tested models, along with the computational time in brackets, is199

presented in Table 1. In this work, we do not focus on the comparison of the absolute results of the200

different models. Instead, we want to draw the reader’s attention to the influence the model depth has201

on the model’s performance. For the regular GCN, we can observe a drastic performance decrease202

with increasing number of message passings, as expected due to over-smoothing. The GCNII and the203

G2 do not show this behaviour. Instead, the model performance is stable or increases slightly with the204

number of layers. However, in most cases, the optimal model depth remains at eight or fewer layers.205

Additionally, the performance stabilisation at higher model depth comes with an exponential increase206

in computational costs.207
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3 Over-squashing208

We believe that continuous theoretical work on over-squashing should be guided by measurable209

problems that limit the performance of GNNs in practical applications. In this section, we base210

our position on the literature, reviewing different perspectives on the phenomenon. We address211

these perspectives and, as a consequence, question the relevance of over-squashing for practical212

applications. We support our position with experimental results showing a low optimal model depth213

with and without methods for reducing over-squashing.214

3.1 Related Work215

Over-squashing is the well-studied phenomenon of compression of an exponentially growing amount216

of information into fixed-size node embeddings as the depth of a GNN increases. If a node v is to217

be affected by features of node u at distance k, a GNN requires at least k message passing steps.218

However, an increasing number of message passings results in an exponentially growing number of219

messages being sent, leading to a loss of information. In other words, over-squashing can be defined220

as the inability to losslessly compress a receptive field that grows with the depth of the network in221

fixed-sized node representations. As a consequence of over-squashing, features from neighbours222

in different k-hops can not be considered jointly at the central node, preventing the modelling of223

interaction effects. In detail, the phenomenon of over-squashing has been defined in various ways,224

focusing on different aspects of the problem.225

Theory and Quantification of Over-squashing. The over-squashing phenomenon was introduced226

by Alon and Yahav (2020) with the broadest definition of over-squashing. Based on the exponential227

growth of the receptive field of a node v with the number of message passing layers228

|NL(v)| = O(eL),

they conclude an over-squashing of an exponentially growing amount of information while the229

embedding dimension remains constant. They emphasise the increasing severity of this phenomenon230

for problems that require long-range information, i.e. with a large problem radius r. With the231

synthetic NeighboursMatch dataset, Alon and Yahav (2020) showed the limitation of GNNs with the232

most common message passing methods for large problem radii and attributed this to over-squashing.233

Additionally, they validated their results on a real-world dataset and showed that for a GNN with234

L = 8 and using fully-adjacent layers, which theoretically prevents over-squashing, improved the235

results practically.236

Topping et al. (2022) investigate over-smoothing through graph curvature, focusing on bottleneck237

edges that induce over-squashing locally. They formulate the over-squashing problem between a238

node v and another node u with dG(v, u) = r through the derivative of the hidden vector hv , i.e., the239

Jacobian, with respect to a feature hu as240 ∣∣∣∣∣∂h(r+1)
v

h
(0)
u

∣∣∣∣∣ ≤ (α · β)r+1
(
Ãr+1

)
v,u

, (1)

with the layer-wise Lipschitz constants |∆U (ℓ)| ≤ α and |∆M (ℓ)| ≤ β for 0 ≤ ℓ ≤ r. The factor241

(Ãr+1)v,u causes vanishing gradients, especially with bottleneck edges on the path between the two242

nodes. Topping et al. (2022) propose a modified Forman curvature, which uses the counts of triangles243

and 4-cycles based on an edge, to identify these bottlenecks.244

Di Giovanni et al. (2023) extended the fundamental understanding of over-squashing by investigating245

its impact on the width, depth and topology, viewing small Jacobians of node features for long-range246

interactions in general as a problem of over-squashing. They defined an alternative upper bound for247

the Jacobian, which differs slightly from Equation (1) and is defined as248 ∣∣∣∣∣∂h(ℓ)
v

