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Abstract

The prevalent focus in graph learning research on theoretical challenges like over-
smoothing and over-squashing may be misguiding, as their practical relevance in
real-world scenarios is questionable. While Graph Neural Networks (GNNs) have
achieved significant success across various applications, theoretical work has ex-
tensively discussed issues such as over-smoothing and over-squashing for the past
eight years. This paper argues that the continued emphasis on these problems might
be misplaced. For node-level tasks, we suggest that performance decreases often
stem from uninformative receptive fields rather than over-smoothing, as optimal
model depths remain small even with mitigation techniques. For graph-level tasks,
over-smoothing can even be beneficial if the smoothed state is label-informative.
Similarly, we challenge the notion that over-squashing, i.e., the compression of
exponentially growing information into fixed-size node embeddings, is always
detrimental in practical applications. We argue that the distribution of relevant
information over the graph frequently factorises and is often localised within a
small k-hop neighbourhood, questioning the necessity of jointly observing entire
receptive fields or engaging in an extensive search for long-range interactions. Our
empirical findings demonstrate that while methods exist to mitigate over-smoothing
and over-squashing, they often do not yield significant performance gains with
increased model depth on standard benchmarks, and can lead to substantial com-
putational costs. This position paper advocates for a paradigm shift in theoretical
research, urging a diligent analysis of future learning tasks and datasets to better
understand the localisation and factorisation of label-relevant information. This
will ensure that theoretical advancements align with the real needs and challenges
of real-world graph learning problems.

1 Introduction

A graph is a versatile data structure that is well-suited for describing complex systems, offering
a mathematical foundation to analyse complex real-world systems using Graph Neural Networks
(GNN). Gilmer et al.|(2017) introduced the Message Passing Neural Network (MPNN) framework
in 2017, which serves as the foundation for most modern GNNs, with powerful variants like graph
convolutional networks (GCNs) (Kipf and Welling, [2017) and graph attention networks (GATs)
(Velickovic et al.l 2018; Brody et al.|[2022) achieving state-of-the-art results on many graph learning
tasks. These advances have spurred a wide range of applications. For example, GNNs are now
routinely applied in chemistry and drug discovery for molecular property prediction (Li et al., 2021)),
in large-scale recommendation engines in social networks (Ying et al., 2018; Zhao et al., 2025} |[Liu
et al.,|2024)), and in spatial-temporal forecasting for traffic prediction like for Google Maps (Yu et al.|
2017; Derrow-Pinion et al., 2021). Theoretical work on GNNs has explored several challenges that
limit their capabilities for graph learning tasks. Most prominently, the problems of over-smoothing,
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over-squashing, robustness and expressivity are discussed in many publications over the past eight
years (Rusch et al.l 2023aj |Akansha, [2025; Zhang et al., 2025 [Morris et al., [2019; |Zhang et al.| 2024}
Giinnemann| [2022). Over-smoothing occurs when node representations become indistinguishable
after many layers, typically measured through concepts like Dirichlet Energy. Over-squashing refers
to the issue where node embeddings of constant size struggle to represent information of exponentially
growing receptive fields, often conceptualised through Jacobian matrices. Robustness examines a
GNNs sensitivity to perturbations in input features or graph structure, with research focusing on
adversarial attacks and defences. Finally, expressivity investigates the theoretical power of GNNs
to distinguish between different graph structures and learn complex functions, often explored by
comparing them to the Weisfeiler-Lehman test. While addressing all four challenges remains an active
focus of current GNN research, this paper critically examines over-smoothing and over-squashing.

In a recent position paper |Bechler-Speicher et al.[(2025)) posit that Graph Representation Learning
may lose relevance due to poor benchmarks. They criticise (1) the relevance and real-world impact
of learning tasks on current benchmark datasets, (2) the suitability of certain benchmark datasets
for the application of GNNs, and (3) the overall benchmarking culture. Consequently, they propose
a paradigm shift towards driving impactful advances in graph learning research and call for new
transformative real-world applications. We anticipate that this position paper will lead to an extensive
search for such applications, potentially followed by introductions of new datasets and new learning
tasks

We believe diligent analysis of these learning tasks with statistics that measure the underlying
distributions of relevant information is required to guide further directions of theoretical
research. This position paper questions the practical relevance of over-smoothing and over-
squashing in currently established learning tasks.

