
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

A FORMAL FRAMEWORK FOR UNDERSTANDING
LENGTH GENERALIZATION IN TRANSFORMERS

Anonymous authors
Paper under double-blind review

ABSTRACT

A major challenge for transformers is generalizing to sequences longer than those
observed during training. While previous works have empirically shown that
transformers can either succeed or fail at length generalization depending on the
task, theoretical understanding of this phenomenon remains limited. In this work,
we introduce a rigorous theoretical framework to analyze length generalization in
causal transformers with learnable absolute positional encodings. In particular, we
characterize those functions that are identifiable in the limit from sufficiently long
inputs with absolute positional encodings under an idealized inference scheme us-
ing a norm-based regularizer. This enables us to prove the possibility of length
generalization for a rich family of problems. We experimentally validate the the-
ory as a predictor of success and failure of length generalization across a range
of algorithmic and formal language tasks. Our theory not only explains a broad
set of empirical observations but also opens the way to provably predicting length
generalization capabilities in transformers.

1 INTRODUCTION

A key problem in neural sequence modeling is generalization from shorter sequences seen during
training to longer sequences afterwards – length generalization. A wide range of empirical research
has found that transformers sometimes succeed and sometimes fail at length-generalization (e.g.
Bhattamishra et al., 2020; Anil et al., 2022; Wang et al., 2024a; Kazemnejad et al., 2023; Zhou
et al., 2024b; Awasthi & Gupta, 2023; Jelassi et al., 2023; 2024; Chang & Bisk, 2024) with no theo-
retical explanation as to why. For instance, while transformer decoders can easily copy long strings
(Bhattamishra et al., 2024), length generalization is substantially more brittle: Transformers trained
to copy short strings often do not generalize well to longer strings when the input string includes
repeated substrings (Zhou et al., 2024a; Jelassi et al., 2024). Similarly, while transformers can in
principle simulate many finite-state automata (Liu et al., 2023), their success at length generaliza-
tion in practice varies widely across different automata (Liu et al., 2023; Bhattamishra et al., 2020).
Theoretical understanding of these phenomena is largely lacking, making it difficult to anticipate on
which problems transformers will succeed or fail at length-generalization.

An important step towards theoretical understanding was made in the RASP-L Conjecture (Zhou
et al., 2024a). This conjecture states that transformers are likely to length-generalize exactly on
those algorithmic tasks that that can be solved by simple programs in RASP-L, a fragment of the
RASP language (Weiss et al., 2021) with substantial restrictions on the ways in which positional
information can be used. While Zhou et al. (2024a) provided empirical evidence in support of
this idea, two important gaps remain: First, while compelling empirical evidence supports a link
between definability in RASP fragments and length generalization, no formal proof exists. Second,
the RASP-L language has not been fully formalized, so it is largely open how to prove that a certain
problem is not representable in it.

We address both these gaps by presenting a general theoretical framework analyzing length gener-
alization as ultimate identifiability in the limit for a well-defined class of functions: When the input-
output behavior of a given function is observed at increasing input lengths, can a learner converge
on inferring the ground-truth function? We give a positive answer for a specific idealized learning
strategy: in this setting, transformers are guaranteed to length generalize given any function in the
aforementioned class. Later, we rigorously characterize the expressivity of this class.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

We define an idealized inference procedure in which a sequence of transformers is fitted to reproduce
a target function on successively longer inputs while minimizing a specific norm-based regularizer.
While each transformer in the sequence may be distinct in terms of parameters, they may implement
the same underlying computations in order to replicate the target function. Our results give condi-
tions under which the inference procedure will produce a sequence of transformers that converges
to a single underlying computation reproducing the target function.

Our results apply to multilayer transformers, focusing on causal transformers trained from scratch
with absolute positional encodings (APE) or without positional encodings (NoPE). A key technical
challenge in analyzing length generalization for absolute positional encodings is the scaling of the
transformer’s parameter count with the input length. To address this, we define a transformer-like
limiting object, the Limit Transformer, which encapsulates the computations of a sequence of trans-
formers operating on longer and longer inputs into a single object. Our main theoretical result states
that the inference procedure will ultimately lead to length generalization for sufficiently long train-
ing inputs, provided the ground-truth function is expressible by a single Limit Transformer across
all input lengths:
Theorem 1 (Informal Version of Theorem 7). Let f be the target function expressible by a single
Limit Transformer at all input lengths, subject to restrictions on the use of positional information.
Choose transformers Tn (n = 1, 2, 3, . . .) with context size n, where Tn reproduces the behavior of
f up to length n

2 , while minimizing a norm-based regularizer. Then, for large n, Tn will match the
output of the target function f up to length ≤ n.

We then show that the expressivity of Limit Transformers can be understood for many previously
studied algorithmic tasks, as well as new ones. We extend a recently introduced RASP variant
(C-RASP, Yang & Chiang, 2024) to provide lower bounds, showing that, under the idealized in-
ference procedure, transformers will succeed at length generalization on various concrete problems.
Conversely, we employ communication complexity to obtain upper bounds on the class of functions
for which length generalization is predicted. While we have not proven this class is complete, ex-
periments confirm that the theory predicts both success and failure at length generalization across
various algorithmic tasks and formal languages. Overall, our results formalize the RASP-L Conjec-
ture and take a step toward a theoretical understanding of length generalization.

2 MODEL OF TRANSFORMERS

Positional Encoding Scheme We study two positional encoding schemes. One uses no positional
encoding at all; we refer to this as NoPE (No Positional Encoding). The other one uses Absolute
Positional Encodings (APE), with learned per-position embedding vectors p1, . . . ,pN . We follow
Zhou et al. (2024a) in requiring transformers to be able to perform a task at different offsets within
a longer context. Whereas Zhou et al. (2024a) concatenated different examples of a task, we simply
encode an input x of length |x| = k ≤ N using positional encodings p1+o, . . . ,pk+o where o
is an offset such that k + o ≤ N , and require that the transformer correctly performs the task
independently of the offset o ≥ 0. This mimics the computations in language models, where the
same reasoning task can typically appear at different places in a long context. For simplicity, we
treat positions outside of the input, including those preceding the offset, as empty.

Parameterization We focus on transformers with causal masking; for simplicity, we will use the
term “transformer” for these throughout. A transformer T is parameterized by a finite alphabet Σ,
a width d ∈ N, a token embedding matrix E ∈ R|Σ|×d, a context width N(T) ∈ N ∪ {+∞},
positional encodings {pi ∈ Rd : 1 ≤ i < N(T) + 1}, a depth L ∈ N and head count H ∈ N, key,
query, and value matrices {Kl,h,Ql,h,Vl,h ∈ Rd×d : 1 ≤ l ≤ L, 1 ≤ h ≤ H}, MLP matrices and
biases {Al ∈ Rd×d,Bl ∈ Rd×d; bl ∈ Rd : 1 ≤ l ≤ L}, and an unembedding matrix U ∈ R|Σ|×d.
For matrices, we use ∥ · ∥ and ∥ · ∥F to denote the spectral and Frobenius norm respectively.

Computation of Activations and Outputs We assume a standard causal transformer, with a few
technical points: We explicitly scale attention logits with the logarithm of the input length, omit
layer norm, allow Heaviside activations in addition to ReLU activations, and assume that, while
the transformer may overall compute at infinite precision, attention logits are operated over at fixed
fractional precision. We next define all computations formally. Reserving a special SOS symbol not

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

in Σ, written as “$”, we take the set of input strings to be S, the set of strings x ∈ Σ∗ where x1 = $
and $ does not occur in x2...|x|. We now define the computation of the transformer T on an input
x ∈ S where 1 ≤ |x| < N(T) + 1 (that is – |x| ≤ N(T) if N(T) <∞, and |x| is any finite length
otherwise). If L is the number of layers, then we write the output of layer l = 1, . . . , L at position
i = 1, . . . , N(T) as y(l)

i ∈ Rd. Let o ≥ 0 be any offset such that |x| + o < N(T) + 1 – that is, x
still fits into the transformer’s context width if encoded at offset o. Given this offset, we set

y
(0)
i = Exi + pi+o i = 1, . . . , |x| (1)

where xi ∈ Σ is the input symbol at position i. Attention logits, at query position i and key position
j are computed as

a
(l,h)
i,j = (y

(l−1)
j)TKT

l,hQl,hy
(l−1)
i for 1 ≤ j ≤ i ≤ |x|; l = 1, . . . , L; h = 1, . . . ,H (2)

We assume standard softmax attention, but incorporate scaling with log |x| following prior work
finding it necessary to theoretically represent sparse functions and circumvent theoretical limitations
of soft attention (Chiang & Cholak, 2022; Edelman et al., 2022):

Y
(l)
i := y

(l−1)
i +

H∑
h=1

∑i
j=1 exp

(
log |x| · a(l,h)i,j

)
Vl,hy

(l−1)
j∑i

j=1 exp
(
log |x| · a(l,h)i,j

) (3)

After each attention block, the activations are passed through a one-layer MLP:

y
(l)
i := Y

(l)
i +Bl · ψl(AlY

(l)
i + bl) (4)

where we allow the activation function ψl to be, in each coordinate, either ReLU or Heaviside (see
Appendix D.1 for discussion of this). We omit layer norm, as it plays no important role in our
results, but it can be accounted for. See Appendix D.3 for the role of layer norm.

We assume an infinite-precision setup for the activations, with the restriction that attention logits (2)
and the output of the exp(·) function are both rounded to p fractional bits of precision before further
processing. This is a mild restriction preventing tiny changes in attention patterns from potentially
snowballing into large changes in the output due to infinite precision. See Appendix D.2.

We conceive of a transformer T as a map from strings x ∈ S (|x| ≤ N(T)) to vectors of next-
token prediction logits, T (x, o) ∈ R|x|×|Σ|, where for i = 1, . . . , |x|, T (x)i = Uy

(L)
i for the

unembedding matrix U ∈ R|Σ|×d, and o is the offset. Let F(Σ) be the class of all maps f mapping
x ∈ S to f(x) ∈ R|x|×|Σ|.

3 THEORETICAL FRAMEWORK

3.1 LIMIT TRANSFORMERS

Our theory addresses the setting of transformers with absolute positional encodings, where the width
may grow with the input length. Importantly, we cannot view the ground-truth function as realized
by a single transformer: Even if one assigned such a transformer an infinite number of positional
encodings, it would still effectively only be able to distinguish between a bounded number of po-
sitions, because the width of positional encodings within a single transformer is bounded. Instead,
we will derive a parameterization of transformers that allows us to convert sequences of transform-
ers operating on longer and longer sequences to a single limiting transformer-like object. Our key
technical idea is to reparameterize the transformer in terms of product functions, inner products of
parameter vectors as mediated by parameter matrices, such as

ET
σ K

T
1,hQ1,hEτ pT

i K
T
1,hQ1,hpj

pT
i K

T
2,hQ2,hV1pj UσV2V1Eσ

(5)

and various others; see Appendix F.1 for the full formal definition. We first note that the trans-
former’s computations are uniquely specified by such products. The number of products as in (5)
depends, among others, on |Σ|, L, H , N(T), but crucially not on d. We will use this parameteri-
zation to translate sequences T1, T2, T3, . . . of transformers running on inputs of length 1, 2, 3, . . .
to limiting transformer-like objects that are applicable at all input lengths, while keeping width d
bounded even if the widths of Tn diverge to infinity. This limiting object, a Limit Transformer,
differs from an ordinary transformer, as defined in Section 2, just in a few respects. Formally:

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Definition 2. A Limit Transformer is a transformer T where:

1. N(T) = +∞

2. All parameters (including positional encodings pi, and the output of ϕl,h) are expressed in
p-bit precision, for some p ∈ N

3. In deviation from ordinary transformers, attention logits on input length N are computed
as

a
(l,h)
i,j = (y

(l−1)
j)TKT

l,hQl,hy
(l−1)
i + ϕl,h(j, i) (6)

where ϕl,h : N× N→ R.

Intuitively, a Limit Transformer can use positional information in two ways: through bounded-
width and bounded-precision positional encodings pi, and through potentially more complicated
functions ϕl,h. Given a transformer, we obtain a Limit Transformer by encoding products of the form
pT
i K

T
l,hQl,hpj into the functions ϕl,h. All other product functions involving positional encodings

are expressed in terms of the positional encodings of the Limit Transformer. Our main result will
link length generalization to expressibility by Limit Transformers satisfying specific properties:
Definition 3. A Limit Transformer satisfies

1. PERIODIC if pi = pi+∆ for all i for some ∆ > 0
2. LOCAL if each ϕl,h is translation-invariant and local.

Here, a function f : N×N→ R is “translation-invariant” if f(i, j) = f(i+τ, j+τ),∀i ≤ j,∀τ ≥
0, and “local” if there is τ such that f(i, j) = 0 when j > i+ τ .

The parameterization in terms of inner products permits a translation from a transformer T to a Limit
Transformer, whose width is bounded in terms of R(T), and which further satisfies PERIODIC
and LOCAL. This is formalized in Lemma 52 in the Appendix. We note that Limit Transformer
are a mathematical construct helping us prove statements about standard transformers, and are not
themselves trained or implemented.

3.2 DEFINITION OF INFERENCE PROCEDURE

To define the inference procedure, we specify the following hypothesis class at each input length n:
Definition 4 (Hypothesis Class). For each n = 1, 2, 3, . . . , define the hypothesis class Θn as the
set of transformers T (as defined in Section 2) where (1) N(T) = n, (2) each parameter vector and
matrix of T is represented at p bits of precision, for some p ∈ N, (3) each product function involving
positional encodings is translation-invariant. That is, every product function involving exactly one
positional encoding is constant across positions, and for every 1 ≤ i, j, i+∆, j +∆ ≤ n,

pT
i M1 . . .Mkpj = pT

i+∆M1 . . .Mkpj+∆ (7)

whenever M1 . . .Mk is a product of parameter matrices linking the input layer.1

Note that the width d of the transformers T ∈ Θn is unconstrained. The most interesting requirement
here is the third one: We ask that, while the positional encodings pi will typically vary with position,
their contributions to the transformer’s computations are offset-independent. This is a stronger re-
quirement than for the input-output behavior to be offset-independent: we ask for the transformer’s
“algorithm” itself to be the same across offsets. This is a substantive condition, but we believe it
to be a natural requirement in the context of length generalization (Appendix G.6). Our inference
procedure will use a regularizerR favoring simpler hypotheses. The following will be sufficient:
Definition 5 (Regularizer). Let T ∈ Θn, thus N(T) = n. Define R(T) as the sum of (1) L +H;
(2) the precision p used in Definition 4; the precision p used for rounding logits and the output of
exp(·) (Section 2); (3) maxl,h rank(Vl,h); (4) maxl,h ∥KT

l,hQl,h∥; maxl,h ∥Vl,h∥; maxl ∥Al∥F ,
∥Bl∥F ; ∥U∥; (5) maxi ∥pi∥2, maxσ ∥Eσ∥2, maxl ∥bl∥2; (6) the term

L∑
l=1

H∑
h=1

N(T)∑
j=1

∣∣pT
1 K

T
l,hQl,hpj

∣∣2 (8)

1Such as KT
1,hQ1,h, V T

2,hK
T
3,h′Q3,h′V1,h′′ , and similar. See Appendix F.2 for a formal definition.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The idea of (8) is to discourage accidental attention between far-away positions that do not appear
together during training, which could hamper length generalization. Due to translation invariance,
this term entails a bound on products for all pairs pi,pj (i ≤ j) entering causal attention. While such
a regularizer is not part of standard training, standard initialization tends to lead to bounded values
for (8) when d is large (Appendix G.1); it thus captures an implicit bias of standard initialization and
training. Importantly, the width d does not explicitly enterR; as a consequence, for any sufficiently
large C, the number of transformers Tn ∈ Θn with R(Tn) ≤ C is infinite, simply because d is
not constrained. Nonetheless, this regularizer will be sufficient for identification under our idealized
inference procedure, which observes the input-output behavior of the target function f on inputs of
length ≤ n

2 and selects a transformer T with maximal context window n, T ∈ Θn that exactly fits
that input-output behavior while minimizing the regularizerR(T):
Definition 6 (Inference Procedure). Given a function f ∈ F(Σ), the Inference Procedure obtains a
sequence of transformers T1, T2, · · · ∈ Θn as follows. Define Un as the set of T ∈ Θn matching the
behavior of f on all inputs of length ≤ n

2 . Then choose Tn ∈ Un such that

R(Tn) ≤
1

n
+ inf

T∈Un
R(T) (9)

In (9), we do not simply ask for minimizing the regularizer, as the set of elements of Un withR(T)
smaller than a given value need not be finite and thus a minimum need not be attained by any
Tn. Importantly, we only ask Tn to match the behavior of f up to length n

2 , formalizing the idea
of training on shorter inputs and testing on longer ones; our identifiability guarantee will provide
conditions under which Tn will end up matching f correctly up to length n – representing length
generalization. While we take the testing length to be twice the training length, there is nothing
special about this; our analysis works whenever the training length diverges to infinity.

3.3 MAIN RESULT: CONVERGENCE OF INFERENCE PROCEDURE

Our main result asymptotically characterizes length generalization under the inference procedure
from Definition 6. For functions representable by Limit Transformers satisfying LOCAL and PERI-
ODIC, we guarantee that any run of the Inference Procedure will ultimately achieve length general-
ization, so that transformers with context length n chosen to fit the target function on inputs with
length ≤ n

2 will, when n is sufficiently large, also perform correctly at all lengths ≤ n. Formally,
Theorem 7 (Guaranteed Length Generalization in the Limit). Let f ∈ F(Σ). Then the following
are equivalent:

1. f is expressible by a Limit Transformer satisfying PERIODIC and LOCAL.

2. (Guaranteed Length Generalization) Applying the Inference Procedure from Definition 6
to f generates a sequence T1, T2, . . . with supn=1,2,3,...R(Tn) < ∞, for which there is
some N0 such that, for all m > N0, Tm matches f on all inputs of any length k ≤ m.

The formal proof is in Appendix B.1. Intuitively, if f is expressible by a Limit Transformer satis-
fying PERIODIC and LOCAL, then, even though the Inference Procedure produces infinitely many
distinct transformers T1, T2, . . . , these can only traverse a finite set of underlying algorithms, each
described by some Limit Transformer. PERIODIC and LOCAL ensure that the Limit Transformer’s
parameter count effectively remains finite, as its position-related parameters can be fully specified
in terms of p1, . . . ,p∆−1 and ϕ(1, 1), . . . , ϕ(1, τ). The regularizer bounds width, depth, and pre-
cision of the Limit Transformers; this keeps the set of algorithms traversed finite. Each of these
finitely many algorithms will either be ruled out at some input length n, or else match the behav-
ior of f at all input lengths. At some finite N0, only the latter type of algorithm remains; hence,
transformers produced after this point will match the target function. The proof also entails a result
on NoPE length generalization: Applying the inference procedure to f while constraining pi ≡ 0
will lead to length generalization when f is expressible by a Limit Transformer where all pi and all
ϕl,h are zero (Corollary 18). While Theorem 7 guarantees length generalization from length n

2 to
length n for expressible problems, it does not rule out length generalization for inexpressible prob-
lems. Such a statement becomes possible if we allow arbitrary scaling of training vs. testing lengths
(Appendix B.4). Besides length generalization guarantees, Limit Transformers are also useful in
providing expressiveness results for transformers with absolute positional encodings (Appendix C).

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

4 WHICH FUNCTIONS ARE IDENTIFIABLE? EXPRESSIVENESS OF LIMIT
TRANSFORMERS AND C-RASP

We have found that, if a target function f is expressible by a Limit Transformer satisfying PERIODIC
and LOCAL, then Theorem 7 indicates length generalization under our Inference Procedure. In order
to understand the ramifications of this result, we now study what functions Limit Transformers can
express – for these functions, Theorem 7 will then guarantee length generalization.

4.1 SIMPLE EXAMPLE: INDUCTION HEAD

We consider the task of predicting the next token in proportion to the frequency at which different
tokens had previously followed tokens matching the current one:

f(x1 . . . xN)i,σ =
#{k < i : xk = xi, xk+1 = σ}

#{k < i : xk = xi}
(10)

We can construct a Limit Transformer with two layers and one head, wherein the first layer ϕ(i, j) =
1 if i + 1 = j and 0 else; each head copies the preceding symbol’s embedding. In the second
layer, attention focuses on positions with the same symbol. The transformer outputs next-token
predictions in proportion to bigram frequencies in the context, up to approximation error O(1n) (due
to logit scaling). Hence, Theorem 7 guarantees that the Inference Procedure will length-generalize
on (10), providing a length generalization guarantee for an induction head circuit (Olsson et al.,
2022). A special case of (10) occurs when each symbol occurs exactly once; here, such an induction
head circuit suffices to copy a string (Zhou et al., 2024a), we thus obtain a length generalization
guarantee for copying such strings (see Section 5).

4.2 LENGTH GENERALIZATION FOR C-RASP

We next present a large class of functions for which Theorem 7 guarantees length generalization.
We extend the C-RASP formalism (Yang & Chiang, 2024) with positional information, and then
show that any function defined by a C-RASP program is expressible by a Limit Transformer; hence,
transformers will, by Theorem 7, length-generalize on those functions. We first define C-RASP:

Definition 8 (C-RASP). Let Σ be an alphabet, let Φ be a set of unary relations ϕ : N → {0, 1},
and let Ψ be a set of binary relations ψ : N × N → {0, 1}. A C-RASP[Φ,Ψ] program P
is defined as a sequence P1, . . . , Pk of C-RASP operations. There are two sorts of operations:

Boolean-Valued Operations
Initial P (i) := Qσ(i)

for σ ∈ Σ

Boolean P (i) := ¬P1(i)
P (i) := P1(i) ∧ P2(i)

Constant P (i) := ⊤
Positional P (i) := ϕ(i)

for ϕ ∈ Φ

Comparison P (i) := C1(i) ≤ C2(i)

Count-Valued Operations
Counting C(i) := # [j ≤ i, ψ(i, j)] P (j)

for ψ ∈ Ψ ∪ {⊤}
Conditional C(i) := P (i) ? C1(i) : C2(i)

Addition C(i) := C1(i) + C2(i)

Subtraction C(i) := C1(i)− C2(i)

Constant C(i) := 1

A Counting operation returns the number of positions j ≤ i where P (j) and ψ(i, j) hold. A
conditional operation returns C1(i) if P (i), and C2(i) otherwise. We use the value of the last
Boolean-valued operation, at the last position of the string, to determine acceptance using a C-RASP
program. That is, if the program is run on input w with final operation L, then we accept w if and
only if L(|w|) is true. C-RASP[periodic, local] is the class of C-RASP programs where each ϕ(i)
is periodic in i, and each ψ(i, j) is translation-invariant and local (Definition 3). We also write
C-RASP[periodic, local] for the class of all languages accepted by some C-RASP[periodic, local]
program. As an example, we present a program recognizing L = Σ∗abΣ∗ over Σ = {a, b}:

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

C-RASP program for L = Σ∗abΣ∗ over Σ = {a, b}

Ca−(i) := # [j ≤ i, j = i− 1] Qa(j) # of immediately preceding a (1)
Pa−(i) := Ca−(i) ≥ 1 Position i− 1 holds an a (2)
Qab(i) := Qb(i) ∧ Pa−(i) A substring ab ends at position i (3)
Cab(i) := # [j ≤ i] Qab(j) # of substrings ab (4)
L(i) := Cab(i) ≥ 1 At least one ab precedes position i (5)

Any C-RASP[periodic, local] program can be translated to a Limit Transformer with correspond-
ing positional functions. We say a Limit Transformer T accepts an input if the value in the last
dimension in the last position of the output is greater than 0, and rejects otherwise.
Theorem 9. For every C-RASP[Φ,Ψ] program P with local functions Ψ and periodic functions Φ
there exists a Limit Transformer T∞ that satisfies PERIODIC and LOCAL such that for all w ∈ Σ∗,
P acceptsw iff T∞ accepts $w. If P uses no local or periodic relations, then T requires no functions
ϕl,h or positional encodings pi.