∂h
(0)
u

∣∣∣∣∣ ≤ (cσ · w · p︸ ︷︷ ︸
model

)ℓ
(
Ãℓ

)
vu︸ ︷︷ ︸

topology

, (2)
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where cσ is the Lipschitz constant of the nonlinearity σ, w is the maximal entry-value over all weight249

matrices, and p is the hidden dimension or model width. They derive from Equation (2) that a larger250

hidden dimension prevents over-squashing if it compensates for the topology factor. However, they251

point out that an increased hidden dimension reduces the ability of generalisation and does not solve252

the actual problem, the graph topology. Further, they prove for tasks with long-range dependencies,253

i.e., large problem radii r, the occurrence of over-squashing for models with a depth comparable to254

the problem radius (L ≈ r) and vanishing gradients for deeper models (L ≫ r). Lastly, Di Giovanni255

et al. (2023) add another perspective on over-squashing and show that over-squashing occurs for a256

pair of nodes v, u ∈ V with a high commute time π, which measures the expected number of steps257

for a random walk to commute between v and u.258

Methodology Addressing Over-squashing. Topping et al. (2022) introduce a curvature-based259

rewiring method incorporating their Balanced Forman metric to reduce over-squashing on bottlenecks.260

The Stochastic Discrete Ricci Flow (SDRF) adds edges to support low-curvature edges and removes261

high-curvature edges. A similar approach called Batch Ollivier-Ricci Flow (BORF) was proposed by262

Nguyen et al. (2023), using the Ollivier-Ricci curvature, which is defined as263

κ(v, u) =
W1(µv, µu)

dG(v, u)
,

where W1(µv, µu) is the L1-Wasserstein distance and dG(v, u) is the shortest path distance. They264

use κ for adding and removing edges in the graph to simultaneously mitigate over-squashing and over-265

smoothing, respectively. Deac et al. (2022) create a modified graph structure using a fundamentally266

sparse family of expander graphs with a low diameter. In the Graph Expander Propagation (EGP),267

they replace every second propagation step with edges from the expander, reducing effective path268

lengths. Southern et al. (2025) build upon the observations of Di Giovanni et al. (2023) that over-269

squashing comes with long-range dependencies with long commute times and show theoretically and270

empirically that a virtual node can reduce π and therefore reduce the effect of over-squashing.271

3.2 Position272

We challenge the presumed detrimental effect of over-squashing in real-world applications. More273

specifically, we question the practical relevance of joint observations of entire receptive fields,274

long-range interactions, and information exchange through bottlenecks. Note that while these three275

definitions of the over-squashing problem may appear disparate, they all define different aspects of a276

coherent notion of the over-squashing problem. We now discuss our position on the three concrete277

over-squashing definitions in turn.278

The formulation of the over-squashing problem through a limit of the Jacobian is based on the279

assumption that long-range interactions are generally informative for learning tasks and desirable to280

achieve through deep GNNs. We believe that in most practical applications, the relevant information281

on interaction effects is stored within a small k-hop neighbourhood.282

Next, we challenge the negative effect of low-curvature edges. Bottleneck edges limit the exchange283

of information between structural communities. An interrelation between negative curvature and284

the label distribution has not been investigated yet. However, we assume in most cases a correlation285

between structural communities and the label distribution. Consequently, information exchange along286

bottleneck edges is not relevant for such learning tasks.287

At last, we consider the most general formulation of the over-squashing phenomenon, that is, the288

exponentially growing receptive field and the presumed impossibility of summarising its information289

in a constant hidden dimension. Implicit in this definition of oversquashing is the assumption that the290

information of the entire receptive field needs to be jointly observed to perform the given learning task.291