Preliminaries. Let G = (V,&) be an undirected graph with node set V and edge set £. The
graph G can be represented via an adjacency matrix A € RV*XIVI with A, ., # 0 if and only if
(v,u) € £. Eachnode v € V has a neighbourhood N (v) = {u : (v,u) € £}, a k-hop neighbourhood
NF(w) = {u €V |dg(v,u) <k}, where dg (v, u) denotes the shortest path distance between v and

w in the graph G, and features th’) € R% which are placed on the rows of the matrix H 0) ¢ RIVIxdo,
Graph Neural Networks (GNNs) are neural networks designed to process graph-structured data. Most
GNNes fall into the class of MPNNS, in which layers of message passing functions M (-) and update
functions U (-) are iteratively composed. In layer ¢, a new hidden embedding is computed as

A = U (hg@, M (hg@, (h v e N(v)})) .

To exemplify this abstract function class, we consider the model equation of the GCN (Kipf and
Welling, [2017) below

HO — <AH(€)W(€)) 7

where the update step is defined by the non-linearity o and learnable weight matrix W), and the
message passing step is implemented via the message passing operator A= (D+1 )_1/ 2(A+
I)(D + I)~'/2. Note that we omit trainable bias vectors here and will continue to do so throughout
our discussion for brevity. For a MPNN, the receptive field of a node v refers to the set of nodes

whose initial features h(?) influence the final embedding h,(f), i.e., all nodes with dg (v, u) < L.

2 Over-smoothing

We believe that the continued focus of theoretical research on over-smoothing within the graph
learning community constrains the practical relevance of recent contributions. In this section, we
substantiate our position by first reviewing the extensive body of literature on over-smoothing, which
in our view indicates that the phenomenon is both well-understood and effectively mitigated. Based
on the literature, we call into question the importance of working with arbitrarily large receptive
fields in current GNN research. We back our position with experimental results demonstrating that
even GNNs designed to avoid over-smoothing do not yield significant performance gains on standard
benchmarks.
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2.1 Related Work

Over-smoothing refers to the phenomenon wherein node representations converge to a single repre-
sentation with an increasing number of message passing steps and become therefore indistinguishable.
In many publications, this is assumed to be the main reason for a relatively small optimal number
of message passing layers compared to other neural architectures. Convolutional Neural Networks
(CNNgs), for example, gain performance by increasing the number of convolutions, resulting in CNN
state-of-the-art architectures with hundreds of layers.

Theory and Quantification of Over-smoothing. |Kipf and Welling| (2017) first discovered a
performance peak of GNNs, here the Graph Convolution Network (GCN), at around 7-8 message-
passing layers. |Li et al.| (2018)) further investigated this phenomenon and demonstrated empirically
for a small graph dataset (Zachary’s karate club network (Zachary| [1977)) that repeated graph
convolutions first improve the class separation in the latent space before collapsing the representations.
Based on the simplification of graph convolutions as a special form of Laplacian smoothing, they
show that infinitely repeated applications of the message passing operator lead node embeddings to
converge to a constant vector.

Chen et al.|(2019) approached the problem of over-smoothing by measuring (over-)smoothness. They
propose to use the Mean Average Distance (MAD) as a quantitative metric for the smoothness of
the graph. The MAD applies the cosine distance to the representations of each node pair after the
final layer L of the GNN. Based on this distance, they define the MADGap, the difference between
remote node pairs MAD"™" and neighbours MAD®, as an over-smoothness metric. Their experiments
suggest a connection between over-smoothness, performance, and the information-to-noise ratio,
quantified by the proportion of same-class nodes in a k-hop neighbourhood, where k corresponds to
the number of GNN layers.