The proof is in Appendix B.6. As a consequence, the Inference Procedure will ultimately length-
generalize on inputs from a function f expressible by a C-RASP[periodic, local] program. If the
C-RASP program requires no positional functions (i.e., it is in C-RASP[∅]), then length generaliza-
tion will succeed even with NoPE transformers. We establish that various functions are in C-RASP:
Theorem 10. Membership in the following languages is definable in C-RASP[∅]: (1) MAJORITY,
(2) DYCK-1, (3) anbncn.

The proof is in Appendix C.1. By Theorem 9, these positive results translate into statements about
length generalization under the Inference Procedure. For these tasks, length generalization even with
NoPE is empirically already well-documented (Bhattamishra et al., 2020). Further, C-RASP[local]
can implement versions of the Induction Head task from Section 4.1, see Appendix C.2.1–C.2.2.
C-RASP also helps understand why transformers show varying abilities even on simple finite-state
languages (Bhattamishra et al., 2020; Liu et al., 2023; 2024), a fact poorly understood theoretically.
For instance, we have the following:
Lemma 11. Consider the alphabet Σ = {a, b, e}.

1. PARITY := b∗(ab∗ab∗)∗ ̸∈ C-RASP[periodic, local]
2. (aa)∗ ∈ C-RASP[periodic, local] and (aa)∗ ̸∈ C-RASP[∅]
3. Σ∗be∗ ̸∈ C-RASP[periodic, local]
4. L ∈ C-RASP[∅] for piecewise testable L

The proof is in Appendix C.3. Notably, all of these languages are recognizable by simple finite-state
automata which are expressible by transformers (Liu et al., 2023), but empirical length generaliza-
tion behavior differs in line with C-RASP expressiveness (Section 5). PARITY (1) has long been
found difficult for transformers (e.g. Hahn, 2020; Bhattamishra et al., 2020; Anil et al., 2022; Chiang
& Cholak, 2022; Delétang et al., 2023; Hahn & Rofin, 2024). Result (2) exemplifies the effect of dif-
ferent positional relations. The language Σ∗be∗ (3) is a simple model of FlipFlop (Liu et al., 2024),
a language on which transformers empirically struggle to generalize perfectly despite its simplicity
for recurrent models (Liu et al., 2024; Sarrof et al., 2024). The class (4) is useful for determining
expressibility of languages in C-RASP[∅], as in Section E.1.2.

4.3 LIMITATIONS: LOGARITHMIC COMMUNICATION COMPLEXITY

Having shown that various functions are definable by Limit Transformers, we now provide a simple
technique for showing that various functions are not definable by Limit Transformers. Informally,
any function satisfying the conditions in Theorem 7 has logarithmic communication complexity.
Formally:
Theorem 12. Let T be a Limit Transformer satisfying PERIODIC and LOCAL. On an input
x ∈ Σ2N , assume Alice has access to x1...N and Bob has access to xN+1...2N . Then Alice can
communicate C logN bits to Bob, where C depends on T but not N , so that Bob can compute each
activation in the second half, y(l)

i (N + 1 ≤ i ≤ 2N).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Bin 1 Bin 2 Bin 3

0

25

50

75

100

Binary
 Majority

Bin 1 Bin 2 Bin 3

0

25

50

75

100

Binary Majority
 Interleave

Bin 1 Bin 2 Bin 3

0

25

50

75

100
Majority

Bin 1 Bin 2 Bin 3

0

25

50

75

100
Sort

Bin 1 Bin 2 Bin 3

0

25

50

75

100

Copy
 Unique

Bin 1 Bin 2 Bin 3

0

25

50

75

100

Copy
 Repeat

Bin 1 Bin 2 Bin 3

0

25

50

75

100
Parity

Bin 1 Bin 2 Bin 3

0

25

50

75

100
Addition

1 2 3 4 5 6

7 8 9 10 11 12

13 14 15 16 17

Found CRASP[Periodic, Local] Program No CRASP[Periodic, Local] Program Found CRASP[] Program No CRASP[] Program

Figure 1: Experimental results (y axis: accuracy), at lengths ≤ 50 (Bin 1, training), [51, 100] (Bin
2), and [101, 150] (Bin 3, generalization), for APE (solid) and NoPE (dotted). Green lines indicate
that we found a C-RASP program (C-RASP[periodic, local] for APE, C-RASP[∅] for NoPE), red
lines indicate that we proved nonexistence, or found no program. Random baselines are indicated
in gray in (left), and very close to zero in (right). On the algorithmic problems (left), we repli-
cate prior empirical findings; C-RASP expressiveness predicts observed length generalization. On
the regular languages (right, with same x and y-axes as left, Table 2), length generalization tracks
C-RASP expressiveness established in Lemma 11 ((1) = (aa)∗, (17) = Σ∗be∗) and other results (see
Appendix E.1). C-RASP expressiveness performs much better than circuit complexity and standard
notions of regular language complexity in predicting length generalization (Appendix, Figures 3–4).

The proof is in Appendix B.3. In principle, computing activations in the second half of the input
requires full knowledge of the first half of the input, because positions in the second half can freely
attend to positions in the first half. In this situation, one would expect Bob to need full knowledge
of N

2 input symbols from Alice’s part, exponentially more than the C logN claimed in the theorem.
This is indeed needed if T performs the task of, say, checking if x1...,N and xN+1...2N are identical.
However, if T satisfies PERIODIC and LOCAL, attention must largely be determined by the pres-
ence of tokens and token sequences; when an attention head’s behavior is determined by positional
information, it can only focus its attention on a local neighborhood or equally distribute it over a
periodic pattern. Intuitively, in such cases, the set of possible queries and keys can be grouped into
a finite partitioning, of size bounded independently of N . It then suffices for Alice to communicate,
for each possible group of keys, an aggregate of the value vectors at the positions where a matching
key is computed. The proof (Appendix B.3) formalizes this. As a corollary:

Corollary 13. The following problems are not expressible by Limit Transformers satisfying PERI-
ODIC and LOCAL: (1) copying arbitrary strings, (2) addition of n-digit numbers.

This is proven in Appendix B.3. As a consequence, any run of the Inference Procedure on these
functions will output solutions T1, T2, T3, . . . for which the depth, number of heads, parameter
norms or ranks, MLP dimensions, or precision p, must increase with the input length n; indeed,
length generalization is empirically challenging for these functions (Section 5).

5 EXPERIMENTS

We evaluate the expressiveness of Limit Transformers and C-RASP as a predictor of empirical
length generalization of NoPE and APE transformers. Based on Theorems 7 and 9, we expect that
APE transformers should length-generalize on problems with a C-RASP[periodic,local] program,
and that NoPE transformers will be successful in those cases where we found a C-RASP[∅] program.
We test this prediction on a suite of algorithmic problems and formal languages, largely taken from
prior empirical work on length generalization (Bhattamishra et al., 2020; Zhou et al., 2024a), but
evaluated within a uniform framework.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Setup For each task, the model is trained on inputs whose LEN is in the range [lmin, 50], where
lmin is the minimum length for this task. LEN is the length of the input in the algorithmic tasks
(Appendix E.2), and the overall sequence length in the formal language tasks. The model is tested
on 3 test sets, where LEN is in the range [lmin, 50], [51, 100], [101, 150]; these lengths are based
on the source of the regular languages benchmark (Bhattamishra et al., 2020). We trained using a
standard AdamW setup; see details in Appendix E.3. Hyperparameters are selected by searching in
order of increasing complexity until we find a setting that performs well up to length ≤ 100. We
interpret results on lengths [101, 150] as a measure of length generalization. Each model has as many
positional encodings as needed to encode the longest inputs (at least 150); each input is presented
with a random offset in agreement with the theoretical setup. On algorithmic sequence-to-sequence
tasks, we train with cross-entropy loss on the output. On formal languages, where next-symbol
predictions are generally not deterministic, we instead train the model to predict the set of legal
next symbols, with each such set coded as an atomic symbol (as in Bhattamishra et al., 2020; Sarrof
et al., 2024). At test time, predictions are considered correct on a sequence if and only if the output
at every step is correct; the random baseline is thus very low on the formal language benchmark. We
report accuracy, the fraction of test sequences where predictions are correct at every step.

Algorithmic Problems We evaluate on 8 algorithmic problems, which largely overlap with Zhou
et al. (2024a), but are tailored to those where C-RASP expressiveness can be clearly settled. Tasks
are defined formally in Appendix E.2.1. A new problem here is BINARY MAJORITY INTER-
LEAVE, which interleaves multiple MAJORITY functions and can be solved by C-RASP using
periodic functions. Length generalization behavior matches C-RASP expressiveness; C-RASP[∅]
expressiveness predicts the success of NoPE (see Figure 1). In agreement with prior empirical re-
sults (Zhou et al., 2024a; Jelassi et al., 2023), COPY is difficult in the presence of repetition and easy
when it is avoided; these findings match C-RASP expressiveness (Corollary 13 and Section 4.1).

Formal Languages We applied the experimental framework to 17 regular languages assembled
by Bhattamishra et al. (2020), who evaluated length generalization in transformers and LSTMs.
Whereas LSTMs perform strongly across the board, the behavior of transformers on these regular
languages has so far eluded theoretical understanding. While it is known that transformers struggle
with PARITY, it has remained unclear why they would struggle to length-generalize on some seem-
ingly very simple languages. We found C-RASP[periodic,local] programs for 13 of the languages
and proved nonexistence for the others (Appendix E.1.2). Length generalization succeeded in those
cases where we had found a C-RASP[periodic,local] program (see Figure 1 right). In those cases
where a C-RASP[∅] program exists, generalization also succeeded with NoPE. Generalization failed
for languages where no C-RASP program exists, such as Σ∗be∗ (#17 in Figure 1; Lemma 11).

6 DISCUSSION

Prior work has empirically found that transformers’ length generalization capabilities differ between
tasks, but theoretical understanding has been lacking. We have introduced a formal framework an-
alyzing length generalization in an idealized inference procedure. The framework explains what is
common across the diverse tasks where prior research has empirically observed successful length
generalization, in terms of expressiveness in two simple mathematical formalisms, Limit Trans-
formers and C-RASP. We also proved that various problems, on which length generalization is less
successful empirically, are not expressible in one or both of these formalisms. Beyond length gener-
alization, the framework further sheds light on the expressiveness of APE transformers. Our results
on length generalization study an idealized regularizer and assume perfect fitting of the training
distribution. Making the guarantee from Theorem 7 more realistic by incorporating SGD training
dynamics and subsampling of training data is an interesting problem for future research.

Our results can be viewed as formalizing the RASP-L Conjecture (Zhou et al., 2024a). Both Limit
Transformers and C-RASP[periodic,local] formalize intuitions underlying RASP-L in restricting
how positional information can be used. An important advance over Zhou et al. (2024a) is that we
settle the expressiveness of these formalisms for many problems, and are able to explicitly prove a
variety of problems with poor empirical length generalization, such as copying with repeated strings,
to be inexpressible by Limit Transformers. Our results provide a step towards rigorously confirming
the idea that expressiveness in such restricted formalisms predicts length generalization.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Expressiveness of Transformers A substantial line of research has studied the in-principle ex-
pressiveness of transformers (Strobl et al., 2024). Transformers express a subset of the class TC0

(Merrill & Sabharwal, 2023b; Strobl, 2023), but it is unknown if this inclusion is proper. All prob-
lems considered in Section 5 are in TC0, but empirical length generalization behavior largely tracks
C-RASP[periodic,local] expressiveness, which defines a proper subclass of TC0 (Appendix C.3.1).
While it remains open if the expressive power of transformers exhausts TC0, our results suggest a
separation between TC0 and those problems for which length generalization is possible with abso-
lute positional encodings. In particular, our results suggest that the existence of APE transformers
that perform a task across larger ranges of input lengths is linked to the expressiveness of Limit
Transformers (Section C). It is an open question how far new, yet-to-be-discovered positional en-
coding schemes may increase the range of length generalization; empirical evidence indicates that
NoPE and APE may be hard to beat by other general-purpose encodings (Kazemnejad et al., 2023).

The proof of Theorem 12 is closely linked to previous communication-complexity bounds for trans-
former layers (Sanford et al., 2023; 2024; Peng et al., 2024; Bhattamishra et al., 2024), which im-
portantly were shown only for individual layers, not multilayer transformers. Indeed, Bhattamishra
et al. (2024) showed that such a logarithmic bound is not in general possible for arbitrary multi-
layer transformers. In contrast, our result applies even at multilayer models, which is enabled by the
restrictions on the ways in which positional information can be used in a Limit Transformer.

Length Generalization of Transformers Various studies have empirically evaluated length gen-
eralization in transformers. Our work is most closely related to Zhou et al. (2024a), discussed
above. Bhattamishra et al. (2020) study length generalization on formal languages; we find that C-
RASP[periodic,local] expressiveness explains behavior on their benchmark well (Section 5). Anil
et al. (2022) show that language models, finetuned on various reasoning problems, do not length-
generalize well. Wang et al. (2024a) evaluate length generalization of NoPE transformers on real-
world tasks. Kazemnejad et al. (2023) explore length generalization across different positional en-
coding schemes, finding NoPE to perform surprisingly well. Zhou et al. (2024b) show that length
generalization for addition improves with specific encoding schemes and input formats. Jelassi et al.
(2024) show that transformers can succeed in length generalization on copying when inputs avoid
n-gram repetition. Chang & Bisk (2024) empirically find limitations in generalization in counting.
In contrast to the rich landscape of empirical studies, theoretical understanding of length general-
ization has been limited. Most relevant, Ahuja & Mansouri (2024) study length generalization in
simple neural architectures, including a one-layer transformer setup with linear (not softmax) atten-
tion. Our results, in contrast, apply to multi-layer softmax transformers and make statements about
many concrete problems that have been studied empirically. Some other works (e.g. Hou et al.,
2024; Xiao & Liu, 2023) provide length-generalizing constructions for certain problems, but leave
open whether learning would lead to such constructions. Wang et al. (2024b) show that GD training
leads to length generalization on a specific token selection task.

Limitations The main limitation of our results is that we study idealized asymptotic identifica-
tion of a global minimum with perfect knowledge of behavior on the training distribution (cf. Q.4
in App. A for more discussion). Extending Theorem 7 to account for subsampling of the training
data and learning dynamics is an important problem for future research. In particular, providing a
practical upper bound on the threshold N0 at which length generalization is expected is an interest-
ing problem. Our study focuses on absolute positional encodings; extending it to other positional
encodings (e.g. Su et al., 2024; Press et al., 2021; Ruoss et al., 2023) is another important problem
for future research.

7 CONCLUSION

We have introduced a theoretical framework that unifies a broad array of empirical findings about
successes and failures of length generalization in transformers with absolute positional encodings.
Our framework is based on the analysis of an idealized inference procedure, for which length gen-
eralization provably happens whenever the ground-truth function is expressible with only limited
access to positional information. By providing upper and lower bounds on the expressiveness of
these objects, we accurately predict the success and failure of length generalization across various
algorithmic tasks and formal languages.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Kartik Ahuja and Amin Mansouri. On provable length and compositional generalization. arXiv
preprint arXiv:2402.04875, 2024.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh, Am-
brose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Pranjal Awasthi and Anupam Gupta. Improving length-generalization in transformers via task
hinting. CoRR, abs/2310.00726, 2023. doi: 10.48550/ARXIV.2310.00726. URL https:
//doi.org/10.48550/arXiv.2310.00726.

Pablo Barcelo, Alexander Kozachinskiy, Anthony Widjaja Lin, and Vladimir Podolskii. Logical
languages accepted by transformer encoders with hard attention. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=gbrHZq07mq.

David A Mix Barrington, Kevin Compton, Howard Straubing, and Denis Thérien. Regular languages
in NC1. Journal of Computer and System Sciences, 44(3):478–499, 1992.

Christoph Behle, Andreas Krebs, and Mark Mercer. Linear circuits, two-variable logic and weakly
blocked monoids. In Luděk Kučera and Antonı́n Kučera (eds.), Mathematical Foundations of
Computer Science 2007, pp. 147–158, Berlin, Heidelberg, 2007. Springer Berlin Heidelberg.
ISBN 978-3-540-74456-6.

Christoph Behle, Andreas Krebs, and Stephanie Reifferscheid. Regular languages definable by
majority quantifiers with two variables. In Volker Diekert and Dirk Nowotka (eds.), Developments
in Language Theory, pp. 91–102, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg. ISBN
978-3-642-02737-6.

Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. On the ability and limitations of transformers
to recognize formal languages. In Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu (eds.),
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2020, Online, November 16-20, 2020, pp. 7096–7116. Association for Computational
Linguistics, 2020. doi: 10.18653/V1/2020.EMNLP-MAIN.576. URL https://doi.org/
10.18653/v1/2020.emnlp-main.576.

Satwik Bhattamishra, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the repre-
sentational capabilities of transformers and recurrent architectures. CoRR, abs/2406.09347, 2024.
doi: 10.48550/ARXIV.2406.09347. URL https://doi.org/10.48550/arXiv.2406.
09347.

Michaël Cadilhac and Charles Paperman. The regular languages of wire linear AC0. Acta Infor-
matica, 59(4):321–336, 2022. doi: 10.1007/S00236-022-00432-2. URL https://doi.org/
10.1007/s00236-022-00432-2.

Yingshan Chang and Yonatan Bisk. Language models need inductive biases to count inductively.
CoRR, abs/2405.20131, 2024. doi: 10.48550/ARXIV.2405.20131. URL https://doi.org/
10.48550/arXiv.2405.20131.

David Chiang and Peter Cholak. Overcoming a theoretical limitation of self-attention. In Smaranda
Muresan, Preslav Nakov, and Aline Villavicencio (eds.), Proceedings of the 60th Annual Meet-
ing of the Association for Computational Linguistics (Volume 1: Long Papers), ACL 2022,
Dublin, Ireland, May 22-27, 2022, pp. 7654–7664. Association for Computational Linguistics,
2022. doi: 10.18653/V1/2022.ACL-LONG.527. URL https://doi.org/10.18653/v1/
2022.acl-long.527.

Arthur Conmy, Augustine Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià Garriga-
Alonso. Towards automated circuit discovery for mechanistic interpretability. Advances in Neural
Information Processing Systems, 36:16318–16352, 2023.

11

https://doi.org/10.48550/arXiv.2310.00726
https://doi.org/10.48550/arXiv.2310.00726
https://openreview.net/forum?id=gbrHZq07mq
https://openreview.net/forum?id=gbrHZq07mq
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.48550/arXiv.2406.09347
https://doi.org/10.48550/arXiv.2406.09347
https://doi.org/10.1007/s00236-022-00432-2
https://doi.org/10.1007/s00236-022-00432-2
https://doi.org/10.48550/arXiv.2405.20131
https://doi.org/10.48550/arXiv.2405.20131
https://doi.org/10.18653/v1/2022.acl-long.527
https://doi.org/10.18653/v1/2022.acl-long.527

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Colin De la Higuera. Grammatical inference: learning automata and grammars. Cambridge Uni-
versity Press, 2010.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot
Catt, Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, and Pedro A. Ortega. Neural
networks and the chomsky hierarchy. 2023. URL https://openreview.net/pdf?id=
WbxHAzkeQcn.

Benjamin L Edelman, Surbhi Goel, Sham Kakade, and Cyril Zhang. Inductive biases and variable
creation in self-attention mechanisms. In International Conference on Machine Learning, pp.
5793–5831. PMLR, 2022.

Benjamin L Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis. The
evolution of statistical induction heads: In-context learning markov chains. arXiv preprint
arXiv:2402.11004, 2024.

Michael Hahn. Theoretical limitations of self-attention in neural sequence models. Transactions of
the Association for Computational Linguistics, 8:156–171, 2020.

Michael Hahn and Mark Rofin. Why are sensitive functions hard for transformers? In Proceedings
of the 2024 Annual Conference of the Association for Computational Linguistics (ACL 2024),
2024. arXiv Preprint 2402.09963.

Yiding Hao, Dana Angluin, and Robert Frank. Formal language recognition by hard attention trans-
formers: Perspectives from circuit complexity. Transactions of the Association for Computational
Linguistics, 10:800–810, 2022.

Kaiying Hou, David Brandfonbrener, Sham M. Kakade, Samy Jelassi, and Eran Malach. Universal
length generalization with turing programs. CoRR, abs/2407.03310, 2024. doi: 10.48550/ARXIV.
2407.03310. URL https://doi.org/10.48550/arXiv.2407.03310.

Samy Jelassi, Stéphane d’Ascoli, Carles Domingo-Enrich, Yuhuai Wu, Yuanzhi Li, and François
Charton. Length generalization in arithmetic transformers. CoRR, abs/2306.15400, 2023. doi: 10.
48550/ARXIV.2306.15400. URL https://doi.org/10.48550/arXiv.2306.15400.

Samy Jelassi, David Brandfonbrener, Sham M. Kakade, and Eran Malach. Repeat after me: Trans-
formers are better than state space models at copying. In Forty-first International Conference on
Machine Learning, ICML 2024, Vienna, Austria, July 21-27, 2024. OpenReview.net, 2024. URL
https://openreview.net/forum?id=duRRoGeoQT.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers. In Al-
ice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine
(eds.), Advances in Neural Information Processing Systems 36: Annual Conference on Neural
Information Processing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 -
16, 2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
4e85362c02172c0c6567ce593122d31c-Abstract-Conference.html.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers. Advances
in Neural Information Processing Systems, 36, 2024.