In other words, the impossibility definition states that the joint distribution over the receptive field of292

a node does not factorise into marginal distributions over the nodes, i.e., we assume the presence of293

high-order interaction effects within the receptive field of a node. We posit that this assumption is294

unrealistic and that for most real-world datasets, the joint distribution over the receptive field of a295

node does factorise and that we can hence process subsets of the receptive field independently and296

efficiently. In essence, it seems to us that a fixed-size node representation should be sufficient to297
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successfully complete the majority of learning tasks for arbitrarily large receptive fields on real-world298

datasets.299

Our assumptions are supported by experimental results we present in Section 3.3. These indicate that300

despite effectiveness against over-squashing, the overall performance on the learning task does not301

improve with the increasing number of message passing steps.302

Outlook. We suggest a diligent analysis of future learning tasks and datasets for a better under-303

standing of the feature, structure and label distributions and their interplay. Statistics are required to304

measure the localisation and factorisation of the label distribution conditioned on the structure and305

feature information. In addition to the relevant problem radius as proposed in Section 2.2, we suggest306

investigating the specific localisation of relevant information, which can help understand interaction307

along low curvature edges and long-range relationships, to guide targeted rewiring techniques. First308

attempts have been made to measure this through the calculation of the Jacobian in a preprint (Liang309

et al., 2025). However, this statistic lacks diagnostic precision due to the overlapping effects of310

the model definition and underlying structure. To us it seems preferable to separately establish the311

presence of potential over-squashing effects in the underlying graph structure and in the different312

models that could be applied to this graph data. We furthermore want to specify that the definition of313

oversquashing via the Jacobian and the related remedy of rewiring, operate under the assumption that314

single nodes, often at a large shortest path distance, contain information that is uniquely relevant to315

accurately represent a considered central node. It seems to us that further research on this problem316

should formally define structures in which such far-removed nodes do contain information that is317

relevant to the representation of different nodes in the graph and that real-world examples, in which318

such phenomena can be observed and measured, should be found. The extension of the excellent319

work by Liang et al. (2025) to not only record the average Jacobian over k-hop neighbourhoods, but to320

also look for outliers in the Jacobian values in the k-hop neighbourhoods could be a starting point for321

such research, since it may permit the identification of individual nodes at a potentially large distance,322

which may go unnoticed if one averages over entire k-hops (even if as specified earlier, it may be323

preferable to measure such effects for the used model and underlying graph structure separately).324

Moreover, we suggest exploring potential factorisation of the label distribution over k-hop receptive325

fields to assess the importance of a joint observation of the whole receptive field. The quantification326

of interaction effects in receptive fields of nodes has the potential to not only guide the development327

of future GNNs that are more closely aligned with the challenges posed by impactful, real-world328

learning problems, but also, to offer an insightful categorisation of existing datasets and the ability of329

models to capture such effects. The application of these statistics shall allow us to better understand330

existing work and to set the right focus for further research directions.331

3.3 Empirical Findings332

In this section, we give empirical evidence that shows a significant reduction of over-squashing is333

possible with the proposed methods, while the overall performance on the learning tasks can benefit334

from this improvement.335

Set-up. We explore the potential of over-squashing mitigation techniques on node-level and graph-336

level tasks. For node classification, we use the same four datasets, Cora, Citeseer, Pubmed, and337

Roman-Empire, as discussed in Section 2.3. For experiments on graph classification, we use the338

datasets MUTAG, ENZYMES, and PROTEINS from the TU dataset collection (Morris et al., 2020)339

with the data splits and test procedure described in (Errica et al., 2020). On each dataset, we compare340

the performance of a regular GCN with EGP Zhang et al. (2025) and BORF Nguyen et al. (2023).341

We apply BORF once on the whole dataset before training a regular GCN. To ensure comparability,342

we also implement EGP with GCN message passing instead of GIN as proposed in the original paper.343

We use the same training and model setup as described in Section 2.3.344

Discussion. The results of the three models in terms of accuracy are reported in Tables 2 and 3, along345

with their respective computational time. As in Section 2.3, we can compare how an increasing number346

of message passings influences the performance of the models. The results on node classification in347

Table 2 show contrasting effects of both mitigation techniques. While BORF enables better results348

with deep GCNs, presumably through the elimination of bottlenecks, EGP optimises the long-range349

message flow for a minimal number of layers. However, the optimal model depth is 4 or less for all350
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Table 2: Comparison in node-classification of a GCN and two methods to mitigate over-squashing
for a range of model depths. The accuracy is given in %, and the computational time is given in
milliseconds in brackets.