Oono and Suzukil (2019) investigated the asymptotic behaviour of the expressive power of GCN as
the number of layers tends to infinity. They show that the node representations converge to a single
signal determined by the node’s connected component and degree, as well as the exponential nature
of this asymptotic behaviour, which is defined as

dm(h9) < s A dp(RY),

where d o (h(?)) denotes the distance of the node representation h in layers £ to the mean represen-
tation of subspace M of the same connected component and node degree. This distance measures
the smoothness of the graph. The over-smoothing factor s\ comprises the non-trivial eigenvalue
of the propagation matrix A with the largest absolute value and the largest singular value of all
weight matrices Wy, or in other words, the maximum amplification factor. For most graphs, sA < 1,
implying inevitable over-smoothing.

Keriven| (2022) provided a theoretical analysis of the effect of message passing, focusing not just on
the asymptotic behaviour but also the optimal GNN depth. With a simplified theoretical model, he
showed that a limited number of message passing layers improves learning due to faster shrinking of
non-principal than of principal components and compression of inter-communities variance before
complete collapse occurs.

Building on the curvature-based framework for over-squashing introduced by [Topping et al.| (2022),
Nguyen et al.| (2023)) connected positive edge curvature to over-smoothing. They showed that higher
neighbourhood overlap between adjacent nodes implies higher curvature:

N () NN (u)]
max(deg(v), deg(u))

2 r(v,u),

and hence contributes to the smoothing of node features.

In a comprehensive survey, |[Rusch et al.| (2023a) compare different metrics and mitigation strategies

for over-smoothing empirically. They advocated for the use of Dirichlet energy as a measure for

smoothness of H, g) the matrix of all hidden vectors hq(,z) in graph G, which has a comparable

behaviour to MAD and is defined as
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Further, they categorise existing mitigation approaches into: (1) normalisation and regularisation, (2)
change of the GNN dynamics, and (3) architectural enhancement through residual connections. Even
though they show empirically the suitability of all three approaches for mitigating over-smoothing,
the performance decreases or stagnates on the actual learning task as GNN depth increases.

Methodology Addressing Over-smoothing. Several architectural interventions have been proposed
to counter over-smoothing. [Zhao and Akoglu| (2020) introduced PairNorm to reduce the effect of
over-smoothing by stabilising the sum of the distances between node pairs with and without edges.
Chen et al.| (2020) show that simple skip connections can enable deep GCNs. Specifically, they
introduced GCNII, which adds the initial embedding to each hidden embedding by a proportion
o and an identity mapping to each weight matrix W () by a proportion 3, where o and j3 are
hyperparameters. Scholkemper et al.| (2025) proved theoretically that both batch-normalisation and
residual connections prevent over-smoothing in GCN. These theoretical findings are supported by
empirical results on GNN with the most common message passing methods. [Rusch et al.| (2023b)
further developed the idea of residual layers to gradient gating (G?) by replacing the fixed proportion
£ with learnable element-wise rates 7). In the G* model, (9 is given by a learnable function of
the hidden features and the graph structure.

The most influential contributions on over-smoothing with experimental results investigate this
phenomenon only on node-level tasks, i.e., node classification. The effect on the performance of
graph classification has not been explored much to the best of our knowledge.

2.2 Position

We question the negative influence of over-smoothing in real-world datasets. We consider two
different cases of learning tasks with regard to the possible influence of over-smoothing, node-level
tasks and graph-level tasks. For node-level tasks, we suspect the performance decrease on real-world
data arises not from over-smoothing, but as a consequence of uninformative receptive fields. For most
learning tasks, a small receptive field is sufficient to encode the relevant information, which indicates
a small problem radius. If the problem radius is smaller or similar to the number of message passing
steps to achieve optimal smoothing, as described by Keriven! (2022), the performance will not suffer
from over-smoothing. We support this position with experimental results in Section [2.3] which show
optimal model depths even for methods that diminish the effect of over-smoothing. For graph-level
tasks, over-smoothing can even be considered beneficial if the common node representation aligns
with the label distribution (Southern et al., [2025)).