Andreas Krebs. Typed semigroups, majority logic, and threshold circuits. PhD thesis, Universität
Tübingen, 2008.

K-J Lange. Some results on majority quantifiers over words. In Proceedings. 19th IEEE Annual
Conference on Computational Complexity, 2004., pp. 123–129. IEEE, 2004.

Ming Li and Paul Vitányi. An Introduction to Kolmogorov Complexity and its Applications. 3
edition, 2008.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata. In The Eleventh International Conference on Learning Representa-
tions, 2023. URL https://openreview.net/forum?id=De4FYqjFueZ.

12

https://openreview.net/pdf?id=WbxHAzkeQcn
https://openreview.net/pdf?id=WbxHAzkeQcn
https://doi.org/10.48550/arXiv.2407.03310
https://doi.org/10.48550/arXiv.2306.15400
https://openreview.net/forum?id=duRRoGeoQT
http://papers.nips.cc/paper_files/paper/2023/hash/4e85362c02172c0c6567ce593122d31c-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/4e85362c02172c0c6567ce593122d31c-Abstract-Conference.html
https://openreview.net/forum?id=De4FYqjFueZ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bingbin Liu, Jordan Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Exposing attention
glitches with flip-flop language modeling. Advances in Neural Information Processing Systems,
36, 2024.

Robert McNaughton and Seymour A Papert. Counter-Free Automata (MIT research monograph no.
65). The MIT Press, 1971.

William Merrill and Ashish Sabharwal. The expressive power of transformers with chain of thought.
In NeurIPS 2023 Workshop on Mathematics of Modern Machine Learning, 2023a. URL https:
//openreview.net/forum?id=CDmerQ37Zs.

William Merrill and Ashish Sabharwal. A logic for expressing log-precision transformers. In Thirty-
seventh Conference on Neural Information Processing Systems, 2023b.

William Merrill and Ashish Sabharwal. The parallelism tradeoff: Limitations of log-precision trans-
formers. Transactions of the Association for Computational Linguistics, 11:531–545, 2023c.

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nati Srebro. Exploring general-
ization in deep learning. Advances in neural information processing systems, 30, 2017.

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, et al. In-context learning and induction
heads. arXiv preprint arXiv:2209.11895, 2022.

Binghui Peng, Srini Narayanan, and Christos Papadimitriou. On limitations of the transformer
architecture. arXiv preprint arXiv:2402.08164, 2024.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language
models are unsupervised multitask learners. OpenAI Blog, 1(8):9, 2019.

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Róbert Csordás, Mehdi Ben-
nani, Shane Legg, and Joel Veness. Randomized positional encodings boost length generalization
of transformers. arXiv preprint, 2023.

Clayton Sanford, Daniel J. Hsu, and Matus Telgarsky. Representational strengths
and limitations of transformers. In Alice Oh, Tristan Naumann, Amir Glober-
son, Kate Saenko, Moritz Hardt, and Sergey Levine (eds.), Advances in Neural In-
formation Processing Systems 36: Annual Conference on Neural Information Pro-
cessing Systems 2023, NeurIPS 2023, New Orleans, LA, USA, December 10 - 16,
2023, 2023. URL http://papers.nips.cc/paper_files/paper/2023/hash/
73bf692447f174984f30499ec9b20e04-Abstract-Conference.html.

Clayton Sanford, Daniel Hsu, and Matus Telgarsky. One-layer transformers fail to solve the induc-
tion heads task. arXiv preprint, 2024.

Yash Sarrof, Yana Veitsman, and Michael Hahn. The expressive capacity of state space models: A
formal language perspective. CoRR, abs/2405.17394, 2024. doi: 10.48550/ARXIV.2405.17394.
URL https://doi.org/10.48550/arXiv.2405.17394.

Marcel Paul Schützenberger. On finite monoids having only trivial subgroups. Inf. Control., 8(2):
190–194, 1965.

Noam Shazeer. GLU variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.

Lena Strobl. Average-hard attention transformers are constant-depth uniform threshold circuits.
CoRR, abs/2308.03212, 2023. doi: 10.48550/ARXIV.2308.03212. URL https://doi.org/
10.48550/arXiv.2308.03212.

Lena Strobl, William Merrill, Gail Weiss, David Chiang, and Dana Angluin. What Formal Lan-
guages Can Transformers Express? A Survey. Transactions of the Association for Computa-
tional Linguistics, 12:543–561, 05 2024. ISSN 2307-387X. doi: 10.1162/tacl a 00663. URL
https://doi.org/10.1162/tacl_a_00663.

13

https://openreview.net/forum?id=CDmerQ37Zs
https://openreview.net/forum?id=CDmerQ37Zs
http://papers.nips.cc/paper_files/paper/2023/hash/73bf692447f174984f30499ec9b20e04-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2023/hash/73bf692447f174984f30499ec9b20e04-Abstract-Conference.html
https://doi.org/10.48550/arXiv.2405.17394
https://doi.org/10.48550/arXiv.2308.03212
https://doi.org/10.48550/arXiv.2308.03212
https://doi.org/10.1162/tacl_a_00663

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

Pascal Tesson and Denis Thérien. Diamonds are forever: The variety DA. In Semigroups, algo-
rithms, automata and languages, pp. 475–499. World Scientific, 2002.

Masaru Tomita. Dynamic construction of finite-state automata from examples using hill-climbing.
In Proceedings of the Fourth Annual Conference of the Cognitive Science Society, pp. 105–108,
1982.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in Neural Infor-
mation Processing Systems, pp. 5998–6008, 2017.

Jie Wang, Tao Ji, Yuanbin Wu, Hang Yan, Tao Gui, Qi Zhang, Xuanjing Huang, and Xiaoling
Wang. Length generalization of causal transformers without position encoding. In Lun-Wei
Ku, Andre Martins, and Vivek Srikumar (eds.), Findings of the Association for Computational
Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, pp. 14024–
14040. Association for Computational Linguistics, 2024a. URL https://aclanthology.
org/2024.findings-acl.834.

Zixuan Wang, Stanley Wei, Daniel Hsu, and Jason D. Lee. Transformers provably learn sparse token
selection while fully-connected nets cannot. In Forty-first International Conference on Machine
Learning, 2024b. URL https://openreview.net/forum?id=qjqlhWDcId.

Gail Weiss, Yoav Goldberg, and Eran Yahav. Thinking like transformers. In International Confer-
ence on Machine Learning, pp. 11080–11090. PMLR, 2021.

Changnan Xiao and Bing Liu. Conditions for length generalization in learning reasoning skills.
CoRR, abs/2311.16173, 2023. doi: 10.48550/ARXIV.2311.16173. URL https://doi.org/
10.48550/arXiv.2311.16173.

Andy Yang and David Chiang. Counting like transformers: Compiling temporal counting logic
into softmax transformers. In First Conference on Language Modeling, 2024. URL https:
//openreview.net/forum?id=FmhPg4UJ9K.

Andy Yang, David Chiang, and Dana Angluin. Masked hard-attention transformers recognize ex-
actly the star-free languages. arXiv Preprint, 2023.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Joshua M. Susskind, Samy
Bengio, and Preetum Nakkiran. What algorithms can transformers learn? A study in length
generalization. In The Twelfth International Conference on Learning Representations, ICLR 2024,
Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024a. URL https://openreview.
net/forum?id=AssIuHnmHX.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou.
Transformers can achieve length generalization but not robustly. CoRR, abs/2402.09371, 2024b.
doi: 10.48550/ARXIV.2402.09371. URL https://doi.org/10.48550/arXiv.2402.
09371.

14

https://aclanthology.org/2024.findings-acl.834
https://aclanthology.org/2024.findings-acl.834
https://openreview.net/forum?id=qjqlhWDcId
https://doi.org/10.48550/arXiv.2311.16173
https://doi.org/10.48550/arXiv.2311.16173
https://openreview.net/forum?id=FmhPg4UJ9K
https://openreview.net/forum?id=FmhPg4UJ9K
https://openreview.net/forum?id=AssIuHnmHX
https://openreview.net/forum?id=AssIuHnmHX
https://doi.org/10.48550/arXiv.2402.09371
https://doi.org/10.48550/arXiv.2402.09371

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Contents
1 Introduction 1

2 Model of Transformers 2

3 Theoretical Framework 3
3.1 Limit Transformers . 3
3.2 Definition of Inference Procedure . 4
3.3 Main Result: Convergence of Inference Procedure 5

4 Which Functions are Identifiable? Expressiveness of Limit Transformers and C-RASP 6
4.1 Simple Example: Induction Head . 6
4.2 Length Generalization for C-RASP . 6
4.3 Limitations: Logarithmic Communication Complexity 7

5 Experiments 8

6 Discussion 9

7 Conclusion 10

A FAQ 16

B Proofs about Limit Transformers 18
B.1 Proof of Theorem 7 . 18
B.2 Result for NoPE Transformers . 22
B.3 Logarithmic Communication Complexity for Limit Transformer 22
B.4 Statement of Main Theorem for Arbitrary Training Lengths 24
B.5 Corollary about Expressivity . 25
B.6 From C-RASP to Limit Transformers . 25

C Expressivity Proofs for C-RASP 27
C.1 C-RASP Constructions . 27

C.1.1 Majority . 27
C.1.2 Dyck-1 . 27
C.1.3 anbncn . 28
C.1.4 Existential Quantification . 28
C.1.5 Piecewise Testable Languages . 28

C.2 C-RASP[periodic, local] Constructions . 29
C.2.1 Induction Head (Argmax Version) . 29
C.2.2 Induction Head (All possible next symbols) 29
C.2.3 (aa)∗ . 30

C.3 Expressibility of Regular Languages in C-RASP[periodic,local] 30
C.3.1 Link to Majority Logic . 31
C.3.2 Inexpressibility of Σ∗be∗ . 33
C.3.3 Inexpressibility of PARITY . 35

D Discussion of Design Choices 37
D.1 MLP Activation Functions . 37
D.2 Fixed Precision . 38
D.3 Layer Norm . 38

E Additional Details for Experiments 38
E.1 Regular Languages from the Bhattamishra et al 2020 Benchmark 38

E.1.1 Language Definitions . 38
E.1.2 C-RASP Expressiveness . 39

E.2 Algorithmic Tasks . 42
E.2.1 Task Definitions for Algorithmic Problems 42

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

E.2.2 Limit Transformers and C-RASP expressiveness on algorithmic tasks . . . 44
E.3 Details of Experimental Setup . 45

F Translating between Transformers and Limit Transformers 46
F.1 Product Parameterization . 46
F.2 Formal Definition of Hypothesis Class . 50
F.3 From Limit Transformers to Transformers . 50
F.4 From Transformers to Limit Transformers . 55

F.4.1 Proving Lemma 52 (I): Preliminaries . 56
F.4.2 Proving Lemma 52 (II): Construction of T∞ 57
F.4.3 Proving Lemma 52 (III): Proving Correctness 61

G Additional Supporting Results 69
G.1 Regularizer at Initialization . 69
G.2 Empirical Length Generalization of Positional Functions 71
G.3 Bound for Encodings Norm in Terms of Function Complexity 71
G.4 Positional Abilities in NoPE vs APE . 73
G.5 Conceptual Relation to Solomonoff Induction . 74
G.6 The Role of Translation Invariance . 75

G.6.1 Non Offset-Invariant Transformers Failing to Length-Generalize 75
G.6.2 Translation-Invariance in Trained Transformers 77

G.7 Comparing APE and NoPE on Induction Head Tasks 79

A FAQ

(1) What is the point of introducing Limit Transformers?

Limit Transformers are a mathematical formalism helping us prove a length generalization guarantee
(Theorem 7) for a broad class of functions, not just one specific function. They thus serve as an
object that can help us prove things about standard transformers.

(2) What is the relation between Limit Transformers and C-RASP? Why use two different for-
malisms?

They serve two distinct purposes - one is easier to prove a length-generalization guarantee with, and
the other is easier to prove expressivity results with. Limit Transformers are closely connected to
standard transformers, and provide a convenient formalism for formalizing a length generalization
guarantee in our inference setup (Theorem 7); they also provide bounds on APE transformer ex-
pressiveness as a side result (Appendix C). C-RASP is a formalism based on the RASP language
(Weiss et al., 2021), intended to provide a formal abstraction of the kinds of computations that trans-
formers can perform in a human-readable format. Limit Transformers with PERIODIC and LOCAL
express all the functions definable in C-RASP[periodic,local], though it is open if this inclusion is
strict. We provide rigorous tools for understanding the expressiveness of both formalisms. For Limit
Transformers, we prove a logarithmic communication complexity bound (Theorem 12). C-RASP
brings additional use in understanding expressiveness from two angles. First, one can conveniently
prove functions expressible by writing down programs, as we did in Section 4.2. Second, to prove
negative results, we can bring to bear a set of deep results about logics using majority quantifiers
(Krebs, 2008), which allow us to provably settle expressiveness of many problems. Positive results
translate into positive results about Limit Transformer expressiveness and hence, under our ideal-
ized learning setup, length generalization. While it is open if problems not expressible in C-RASP
cannot in principle show length generalization, experimental results suggest that such an implication
might hold in many cases.

(3) Why are Limit Transformers needed – can’t one just consider transformers whose parameters
have infinite precision and hence can accommodate infinitely many different positional encodings
pi?

The key advantage of Limit Transformers is that they effectively have finite parameter counts when-
ever they satisfy LOCAL and PERIODIC, which is useful in establishing Theorem 7. In an ordinary
transformer, due to fixed width, effectively distinguishing unboundedly many positions requires in-

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

finitely many parameters pi. Even then, a function as simple as ϕ(i, j) = δij cannot be exactly
represented for infinitely many i, j by a product piQ

TKpj at bounded width d.

We used Limit Transformers as a tool specifically to prove results about APE transformers. We note
in Corollary 18 that the analogous results for the special case of NoPE transformers do not require
the use of Limit Transformers. Understanding what is needed to derive results for other positional
encoding schemes (such as relative positional encodings) is left for future work.

(4) Why is the idealized setup considered for the analysis, as opposed to more practical frameworks
of learning?

Proving guarantees in a more practical setting (SGD training dynamics, subsampling of training
data) would, of course, be ideal. However, such guarantees have been notoriously difficult to estab-
lish for deep learning models (Neyshabur et al., 2017). Standard frameworks for learning, such as
PAC-learning, assume that the training and test distributions are the same, which precludes out-of-
distribution guarantees such as length generalization. Even within the PAC-learning framework, ob-
taining nontrivial guarantees for deep neural networks remains challenging without making strong
assumptions. Instead of analyzing the learning and generalization of Transformers trained with
gradient-based methods, our work aims to understand the length generalization properties of Trans-
formers from an architectural perspective. A substantial body of work (cf. Section 6) has empirically
investigated the length generalization properties of Transformers and found a complex array of em-
pirical behavior, while theoretical understanding has been very limited. Hence, consolidating the
theoretical relation between these empirical observations and the computational model of Trans-
formers seems like an important direction. Our work provides a formal framework, based on an
idealized model of learning, that separates the tasks on which Transformers succeed and those on
which they fail to length-generalize. The learning model considered in our work is closely related to
the “identification in the limit” setting, which has been widely studied for decades in the context of
learning automata and grammars (De la Higuera, 2010). Our framework is successful in explaining
a wide range of empirical observations (Figure 1). This is a substantial advance, as no prior theo-
retical framework has been able to explain the empirical patterns in Figure 1 to the extent that our
framework can. We hope that further work can build on these insights to establish guarantees that
reproduce this success while narrowing the gap between theoretical analysis and practical learning.

(5) Why does the length generalization condition in Theorem 7 ask for supnR(Tn) < ∞? Isn’t
asking for length generalization sufficient?

If supnR(Tn) = ∞, a transformer T minimizing R(T) while fitting behavior at some length will
be unlikely to work at substantially longer lengths, because performing the task correctly at longer
and longer lengths requires unbounded increase in R(T). It might still happen that generalization
from length n

2 to length n is possible in certain problems not expressible by Limit Transformers.
However, this will depend on the problem and the specific scaling of test lengths relative to training
lengths; for problems not satisfying the conditions in Theorem 7, length generalization will fail
when the test length is made sufficiently longer than the training length, even as the training length
diverges to infinity. We make this formal in Section B.4.

(6) Given a task, how can one settle Limit Transformer and C-RASP expressiveness?

Showing that a task is definable by Limit Transformers or C-RASP simply requires providing an
explicit construction, as we exemplify for various tasks (Section C.1). For showing that a task is not
definable in these formalisms, we provide a battery of methods which allow us to provide an answer
for many tasks: communication complexity (Theorem 12) applies to both formalisms; for showing
non-definability in C-RASP, reduction to specific languages already proven not to be expressible
(such as Parity and Lbb, see Appendix E.1.2) is frequently useful. Although Theorem 4.2 shows
that every function expressible in C-RASP is expressible by Limit Transformers, it is not known
whether or not this inclusion is strict.

(7) Why does the guarantee specifically apply to PERIODIC and LOCAL Limit Transformers? What
is special about such positional relations?

Local positional relations are important because, if a product function of the form pT
i Q

TKpj ,
where the rank of Q,K is not constrained, takes nonzero values at unboundedly long distances j−i,
there is no general reason why the function should length-generalize. Independent initialization of
the pi’s tends to lead to values close to zero for most of these products (Appendix G.1); our Inference

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Procedure incorporates this via the term (8). Given this, one expects a learned model to still exhibit
small products at distances not present in the training distribution, and hence a failure of length
generalization in the presence of nonlocal product functions. In the translations between standard
transformers and Limit Transformers, such local positional relations correspond to the functions
ϕl,h.

The situation is different for products involving Vl,h matrices, whose rank is penalized by R(·);
these are able to represent not local, but periodic functions. Periodicity falls out of the setup: In the
finite-precision setup, a translation-invariant product function of the form pT

i M1 . . .Mkpj must
be periodic in j − i whenever one of the matrices M1 . . .Mk has bounded rank as the number of
positions considered diverges to infinity, with period bounded in terms of the rank (Lemma 48).
Hence, in a transformer T ∈ Θn, any product function involving one or more Vl,h matrices needs to
be periodic with period bounded in terms ofR(T). In the translations between standard transformers
and Limit Transformers, such periodic relations are encoded into bounded-width bounded-precision
positional encodings pi of the Limit Transformer; finite width and precision are sufficient due to
periodicity.

B PROOFS ABOUT LIMIT TRANSFORMERS

B.1 PROOF OF THEOREM 7

We re-state and then prove Theorem 7:
Theorem 14 (Guaranteed Length Generalization in the Limit, restated from Theorem 7). Let f ∈
F(Σ). Then the following are equivalent:

1. f is expressible by a Limit Transformer satisfying PERIODIC and LOCAL.

2. (Guaranteed Length Generalization) Consider the inference procedure from Definition 6
applied to f with R, generating a sequence T1, T2, For any such sequence, there is
some N0 such that, for all m > N0, Tm matches f on all inputs of any length k ≤ m, and
supn=1,2,3,...R(Tn) <∞.

Remark 15. We note that a limit transformer T∞ representing f need not itself be offset-invariant.
It is sufficient to have

T∞(x, 0) = f(x) (6)
Lemma 47 shows that such a function has a sequence of transformers Tn ∈ Θn which are offset-
invariant, even without assuming T∞ to be offset-invariant.

High-Level Proof Sketch The key to the proof is a compactness property: Any sequence
T1, T2, . . . (Ti ∈ Θi) where supiR(Ti) < ∞ has a subsequence of transformers whose behav-
ior across inputs can be summarized into a single Limit Transformer. For 1⇒2, given a sequence
generated by the Inference Procedure, we show that R stays bounded and use the compactness
property to show that a subsequence exhibits behavior equivalent to f . To show that, in fact, all pos-
sible sequences Tn generated by the Inference Procedure ultimately exhibit behavior equivalent to
f , when n is large, we show that subsequences failing to length-generalize would exhibit increasing
attention dot products between far-away positions as input length increases. However, due to the
penalty on attention dot products inR, any such sequence would, for large n, need to have a higher
value of R than sequences avoiding such an increase. For 2⇒1, we obtain the Limit Transformer
from the compactness property applied to the sequence generated by the Inference Procedure. The
penalty on attention dot products enforces that it satisfies LOCAL; the bounds on the MLP and value
matrices enforce that the positional encodings in the Limit Transformer can be taken to be periodic.

Preliminaries and Formal Proof We now proceed to the formal proof. We make crucial use of
the two technical Lemmas 47 and 52, which provide translations between ordinary transformers and
Limit Transformers.

The following definition will be used:
Definition 16. If T ∈ Θi, then defineR−(T) to beR(T) minus the term in Eq. (8). That is,

R(T) = R−(T) +
∑
l,h

∑
1≤j≤N(T)

|pT
1 K

T
l,hQl,hpj |2 (7)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

The following lemma will be used for both directions of the main theorem:
Lemma 17. Let T1, T2, . . . , where Tn ∈ Θn, be a sequence generated by the Inference Procedure
based on the functional behavior of a function f ∈ F , and such that

sup
n=1,2,3,...

R(Tn) <∞ (8)

Then f is expressible by a Limit Transformer satisfying PERIODIC and LOCAL, and there is some
N0 such that, for all m > N0, Tm matches f on all inputs of length k ≤ m.

Proof. As we will be reasoning over the ϕl,h functions of different limit transformers, we use a
superscript, ϕ(T)

l,h , to indicate the relevant limit transformer.

From the sequence T1, T2, . . . generated by the Inference Procedure, we obtain, using Lemma 52,
Limit Transformers T̃1, T̃2, . . . such that supiR∞(T̃i) <∞ where

T̃i(x, o) = Ti(x, o), ∀i, o, x; |x|+ o ≤ i (9)

and, in each Tn, T̃n,
ϕ
(T̃n)
l,h (i, j) = pT

i K
T
l,hQl,hpj (10)

Each limit transformer T̃i consists of two parts: (i) the collection of its parameter vectors and ma-
trices, (ii) the functions ϕ(T̃i)l,h . We will write P(T̃i) for the collection of parameter vectors and
matrices of T̃i. Let A := supiR∞(T̃i) < ∞. Then {P(T̃) : R∞(T̃) ≤ A} is finite, because
A bounds (1) the number of parameters, (2) their magnitudes, (3) the precision at which they are
represented. Hence, only a finite number of Limit Transformer parameter settings P(T̃i) will be
traversed as i → ∞. The remainder of the proof is devoted to showing that, in fact, the number of
limit transformers T̃i itself is finite. For this, we need to show that each ϕ(T̃i)l,k only traverses a finite

set of distinct functions as i → ∞. Each function ϕ(T̃i)l,k is local; however, a priori, they might not
be local for any single finite τ across the different T̃n. We will show that this is not possible, i.e.,
we will show that all ϕT̃nl,k are local for a single finite τ . This will occupy us for the remainder of the
proof.