Dataset Model Layers
2 4 8 16 32 64

Cora
GCN 85.3 (51) 85.3 (69) 80.6 (84) 60.9 (131) 30.4 (208) 15.7 (357)
BORF 85.0 (13) 85.0 (15) 80.5 (19) 68.7 (29) 58.6 (44) 25.6 (72)
EGP 85.4 (25) 73.6 (28) 27.2 (32) 21.4 (40) 13.3 (56) 15.4 (90)

Citeseer
GCN 78.3 (50) 76.3 (60) 68.7 (75) 35.7 (76) 20.7 (149) 18.4 (291)
BORF 78.5 (42) 76.5 (50) 73.0 (59) 67.6 (83) 62.4 (138) 21.2 (228)
EGP 78.4 (30) 65.6 (32) 27.8 (36) 16.3 (44) 14.3 (59) 14.1 (95)

Pubmed
GCN 86.6 (55) 86.4 (63) 84.6 (87) 84.1 (62) 49.5 (44) 36.0 (80)
BORF 84.9 (39) 85.2 (54) 84.1 (58) 81.9 (91) 72.8 (142) 37.6 (234)
EGP 86.6 (136) 86.4 (138) 71.1 (140) 42.0 (147) 36.6 (160) 37.2 (200)

Roman-
empire

GCN 28.7 (17) 19.7 (20) 13.3 (24) 11.8 (31) 9.8 (48) 6.1 (81)
BORF 43.1 (48) 45.4 (56) 41.7 (70) 28.2 (70) 26.8 (103) 11.9 (76)
EGP 28.7 (471) 12.1 (486) 8.1 (496) 7.6 (507) 7.1 (528) 7.1 (557)

Table 3: Comparison in graph-classification of a GCN and two methods to mitigate over-squashing
for a range of model depths. The accuracy is given in %, and the computational time is given in
milliseconds in brackets.

Dataset Model Layers
2 4 8 16 32 64

PROTEINS
GCN 70.2 (61) 74.2 (66) 76.1 (77) 75.8 (101) 62.1 (146) 58.6 (226)
BORF 73.6 (66) 65.0 (72) 60.2 (83) 60.9 (104) 59.4 (153) 60.3 (232)
EGP 69.6 (267) 66.7 (273) 63.6 (283) 64.5 (307) 62.3 (352) 64.6 (433)

ENZYMES
GCN 43.7 (40) 44.2 (44) 38.3 (51) 34.9 (66) 32.2 (94) 19.8 (202)
BORF 46.6 (63) 43.1 (81) 35.9 (116) 33.4 (213) 23.6 (337) 21.4 (606)
EGP 42.2 (144) 43.5 (147) 38.3 (155) 34.9 (170) 32.2 (202) 21.7 (254)

MUTAG
GCN 76.4 (25) 79.1 (29) 79.8 (35) 81.5 (50) 76.8 (78) 68.8 (132)
BORF 71.8 (26) 77.6 (30) 70.2 (36) 69.0 (51) 66.5 (82) 68.1 (134)
EGP 73.4 (52) 76.2 (55) 76.6 (62) 72.2 (76) 70.6 (105) 71.0 (161)

models, indicating low relevance of the over-squashing problem. On the graph-classification tasks,351

model depth appears to be a minor problem in general, as the performance decrease on the GCN is352

less severe. Here, the GCN can not benefit from rewiring techniques.353

4 Conclusion354

In this position paper, we highlight the importance of an in-depth understanding of real-world learning355

problems to guide future research directions in theoretical work in graph representation learning.356

While much excellent work has been done to better understand and solve over-squashing and over-357

smoothing, the practical relevance of these problems should be questioned. As Bechler-Speicher et al.358

(2025) very recently criticised the current benchmarking culture and called for new transformative359

real-world benchmarking datasets, we hope that many new learning tasks with individual challenges360

will emerge and gain importance. It seems crucial to us that as part of this search for new applications361

and datasets, we analyse these diligently, especially for topics like over-smoothing and over-squashing.362

Statistics should be established to measure the localisation and factorisation of the feature, structure363

and label distributions.364
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