We furthermore want to specify that the problem of oversmoothing is known to originate from
the repeated application of message passing functions. Consequently, one can still fit arbitrarily
deep GNNs without encountering oversmoothing, by applying a limited number of message passing
functions while working with arbitrarily deep update functions. Since, especially for large graph
structures, the implementation of message passing comes at a significant computational expense, we
posit that the desire to perform arbitrarily many message passing operations is not aligned with the
practical deployment of GNNs.

Finally, we furthermore want to highlight that scaling the performance of GNNs to a very large
number of message passing operations, may be misguided due to the methodological alternatives
that have been developed over the past years. Specifically, for problems with a very large problem
radius, i.e., problems that justify the consideration of a very large receptive field per node, one may
almost surely want to explore alternatives such as Graph Transformers (Kreuzer et al., 2021; Ying
et al.,2021; Rampasek et al.,|2022) or rewiring techniques (Topping et al., 2022; Nguyen et al.} [2023)
to consider these large receptive fields more efficiently than to perform as many or more message
passing operations than the problem radius.

Outlook. As a consequence of the questionable practical relevance of over-smoothing, the graph
learning community should focus its efforts on problems of proven relevance implicated by the
conditions in given learning tasks and datasets. We suggest it might be helpful to develop statistics



181
182

183

184
185
186

187
188
189
190
191
192
193
194
195
196
197
198

200
201
202
203
204

206
207

Table 1: Comparison of a GCN and three methods to mitigate over-smoothing for a range of model
depths. The accuracy is given in %, and the computational time is given in milliseconds in brackets.

Dataset Model Layers
2 4 8 16 32 64
GCN 85.3(51) 853(69) 80.6(84) 60.9(131) 30.4(208) 15.7(357)
Cora Pairmorm 83.4 (54) 83.7(69) 83.1(91) 65.1(137) 26.0(229) 19.2(386)
GCNII 86.2(48) 87.0(57) 87.4(71) 874 (81) 87.3(129) 87.1(219)
G? 72.3(74) 70.8(96) 71.4(135) 72.1(229) 70.6(396) 70.8 (682)
GCN 78.3(50) 763 (60) 68.7(75)  35.7(76) 20.7(149) 18.4(291)

Pairnorm 76.4 (53) 71.6(63) 54.2(76) 31.9(106) 22.5(164) 21.4(279)

Citeseer GoNIT  79.1(47)  79.3(58)  79.0(75) 79.1(104) 79.2(169) 79.2(221)
G? 59.8(76) 61.2(101) 61.8(141) 63.9(213) 64.5(366) 64.6 (714)
GCN 86.6 (55) 86.4(63) 84.6(87) 84.1(62) 49.5(44)  36.0 (80)

Pubmeq  Pimorm  88.3(56)  87.4(68)  84.7(92) 84.1(11S) 829(59) 726 (103)
GCNIT  84.4(49) 85.4(56) 84.7(75) 83.8(97) 84.1(166) 78.3 (265)
G? 743 (60) 77.8(72) 79.0 (107) 70.6(167) 73.6(275) 78.3 (506)
GCN 28.7(17) 19.7(20) 13.3(24) 11.8(31) 9.8(@48)  6.1(81)

Roman- Pairnorm 42.6 (18) 22.7(21) 16.6(27) 122(38) 9.1(65  8.3(105)
Empire GCNII  34.6(47) 34.5(61) 32.5(80) 32.0(108) 31.7(174) 31.7(275)
G? 50.0(28) 50.6 (35) 50.3(47) 49.0(73) 48.9(121) 58.5(214)

that quantify the label relevance of different-sized receptive fields. This quantification of the problem
radius in combination with an observation of the optimal smoothing depth should guide our efforts in
improving model architectures.

2.3 Empirical Findings

We back our position on over-smoothing with experimental results, which show that methods
presented in Section in most cases prevent the models from over-smoothing, but do not score
significantly better results with increasing model depth.