Now note that

R(Tn) ∈
[
1

n
+ inf

T∈Un
(R(T)), inf

T∈Un
(R(T))

]
Because infT∈Un R(T) is bounded and monotonically increasing in n, infT∈Un(R(T))) converges
to a limit, say R̃. Since 1/n → 0, the width of the interval converges to 0. The Squeeze Theorem
then implies thatR(Tn)→ R̃.

For each τ and each n, we consider

Dn(τ) =
∑
l,h

min(n,τ)∑
i=1

|ϕ(T̃n)l,h (1, i)|2 ≤ R(Tn)

As ϕ(T̃n)l,h has precision bounded in terms ofR(Tn), {Dn(τ) : n ∈ N} is a discrete set. An important
consequence is that any accumulation point of the sequence (Dn(τ))n∈N must equal Dn(τ) for
infinitely many n.

ConsiderR−(Tn) (Equation 7). Let

R0 := lim inf
n→∞

R−(Tn) (11)

and let ν1, ν2, ν3, . . . be such that
lim
i→∞

R−(Tνi) = R0 (12)

Then, for some D0,
lim
i→∞

Dνi(νi) = D0 (13)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

and
R̃ = lim

n→∞
R(Tn) = lim

i→∞
R(Tνi) = R0 +D0 (14)

Indeed,
D0 = lim sup

n→∞
Dn(n) (15)

because2

D0 +R0 = lim
n→∞

(R−(Tn) +Dn(n)) = lim inf
n→∞

R−(Tn) + lim sup
n→∞

Dn(n) (16)

Define, for each τ ∈ N,
D∞(τ) = lim inf

i→∞
Dνi(τ) (17)

As this function is monotonically increasing, and as each ϕ(T̃n)l,h has precision bounded in terms of
R(Tn), there must be τ∞ such that D∞(τ∞) = limτ→∞D∞(τ).

Now define a sequence T ′
n as follows. For each n, recall from the definition of D∞ that

lim inf
j→∞

Dνj (n) = D∞(n) ≤ D∞(τ∞)

As ϕl,h has bounded precision, there are infinitely many νi such thatDνi(n) = lim infj→∞Dνj (n).
Hence, we can select i(n) ∈ N such that νi(n) ≥ n and

Dνi(n)
(n) = lim inf

j→∞
Dνj (n)

Then, for each n, define T ′
n as the restriction of Tνi(n)

to positions up to n. As Tνi(n)
agrees with

the behavior of f up to length νi(n)

2 ≥ n
2 , we also find that T ′

n agrees with the behavior of f up to
length n

2 . Then

lim sup
n→∞

R(T ′
n) = lim sup

n→∞
R−(T

′
n) +Dνi(n)

(n)

= lim sup
n→∞

R−(Tνi(n)
) +D∞(τ∞)

=R0 +D∞(τ∞)

Since Tn was created by the Inference Procedure, we have

lim sup
n→∞

R(T ′
n) ≥ lim

n→∞
R(Tn) (18)

On the other hand, sinceR(T ′
n) ≤ R(Tνi(n)

), we also have

lim sup
n→∞

R(T ′
n) ≤ lim

n→∞
R(Tn) (19)

giving
lim sup
n→∞

R(T ′
n) = lim

n→∞
R(Tn) = D0 +R0 (20)

Hence,

R0 +D∞(τ∞) = lim sup
n→∞

R(T ′
n)

= lim
n→∞

R(Tn)

=R0 +D0

2In general, if an + bn converges and an, bn are bounded, then the limit lim(an + bn) equals lim sup an +
lim inf bn. For, assume lim sup an + lim inf bn > lim(an + bn) (similar if > is replaced by <). Then
let i(n) be a subsequence such that ai(n) → lim sup an. Then lim(an + bn) = lim(ai(n) + bi(n)) =
lim sup an + lim bi(n) ≥ lim sup an + lim inf bn > lim(an + bn), contradiction.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

andD∞(τ∞) = D0. Now assume there are infinitely many n such that ϕ(Tn)l,h is not τ∞-local, hence,
infinitely many n such that Dn(n) ≥ Dn(τ∞) + 2−2p. Then:

D0 = lim sup
n→∞

Dn(n)

≥ lim sup
n→∞

Dn(τ∞) + 2−2p

≥ lim inf
i→∞

Dνi(τ∞) + 2−2p

=D0 + 2−2p

This is a contradiction. Here, the first inequality holds because Dn(n) ≥ Dn(τ∞) whenever n ≥
τ∞, simply because Dn(·) is monotonically increasing for each individual n. The second inequality
holds because (νi)i∈N is a subsequence of (n)n∈N; hence a lim sup over the larger sequence upper-
bounds the lim inf over the subsequence. Overall, and as announced at the beginning of the proof,
we thus have shown that the functions ϕ(T̃n)l,h must be local for a uniform τ∞.

Because each ϕ(T̃n)l,h (i, j) equals an inner product pT
i K

T
l,hQl,hpj , all values are expressed at pre-

cision bounded by (R0)
4, and are bounded in absolute value by ≤ ∥pi∥2∥KT

l,h∥∥Ql,h∥∥pj∥2 ≤
(R0)

4. There are only a finite set of functions that satisfy these properties and are are local for this
τ∞.

Above, we have remarked that each limit transformer T̃ consists of (i) the collection P(T̃) of pa-

rameter matrices and vectors, (ii) the collection of functions ϕ(T̃)
l,h (i, j). Hence, we know that,

Q := {T̃i : i ∈ N} (21)

is finite. Let Q∞ ⊆ Q be the set of Limit Transformers that equal T̃i for infinitely many different
i. By definition of the Inference Procedure, every element of Q∞ is functionally equivalent to f at
all input lengths. Because Q is finite, there is N0 such that T̃i ∈ Q∞ for each i ≥ N0. Hence, Ti is
functionally equivalent to f at all lengths ≤ i as soon as i exceeds the threshold N0.

We now prove the theorem.

Proof of the Theorem. Both directions are corollaries of Lemma 17.

2⇒1: This directly follows from Lemma 17.

1⇒2: By Lemma 47, for each i = 1, 2, 3, . . . , there are T̂i ∈ Θi such that R := supiR(T̂i) <∞
such that

T̂i(x, o) = f(x, o), ∀i, o, x; |x|+ o ≤ i (22)
such that

pT
i K

T
l,hQl,hpj = ϕ

(T)
l,h (i, j) (23)

By LOCAL,
R(T̂i) <∞ (24)

and we conclude
lim sup
i→∞

R(Ti) ≤ lim sup
i→∞

R(T̂i) <∞ (25)

Lemma 17 now provides N0 > 0 and a function g such that for all m > N0,

Tm(x, o) = g(x),∀x : |x|+ o ≤ m (26)

On the other hand, for any string x ∈ S, we have

f(x) = Tn(x, 0),∀n ≥ 2|x| (27)

Hence, f ≡ g and for all m > N0,

Tm(x, o) = f(x),∀x : |x|+ o ≤ m (28)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

B.2 RESULT FOR NOPE TRANSFORMERS

Corollary 18. For ease of the reader, we mark the differences to Theorem 7 in blue font.

Let f ∈ F(Σ). Then the following are equivalent:

1. f is expressible by a Limit Transformer where all pi ≡ 0, ϕl,h ≡ 0.

2. (Guaranteed Length Generalization) Consider the inference procedure from Definition 6
applied to f with R while constraining all pi ≡ 0, generating a sequence T1, T2, For
any such sequence, there is someN0 such that, for allm > N0, Tm matches f on all inputs
of any length k ≤ m, and supn=1,2,3,...R(Tn) <∞.

Note that a Limit Transformer where all ϕl,h ≡ 0 is also an ordinary transformer as defined in Sec-
tion 2. Hence, in the special case of NoPE transformers, our proof boils down to an argument using
standard transformers, effectively without Limit Transformers. In contrast, Limit Transformers are
key to our proof in the more general case of APE transformers.

Proof. Retracing the proof of Lemma 47 shows that, when translating a Limit Transformer to an
ordinary transformer, the positional encodings can be taken to be zero when pi ≡ 0, ϕl,h ≡ 0 in the
Limit Transformer. Retracing the proof of Lemma 52 shows that, when pi ≡ 0 in a transformer, the
resulting Limit Transformer will have zero positional encodings and zero outputs for all ϕl,h. The
proof of Theorem 7 then applies equally to show Corollary 18.

B.3 LOGARITHMIC COMMUNICATION COMPLEXITY FOR LIMIT TRANSFORMER

Theorem 19 (Restated from Theorem 12). Let T be a Limit Transformer satisfying PERIODIC and
LOCAL. On an input x ∈ Σ2N , assume Alice has access to x1...N and Bob has access to xN+1...2N .
There is a communication protocol in which Alice and Bob exchange at most C logN bits, where
C depends on T but not N or x, and Bob can compute each activation in the second half, y(l)

i
(N + 1 ≤ i ≤ 2N). Further, C is bounded linearly byR∞(T).

Proof. We first establish that all activations y
(l)
i are computed at O(logN) precision. This holds

because (i) parameters are at fixed precision, (ii) the output of exp(·) in the softmax attention compu-
tation is computed at fixed fractional precision, (iii) and hence attention weights can be represented
at O(logN) precision.

We first consider the attention logits, in the case where j < N ≤ i:

a
(l,h)
i,j = Roundp[(y

(l−1)
j)TKT

l,hQl,hy
(l−1)
i + ϕl,h(i, j)]

where Roundp[. . .] rounds each entry to the closest number with p fractional bits. It is certainly
sufficient to have access to

a
(l,h)
i,j =

(
Roundp′ [y

(l−1)
j]

)T
KT

l,hQl,hy
(l−1)
i +Roundp′ [ϕl,h(i, j)]

where p′ depends on p and the largest singular value of KT
l,hQl,h, which is a finite constant. We can

thus partition the positions j = 1, . . . , N − 1 into a bounded number of sets, indexed by

1. Roundp′ [y
(l−1)
j]

2. max(N − j,N − L) where L = max{k : ϕl,h(1, k) ̸= 0}.

Let K ∈ N be the number of these sets; we then write these sets as A1, . . . ,AK. Note that, while
these sets are always disjoint, their elements are input-dependent as they depend on the activations
y
(l−1)
j .

Due to the finite precision rounding of logits and the locality of positional relations, we can maintain
a finite set of keys and queries (though not values). This is fundamental to getting a logarithmic
communication bound.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

We show the claim by induction over the layers.

We can write

Y
(l)
i =y

(l−1)
i +

H∑
h=1

∑i
j=1 exp(log |x| · a

(l,h)
i,j)Vl,hy

(l−1)
j∑i

j=1 exp(log |x| · ai,j)

The residual stream is known to Bob by inductive hypothesis. We need to understand the term
inside the sum. The green terms are fully known to Alice, the blue ones are fully known to Bob by
inductive hypothesis: ∑i

j=1 exp(log |x| · a
(l,h)
i,j)Vl,hy

(l−1)
j∑i

j=1 exp(log |x| · ai,j)

=

∑N−1
j=1 exp(log |x| · a(l,h)i,j)Vl,hy

(l−1)
j∑N−1

j=1 exp(log |x| · ai,j) +
∑i

j=N exp(log |x| · ai,j)

+

∑i
j=N exp(log |x| · a(l,h)i,j)Vl,hy

(l−1)
j∑N−1

j=1 exp(log |x| · ai,j) +
∑i

j=N exp(log |x| · ai,j)

Alice thus needs to communicate the green terms. More formally, for every set r = 1, . . . ,K, Alice
communicates

1. the number of relevant positions, |Ar| ∈ {1, . . . , N − 1}

2.
∑

i∈Ar Vl,hy
(l−1)
j .

For each r, communicating (1) takes O(logN) bits. The vectors in (2) are bounded in norm by
the l-th power of the maximum spectral norm of any parameter matrix, times the maximum ℓ2
norm of any parameter vector. Overall, this is bounded in terms of R∞(T), thus O(1) for fixed T .
Further, each y

(l−1)
j is expressed in O(logN) precision as shown above. Expressing (2) requires

O(logN) fractional bits (as the sum will not need more fractional bits than the individual vectors)
and O(logN) integer bits (due to the bound on the norm). Overall, Alice needs to communicate
K ·O(logN) bits. As K is independent of N , this is O(logN) for a fixed Limit Transformer T .

Alice can partition the positions into a bounded number of partitions, and for each of them needs to
transfer the number of positions in that partition.

Corollary 20 (Restated from Corollary 13). The following problems are not expressible by Limit
Transformers satisfying PERIODIC and LOCAL: (1) copying strings with repeated n-grams, (2)
addition of n-digit numbers.

Proof. Formally, we define copying as the task of, given a prefix $x#, autoregressively predicting
x. Copying with repeated n-grams means that there is no restriction on the repetition of consecutive
subspans of x of any length; this is in contrast to copying tasks with restrictions on the repetition
of n-grams (for some n) in x (Jelassi et al., 2024; Zhou et al., 2024a), which we study separately
(Appendix E.2).

Formally, we define addition as the task of, given a prefix $x + y =, where x, y are binary strings,
to output the sum of the numbers denoted by x, y in binary.

The communication complexity lower bound for copying follows from a standard communication
complexity lower bound for determining string equality. The bound follows for addition since the
special case of adding 0 to a number amounts to copying.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Remark 21. Analogous bounds follow for various other algorithmic and formal language problem.
For instance, the special case of multiplying with 1 amounts to copying; hence, such a bound holds
for multiplication. For the unbounded-depth Dyck over two bracket types, we can consider a word
of the form (i1 . . . (iN)jN . . .)j1 , which is in the Dyck language if and only if ik = jk for all k, again
allowing a reduction to the communication complexity lower bound for determining string equality.

B.4 STATEMENT OF MAIN THEOREM FOR ARBITRARY TRAINING LENGTHS

Our main theorem considers generalization from length n
2 to length n. Here, we discuss an alterna-

tive version applying to arbitrary scaling of training vs testing lengths. In particular, in such a setup,
we explicitly obtain failure of length generalization for inexpressible functions, though potentially
requiring testing on lengths more than twice the lengths used in training. We use the following
definition:
Definition 22. A training length is a function t : N → N satisfying limt→∞ t(n) = +∞ and
t(n) ≤ n for all n.

If t(n) is a training length, then the t(n)-Inference Procedure determines Tn ∈ Θ(n) to match f at
all inputs of lengths ≤ t(n) while minimizingR(Tn) up to 1

n .

The special case of t(n) = n
2 is the Inference Procedure from Definition 6.

We then state:
Theorem 23. Let f ∈ F(Σ). The following are equivalent:

1. f is expressible by a Limit Transformer satisfying PERIODIC and LOCAL.

2. Let t(n) be any training length. Then the t(n)-Inference Procedure will output solutions
T1, T2, . . . such that, for some N0, for all m > N0, Tm matches f at all lengths ≤ m.

Intuitively, this says that, when selected to fit the behavior of f on sufficiently long inputs
of length t(n), the output of the Inference Procedure will generalize to unboundedly longer
inputs of length n, where n can be arbitrarily larger than t(n).

Corollary 24. Assume f ∈ F(Σ) is not expressible by a Limit Transformer satisfying PERIODIC
and LOCAL. Then, for some training length t(n), the t(n)-Inference Procedure outputs a sequence
Tn where infinitely many Tn fail to match f at length n.
Remark 25. There are two important differences compared to Theorem 7. First, the second condi-
tion refers to length generalization for all arbitrary training lengths t(n), not specifically training
length n

2 . Second, the second condition does not ask for supiR(Ti) <∞, but simply asks for Tn to
ultimately length generalize.

Proof of Theorem 23. 1⇒2 The proof of Theorem 7 remains valid in this direction without any
changes, as it does not specifically rely on the training lengths being half the overall context size.

2⇒1 We show the contrapositive. Assume f is not expressible by a Limit Transformer satisfying
PERIODIC and LOCAL. Then, using the same arguments as in the proof of Lemma 173, any sequence
Tn ∈ Θn that matches f will have lim infn→∞R(Tn) = ∞ (†). Now consider k ∈ N; we will
assign every k a number nk > k, starting with n0 = 0. For each n > k, there is T̂k,n ∈ Θn that
matches f up to length k while Uk := supnR(T̂k,n) <∞ for every fixed k. Now select nk > nk−1

such that no T ∈ Θnk with R(T) ≤ Uk + 1 matches f at length nk; this is possible because of
(†). We thus obtain a sequence (k, nk) ∈ N× N. By construction, there are infinitely many distinct
different values nk. Then define

t(n) := max ({k : nk ≤ n}) (29)
Then t(n) is a training length. By definition, the t(n)-Inference Procedure will, whenever n is one of
the nk’s, find a transformer Tnk withR(Tnk) ≤ Uk+

1
nk

that fails to match f at length n = nk.
3Assume there is a sequence Tn ∈ Θn that matches f and has lim infn→∞R(Tn) <∞. Translating each

element to a Limit Transformer leads to a sequence where, except perhaps for the functions ϕl,h, only a finite
number of settings will be traversed. Now, as in the proof of Lemma 17, one can use D∞(τ) to construct a
sequence of Limit Transformers that are local for a single τ . The important difference to Lemma 17 is that
here we are not assuming the sequence (Tn)n to be constructed by the inference procedure, but we nonetheless
obtain such a sequence.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

B.5 COROLLARY ABOUT EXPRESSIVITY

We have introduced Limit Transformers as a formalism for distilling computations of transformers
performing on longer and longer sequences into a single limiting object, helping understand length
generalization. Here, we show that they also provide a simple lower bound for the expressiveness of
causal transformers across input lengths:
Corollary 26. Let f ∈ F(Σ). Assume f is expressible by a Limit Transformer satisfying PERIODIC
and LOCAL. Then at each input length N , there exists a transformer TN performing f on all inputs
of length up to N such that:

1. The parameters of TN are expressed at p bit precision, with p independent of N

2. The number of heads and layers of TN is bounded independently of N .

3. The width d of TN is bounded as O(N).

We note that an important aspect is that TN performs correctly not just at lengthN , but at all lengths
up toN . This distinguishes the result from constructions guaranteeing the existence of a transformer
at a fixed length. For instance, Bhattamishra et al. (2024) provide a transformer for testing equality
between length N -strings (which could also be used for copying), but this construction uses specific
positional encodings that depend on the input length. In contrast, the result here provides conditions
under which a transformer can perform a task at all lengths up to a given bound; in this stronger
setup, no APE transformer for copying with uniform complexity bounds as provided by Corollary 26
is known, and the problem is indeed not expressible by Limit Transformers satisfying PERIODIC and
LOCAL (Corollary 13). In contrast, Corollary 26 provides APE constructions performing correctly
up to any given length for a wide class of problems including C-RASP[periodic,local].

Another important feature is that the construction provides a fixed precision for the parameters, as
is the case in real-world implementation. We note that, if parameters are at fixed precision, it is
generally not possible to find a single transformer across all input lengths in the APE setting; hence,
it is unavoidable that the width of the transformers will need to increase as the input length increases.
Importantly, many other aspects of the transformer’s complexity, such as the number of heads and
layers, remain bounded.

Proof. The statement is an immediate corollary of Lemma 47, which provides transformers
T1, T2, . . . with bounded R(TN), which by Definition 5 entails a uniform bound on precision,
heads, and layers. The construction provided in the proof of Lemma 47 provides a width bounded
as O(N).

B.6 FROM C-RASP TO LIMIT TRANSFORMERS

The proofs are adaptations of the proofs from Yang & Chiang (2024).
Theorem 27 (Restated from Theorem 9). For every C-RASP[Φ,Ψ] program P with local functions
Ψ and any periodic functions Φ there exists a Limit Transformer T∞ that satisfies PERIODIC and
LOCAL such that for all w ∈ Σ∗, P accepts w iff T∞ accepts $w. If P uses no local or periodic
relations, then T requires no functions ϕl,h or positional encodings pi.
Remark 28. We note that the Limit Transformer T∞ provided by the proof of Theorem 27 emulates
the C-RASP program P at zero offset: That is, P accepts w iff a predetermined entry in the last
output dimension of T∞($w, 0) is above some threshold. In principle, its computations may not be
offset-invariant, i.e., for the constructed T∞, the output T∞($w, o) may depend on o. Importantly,
the proof of Theorem 7 does not require a Limit Transformer computing f to be offset-invariant, but
just requires it to compute f when the offset is zero. This is because Lemma 47 ensures that, for any
Limit Transformer T∞ satisfying LOCAL and PERIODIC, even if it is not offset-invariant, there are
transformers Tn ∈ Θn whose behavior matches T∞(·, 0).

Proof of Theorem 27. C-RASP has two sorts of operations, a Boolean sort and a Count sort. We will
simulate each operation in the transformer by storing the Boolean values as {0, 1}, and storing the
counts as c

i+1 . That is, we say that a Limit Transformer T∞ simulates a C-RASP program P if for
every operation Pk of P there is a dimension dk in T such that when Pk(i) when run on w is true iff

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

T∞($w)i+1,dk = 1 (and 0 otherwise) for Boolean operation and Pk(i) = c iff T∞($w)i+1,k = c
i+1

for count operations.

The theorem will be shown by induction on the length of P . As a clarifying note, we use 0-indexing
everywhere in this proof. If P is of length 0, we only have initial Qσ(i) vectors, which can be
simulated by appropriately setting the word embedding. Otherwise, assume all programs of length
≤ k are simulated by some transformer, and we have cases for each type of operation Pk+1(i)
can be. All cases are identical to Yang & Chiang (2024) except for comparison, conditional, and
counting.

First, we must address the SOS token $. There exists an transformer layer which sets the entire
vector to 0 in the initial position, while leaving all other layers untouched. For instance, we may use
a conditional operation, as described later in the proof.

If Pk+1(i) := ϕ(i), a periodic positional function in Φ, then it is simulated in T∞ by appropriately
setting pi in the positional encoding.

If Pk+1(i) := P (i) ? C1(i) : C2(i), we can implement the following function: for P ∈ {−1, 1}
and V ∈ [0, 1]

f(P, V) =

{
V P = −1
0 P = 1

This is achieved by f(P, V) = ReLU(V −P)−ReLU(−P). Thus, the desired Conditional Output
can be defined in a single FFN as f(P, V1) + f(−P, V2), where the first layer and ReLU compute
each f term and the second layer adds them together.