Set-up. We tested the performance of four architectures that were introduced to mitigate over-
smoothing and compared the results to a regular GCN with a range of model depths on multiple
commonly used benchmark datasets. We ran the experiments on the homophilic citation datasets
Cora, Citeseer and Pubmed as used in (Yang et al.,2016) and the heterophilic Roman-Empire dataset
from (Platonov et al.,[2024). Even though these datasets have been criticised for a lack of real-world
application (Bechler-Speicher et al., [2025), we apply them here, as they have been used to develop
most methods against over-smoothing. On each dataset, we tested a regular GCN (Kipf and Welling,
2017), a GCN with PairNorm (Zhao and Akoglul [2020), a GCNII (Chen et al., 2020), and a G*-GCN
with gradient gating (Rusch et al.| [2023b). Each of the models was tested with an exponentially
increasing number of message passing layers from 2 to 64 layers. Each model was trained for 500
epochs with a learning rate of 0.001 with 20 random parameter initialisations. We set a fixed hidden
dimension of 32 features and used early-stopping for regularisation.

Discussion. The accuracy of the tested models, along with the computational time in brackets, is
presented in Table[I] In this work, we do not focus on the comparison of the absolute results of the
different models. Instead, we want to draw the reader’s attention to the influence the model depth has
on the model’s performance. For the regular GCN, we can observe a drastic performance decrease
with increasing number of message passings, as expected due to over-smoothing. The GCNII and the
G? do not show this behaviour. Instead, the model performance is stable or increases slightly with the
number of layers. However, in most cases, the optimal model depth remains at eight or fewer layers.
Additionally, the performance stabilisation at higher model depth comes with an exponential increase
in computational costs.
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3 Over-squashing

We believe that continuous theoretical work on over-squashing should be guided by measurable
problems that limit the performance of GNNs in practical applications. In this section, we base
our position on the literature, reviewing different perspectives on the phenomenon. We address
these perspectives and, as a consequence, question the relevance of over-squashing for practical
applications. We support our position with experimental results showing a low optimal model depth
with and without methods for reducing over-squashing.

3.1 Related Work

Over-squashing is the well-studied phenomenon of compression of an exponentially growing amount
of information into fixed-size node embeddings as the depth of a GNN increases. If a node v is to
be affected by features of node u at distance k£, a GNN requires at least k£ message passing steps.
However, an increasing number of message passings results in an exponentially growing number of
messages being sent, leading to a loss of information. In other words, over-squashing can be defined
as the inability to losslessly compress a receptive field that grows with the depth of the network in
fixed-sized node representations. As a consequence of over-squashing, features from neighbours
in different k-hops can not be considered jointly at the central node, preventing the modelling of
interaction effects. In detail, the phenomenon of over-squashing has been defined in various ways,
focusing on different aspects of the problem.

Theory and Quantification of Over-squashing. The over-squashing phenomenon was introduced
by Alon and Yahav|(2020) with the broadest definition of over-squashing. Based on the exponential
growth of the receptive field of a node v with the number of message passing layers

VL ()] = O(e"),

they conclude an over-squashing of an exponentially growing amount of information while the
embedding dimension remains constant. They emphasise the increasing severity of this phenomenon
for problems that require long-range information, i.e. with a large problem radius r. With the
synthetic NeighboursMatch dataset,|Alon and Yahav|(2020) showed the limitation of GNNs with the
most common message passing methods for large problem radii and attributed this to over-squashing.
Additionally, they validated their results on a real-world dataset and showed that for a GNN with
L = 8 and using fully-adjacent layers, which theoretically prevents over-squashing, improved the
results practically.

Topping et al.| (2022) investigate over-smoothing through graph curvature, focusing on bottleneck
edges that induce over-squashing locally. They formulate the over-squashing problem between a
node v and another node u with dg (v, u) = r through the derivative of the hidden vector h,, i.e., the
Jacobian, with respect to a feature h,, as

ahgr-&-l)
K

<(a- @) (A M

v,u

with the layer-wise Lipschitz constants |AU®)| < ovand |[AM )| < B for 0 < ¢ < r. The factor
(A’"‘H)v?u causes vanishing gradients, especially with bottleneck edges on the path between the two
nodes. Topping et al.|(2022)) propose a modified Forman curvature, which uses the counts of triangles
and 4-cycles based on an edge, to identify these bottlenecks.

Di Giovanni et al.| (2023)) extended the fundamental understanding of over-squashing by investigating
its impact on the width, depth and topology, viewing small Jacobians of node features for long-range
interactions in general as a problem of over-squashing. They defined an alternative upper bound for
the Jacobian, which differs slightly from Equation (I)) and is defined as

ontd
onY

< (¢o - w-p)* (AZ) , 2
~ -—

U

topology
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where c,, is the Lipschitz constant of the nonlinearity o, w is the maximal entry-value over all weight
matrices, and p is the hidden dimension or model width. They derive from Equation (2)) that a larger
hidden dimension prevents over-squashing if it compensates for the topology factor. However, they
point out that an increased hidden dimension reduces the ability of generalisation and does not solve
the actual problem, the graph topology. Further, they prove for tasks with long-range dependencies,
i.e., large problem radii r, the occurrence of over-squashing for models with a depth comparable to
the problem radius (L = r) and vanishing gradients for deeper models (L > r). Lastly,|D1 Giovanni
et al.|(2023) add another perspective on over-squashing and show that over-squashing occurs for a
pair of nodes v, u € V with a high commute time 7, which measures the expected number of steps
for a random walk to commute between v and u.

Methodology Addressing Over-squashing. [Topping et al.[(2022)) introduce a curvature-based
rewiring method incorporating their Balanced Forman metric to reduce over-squashing on bottlenecks.
The Stochastic Discrete Ricci Flow (SDRF) adds edges to support low-curvature edges and removes
high-curvature edges. A similar approach called Batch Ollivier-Ricci Flow (BORF) was proposed by
Nguyen et al.| (2023), using the Ollivier-Ricci curvature, which is defined as

Wl (Mv ) Mu)

k(v u) do(v.u)

where Wy (f1y, 14y, is the L1-Wasserstein distance and d¢ (v, ) is the shortest path distance. They
use ~ for adding and removing edges in the graph to simultaneously mitigate over-squashing and over-
smoothing, respectively. [Deac et al.|(2022) create a modified graph structure using a fundamentally
sparse family of expander graphs with a low diameter. In the Graph Expander Propagation (EGP),
they replace every second propagation step with edges from the expander, reducing effective path
lengths. |[Southern et al.|(2025) build upon the observations of D1 Giovanni et al.| (2023) that over-
squashing comes with long-range dependencies with long commute times and show theoretically and
empirically that a virtual node can reduce 7 and therefore reduce the effect of over-squashing.

3.2 Position

We challenge the presumed detrimental effect of over-squashing in real-world applications. More
specifically, we question the practical relevance of joint observations of entire receptive fields,
long-range interactions, and information exchange through bottlenecks. Note that while these three
definitions of the over-squashing problem may appear disparate, they all define different aspects of a
coherent notion of the over-squashing problem. We now discuss our position on the three concrete
over-squashing definitions in turn.

The formulation of the over-squashing problem through a limit of the Jacobian is based on the
assumption that long-range interactions are generally informative for learning tasks and desirable to
achieve through deep GNNs. We believe that in most practical applications, the relevant information
on interaction effects is stored within a small k-hop neighbourhood.

Next, we challenge the negative effect of low-curvature edges. Bottleneck edges limit the exchange
of information between structural communities. An interrelation between negative curvature and
the label distribution has not been investigated yet. However, we assume in most cases a correlation
between structural communities and the label distribution. Consequently, information exchange along
bottleneck edges is not relevant for such learning tasks.