If Pk+1(i) := C1(i) ≤ C2(i). By the inductive hypothesis C1(i) and C2(i) are stored in dimensions
d1 and d2 as the value C1(i)

i+1 and C2(i)
i+1 . It suffices to check that C2(i)

i+1 = C1(i)
i+1 ≥ 0.

To compute this, we use the heaviside activation function, which we used in our model of MLPs as
discussed in D.1.

−2−1 0 1 2
−1

0

1

x

h
s(
x
)

Thus, there exists an MLP which, letting x1 and x2 be the values in dimensions d1 and d2, computes
(hs(x2 − x1) + 1)/2 in the dimension reserved for Pk+1, which will be the Boolean value in {0, 1}
corresponding to C1(i) ≤ C2(i).

If C(i) := # [j ≤ i] P (j) (using ψ(i, j) = ⊤), then the desired sum is computed using uniform
attention, since the boolean representation of P (j) is just 0 or 1. We enforced that P (0) is false, so
it does not contribute to the sum. This is described in more detail in Yang & Chiang (2024), though
the case here is simpler.

If C(i) := # [j ≤ i, ψ(i, j)] P (j), we can think of it as implementing # [j ≤ i] ψ(i, j) ∧ P (j).
Suppose ψ is a local function of the following form

ψ(i, j) =

{
1 j = i− ℓ
0 else

Then C(i) will either be 1 or 0 depending if P (i − ℓ) is true or false. If we set the query and key
matrices to 0 we get

sij = logN · ψ(i, j)

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

We assume the log is base 2, but the argument is similar for others. Then we can have attention
compute

ci,k =

∑
j≤i

exp (logN · ψ(i, j)) · P (j)∑
j≤i

exp (logN · ψ(i, j))
=

∑
j≤i

N(ψ(i,j)
ln 2) · P (j)

∑
j≤i

N(ψ(i,j)
ln 2)

If P (i− ℓ) and ¬P (j) for j ̸= i− ℓ, then we have a lower bound:

N(1
ln 2)

N(1
ln 2) + i− 1

≤ ci,k

If ¬P (i− ℓ) and P (j) for j ̸= i− ℓ then we have an upper bound:

ci,k ≤
i− 1

N(1
ln 2) + i− 1

SinceN
1

ln 2 ≥ i, and we know that P (i−ℓ) ⇐⇒ ci,k ≥ 1
2 , we can construct an MLP that computes

the correct value. It will output either 0
i+1 or 1

i+1 , in the dimension reserved for Pk+1(i), for instance
by using a conditional operation that checks that the output of the attention layer ci+1,k ≥ 1

2 , which
was shown in an earlier case.

C EXPRESSIVITY PROOFS FOR C-RASP

C.1 C-RASP CONSTRUCTIONS

C.1.1 MAJORITY

MAJORITY is the language of strings over Σ = {0, 1} with at least as many 1’s as 0’s.

MAJORITY

C1(i) := # [j ≤ i] Q1(i) (1)
C0(i) := # [j ≤ i] Q0(i) (2)
M(i) := C1(i) ≥ C0(i) (3)

C.1.2 DYCK-1

Dyck-1 is the language of strings over Σ = {0, 1} with at least as many 1’s as 0’s.

Dyck-1

C((i) := # [j ≤ i] Q((j) The number of (up to position i (1)
C)(i) := # [j ≤ i] Q)(j) The number of) up to position i (2)
V (i) := C((i) < C)(i) Violation: there are more) than ((3)

CV (i) := # [j ≤ i] V (j) The number of Violations (4)
M(i) := CV (i) = 0 Matched: zero Violations (5)
B(i) := C((i) = C)(i) Balanced: same number of (and) (6)
D(i) := M(i) ∧B(i) String is Matched and Balanced (7)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

C.1.3 anbncn

Let Σ = {a, b, c}. This is another example of a counter language which C-RASP can express and
which transformers have been observed to length generalize on (Bhattamishra et al., 2020).

anbncn

Ca(i) := # [j ≤ i] Qa(j) (1)
Cb(i) := # [j ≤ i] Qb(j) (2)
Cc(i) := # [j ≤ i] Qc(j) (3)
A(i) := Cb(i) + Cc(i) = 0 (4)
B(i) := Cc(i) = 0 (5)

CA(i) := # [j ≤ i] Qa(j) ∧A(j) (6)
CB(i) := # [j ≤ i] Qb(j) ∧B(j) (7)
Ga(i) := CA(i) = Ca(i) (8)
Gb(i) := CB(i) = Cb(i) (9)

Gabc(i) := Ca(i) = Cb(i) = Cc(i) (10)
L(i) := Ga(i) ∧Gb(i) ∧Gabc(i) (11)

C.1.4 EXISTENTIAL QUANTIFICATION

This is generally a useful primitive, so to save a little space we can add a macro for existential
quantification towards the left in C-RASP. This is easily defined using counting:

P (i) :=
←−
∃A(i)

C(i) := # [j ≤ i] A(j) (1)
P (i) := C(i) ≥ 1 (2)

And we abbreviate this using P (i) :=
←−
∃A(i). We demonstrate its use below.

C.1.5 PIECEWISE TESTABLE LANGUAGES

Piecewise testable languages are Boolean combinations of languages of the form
Σ∗a1Σ

∗a2Σ
∗ . . .Σ∗anΣ

∗. This allows us to check for the presence of noncontiguous sub-
strings, which contrasts with the proof in C.3.2 that implies the presence of contiguous substrings
cannot be expressed in C-RASP[∅].
It suffices to show programs for languages of the form L = Σ∗a1Σ

∗a2Σ
∗ . . .Σ∗anΣ

∗, since
Boolean combinations are recognizable using Boolean operations of C-RASP. For L we have the
following C-RASP program which has the final accepting operation Ln:

Σ∗a1Σ
∗a2Σ

∗ . . .Σ∗anΣ
∗

L1(i) :=
←−
∃Qa1(i) a1 occurred (1)

L2(i) :=
←−
∃Qa2(i) ∧ L1(i) a2 occurred, preceded by a1 (2)

... (3)

Ln(i) :=
←−
∃Qan(i) ∧ Ln−1(i) an occurred, preceded by an−1, . . . , preceded by a1 (4)

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

C.2 C-RASP[PERIODIC, LOCAL] CONSTRUCTIONS

C.2.1 INDUCTION HEAD (ARGMAX VERSION)

As an example consider Σ = {a, b, c}. Predicate NEXTa(i) is true iff the next token should be an
a. First we can define predecessor

CPa(i) := # [j ≤ i, j = i− 1] Qa(j)

PREDa(i) := CPa(i) ≥ 1

Then we can count bigram occurence by counting

Cab := # [j ≤ i] Qb(j) ∧ PREDa(j)

Then each NEXTa(i) predicate can be defined by checking the current symbol and finding the
most frequently occuring bigram.

NEXTa(i) (Argmax) over Σ = {a, b, c}

... (1)
MOREaa,ab(i) := Caa(i) ≥ Cab(i) (2)
MOREaa,ac(i) := Caa(i) ≥ Cac(i) (3)

NEXTa(i) := Qa(i) ∧MOREaa,ab(i) ∧MOREaa,ac(i) (4)

This corresponds to testing, for the f in Equation 10, for which σ the entry f(x1 . . . xN)N,σ is
maximal.

C.2.2 INDUCTION HEAD (ALL POSSIBLE NEXT SYMBOLS)

Consider Σ. For a ∈ Σ, predicate NEXTa(i) is true iff the next token can possibly be an a. As in
Section C.2.1, first, we can define predecessor

CPa(i) := # [j ≤ i, j = i− 1] Qa(j)

PREDa(i) := CPa(i) ≥ 1

Then we can check for bigram occurence by counting

CBIGRAMab := # [j ≤ i] Qb(j) ∧ PREDa(j)

EXISTSab := CBIGRAMab(i) ≥ 1

If a bigram σa ever occured previously in the string, nonzero probability is assigned to predicting a
when at symbol σ. Then each NEXTa(i) predicate can be defined as follows

NEXTa(i) (All Possible) over Σ = {a, b, c}

... (1)

NEXTa(i) :=
∨
σ∈Σ

[Qσ(i) ∧ EXISTSσa(i)] (2)

where
∨

σ∈Σ can be expressed using the Boolean operations ∧ and ¬ as defined in Section 4.2. This
corresponds to testing, for the f in Equation 10, for which σ we have f(x1 . . . xN)N,σ > 0.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Generating based on this program Consider an input prefix of the form #x#, where # denotes
a separator symbol. If we iteratively generate the next symbol a by selecting a ∈ Σ where NEXTa
holds at the last position, we generate a string #x#y where all bigrams in #y had already occurred
in #x, a simple version of the in-context Markov chains studied by (Edelman et al., 2024).

Special Case: Unique Copying In the special case of an input prefix where each symbol occurs
at most once in x, the generation procedure defined above will copy x, and (assume we stop at #)
resulting in an overall string of the form #x#x#. This is essentially the RASP-L construction of
unique copying noted by Zhou et al. (2024a).

Necessity of Positional Relations Intuitively, an induction head circuit requires positional in-
formation; indeed, we observe length generalization in unique copying with APE but not with
NoPE (Figure 1). Formally, we can prove as follows that the predicate NEXTa defined above
for each a ∈ Σ, while definable in C-RASP[local], is not definable in C-RASP[∅]. Consider
Σ = {a, b}; then the predicate NEXTb can be used to define the (disjoint) union of the languages
Σ∗abΣ∗a, Σ∗bbΣ∗b. As the first one is definable in C-RASP[∅]4 and the union is disjoint, the sec-
ond would be definable if NEXTb is. This contradicts the fact that Σ∗bbΣ∗ ̸∈ C-RASP[∅], because
Σ∗bbΣ∗ ̸∈ M̂AJ2[<] (Lemma 6.11 in Krebs (2008)) and the inclusion C-RASP[∅] ⊆ M̂AJ2[<]
(see Section C.3.1).

C.2.3 (aa)∗

The following function that checks parity of a position mod 2 is a periodic function.

ϕ(i) := i ≡ 0 mod 2

So the following program recognizes (aa)∗

(aa)∗

C¬a(i) := # [j ≤ i] ¬Qa(j) (1)
A(i) := C¬a(i) = 0 (2)
D(i) := ϕ(i) ∧A(i) (3)

The Boolean value of the last operation in the last position of the string is the accepting value. This
is true if the string is of even length and contains only a’s. Overall, we have constructed a program
in C-RASP[periodic, local].

C.3 EXPRESSIBILITY OF REGULAR LANGUAGES IN C-RASP[PERIODIC,LOCAL]

Lemma 29 (Restated from Lemma 11). Consider the alphabet Σ = {a, b, e}.

1. PARITY := b∗(ab∗ab∗)∗ ̸∈ C-RASP[periodic, local]

2. (aa)∗ ∈ C-RASP[periodic, local] and (aa)∗ ̸∈ C-RASP[∅]

3. (a|b|e)∗be∗ ̸∈ C-RASP[periodic, local]

4. L ∈ C-RASP[∅] for piecewise testable L

Proof. 1–3 are shown in Lemmas 36 (for 3.), 38 (for 2.), 41 (for 1.), and Appendix C.2.3 (for 2.). 4.
is shown in Appendix C.1.5.

4It is sufficient to check whether a and b both are present, and whether one b has a a in its preceding context;
as Σ = {a, b}, this is equivalent to ab being a substring

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2025

C.3.1 LINK TO MAJORITY LOGIC

In understanding the exressiveness of C-RASP, we draw on an established body of work on log-
ics using MAJORITY quantifiers. Merrill & Sabharwal (2023a); Strobl (2023) show that the ex-
pressiveness of transformers is upper-bounded by uniform TC0, which can be defined as the logic
FOM[BIT]. This logic is defined in terms of MAJORITY quantifiers and various predicates. C-
RASP[periodic,local] can be viewed as a highly restricted fragment of this logic. Specifically, it is
contained in M̂AJ2[<,+1,Mod], which was studied by Krebs (2008); Behle et al. (2007; 2009);
results about that logic help understand the expressiveness of C-RASP:

Definition 30. M̂AJ2[<,+1,Mod] is the logic defined by the constructs

1. The construct

M̂aj x ⟨ϕ1, . . . , ϕc⟩

2. The predicates Qa(x) for a ∈ Σ

3. Numerical predicates for q, j ∈ N: Modm,r(x), Succ(y, x)

4. Boolean connectives

5. First-order quantifiers5

such that only two variables (say, x and y) can appear within a formula. We define the semantics,
when x ∈ Σ∗, by defining

1. for the majority quantifier:

w |= M̂aj x ⟨ϕ1, . . . , ϕc⟩ ⇔0 <

n∑
i=1

c∑
j=1

{
1 if w|x=i |= ϕj
−1 else

2. for the predicates:

w|x=i |= Qa(x) ⇔ wi = a

w|x=i |=Modm,r(i) ⇔ i ≡ r (mod m)

w|x=i,y=j |= Succ(j, i) ⇔ j + 1 = i

Semantics of Boolean connectives and first-order quantifiers follow the standard definition.

A languageL ⊆ Σ∗ is definable in M̂AJ2[<,+1,Mod] if there is a formula ϕwithout free variables
such that w ∈ L if and only if w |= ϕ.

The logic M̂AJ2[<] results by omitting the numerical predicates defined under (3).

It is straightforward to convert C-RASP programs into formulas of M̂AJ2[<,+1,MOD]. As we
shall see later in Section C.3.3, the inclusion is strict because PARITY is expressible even in
M̂AJ2[<].

Proposition 31. C-RASP[periodic, local] ⊆ M̂AJ2[<,+1,MOD]

We make two remarks about corollaries of the result:
Remark 32. First, the proof, simply by omitting the positional relations, also yields a corresponding
inclusion without positional relations: C-RASP[∅] ⊆ M̂AJ2[<].

Second, the result implies that C-RASP[periodic, local] defines a subclass of TC0, in fact, all
C-RASP[periodic, local] programs translate into uniform TC0 circuits with a linear number of gates
by results in Krebs (2008, Theorem 4.33 and Figure 4.4). The inclusion is strict, e.g., PARITY has a
linear-size TC0 circuit but is not definable by C-RASP[periodic, local], as we show below.

5These can be simulated by majority quantifiers with two variables by Proposition 5.5 in Krebs (2008),
which is based on Corollary 3.3 in Lange (2004). Nonetheless, as the simulation is unobvious, they are useful
for writing formulas in M̂AJ2[<,+1,MOD].

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

Proof of Proposition 31. First, every periodic positional function ϕ(i) is a Boolean function
Modm,r(i) ⇐⇒ i = r mod m. For local functions ψ(i, j), it suffices to only consider func-
tions of the form ψ(i, j) ⇐⇒ j = i + c for c ∈ Z. This is because the counting operation
C(i) := # [j ≤ i, |i− j| ≤ c] P (j) is equivalent to Ĉ(i) where

Ĉ(i) := # [j ≤ i, j = i− c ∨ j = i− (c− 1) ∨ . . . ∨ j = i+ c] P (j)

And it is possible to further reduce this by distributing the disjunctions over many counting op-
erations so that each one only contains a single disjunct as positional function. It helps that
a predicate fst(i) is definable in M̂AJ2[<,+1,MOD] which is true iff i = 0. For instance
fst(i) := M̂ajj⟨j ≤ i,⊤⟩

For each Boolean C-RASP operation P (i), there exists a M̂AJ2[<,+1,MOD] formula P̂ (i) with
one free variable that is equivalent. By induction, all cases are straightforward except for comparison
operations.

For comparison operations, we will first show a formula that is equivalent for all nonempty strings.
Accounting for the empty string is easy, depending on the constants in the comparison. WLOG we
are able to rewrite the formula (not in standard C-RASP notation) as the following, where αk, β ∈ Z

∑
k≤K

αk · # [j ≤ i] Pk(j)

+

 ∑
m≤M

αm · # [j ≤ i, j = i+ cm] Pm(j)

+ β > 0

We’ve grouped the uniform counting operations that have ψ = ⊤ together. Then using a case dis-
junction, we can rewrite it all the local counting operations as the following (using I[ϕ] as notational
convenience to turn ϕ(j) ∈ {⊥,⊤} to the corresponding value in {0, 1}):

∨
τ∈{0,1}M : I[Pm(j−cm)]=τm

∑
k≤K

αk · # [j ≤ i] Pk(j)

+

 ∑
m≤M

αmτm

+ β > 0

We can see that for nonempty strings within each case, the additive constant β can be reformulated
as
(
β +

∑
m≤M αmτm

)
· # [j ≤ i] fst(j), and we can just add it to the summation using αk+1 =(

β +
∑

m≤M αmτm

)
. Then, it is possible to define formulas for each case disjunction using a

series of existential quantifiers and succ(j, i). For instance:

ϕ(j − 2) ≡ ∃i. (Succ(i, j) ∧ ∃j. (Succ(j, i) ∧ ϕ(j)))

This means it now suffices to focus on the sum of counting terms, and simulate that using a M̂aj
formula. For k ≤ (K + 1), if αk > 0 consider the list of formulas

Lk := [P̂k(j), P̂k(j), . . . , P̂k(j)︸ ︷︷ ︸
αk many

,⊤,⊤, . . . ,⊤︸ ︷︷ ︸
αk many

]

Intutively, the M̂aj j quantifier can only check if the total count is greater than half the possible
positions, so to check if a count is > 0 we need to pad the quantifier with a bunch of trivially true
formulas to ensure the total count is at least half by default. And if αk < 0 we use

Lk := [¬P̂k(j),¬P̂k(j), . . . ,¬P̂k(j))︸ ︷︷ ︸
αk many

,⊥,⊥, . . . ,⊥︸ ︷︷ ︸
αk many

]

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

Let L = L1++L2++ . . .++LK+1 be the concatenation of all these lists, and let φ1, φ2, . . . , φ|L|
list out the formulas in L. Then we claim the following formula will compute the correct value for
nonempty strings.

ϕ1(i) := M̂aj j⟨φ1, φ2, . . . , φ|L|⟩

For empty strings, if
(
β +

∑
m≤M αmτm

)
> 0 then define ϕ0(i) := ¬M̂aj j⟨⊤⟩ ∧⊤. Otherwise,

use ϕ0(i) := ¬M̂aj j⟨⊤⟩ ∧ ⊥. Then we can define

P̂ (i) := ϕ0(i) ∨ ϕ1(i)

And verifying the correctness of this is straightforward.

C.3.2 INEXPRESSIBILITY OF Σ∗be∗

Krebs (2008); Behle et al. (2007; 2009) used infinite groups to establish results about the expres-
siveness of M̂AJ2[<]; by Corollary 31, these results entail results on C-RASP[periodic, local]. In
particular, Lemma 6.11 in Krebs (2008) shows that Lbb ̸∈ M̂AJ2[<]; this result turns out to have
profound consequences for C-RASP expressiveness.

Definition 33. Let Σ = {a, b, e}. Define Lbb := Σ∗be∗bΣ∗.

Lemma 34. Let φ be a M̂AJ2[<,+1,MOD] formula. There exists a morphism h(σ) = esσes−1

and a M̂AJ2[<] formula ψ such that for every w ∈ Σ∗, h(w) ⊨ ϕ ⇐⇒ w ⊨ ψ

Proof. Let M be the least common multiple of all occurring moduli in φ. Let C be the maximum
nesting depth of Succ(x, y) predicates (which must be bounded by the quantifier depth of φ). In-
tuitively, we can think of C as the largest number where a subformula φ(x + C) occurs in φ. Let
s = MC, and define the morphism h(σ) = esσes−1. Here we will use the notation ϕc(x) that is
true at position x in w whenever ϕ is true at position x+ c in h(w), for c ∈ [−s, s− 1].

We will show that for every formula φ(x) of M̂AJ2[<,+1,MOD] with at most one free variable,
we can define φ−s(x), φ−(s−1)(x) . . . φ(s−1)(x) such that for all i ∈ [0, |w|−1] and c ∈ [−s, s−1]

h(w) ⊨ φ(i+ c) ⇐⇒ w ⊨ φc(i)

Intuitively, what this does is it takes every interval of [x − s, x + (s − 1)] around each position in
h(w) and stores it vertically at that position in w. We will induct on the complexity of φ. If φ(x)
is Qe(x), then φ0(x) := Qe(x), and then φc(x) = ⊤ for every other c ̸= 0, since the morphism h
pads neutral symbols e in h(w) between every symbol from w. If φ(x) is Qσ(x) for σ ̸= e, we have
that φ0 := Qσ(x) and φ+c(x) = ⊥ for every other c ̸= 0. If φ(x) is Modm,r(x), the φc can also
be “hardcoded” similarly, as every position in h(w) that has a symbol from w is going to be = 0
mod s.

Boolean formulas are also straightforward. The only hard case is if we have a formula φ(x) =

M̂AJ y⟨φ1(x, y), . . . , φk(x, y)⟩. We can think of φ specifying the constraint

∑
i≤k

y [φi(x, y)]

 > k · |w|
2

The idea here is to rewrite ψi(x, y) in terms of its unary formulas (which we can apply the induc-
tive hypothesis to) and then split h(w) into some intervals, upon which evaluating φ+c(x) will be
simpler. First we can rewrite each φi(x, y) as

Fi(α1(x), . . . , αq(x), β1(y), . . . , βr(y), χ1(x, y), . . . , χp(x, y))

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2025

Where Fi is a Boolean function, the α are unary in x, the β are unary in y, and the χ(x, y) are in-
equalities of x and y, possibly with +1’s, of the form x ≤ y + 1, for example. To save space,
we will abbreviate the above expression by grouping the α, β, χ formulas together notationally
Fi(χi(x, y), αi(x), βi(y)).

The χ formulas are not unary, but we can “eliminate” the χ terms by casework over intervals of
the string. We will show this by example for a summation with only one # y term. This argument
works identically if we had many of # y terms, but it would add notational clutter. So if we had a
formula φ(x) = M̂AJ y⟨φ1(x, y)⟩ we could think of it as in the form

φ(x) = # y
[
F (χ(x, y), α(x), β(y)

]
≥ |w|

2

Then we can construct the formula φc(x) for c ∈ [−s, s − 1] by using the following partition of
intervals of the string. Let Ξ be the set of inequalities

Ξ = {y < x− s, y = x− s, . . . , y = x, . . . , y = x+ (s− 1), y > x+ (s− 1)}

And we define some notation. For ξ ∈ Ξ, let χξ(x, y) ∈ {⊤,⊥} evaluate χ in the case ξ holds.
For instance if χ(x, y) is y < x + 1, then χy>x+2(x, y) = ⊥. Since the intervals defined by
ξ ∈ Ξ disjoint and cover the entirety of the string, every χ can be evaluated in this manner. Then,
we can essentially compute the sum in each interval, and only precision is needed in the interval
[x− s, x+ (s− 1)], so φ(x) is equivalent to

y
[
y < x ∧ F (χy<x−s(x, y), αc(x), β

−s
(y)
]

+# y
[
y < x ∧ F (χy<x−s(x, y), αc(x), β

−(s−1)
(y)
]

...