At last, we consider the most general formulation of the over-squashing phenomenon, that is, the
exponentially growing receptive field and the presumed impossibility of summarising its information
in a constant hidden dimension. Implicit in this definition of oversquashing is the assumption that the
information of the entire receptive field needs to be jointly observed to perform the given learning task.
In other words, the impossibility definition states that the joint distribution over the receptive field of
a node does not factorise into marginal distributions over the nodes, i.e., we assume the presence of
high-order interaction effects within the receptive field of a node. We posit that this assumption is
unrealistic and that for most real-world datasets, the joint distribution over the receptive field of a
node does factorise and that we can hence process subsets of the receptive field independently and
efficiently. In essence, it seems to us that a fixed-size node representation should be sufficient to
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successfully complete the majority of learning tasks for arbitrarily large receptive fields on real-world
datasets.

Our assumptions are supported by experimental results we present in Section[3.3] These indicate that
despite effectiveness against over-squashing, the overall performance on the learning task does not
improve with the increasing number of message passing steps.

Outlook. We suggest a diligent analysis of future learning tasks and datasets for a better under-
standing of the feature, structure and label distributions and their interplay. Statistics are required to
measure the localisation and factorisation of the label distribution conditioned on the structure and
feature information. In addition to the relevant problem radius as proposed in Section[2.2] we suggest
investigating the specific localisation of relevant information, which can help understand interaction
along low curvature edges and long-range relationships, to guide targeted rewiring techniques. First
attempts have been made to measure this through the calculation of the Jacobian in a preprint (Liang
et al.l |2025). However, this statistic lacks diagnostic precision due to the overlapping effects of
the model definition and underlying structure. To us it seems preferable to separately establish the
presence of potential over-squashing effects in the underlying graph structure and in the different
models that could be applied to this graph data. We furthermore want to specify that the definition of
oversquashing via the Jacobian and the related remedy of rewiring, operate under the assumption that
single nodes, often at a large shortest path distance, contain information that is uniquely relevant to
accurately represent a considered central node. It seems to us that further research on this problem
should formally define structures in which such far-removed nodes do contain information that is
relevant to the representation of different nodes in the graph and that real-world examples, in which
such phenomena can be observed and measured, should be found. The extension of the excellent
work by|Liang et al.|(2025) to not only record the average Jacobian over k-hop neighbourhoods, but to
also look for outliers in the Jacobian values in the k-hop neighbourhoods could be a starting point for
such research, since it may permit the identification of individual nodes at a potentially large distance,
which may go unnoticed if one averages over entire k-hops (even if as specified earlier, it may be
preferable to measure such effects for the used model and underlying graph structure separately).

Moreover, we suggest exploring potential factorisation of the label distribution over k-hop receptive
fields to assess the importance of a joint observation of the whole receptive field. The quantification
of interaction effects in receptive fields of nodes has the potential to not only guide the development
of future GNNs that are more closely aligned with the challenges posed by impactful, real-world
learning problems, but also, to offer an insightful categorisation of existing datasets and the ability of
models to capture such effects. The application of these statistics shall allow us to better understand
existing work and to set the right focus for further research directions.

3.3 Empirical Findings

In this section, we give empirical evidence that shows a significant reduction of over-squashing is
possible with the proposed methods, while the overall performance on the learning tasks can benefit
from this improvement.

Set-up. We explore the potential of over-squashing mitigation techniques on node-level and graph-
level tasks. For node classification, we use the same four datasets, Cora, Citeseer, Pubmed, and
Roman-Empire, as discussed in Section For experiments on graph classification, we use the
datasets MUTAG, ENZYMES, and PROTEINS from the TU dataset collection (Morris et al., [2020)
with the data splits and test procedure described in (Errica et al.,2020). On each dataset, we compare
the performance of a regular GCN with EGP [Zhang et al.|(2025)) and BORF |[Nguyen et al.| (2023).
We apply BORF once on the whole dataset before training a regular GCN. To ensure comparability,
we also implement EGP with GCN message passing instead of GIN as proposed in the original paper.
We use the same training and model setup as described in Section[2.3]

Discussion. The results of the three models in terms of accuracy are reported in Tables[2]and[3] along
with their respective computational time. As in Section[2.3] we can compare how an increasing number
of message passings influences the performance of the models. The results on node classification in
Table [2[ show contrasting effects of both mitigation techniques. While BORF enables better results
with deep GCNs, presumably through the elimination of bottlenecks, EGP optimises the long-range
message flow for a minimal number of layers. However, the optimal model depth is 4 or less for all
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Table 2: Comparison in node-classification of a GCN and two methods to mitigate over-squashing
for a range of model depths. The accuracy is given in %, and the computational time is given in
milliseconds in brackets.