+# y
[
y < x ∧ F (χy<x−s(x, y), αc(x), β

+(s−1)
(y)
]

+# y
[
y < x ∧ F (χy<x−s(x, y), αc(x), β

s
(y)
]

+# y
[
x = y ∧ F (χy=x−s(x, y), αc(x), β

−s
(y)
]

+# y
[
x = y ∧ F (χy=x−(s−1)(x, y), αc(x), β

−(s−1)
(y)
]

...

+# y
[
x = y ∧ F (χy=x+(s−1)(x, y), αc(x), β

(s−1)
(y)
]

+# y
[
x = y ∧ F (χy=x+s(x, y), αc(x), β

s
(y)
]

+# y
[
x < y ∧ F (χx+s<y(x, y), αc(x), β

−s
(y)
]

+# y
[
x < y ∧ F (χx+s<y(x, y), αc(x), β

−(s−1)
(y)
]

...

+# y
[
x < y ∧ F (χx+s<y(x, y), αc(x), β

(s−1)
(y)
]

+# y
[
x < y ∧ F (χx+s<y(x, y), αc(x), β

s
(y)
]

≥ |w|
2

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2025

By the inductive hypothesis, all αc and βc are definable solely in terms of M̂AJ2[<], so the entire
formula is equivalent to a M̂AJ y formula that quantifies over all the bracketed formulas above,
as well as equally many trivially true formulas, as described more clearly in Proposition C.3.1. As
mentioned before, since this argument also applies to a summation of # y terms, this completes
the proof. Then for any φ(x) in M̂AJ2[<,+1,MOD], after performing the above translation the
resulting formula φ0(x) is our desired formula in M̂AJ2[<].

Lemma 35. Lbb ̸∈ M̂AJ2[<,+1,MOD]

Proof. Assume for sake of contradiction that Lbb is definable by a formula φ of M̂AJ2[<
,+1,MOD]. Let h and ψ be as guaranteed by the above lemma. Then for w ∈ Σ∗, w ∈ Lbb ⇐⇒
h(w) ∈ Lbb. This means ψ defines Lbb which contradicts Lemma 6.11 in Krebs (2008), which has
shown that Lbb ̸∈ M̂AJ2[<].

Lemma 36. For Σ = {a, b, e}, it holds that

Σ∗be∗ ̸∈ C-RASP[periodic, local] (4)

Proof. To get a contradiction, note that a C-RASP[periodic, local] program Φ for Σ∗be∗ could be
used to construct one for Lbb, as:

C1(i) := # [j ≤ i, j = i− 1] Φ(j)

PREVΦ(i) := C1(i) ≥ 1

C2(i) := # [j ≤ i] Qb(j) ∧ PREVΦ(j)
Lbb := C2(i) ≥ 1

C.3.3 INEXPRESSIBILITY OF PARITY

First, let the depth of a C-RASP operation be the maximum depth of nesting of counting operations
in it. For instance if C(i) := # [j ≤ i] P (j), the depth of the C is depth of P (i) plus one. None of
the other operations are greater than the depth of its dependencies. We will induct on program depth
for the following proof:

Lemma 37. Let Σ = {a}. For any C-RASP[∅] program P there exists an n such that for all w
where |w| ≥ n, either all such w are accepted by P or all are rejected

Proof. If P is depth 0, it is equivalent to either Qa(i) or ¬Qa(i), which either rejects every string
or accepts every string.

Otherwise, let all C-RASP programs of depth k give constant output for strings above length n, and
then consider a program P of depth k + 1. P will be equivalent to a Boolean combination of linear
constraints. We will see that each linear constraint becomes constant for strings above a certain
length. Consider any linear constraints over X many counts Cx of depth k:

L(i) :=

∑
x≤X

αx# [j ≤ i] Cx(j)

 ≥ c
For string of length i ≥ n, this is equivalent to

L(i) :=

∑
x≤X

αx ((i− n)I[Cx(n)] + # [j ≤ n] Cx(j))

 ≥ c
35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Where I[Cx(n)] denotes the truth value of Cx(n) ∈ {0, 1}. Rearrange this to

L(i) :=

(i− n)
∑
x≤X

αx (I[Cx(n)])

+

∑
x≤X

αx (# [j ≤ n] Cx(j))

 ≥ c
The sums c1 =

∑
x≤X αx (I[Cx(n)]) and c2 =

∑
x≤X αx (# [j ≤ n] Cx(j)) are constants depend-

ing on the formula and n.

(i− n)c1 + c2 ≥ c

Depending on if c1, c2 are positive or negative, we either derive a lower bound m after which the
linear constraint L(i) is always true, or always false for i ≥ m. Since any formula of depth k + 1
is a Boolean combination of these linear constraint, we take the max of all the m’s from them, and
any string larger than this will always be accepted or always rejected by P .

Lemma 38. (aa)∗ ̸∈ C-RASP[∅]

That is, no C-RASP[∅] program can determine if a general string has even length. The same proof
applies to testing whether the string length is a multiple of any other fixed integer.

Proof. Using the previous lemma, for every C-RASP[∅] program there exists an n such that the
program accepts (aa)n iff it accepts (aa)na. So no program can recognize (aa)∗.

We will use this to show that no C-RASP[periodic, local] program cannot recognize PARITY , as
the extra positional operations do not give sufficient expressive power. We start with an observation
that simplifies the proof

Proposition 39. As syntactic sugar we allow j < i as a mask in C-RASP counting operations.

Proof. Consider the counting operation C(i) := # [j ≤ i] P (j). We can define the program

I(i) := P (i) ? 1 : 0
C(i) := # [j ≤ i] P (j)
C ′(i) := C(i)− I(i)

And essentially, this operation will compute the count

C ′(i) := # [j < i] P (j)

Lemma 40. Let P be a C-RASP[periodic, local] program over Σ = {a, b}. There is some s > 0

and a morphism h(a) = bsabs−1 and a C-RASP[∅] program P̂ over Σ = {a} such that for all
w ∈ a∗, if P accepts h(w) iff P̂ accepts w.

Proof. Choose s to be the least multiple of all moduli occurring in P that is also greater than all the
|c| in local functions j = i+c. For every operation P (i) of P , we will define P̂ c(i) for c ∈ [−s, s−1]
such that P̂ c(i) when run on w is equivalent to P (s+ i(2s) + c) when run on h(w).

If P (i) is Qa(i) or Qb(i), it is straightforward, as P̂ c(i) is true iff c = 0. Modular predicates are
also capable of being “hardcoded”, as positions in w are always 0 mod s in h(w). All other kinds
of operations are also straightforward using the inductive hypothesis. The only ones that need care
are counting operations. First, consider a counting operation without positional functions:

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2025

C(i) := # [j ≤ i] A(j)

We can define each Ĉc(i) using a program like the following. The idea is that the entire window of
[j − s, j + (s− 1)] around each j < i can be counted up completely, but around i we only consider
the interval [−s, i+ c]:

C−s(i) := # [j < i] Â−s(j)

C−(s−1)(i) := # [j < i] Â−(s−1)(j)

...

C(s−1)(i) := # [j < i] Â(s−1)(j)

I−s(i) := Â−s(j) ? 1 : 0

I−(s−1)(i) := Â−(s−1)(j) ? 1 : 0
...

Ic(i) := Âc(j) ? 1 : 0

Ĉc(i) :=
∑

t∈[−s,s−1]

Ct(i) +
∑

t∈[−s,c]

It(i)

Otherwise, if we have a counting operation that involves a local positional function

C(i) := # [j ≤ i, j = i+ d] A(j)

Then the operation returns either the count 1 or 0 and we can just use

Ĉc(i) := (c = d ∧ Âc(i)) ? 1 : 0

Since d will not exceed ±s, Âd exists. Using these constructions we can see that (bsabs−1)n is
accepted by operation P (i) in P iff an is accepted by the constructed operation P̂ (s−1)(i).

Lemma 41. PARITY ̸∈ C-RASP[periodic, local]

Proof. If such a program existed, it would be able to distinguish between (bsabs−1)2n and
(bsabs−1)2n+1 for all n (using the s guaranteed by the previous lemma). However, this implies
the existence of a C-RASP[∅] program over Σ = {a} that recognizes (aa)∗. This contradicts
Lemma 38.

D DISCUSSION OF DESIGN CHOICES

D.1 MLP ACTIVATION FUNCTIONS

Our analysis allows ReLU and the Heaviside function as activation functions in MLPs. ReLU is a
standard choice in theoretical studies of neural networks and transformers (e.g. Bhattamishra et al.,
2024; Sanford et al., 2023). Modern LLMs also use other functions such as SwiGLU (Shazeer,
2020), but universal approximation theorems guarantee that ReLU networks can approximate
smooth functions on bounded domains well. While the choice of ReLU is not necessarily key to
our results, it is important that the number of active units provides a meaningful upper bound on the
complexity of the function expressed. Our results would continue to go through if ϕ is an arbitrary
activation function but operates at p-bit precision.

We also allow the Heaviside function as a second activation function. Heaviside allows exactly
performing threshold computations at arbitrary input lengths, which is relevant to simulating C-
RASP at arbitrary input lengths. This includes simple problems such as MAJORITY, on which
transformers empirically do well. Real-world transformers generally do not include this function,
though ReLU MLPs can approximate it arbitrarily closely.

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2025

D.2 FIXED PRECISION

As described in Section 2, we assume that attention logits and the exponentials inside softmax are
rounded to p fractional bits of precision before further processing. This allows us to cluster keys and
queries into finite numbers of clusters, and compute all activations at logarithmic precision, used for
proving the logarithmic communication complexity bound (Theorem 12). We note that logarithmic
precision of the intermediate activations is also key to upper bounds of transformers in terms of TC0

shown by Merrill & Sabharwal (2023b).

We also assume that the parameters in transformers and Limit Transformers are expressed at fixed
precision (Definitions 4 and 2), and penalize the precision p used of representing the parameters as
part of the regularizer used in our inference procedure (Definition 5). Indeed, penalizing unbounded
precision of parameter values is necessary to enable full identification of a transformer algorithm
from behavior at finite lengths. For any real number α ≥ 0, a one-layer transformer with real-valued
parameters can express the function

Fα(x) =

{
1 if α ·#1(x) ≥ #0(x)

0 else

For any two distinct α, β, the functions Fα and Fβ are distinct on sufficiently long inputs (though,
when α and β are close, very long inputs will be needed to distinguish them). Thus, there are un-
countably many distinct functions implemented by transformers; however, their distinction relies
on infinite precision. In an infinite precision setup, one cannot hope to identify algorithms imple-
mented by transformers from finite data, no matter the input length and the regularization applied
to the model size. In contrast, when parameters are representable in finite precision (as in real
computers), the number of distinct algorithms expressed by Limit Transformers is countable, and
ultimate identification from long inputs is possible when the precision required for representing the
parameters is penalized.

D.3 LAYER NORM

Real-world transformers use Layer Norm or RMSNorm, whereby activations y
(l)
i are rescaled to

have norm or standard deviation
√
d. Layer norm can be incorporated into the translation to Limit

Transformers (Lemma 52) by recording terms of the form

vT

(∏
S∈S1

S

)T (∏
S∈S2

S

)
wT (5)

when v ∈ VOl1 and w ∈ VOl2 and S1,S2 ∈ P . We can record these products in further dimen-

sions of ŷ(l)
i , so that ∥y(l)

i ∥22 is recoverable from ŷ
(l)
i . The simplest approach is then to modify the

definition of Limit Transformers by normalizing ŷ
(l)
i based on this recovered norm.

The original translation from C-RASP to fixed-precision transformers (Yang & Chiang, 2024) capi-
talized on layer norm; it would be no problem to translate from C-RASP[periodic,local] to a version
of Limit Transformers incorporating layer norm, and we would be able to remove the Heaviside
function from Limit Transformers.

E ADDITIONAL DETAILS FOR EXPERIMENTS

E.1 REGULAR LANGUAGES FROM THE BHATTAMISHRA ET AL 2020 BENCHMARK

E.1.1 LANGUAGE DEFINITIONS

Descriptions follow Bhattamishra et al. (2020).

Tomita Grammars. Definitions are shown in Table 1.

Dn are defined on the alphabet Σ = {a, b} by the recursion Dn = (aDn−1b)
∗.

PARITY. PARITY is b∗(ab∗ab∗)∗. It is contained in the set of algorithmic tasks.

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2025

Grammar Star-Free Definition
1 Yes 1*
2 Yes (10)*
3 No strings without odd-length strings of ones followed by odd-

length strings of zeros (i.e., no 012n+102m+11 substrings)
4 Yes strings without any 000’s substrings
5 No strings of even length with an even number of 1’s
6 No strings where number of 0’s - number of 1’s is divisible by 3
7 Yes 0*1*0*1

Table 1: Tomita Grammars (originally due to Tomita, 1982), following Bhattamishra et al. (2020).

C-RASP expressiveness
Language [∅] [periodic, local] Star-Free? Dot-Depth AC0?
1 Tomita 1 yes yes yes 1 yes
2 Tomita 2 yes yes yes 1 yes
3 Tomita 3 no no no – yes
4 Tomita 4 no yes yes 1 yes
5 Tomita 5 no no no – no
6 Tomita 6 no no no – no
7 Tomita 7 yes yes yes 1 yes
8 D2 yes yes yes 2 yes
9 D3 yes yes yes 3 yes
10 D4 yes yes yes 4 yes
11 D12 yes yes yes 12 yes
– PARITY no no no – no
12 (aa)∗ no yes no – yes
13 (aaaa)∗ no yes no – yes
14 (abab)∗ no yes no – yes
15 aa∗bb∗cc∗dd∗ee∗ yes yes yes 1 yes
16 {a, b}∗d{b, c}∗ yes yes yes 1 yes
17 {0, 1, 2}∗02∗ no no yes 2 yes

Table 2: The finite-state languages in the benchmark from Bhattamishra et al. (2020), with the num-
bering from Figure 1, C-RASP expressiveness properties, and three established notions of complex-
ity (star-freeness, dot depth, and membership in the circuit complexity class AC0). In the C-RASP
columns, “yes” means we found a C-RASP program; “no” means we proved that no C-RASP pro-
gram can exist. Note that {0, 1, 2}∗02∗ is equivalent to the language Σ∗be∗ from Lemma 11. Note
also that we discuss PARITY in the algorithmic benchmark, as it is included in Zhou et al. (2024a).
See discussion in Appendix E.1.2. See Figure 2 for a version of Figure 1 (right) with languages
labeled.

Others. Other languages: (aa)∗, (aaaa)∗ and (abab)∗ (not star-free), aa∗bb∗cc∗dd∗ee∗,
{ab}∗d{b, c}∗, and {0, 1, 2}∗02∗ (star-free).

E.1.2 C-RASP EXPRESSIVENESS

All languages in the benchmark are in TC0, and all are expressible in principle by transformers
(Liu et al., 2023). We were able to provably settle the C-RASP expressiveness for all languages,
with results shown in Table 2. We compare C-RASP expressiveness with the standard notions of
complexity of finite-state languages considered by Bhattamishra et al. (2020): whether languages
are star-free, and (among the star-free ones) their dot-depth. While many star-free languages in the
sample show length-generalization, star-freeness does not overall account for the observed behavior
(Figure 4). Within the star-free languages, a standard complexity metric is dot-depth (Figure 2); this
again does not accurately predict length-generalization: it succeeds for a language with dot depth 12
but fails for a language with dot depth 2. We also considered circuit complexity of regular languages
(Barrington et al., 1992). All regular languages included in the sample are in the class TC0; most
are also in AC0, a smaller class sometimes compared to transformers (Hao et al., 2022; Barcelo

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2025

et al., 2024). Transformers show poor length generalization on the non-AC0 regular languages6,
but also fail on various languages that are in AC0. On algorithmic problems, transformers succeed
on some non-AC0 problems such as Majority (Table 3). Overall, C-RASP expressiveness is much
more successful than previously considered notions of complexity in accounting for empirical length
generalization behavior of transformers.

Proof Sketches for Membership Claims We sketch proofs for all C-RASP expressiveness claims
in Table 2. We first note that C-RASP[periodic, local] is closed under the inverse images of mor-
phisms where each symbol is mapped to a string of the same length. That is:

Lemma 42. C-RASP[periodic, local] is closed under the inverse images of morphisms where
each symbol is mapped to a string of the same length. That is, if h : Σ1 → Σn

2 (for some
fixed n) is extended to a map Σ∗

2 → Σ∗
1 and L ∈ C-RASP[periodic, local], then h−1(L) ∈

C-RASP[periodic, local].

Proof. Let h be such a morphism. We we take any C-RASP[periodic, local] program operation P (i)
that operates on h(w) into an equivalent program which operates on w

For P (i) = Qa(i), we can use P̂ 0(i) := Qh(a)0(i), P̂
1(i) := Qh(a)1(i), and so on.

For P (i) =Modm,r(i), then for c ≤ n we can define (relying on the fact that m,n are fixed)

P̂ c(i) :=
∨
k<m

(
Modm,k(i)→Modm,(ck mod m)(i)

)

For P (i) = # [j ≤ i, ψ(i, j)] V (j), where ψ(i, j) = ⊤, then like before we can define P̂ c(i) as

C0(i) := # [j < i] V̂ 0(j)

C1(i) := # [j < i] V̂ 1(j)

...

Cn−1(i) := # [j < i] V̂ n−1(j)

I0(i) := Â−s(j) ? 1 : 0

I1(i) := Â−(s−1)(j) ? 1 : 0
...

Ic(i) := Âc(j) ? 1 : 0

P̂ c(i) :=
∑

t∈[0,n−1]

Ct(i) +
∑

t∈[0,c]

It(i)

If ψ(i, j) := j = i − d, then it takes a little bit more care, as the single position j upon which to
check V (j) may occur far behind the current position. First, via a similar argument to Proposition
C.3.3, it is possible to simulate the counting operation # [j ≤ i− k, ψ(i, j)] V (j) for any constant
c ∈ N. We can do this by counting # [j ≤ i] j = i − k′ ∧ ψ(i, j)V (j) for each k′ ≤ k, since
j = i− k′ ∧ ψ(i, j) remains a local function, and then subtracting that from the original count over

6By the results of Barrington et al. (1992), regular languages outside of AC0 are all, informally speaking, at
least as PARITY, and indeed they provably are not in C-RASP[periodic, local].

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2025

j ≤ i. Then, for c ≤ d

C0(i) := #
[
j ≤

⌊
d

n

⌋]
(0 = (n− (d mod n))) ∧ V̂ 0(j)

C1(i) := #
[
j ≤

⌊
d

n

⌋]
(1 = (n− (d mod n))) ∧ V̂ 1(j)

...

Cn−1(i) := #
[
j ≤

⌊
d

n

⌋]
(n− 1 = (n− (d mod n))) ∧ V̂ n−1(j)

P̂ c(i) :=
∑

t∈[0,n−1]

Ct(i)

For c > d, the position to check occurs beyond i, so we use:

I0(i) := c− d = 0 ∧ V̂ 0(i) ? 1 : 0

I1(i) := c− d = 1 ∧ V̂ 0(i) ? 1 : 0
...

Ic(i) := c− d = c ∧ V̂ c(i) ? 1 : 0

P̂ c(i) :=
∑

t∈[0,c]

It(i)

All other cases are straightforward, and it can be verified that these constructions are correct.

Tomita 1 ∈ C-RASP[∅] A C-RASP program can detect the presence of a symbol other than 1 and
flag a violation.

Tomita 2 ∈ C-RASP[∅] A C-RASP program expresses: At each position, either the current sym-
bol is a 0 and the count of ones and zeros is balanced; or the current symbol is a 1 and the count of
ones is one more than the count of zeros.

Tomita 3 ̸∈ C-RASP[∅] For a given string of the form 010K , the outputs will converge asK →∞
by the same argument as for (aa)∗ in Lemma 38. Hence, Tomita 3 ̸∈ C-RASP[∅].

Tomita 3 ̸∈ C-RASP[periodic, local] Informally, the only way periodic and local predicates are
likely to help is if the lengths of contiguous blocks of zeros and ones were bounded (local), or
the parity of the lengths of 1 and 0 substrings were globally linked to the parity of the positions
of transitions 10 and 01 (periodic), but neither is the case. Sketching a formal proof, assume a
C-RASP[periodic, local] program is given for Tomita 3. First, we eliminate the periodic predicates
by labeling every symbol with the position modulo s, where s is a multiple of 2 and all moduli
appearing in periodic functions; giving an extended alphabet 11, . . . , 1s; 01, . . . , 0s. For sufficiently
large c that is a co-prime with s, we can then also eliminate local functions by merging an adjacent
block of length c around every transition between ones and zeros into a single symbol Λ; indexed
by the first symbol inside the block and whether the transition happens at the floor(s/2)-th (second
part has even length) or ceil(s/2)-th (second part has odd length) position in the block. The resulting
language, over an extended alphabet, is recognized by a C-RASP[∅] program capable of determining
whether a string of the form

Λ11,...Λ0(1+c)%s,...Λ1(1+2c)%s,... . . . (6)
contains a substring of the form

Λ0...,evenΛ1...,evenΛ0...,even or Λ0...,oddΛ1...,oddΛ0...,odd (7)
This is impossible for the same reasons that Σ∗bbbΣ∗ (Tomita-4) is not in C-RASP[∅].7

7Formally, Theorems 6.10 and 6.12 in Krebs (2008) show that the regular languages in M̂AJ2[<] are
contained in DA ∗ G. The second component in this product can capture the first subscript of each Λ, but

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2025

Tomita 4 ̸∈ C-RASP[∅] By Lemma 6.11 in Krebs (2008) (discussed in Appendix C.3.2),
Σ∗bbΣ∗ ̸∈ M̂AJ2[<]. In analogy, Σ∗bbbΣ∗ ̸∈ M̂AJ2[<].

Tomita 4 ∈ C-RASP[periodic, local] A C-RASP program tests whether there is a position with a
0 where the preceding position also holds a 0 and the position preceding that also holds a 0.