Dataset Model Layers
2 4 8 16 32 64

GCN  853(51) 853(69) 80.6(84) 60.9(131) 30.4(208) 15.7(357)
Cora BORF 85.0(13) 85.0(15) 80.5(19) 687(29) 58.6(44) 25.6(72)
EGP 85425 73.6(28) 272(32) 214(40) 133(56) 15.4(90)

GCN  783(50) 763 (60) 68.7(75) 35.7(76) 20.7(149) 18.4(291)
Citescer BORF 78.5(42) 765(50) 73.0(59) 67.6(83) 62.4(138) 21.2(228)
EGP  784(30) 65.6(32) 27.8(36) 163 (44) 143(59)  14.1(95)

GCN  86.6(55) 86.4(63) 84.6(87) 84.1(62) 49.5(44)  36.0 (80)
Pubmed BORF 84.9(39) 85.2(54) 84.1(58) 81.9(91) 72.8(142) 37.6(234)
EGP  86.6(136) 86.4(138) 71.1(140) 42.0(147) 36.6(160) 37.2 (200)

GCN 28.7 (17) 19.7 (20) 13.3 (24) 11.8 (31) 9.8 (48) 6.1 (81)
BORF  43.1(48) 454(56) 41.7(70) 28.2(70) 26.8(103) 11.9(76)
EGP 28.7 (471) 12.1(486) 8.1(496) 7.6(507) 7.1(528)  7.1(557)

Roman-
empire

Table 3: Comparison in graph-classification of a GCN and two methods to mitigate over-squashing
for a range of model depths. The accuracy is given in %, and the computational time is given in
milliseconds in brackets.

Dataset Model Layers
2 4 8 16 32 64

GCN  702(61) 742(66) 76.1(77) 75.8(101) 62.1(146) 58.6(226)
PROTEINS BORF  73.6 (66) 65.0(72) 60.2(83) 60.9(104) 59.4(153) 60.3(232)
EGP  69.6(267) 66.7(273) 63.6(283) 64.5(307) 62.3(352) 64.6(433)

GCN 43.7(40) 44.2(44) 383 (51) 349(66) 32.2(94) 19.8(202)
ENZYMES BORF 46.6 (63) 43.1(81) 359(116) 33.4(213) 23.6(337) 21.4(606)
EGP 42.2 (144) 43.5(147) 38.3(155) 34.9(170) 32.2(202) 21.7(254)

GCN 764 (25) 79.1(29) 79.8(35)  81.5(50) 76.8(78) 68.8(132)
MUTAG BORF 71.8(26) 77.6(30) 70.2(36) 69.0(51) 66.5(82) 68.1(134)
EGP 73.4(52) 762(55) 76.6(62) 72.2(76) 70.6 (105) 71.0(161)

models, indicating low relevance of the over-squashing problem. On the graph-classification tasks,
model depth appears to be a minor problem in general, as the performance decrease on the GCN is
less severe. Here, the GCN can not benefit from rewiring techniques.

4 Conclusion

In this position paper, we highlight the importance of an in-depth understanding of real-world learning
problems to guide future research directions in theoretical work in graph representation learning.
While much excellent work has been done to better understand and solve over-squashing and over-
smoothing, the practical relevance of these problems should be questioned. As/Bechler-Speicher et al.
(2025)) very recently criticised the current benchmarking culture and called for new transformative
real-world benchmarking datasets, we hope that many new learning tasks with individual challenges
will emerge and gain importance. It seems crucial to us that as part of this search for new applications
and datasets, we analyse these diligently, especially for topics like over-smoothing and over-squashing.
Statistics should be established to measure the localisation and factorisation of the feature, structure
and label distributions.
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