Tomita 5 ̸∈ C-RASP[periodic, local] This language is the intersection of PARITY with the strings
of even length. C-RASP[periodic, local] inexpressiveness follows from the same arguments as for
PARITY (Lemma 41).

Tomita 6 ̸∈ C-RASP[periodic, local] Consider first the language L3 where the number of 1’s is
divisible by 3. This is not in C-RASP[periodic, local] in analogy to PARITY. Now consider the
length-preserving morphism h(1) = 001, h(0) = 000. Then h(w) ∈ LTomita 6 ⇔ w ∈ L3.

Tomita 7 ∈ C-RASP[∅] Tomita 7 is equivalent to {ϵ} ∪ a+ ∪ b+ ∪ a+b+ ∪ b+a+ ∪ a+b+a+ ∪
a+b+a+b+. It can be shown this is equivalent to Σ∗ \Σ∗bΣ∗aΣ∗bΣ∗aΣ∗, and this was constructed
in section C.1.5. Interestingly, directly implementing this C-RASP[∅] construction in a transformer
appears to require at least four layers; this is in contrast to the C-RASP[periodic, local] construction
discussed next, where two layers are sufficient.8

Tomita 7 ∈ C-RASP[periodic, local] A C-RASP program can count the number of positions with
the bigrams 01, 10 to detect a violation.

Dn ∈ C-RASP[∅] Similar to Tomita 2.

PARITY ̸∈ C-RASP[periodic, local] See Lemma 41.

(aa)∗ ̸∈ C-RASP[∅] See Lemma 38.

(aa)∗ ∈ C-RASP[periodic, local] See Example C.2.3.

(aaaa)∗ ̸∈ C-RASP[∅],∈ C-RASP[periodic, local] Analogous to (aa)∗.

(abab)∗ ̸∈ C-RASP[∅],∈ C-RASP[periodic, local] Analogous to (aa)∗.

aa∗bb∗cc∗dd∗ee∗ ∈ C-RASP[∅] A C-RASP program indicates, first, the presence of “a”, “b”,
“c“, “d”, “e”, and, second, that every “a” is preceded only by “a”; every “b” is preceded only by “a”
or “b”; every “c” is preceded only by “a”, “b”, “c”; and analogously for “d”, “e”.

{a, b}∗d{b, c}∗ ∈ C-RASP[∅] There is a single d; a can only appear before it; c can only appear
after it.

{0, 1, 2}∗02∗ ̸∈ C-RASP[periodic, local] See Lemma 36. Note that this is equivalent to the lan-
guage Σ∗be∗ over the alphabet Σ = {a, b, e}.

E.2 ALGORITHMIC TASKS

E.2.1 TASK DEFINITIONS FOR ALGORITHMIC PROBLEMS

The tasks are generally from Zhou et al. (2024a), except for Binary Majority Interleave. Here, we
define each formally.

not the second. Since the language Σ∗aaaΣ∗ ∪ Σ∗bbbΣ∗ over Σ = {a, b} is not in DA (shown, e.g., via the
Theorem 2c in Tesson & Thérien (2002), which would entail syntactic congruence of (aabb)ωbb(aabb)ω and
(aabb)ω), the claimed C-RASP[∅] program cannot exist.

8The first layer collects bigrams, the second layer compares the count of each bigram to the count of SOS
tokens (which is known to be one) to count the bigrams.

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

Binary Majority. The binary majority problem identifies the most frequent bit in a sequence of
random bits. An example is SOS 0 1 ... 0 SEP 1 EOS The part 0 1 ... 0 is
the sequence of random bits. We define LEN to be the length of this part. We constrain the sequences
such that the number of 0s and 1s are always not equal. The model is trained with the language
modeling loss on the part 1 EOS , in other words, it is only trained to predict the most frequent
bit and EOS token. The minimum length lmin of this task is 1.

Binary Majority Interleave. The sequences in this problem are created by interleaving multiple
binary majority (see above) inputs while avoiding repeating special tokens (e.g., SOS). We use 3
binary majority sequence to compose one sequence in this task. Formally speaking, given 3 binary
sequences of the same length, x11, · · ·x1n, x21, · · ·x2n, and x31, · · ·x3n, and their corresponding labels
(most frequent bits) y1, y2, y3, the interleaved input is SOS x11, x

2
1, x

3
1, x

1
2, x

2
2, x

3
2, · · · , x1n, x2n, x3n.

SEP y1, y2, y3 EOS.

An example is SOS 1 0 1 1 0 0 ... SEP 1 0 0 EOS LEN in this problem refers to
length between SOS and SEP (excluding). The model is trained with the language modeling loss on
the part 1 0 0 EOS and lmin = 3.

Majority. This problem is similar to binary majority problem except that the vocabulary is bigger.
An example is SOS c b a b SEP b EOS , where c b a b is a sequence of random
tokens, each of which is sampled independently from an alphabet of 26 symbols. The LEN is defined
as the length of of this part. We constrain the sequences such that there is always a unique answer.
The model is trained with the language modeling loss on the part b EOS . lmin = 1.

Sort. In sort problem, the model outputs a sorted version of the given sequence. An example is
SOS 14 23 6 9 SEP 6 9 14 23 EOS where 14 23 6 9 is a sequence of unique

numbers. LEN in this problem refers to length this part. The model is trained with the language
modeling loss on the part 6 9 14 23 EOS . In this problem, lmin = 1. The total vocabulary
size of tokens except for special tokens is equal to the maximum testing length, i.e., 150.

Copy (unique). In this problem, the model outputs the same sequence as the given sequence,
which consists of unique tokens. An example is SOS 14 23 6 9 SEP 14 23 6 9 EOS
where the first 14 23 6 9 is a sequence of unique numbers. LEN in this problem refers
to length this part. The model is trained with the language modeling loss on the second part
14 23 6 9 EOS . In this problem, lmin = 1. The total vocabulary size of tokens except

for special tokens is equal to the maximum testing length, i.e., 150.

Copy (repeat). In this problem, the model outputs the same sequence as the given sequence,
which can contain repeated tokens. An example is SOS b a b SEP b a b EOS where
the first b a b is a sequence of random symbols. As in Zhou et al. (2024a), we use an
alphabet of only 2 symbols. LEN in this problem refers to length this part. Each symbols is sampled
independently and uniformly. The model is trained with the language modeling loss on the second
part b a b EOS . In this problem, lmin = 1.

Parity. In the parity problem, the model recognizes whether the given sequence
contains even number of 1s and outputs a corresponding token. An example is
SOS 1 0 0 1 0 SEP e EOS The bits before SEP and after SOSis a random sequence

of bits. LEN in this problem refers to length this part. The token between SEP and EOS is the label,
it can be either “e” or “o”, meaning even or odd number of 1s. The model is trained with the loss
on the part e EOS . lmin = 0 for this problem. The bits are randomly sampled in a way such
that the number of 1s is distributed uniformly given a fixed LEN.

Addition. In addition problem, the model does binary addition. An example is
SOS 1 0 1 + 1 0 = 1 1 1 EOS The two operands are sampled randomly. LEN in this

problem refers to the total length of them, including “+” and “=”. The model is trained with the loss
on the part 1 1 1 EOS . lmin = 4 for this problem. Note that we do not pad zeros in the front
of operands to make them of equal length. The length of first operand is sampled uniformly in [1,
LEN-2], and the remaining length is for the second operand. After determing the lengths, random
bits are sampled uniformly.

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2025

C-RASP[∅] C-RASP[periodic, local] AC0?
Binary Majority yes yes no

Binary Majority Interleave none found yes no
Majority yes yes no

Sort yes yes yes
Copy (unique) no yes yes
Copy (repeat) no no yes

Parity no no no
Addition no no yes

Table 3: Expressiveness properties of algorithmic tasks as defined in Appendix E.2.1 and discussed
in Appendix E.2.2. In the C-RASP columns, “yes” means we found a C-RASP program; “no”
means we proved that no C-RASP program can exist; “none found” means that we found no program
despite best efforts. All problems are expressible in TC0, the tightest known upper-bound on the
expressiveness of transformers. We also show membership in the circuit complexity class AC0, a
smaller class sometimes compared to transformers (Hao et al., 2022; Barcelo et al., 2024); it is not
predictive of length generalization either here or in the regular languages benchmark (e.g., Addition
is in AC0 but Majority is not).

E.2.2 LIMIT TRANSFORMERS AND C-RASP EXPRESSIVENESS ON ALGORITHMIC TASKS

See Table 3. We provide proof sketches.

Binary Majority ∈ C-RASP[∅] A single count operation is sufficient.

Binary Majority Interleave and C-RASP[∅] We did not find a C-RASP[∅] program, though we
do not have a rigorous proof of nonexistence. Note that, by Lemma 38, even the (seemingly easier)
task of determining whether a given input is well-formed (input length is a multiple of the number
of different majority sequences) cannot be solved by C-RASP[∅].

Binary Majority Interleave ∈ C-RASP[periodic, local] Periodic functions can be used to sepa-
rately implement each count operation.

Majority ∈ C-RASP[∅] Similar to Binary Majority.

Copy (unique) ∈ C-RASP[periodic, local] If character (or n-gram) repetition is prevented, then
the sequence length is bounded by the alphabet, so that the space of possible inputs becomes finite,
seemingly precluding the asymptotic analysis done in Theorem 7. To overcome this (apparent)
challenge, we consider two formalizations of this task as operating on unbounded-length inputs.

First, as explained in Zhou et al. (2024a) (and relatedly by Jelassi et al. (2023)), the unique copy-
ing task can be realized with an induction head circuit (Section 4.1 and Appendix C.2.2). More
specifically, each position first records whether SEP has already appeared. An induction circuit then
predicts new tokens in proportion to how frequently they have previously followed appearances of
the current token before SEP (Section 4.1). Copying without repetition is a special case where each
token occurs at most once, so the output of f in (10) is always 0 or 1. We show in Appendix C.2.2
that the induction head construction from Section 4.1 is expressible in C-RASP[periodic, local] but
not in C-RASP[∅].
Another formalization of the task is in terms of repeated copying, where, given an input such as SOS
a c b SEP, the model repeatedly copies the string, always predicting the next character, lead-
ing to an unbounded sequence SOS a c b SEP a c b SEP a c b SEP.... This turns
the copying task into a function f ∈ F(Σ) that operates on unboundedly long sequences, out-
putting next-token predictions at each position. This alternative formalization is also expressed in
C-RASP[periodic, local], by essentially the same induction head algorithm.

Copy (repeat) ̸∈ C-RASP[periodic, local] One proof proceeds via communication complexity:
By Corollary 13, copying of general strings is not expressible by Limit Transformers and hence

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2025

not in C-RASP[periodic, local]. While valid, this proof does not make transparent why length
generalization is much easier if repetition is avoided. A different approach, not using communi-
cation complexity and crucially using the presence of repetition proceeds from the fact that, over
the alphabet Σ ⊇ {a, b, e}∗, the language Σ∗be∗bΣ∗ ̸∈ C-RASP[periodic, local] (Lemma 35),
and uses it to deduce that, given an input of the form vbekbw#vbek (v, w ∈ Σ∗, k large), no
C-RASP[periodic,local] program can reliably determine whether a b should follow.

Sort ∈ C-RASP[∅] As explained in Zhou et al. (2024a), this can be realized by selecting the
smallest number in the input that is larger than the last output symbol. This algorithm does not
require local or periodic positional information.

Note that, as in COPY (unique), the input length is bounded by the alphabet size in this case, but we
can view it as a task defined with unbounded length by the same trick as for COPY (unique), whereby
an initial sequence such as SOS a c b SEP is repeatedly sorted, leading to an unbounded se-
quence SOS a c b SEP a b c SEP a b c SEP....

Parity ̸∈ C-RASP[periodic, local] See Lemma 41.

Addition ̸∈ C-RASP[periodic, local] Addition is at least as hard as copying, because the special
case of adding zero to a number amounts to copying (Corollary 13).

E.3 DETAILS OF EXPERIMENTAL SETUP

As mentioned in the main paper, at train time, we add random offsets to position indices so that
all position embeddings are trained. The offsets are sampled uniformly at random in the range
[0, N − |x|] (see Section 2). Like Zhou et al. (2024a), we sample independent training batches on
the fly instead of using a finite-size training set. In contrast, each test set contains 2000 samples that
are sampled at the beginning of each experiment.

For the problems where we train models with language modeling loss, the length of inputs is sampled
uniformly from minimum up to maximum length in the specified range. This is true for training data
and all test sets. As mentioned before, we also use predictive modeling. At each step, the model
outputs a label indicating the set of possible next characters, including EOS. The models are trained
on a whole sequence of tokens. In decoder-only models, standard predictive modeling approaches
are less straightforward. Therefore, we assess predictions by combining the input and output spaces.
For every position in the sequence, we evaluate the predicted character by comparing the output
space (where each embedding represents a subset of possible next tokens) against the expected
value.

We train decoder-only transformer from scratch, using implementations from Hugging Face Trans-
formers9. We train models for maximum 30k steps with a batch size of 64. We stop training early
once the model’s accuracy reaches 100% on the in-distribution test set (the one in range [lmin, 50].
The model is trained with a dropout rate of 0.0. We use AdamW, with a weight decay rate of 0.01.

In preliminary experiments, we found that different model architectures, while achieving 100% ac-
curacy on in-distribution data, may perform differently on out-of-distribution data. To draw a con-
clusion about how the model performs on a problem in general, we determine the hyperparameters
as follows: We consider configurations of {1, 2, 4} layers, {1, 2, 4} heads and model dimension of
{16, 64, 256}, and learning rate of {0.001, 0.0001}. We sweep all the configurations by iterating
over every combination and choose the one that achieves the highest accuracy on [51, 100] among
those configurations whose accuracy on [lmin, 50] is 100%. When there are multiple such options,
e.g., their accuracy on [51, 100] is 100%, the one with the simplest architecture is selected (when
estimating complexity, we assume the following priority: number of layers > number of heads >
model dimension). The final hyperparameters we used for each task are shown in Table 6 and 7.

When no configuration from the search space defined above can achieve accuracy of 100% on
[lmin, 50], e.g., in the case of ADDITION, we use an extra configuration, where the number of
layers is 12, number of heads is 12, model dimension is 768, learning rate is 1e-4 or 3e-5 (if 1e-4

9https://huggingface.co/docs/transformers/en/model_doc/gpt2#
transformers.GPT2LMHeadModel

45

https://huggingface.co/docs/transformers/en/model_doc/gpt2#transformers.GPT2LMHeadModel
https://huggingface.co/docs/transformers/en/model_doc/gpt2#transformers.GPT2LMHeadModel

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2025

Problem Model Size LR Max Steps
Tomita-1, 2 1 layer; 1 head; 16 dim 1e-3 30k

D2, D3, D4, D12 1 layer; 4 head; 128 dim 1e-4 30k
Tomita-4, 7 4 layer; 2 head; 64 dim 1e-3 30k

{a, b}∗d{b, c}∗, aa∗bb∗cc∗dd∗ee∗ 6 layer ; 4 head; 64 dim 1e-4 30k
(aa)∗, (aaaa)∗, (abab)∗ 6 layer; 4 head; 256 dim 1e-4 60k

Tomita-3, 5, 6 6 layer; 4 head; 256 dim 1e-4 60k
{0, 1, 2}∗02∗, Parity 6 layer; 4 head; 256 dim 1e-4 60k

Table 4: Experimental Hyperparameters for testing NoPE on the Regular Languages

Problem Model Size LR Max Steps
Tomita-1, 2 1 layer; 1 head; 16 dim 1e-3 30k

D2, D3, D4, D12 1 layer; 4 head; 128 dim 1e-4 30k
Tomita-4, 7 4 layer; 2 head; 128 dim 1e-3 30k

{a, b}∗d{b, c}∗, aa∗bb∗cc∗dd∗ee∗ 4 layer ; 4 head; 64 dim 1e-4 30k
(aa)∗, (aaaa)∗, (abab)∗, Parity 4 layer; 4 head; 128 dim 1e-4 40k
{0, 1, 2}∗02∗, Tomita-3, 5, 6 6 layer; 4 head; 128 dim 1e-3 30k

Table 5: Experimental Hyperparameters for testing APE on the Regular Languages.

does not work), and a bigger maximum number of iterations, 60k, we also use the first 3k steps as
warm-up steps.

After we determine the hyperparameter configuration, we run the experiments with multiple random
seeds and report the average accuracy of 5 successful runs (those runs where the model achieves
100% accuracy on in-distribution data). We do no select successful runs in cases where we use the
biggest architecture (the 12-layer configuration), because we find in many cases the accuracy on
in-distribution data stops at around 99%.

The random baseline plotted for the algorithmic tasks (Figure 1, left) is computed using a 2-layer
MLP with a token embedding layer; hence, the model predicts the next token solely based on the
current token. It is trained with the same hyperparameters as transformers, the learning rate is 1e-3.

F TRANSLATING BETWEEN TRANSFORMERS AND LIMIT TRANSFORMERS

Here, we formally introduce the product parameterization, formally state the hypothesis class, and
state and prove the technical lemmas establishing the correspondence between ordinary transformers
and limit transformers.

F.1 PRODUCT PARAMETERIZATION

This parameterization is defined as follows:

Problem Model Size LR Max Steps
Binary Majority 1 layer; 1 head; 16 dim 1e-3 30k

Binary Majority Interleave 2 layer; 4 head; 256 dim 1e-4 30k
Majority 1 layer; 2 head; 256 dim 1e-3 30k

Sort 1 layer; 2 head; 256 dim 1e-4 30k
Copy (unique) 2 layer; 1 head; 64 dim 1e-3 30k
Copy (repeat) 4 layer; 4 head; 256 dim 1e-3 30k

Parity 4 layer; 2 head; 256 dim 1e-4 30k
Addition 12 layer; 12 head; 768 dim 1e-4 60k (3k)

Table 6: Experimental hyperparameters for testing APE on each problem. In the last column, num-
bers in parenthesis mean the warm-up steps, which is 0 when there is no number in parenthesis.

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2025

Problem Model Size LR Max Steps
Binary Majority 1 layer; 1 head; 16 dim 1e-3 30k

Binary Majority Interleave 12 layer; 12 head; 768 dim 1e-4 60k (3k)
Majority 1 layer; 1 head; 64 dim 1e-3 30k

Sort 1 layer; 1 head; 256 dim 1e-3 30k
Copy (unique) 4 layer; 4 head; 256 dim 1e-3 30k
Copy (repeat) 4 layer; 4 head; 256 dim 1e-3 30k

Parity 12 layer; 12 head; 768 dim 3e-5 60k (3k)
Addition 12 layer; 12 head; 768 dim 1e-4 60k (3k)

Table 7: Experimental hyperparameters for testing NoPE on each problem. In the last column,
numbers in parenthesis mean the warm-up steps, which is 0 when there is no number in parenthesis.

Bin 1 Bin 2 Bin 3
0

100
(aa)*

Bin 1 Bin 2 Bin 3
0

100
(aaaa)*

Bin 1 Bin 2 Bin 3
0

100
(abab)*

Bin 1 Bin 2 Bin 3
0

100
Tomita-3

Bin 1 Bin 2 Bin 3
0

100
Tomita-5

Bin 1 Bin 2 Bin 3
0

100
Tomita-6

Bin 1 Bin 2 Bin 3
0

100
D-2

Bin 1 Bin 2 Bin 3
0

100
D-3

Bin 1 Bin 2 Bin 3
0

100
D-4

Bin 1 Bin 2 Bin 3
0

100
D-12

Bin 1 Bin 2 Bin 3
0

100
Tomita 1

Bin 1 Bin 2 Bin 3
0

100
Tomita-2

Bin 1 Bin 2 Bin 3
0

100
Tomita-4

Bin 1 Bin 2 Bin 3
0

100
Tomita-7

Bin 1 Bin 2 Bin 3
0

100
aa*bb*cc*dd*ee*

Bin 1 Bin 2 Bin 3
0

100
{a,b}*d{b,c}*

Bin 1 Bin 2 Bin 3
0

100
{0,1,2}*02*

Found CRASP[Periodic, Local] Program No CRASP[Periodic, Local] Program Found CRASP[] Program No CRASP[] Program

Figure 2: Detailed results for regular languages with language names, corresponding to the right
part of Figure 1 but with individual languages labeled.

Definition 43 (Product Parameterization). For l = 1, . . . , L, set

VO0 ={pi : i} ∪ {Eσ : σ}
VOl ={(Bl)·,s : s = 1, . . . , d}
VI0 =∅
VIl ={(Al)s,· : s = 1, . . . , d;Uσ : σ ∈ Σ}

VO =
⋃

l=0,1,...,L

VOl

VI =
⋃

l=0,1,...,L

VIl

P ={{Vl1,h1 , . . . , Vlk,hk} : 0 ≤ k ≤ L; l1 < · · · < lk; 1 ≤ hi ≤ H}
Given a transformer T with N(T) <∞, define:

αl,h,S1,S2,v,w :=vT

(∏
S∈S1

S

)T

KT
l,hQl,h

(∏
S∈S2

S

)
w ∈ R

for 1 ≤ l ≤ L; 1 ≤ h ≤ H; v ∈ VO; w ∈ VO; S1,S2 ∈ P

βS,v,w :=vT

(∏
S∈S

S

)
w ∈ R

for v ∈ VIl1 ; w ∈ VOl2 ; S ∈ P

where the matrix product over a set S ∈ P ∏
S∈S

S (8)

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2025

Algorithmic Problems

Bin 1 Bin 2 Bin 3
0

50

100

Binary
 Majority

Bin 1 Bin 2 Bin 3
0

50

100

Binary Majority
 Interleave

Bin 1 Bin 2 Bin 3
0

50

100
Majority

Bin 1 Bin 2 Bin 3
0

50

100
Sort

Bin 1 Bin 2 Bin 3
0

50

100

Copy
 Unique

Bin 1 Bin 2 Bin 3
0

50

100

Copy
 Repeat

Bin 1 Bin 2 Bin 3
0

50

100
Parity

Bin 1 Bin 2 Bin 3
0

50

100
Addition

In AC0 Not In AC0

Regular Languages

Bin 1 Bin 2 Bin 3
0

100
(aa)*

Bin 1 Bin 2 Bin 3
0

100
(aaaa)*

Bin 1 Bin 2 Bin 3
0

100
(abab)*

Bin 1 Bin 2 Bin 3
0

100
Tomita-3

Bin 1 Bin 2 Bin 3
0

100
Tomita-5

Bin 1 Bin 2 Bin 3
0

100
Tomita-6

Bin 1 Bin 2 Bin 3
0

100
D-2

Bin 1 Bin 2 Bin 3
0

100
D-3

Bin 1 Bin 2 Bin 3
0

100
D-4

Bin 1 Bin 2 Bin 3
0

100
D-12

Bin 1 Bin 2 Bin 3
0

100
Tomita 1

Bin 1 Bin 2 Bin 3
0

100
Tomita-2

Bin 1 Bin 2 Bin 3
0

100
Tomita-4

Bin 1 Bin 2 Bin 3
0

100
Tomita-7

Bin 1 Bin 2 Bin 3
0

100
aa*bb*cc*dd*ee*

Bin 1 Bin 2 Bin 3
0

100
{a,b}*d{b,c}*

Bin 1 Bin 2 Bin 3
0

100
{0,1,2}*02*

In AC0 Not In AC0

Figure 3: Membership in the circuit complexity class AC0 does not predict transformers’ length
generalization on algorithmic problems (top) or regular languages (bottom). Prior work has often
linked the expressiveness of transformers to circuit complexity (e.g. Hahn, 2020; Hao et al., 2022;
Merrill & Sabharwal, 2023c; Strobl, 2023; Barcelo et al., 2024). All tasks included in our exper-
iments are in the class TC0, the tightest known upper bound on transformers’ expressiveness. A
well-known circuit complexity class within TC0 is AC0, known to upper-bound the power of cer-
tain hard-attention models of transformers (Hao et al., 2022; Barcelo et al., 2024), which may raise
hopes that it helps understand transformers’ practical abilities. However, membership in this class
does not predict transformers’ length generalization behavior. On the algorithmic problems, there
is no apparent correlation at all; majority-type problems, which the attention mechanism can easily
implement, are not in AC0, but problems with super-logarithmic communication complexity such
as copying and addition (Corollary 13) are contained. On the regular languages, AC0 exactly covers
the class FO[reg]. This class can be proven to include all regular languages in C-RASP, but it also
includes various languages that transformers length-generalize poorly on, such as Tomita-3. A nat-
ural subclass, obtained by restricting the size of AC0 circuits to a linear number of wires, yields the
class FO2[Reg] (Cadilhac & Paperman, 2022), which does not match transformers’ behavior well
either, e.g. it includes {0, 1, 2}∗02∗ (bottom right, equals Σ∗be∗ from Lemma 11) but does not in-
clude D-12. Taken together, established circuit complexity classes do not account for Transformers’
length generalization behavior. Compare to C-RASP results in Figures 1 and 2.

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2025

(A) Star-Free vs Non-Star-Free Languages

Bin 1 Bin 2 Bin 3
0

100
(aa)*

Bin 1 Bin 2 Bin 3
0

100
(aaaa)*

Bin 1 Bin 2 Bin 3
0

100
(abab)*

Bin 1 Bin 2 Bin 3
0

100
Tomita-3

Bin 1 Bin 2 Bin 3
0

100
Tomita-5

Bin 1 Bin 2 Bin 3
0

100
Tomita-6

Bin 1 Bin 2 Bin 3
0

100
D-2

Bin 1 Bin 2 Bin 3
0

100
D-3

Bin 1 Bin 2 Bin 3
0

100
D-4

Bin 1 Bin 2 Bin 3
0

100
D-12

Bin 1 Bin 2 Bin 3
0

100
Tomita 1

Bin 1 Bin 2 Bin 3
0

100
Tomita-2

Bin 1 Bin 2 Bin 3
0

100
Tomita-4

Bin 1 Bin 2 Bin 3
0

100
Tomita-7

Bin 1 Bin 2 Bin 3
0

100
aa*bb*cc*dd*ee*

Bin 1 Bin 2 Bin 3
0

100
{a,b}*d{b,c}*

Bin 1 Bin 2 Bin 3
0

100
{0,1,2}*02*

Star Free + APE Non Star Free + APE Star Free + NoPE Non Star Free + NoPE

(B) Dot-Depth

Bin 1 Bin 2 Bin 3
0

100
(aa)*

Bin 1 Bin 2 Bin 3
0

100
(aaaa)*

Bin 1 Bin 2 Bin 3
0

100
(abab)*

Bin 1 Bin 2 Bin 3
0

100
Tomita-3

Bin 1 Bin 2 Bin 3
0

100
Tomita-5

Bin 1 Bin 2 Bin 3
0

100
Tomita-6

Bin 1 Bin 2 Bin 3
0

100
D-2

Bin 1 Bin 2 Bin 3
0

100
D-3

Bin 1 Bin 2 Bin 3
0

100
D-4

Bin 1 Bin 2 Bin 3
0

100
D-12

Bin 1 Bin 2 Bin 3
0

100
Tomita 1

Bin 1 Bin 2 Bin 3
0

100
Tomita-2

Bin 1 Bin 2 Bin 3
0

100
Tomita-4

Bin 1 Bin 2 Bin 3
0

100
Tomita-7

Bin 1 Bin 2 Bin 3
0

100
aa*bb*cc*dd*ee*

Bin 1 Bin 2 Bin 3
0

100
{a,b}*d{b,c}*

Bin 1 Bin 2 Bin 3
0

100
{0,1,2}*02*

Dot Depth=1 Dot Depth=2 Dot Depth=3 Dot Depth=4 Dot Depth=12

Figure 4: (1) Comparing length-generalization with a standard notion of the complexity of finite-
state languages: Star-free languages (green) do not require modular counting (McNaughton & Pa-
pert, 1971), have simpler algebraic representations in terms of group-free monoids (Schützenberger,
1965), are easily represented by modern state-space models (Sarrof et al., 2024), and match the ex-
pressiveness of a formal model of hard attention Transformers (Yang et al., 2023). However, they
do not consistently lead to length generalization in transformers, which on the other hand length-
generalize on some non-star-free languages such as (aa)∗. The expressiveness of C-RASP correctly
accounts for the observed behavior. (2) Within the star-free languages, a standard complexity metric
is dot-depth, with increased dot-depth indicating increased complexity (non-star-free languages are
plotted in gray color). Dot-depth does not predict length generalization, which succeeds on some
languages at dot depths 1 and 12 and fails at some languages at intermediate depth. See Figure 3 for
further discussion regarding another existing notion of complexity, circuit complexity, also much
less successful than C-RASP expressiveness at predicting length generalization. Compare to C-
RASP results in Figures 1 and 2.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2025

is computed in descending order of layers; with the S associated with the lowest layer at the right.
For instance, ∏

S∈{V1,h,V3,h′ ,V4,h′′}

S = V4,h′′V3,h′V1,h (9)

Remark 44. Here, we exemplify the Product Parameterization (Definition 43).

α1,h,∅,∅,pi,Eσ =pT
i K

T
1,hQ1,hEσ

α2,h,{V1,h′},∅,pi,pj =pT
i V

T
1,h′KT

2,hQ2,hpj

α3,h,{V2,h′V1,h′′},{V1,h′′′},Eσ,Eτ =ET
σ V

T
1,h′′V T

2,h′KT
2,hQ2,hV1,h′′′Eτ

β∅,(A1)s,·,pi =(A1)
T
s,·pi

β{V1,h},(A3)s,·,Eσ =(A3)
T
s,·V1,hEσ

β{V3,h′ ,V1,h},Uτ ,Eσ =UT
τ V3,h′V1,hEσ

β{V3,h′ ,V2,h},Uτ ,(B1)·,s =UT
τ V3,h′V2,h(B1)·,s

Remark 45. For ease of notation, we have not restricted the layers from which different vector
parameters are taken in the definition of α and β; hence, they will also include products that are not
relevant to actual computations, such as

pi
TV T

2,hK
T
1,h′Q1,h′′V3,h′′′pj (10)

where a vector of the form V3,h′′′pj cannot actually feed into the computation of queries in the first
layer. This is simply for simplicity of notation; such products will not impact results, though one
could explicitly exclude them if one wants to obtain tighter quantitative bounds on the parameter
count of Limit Transformers in Lemma 52.

F.2 FORMAL DEFINITION OF HYPOTHESIS CLASS

Definition 46 (Hypothesis Class, corresponds to Definition 4). Let p ∈ N be fixed. For each n =
1, 2, 3, . . . , define the hypothesis class Θn as the set of transformers T (as defined in Section 2)
where

1. N(Tn) = n

2. each parameter vector and matrix of T is represented at p bits of precision

3. each product function (Definition 43) involving positional encodings is translation-
invariant. That is, every product function involving exactly one positional encoding is
constant across positions, and for every 1 ≤ i, j, i+∆, j +∆ ≤ n,

αl,h,S1,S2,pi,pj = αl,h,S1,S2,pi+∆,pj+∆

for all l, h,S1,S2 making these objects well-defined.

F.3 FROM LIMIT TRANSFORMERS TO TRANSFORMERS

Lemma 47. Let T∞ be a Limit Transformer satisfying PERIODIC and LOCAL. Then there are
transformers T1, T2, . . . (Ti ∈ Θi) such that, for all i ∈ N, x ∈ S, o ∈ {0, . . . , i− |x|}:

Ti(x, o) ≡ T∞(x, 0) when o+ |x| ≤ i (11)

and
sup
i
R(Ti) <∞ (12)

Proof. We use hats to indicate the parameters of the constructed transformers. Fix N ∈ N; we
construct TN .

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2025

Let ∆ be the periodicity of pi. The construction sets L̂ = L + 2 and Ĥ = max{1, H,∆}. Each
activation has d̂ := d+N + 3∆+ 2 dimensions, which can be partitioned into six regions:

d dimensions (Region I: main region)
N dimensions (Region II: position region)
∆ dimensions (Region III: periodic region I)
∆ dimensions (Region IV: periodic Region II)

1 dimension (Region V: SOS Region)
∆+ 1 dimensions (Region VI: Copied SOS Region)

 (13)

Region I directly emulates the computations of the Limit Transformer. Region II carries absolute
positional information, used for simulating the positional functions ϕl,h.

We define the token and positional encodings as

p̂i =

0 ∈ Rd

ei ∈ RN

e(i%∆)+1 ∈ R∆

0 ∈ R∆

0 ∈ R
0 ∈ R∆+1

 Êσ =

Eσ ∈ Rd

0 ∈ RN

0 ∈ R∆

0 ∈ R∆

1σ=$ ∈ R
0 ∈ R∆+1

where ei is the i-th unit vector. Region I holds token information. Region II holds exact position
information. Region III holds modular position information. Region V indicates whether the to-
ken is start-of-sequence (SOS) or not. Content will be written to Regions IV and VI by attention
components.

Intuition At first sight, a simple intuitive translation just uses Regions I and II, placing all param-
eters of T∞ into Region I, and taking one-hot vectors ei for Region II to encode exact positional
information, so that the functions ϕl,h can be implemented by products p̂iK̂T Q̂p̂j . One would thus
use the simpler encoding Ẽσ := [Eσ, 0] and p̃i := [pi, ei]. Such a translation would be able to
reproduce the input-output behavior of T∞. However, it would fall short in two ways: First, the
positional encodings pi can give rise to patterns whereby pT

i K
TQpj is periodic in j− i when j− i

is large, and thus bounded away from zero at unboundedly many distances j − i, making (8) un-
bounded. We will avoid this by routing modular positional information through a value matrix V1,1

before making it available to attention computations; intuitively, this is possible because the vectors
pi have a bounded-dimensional span. Modular positional information starts out in Region III of
p̂i, and is copied by V1,1 into Region IV; no KTQ matrix in the construction will directly address
Region III. Second, transformers in ΘN must satisfy the requirement that all product functions are
translation-invariant; such a requirement need not be implemented by T∞ (e.g., MLPs could respond
differently to different pi’s), and thus also not by the simple translation sketched. We overcome this
by adding ∆ different attention heads, each assigned to some k ∈ {0, . . . ,∆ − 1}, each of which
primarily attends to the SOS symbol (based on Region V), with a stronger weight in the k-th head
falling on SOS if the distance between the query position and the SOS position is congruent to k
modulo ∆ (based on Region IV). These attention weights are written, via the value matrix, to Region
VI. An MLP then compares each of these attention weights to the weights resulting from uniform
attention, thereby determining the head giving rise to the highest attention weight, and places the
matching encoding pi into Region I. This construction maintains translation-invariance of all prod-
uct functions; most importantly, it makes all β functions involving positional encodings equal to
zero: The MLP reads from Region VI, whose entries are linear combinations of entries from Region
V, which is zero in all p̂i. Crucially, the dependence of the positional encoding pi written to Region
I on the original positional information in p̂i is mediated entirely through attention weights, which
do not enter the definition of the product functions. Once these computations are completed, Region
I matches the activations in T∞ at offset 0, and a direct simulation of T∞ can proceed based on
Regions I and II. Taken together, we expand the intuitive simple construction to make rigorous the
intuition that bounded-rank positional information can be utilized by transformers even under the
constraints that (8) be bounded and that product functions be translation-invariant.

Layer 1: Copying Periodic Positional Information to Region IV In the lowest layer, each po-
sition attends to itself and moves the periodic positional information from Region III to Region IV.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2025

Formally:

K1,1 = Q1,1 =

0 0 0 0 0 0
0 Ω · IN×N 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

V1,1 =

0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 I∆×∆ 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

for some Ω > 0 to be chosen later. After attention (the MLP does nothing, A1,B1, b1 ≡ 0), the
output will be

ŷ
(1)
i =

Eσ

ei
e(i%∆)+1

(1− ϵ)e(i%∆)+1

1xi=$

0

 (14)

where ϵ < 0.1 when Ω is sufficiently large. Region III will not be addressed by any further down-
stream matrices or vectors. The idea behind this operation is to ensure no K̂T Q̂ matrix will directly
have to read from Region III – rather, any dependence of attention logits on modular positional in-
formation is mediated by the V1,1 matrix. This allows us to keep (8) bounded even in the presence of
such dependence, as we detail below. Note that this strategy importantly relies on ∆ ≤ R∞(T∞), so
that rank(V1,1) is bounded independently of N. Intuitively, modular positional information (unlike
the full positional information encoded in Region II) can be routed through bounded-rank compo-
nents, which enables keeping (8) bounded.

Layer 2: Determining Position Relative to SOS We now add a second layer, in which we attend
with ∆ + 1 different heads, where the s-th head tests whether the distance to SOS is congruent to
s modulo ∆, and the ∆ + 1-st head attends uniformly. By determining which head attends most
strongly to SOS, we can read out the relative position with an MLP without breaking the translation
invariance of product functions.

For h = 1, . . . ,∆, let Q2,h be such that

Q2,h

. . .
. . .
. . .
ei
. . .
. . .

 =

0
0
0

ei+h%∆

0
0

 (15)

Let K2,h (h = 1, . . . ,∆) be the identity matrix restricted to Regions IV and V. Further, let
Q2,∆+1 = K2,∆+1 ≡ 0 (16)

Then, for h = 1, . . . ,∆,
ŷ
(1)
i K̂T

2,hQ̂2,hŷ
(1)
j = 1i−j≡h (mod)∆ (17)

and
ŷ
(1)
i KT

2,∆+1Q2,∆+1ŷ
(1)
j = 0 (18)

Intuitively, heads 1, . . . ,∆ attend preferentially to positions at a given distance modulo ∆; head
∆+ 1 attends everywhere. Define V2,h for h = 1, . . . ,∆+ 1 by

V2,h

. . .
. . .
. . .
. . .
z
. . .

 =

0
0
0
0
0

z · eh

 (19)

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2025

As the only vector parameter with an entry in Region V is the token embedding for the SOS token,
the outcome of this attention block effectively writes the attention falling on the SOS token for
each of the ∆ + 1 attention heads. We then use a Heaviside MLP with number of hidden units
bounded in ∆ to determine for which s = 1, . . .∆ it holds that entry s in Region VI has a greater (as
opposed to smaller) entry than entry ∆ + 1. The MLP, via the B matrix, then writes ps to Region
I. A special case occurs at SOS, where Region V is 1 (it is 0 everywhere else); here, the ∆ MLP
units described above are disabled (a 1 in Region V causes a large negative number to be added to
their inputs) and the MLP instead writes p1 to Region I. Overall, ∆+ 1 MLP units with Heaviside
activation are sufficient for this construction. Overall, after the MLP, the i-th position in the string
has p((i−1)%∆)+1 added to Region I. Overall,

ŷ
(2)
i =

Exi + pi−o+1

ei+o

. . .

. . .

. . .

. . .

 =

y
(0)
i

ei+o

. . .

. . .

. . .

. . .

 (20)

where o is the offset, and the second equality holds if the Limit Transformer is run at o = 0. In
layers 2, . . . , L̂, only Regions I and II will receive any consideration.

Higher Layers: Emulating T∞ Next, for l ≥ 1, define K̂T
l+2,hQ̂l+2,h ∈ Rd̂×d̂ as

K̂T
l+2,hQ̂l+2,h =

KT

l,hQl,h 0 0 0 0 0
0 Wl,h 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (21)

where i ≤ j:
(Wl,h)i,j = ϕl,h(i, j) (22)

to satisfy
pT
i Wl,hpj = ϕl,h(i, j) (23)

ThenW is a sum of matrices each of which has the value ϕl,h(i−j, j) for some i on an (off-)diagonal
and zeros elsewhere; hence

∥Wl,h∥2 ≤
∑
i

|ϕl,h(1, i)| (24)

Overall, ∥K̂T
l+1,hQ̂l+1,h∥ can be bounded, independently ofN , in terms of ∥KT

l,hQl,h∥ and ∥ϕl,h∥1.
As ϕl,h is local, this 1-norm is finite.

We construct all other parameter matrices and vectors by placing the parameter from the Limit
Transformer into the Region I and leaving all other regions zero. Now, by induction, the first d
dimensions of any activation will match those of the Limit Transformer, but shifted by two layers:

ŷ
(l+2)
i =

y
(l)
i

ei+o

. . .

. . .

. . .

. . .

 (25)

As the U matrix only reads from Region I, the output will also be the same as for the Limit Trans-
former.

For the excess heads, the matrices are just set to 0 – in the first or the higher layers – depending on
whether H or ∆ is larger than the other.

Bounding Norms and Ranks At l ≥ 2, now the ranks of Vl,h and the norms of Al,Bl, U and the
ℓ2 norms of e, b, c will be the same they were in the Limit Transformer. The increases from the first
and second layer are bounded in terms of ∆ and henceR∞(T∞)

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2025

Verifying Boundedness of (8) By construction, p̂T
i K̂

T
1,hQ̂1,hp̂j = δijδh1 and p̂T

i K̂
T
2,hQ̂2,hp̂j ≡

0. For the higher layers, the boundedness follows because T∞ satisfies LOCAL.

Verifying Translation Invariance We need to verify that all product functions are translation-
invariant. Each p̂i contains entries in Regions II and III. In the first layer, we have α1,1,∅,∅,pi,pj =
δij , hence, these are translation-invariant. In the second layer, we have

α2,s,∅,∅,pi,pj =

0
ei

e(i%∆)+1

0
0
0

T

KT
2,sQ2,s

0
ei

e(j%∆)+1

0
0
0

 = 0 (26)

α2,s,{V1},∅,pi,pj =0 (27)

α2,s,{V1},{V1},pi,pj =

0
ei

e(i%∆)+1

0
0
0

T

V T
1,1K

T
2,sQ2,sV1,1

0
ei

e(j%∆)+1

0
0
0

 (28)

=

0
0
0

e(i%∆)+1

0
0

T

KT
2,sQ2,s

0
0
0

e(j%∆)+1

0
0

 (29)

=1j−i≡s(mod∆) (30)

(31)

These are all translation-invariant. All α2+l,h,∅,∅,pi,pj equal a function ϕl,h(i, j) and hence are
translation invariant. No V matrix ever reads from Region II. Overall, all α products are translation-
invariant. In higher layers, KTQ matrices read from Regions I and II. The positional encodings p̂i

write to Region II but not – not even when mediated directly through value matrices – Region I, and
the products are translation-invariant because the functions ϕl,h are.

Consider

β∅,(A1)s,·,pi = 0

because the first layer MLP does nothing. Second,

β∅,(A2)s,·,pi = 0

because the second layer MLP only reads from Region VI, and none of pi,V1pi contain any entries
in Region VI. Also,

βS,Uσ,pi = 0

β{V1},Uσ,pi = 0

β{V2V1},Uσ,pi = 0

β{V2},Uσ,pi = 0

since none of pi, V1pi, V2V1pi,V2pi contain any entries in Region I, where Uσ has its entries.

54

2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969

Under review as a conference paper at ICLR 2025

Since V2,s all read only from Region V, whose entries have no connection to p̂i, we also have:

β{V2,... },(Al)s,·,pi = 0

β{V2,... },Uσ,pi = 0

β{V2,V1,... },(Al)s,·,pi = 0

β{V2,V1,... },Uσ,pi = 0

Overall, all β products involving pi are translation-invariant.

F.4 FROM TRANSFORMERS TO LIMIT TRANSFORMERS

We first establish various smaller lemmas. The first lemma informally says that, when f(i, j) :=
pT
i Apj is translation-invariant in (i, j), and A has bounded rank, then f(i, j) is periodic. This

lemma is key to the prominent role of the PERIODIC property in Theorem 7.
Lemma 48. Let p ∈ N, and let N ∈ N. Let p1, . . . ,pN ∈ Rk such that ∥pi∥2 < C; let A ∈ Rk×k.
Let f(i, j) := pT

i Apj be translation invariant, in the sense that

∀0 ≤ i ≤ j : ∀M ≥ 0 : j +M ≤ N ⇒ f(i, j) = f(i+M, j +M) (32)

Further assume that, for i ≤ j, f(i, j) can be expressed with p fractional bits.10 Define for n ≥ 0

G(n) := f(1, 1 + n) (33)

Then there is ∆ ∈ N upper-bounded in terms of rank(A), p, C, and ∥A∥ (but not N) such that

∀n : n+∆ < N ⇒ G(n) = G(n+∆) (34)

Proof. Let ρ := rank(A); it is > 0 without loss of generality. We write the singular value decom-
position of A as

A = UTΣV (35)
where Σ ∈ Rρ×ρ, U ,V ∈ Rρ×d, where ∥U∥, ∥V ∥ ≤ 1. Then we can write

pT
i Apj = pT

i U
TΣV pj =

(
Upi

V pi

)T

(Iρ×ρ 0ρ×ρ)
T
Σ (0ρ×ρ Iρ×ρ)

(
Upj

V pj

)
(36)

We will henceforth replace A by (Iρ×ρ 0ρ×ρ)
T
Σ (0ρ×ρ Iρ×ρ) ∈ Rρ×ρ and pi by

(
Upi

V pi

)
∈

R2 rank(A); note that this increases the norms of these objects at most by a multiplicative constant
while preserving the products pT

i Apj .

As ∥pi∥2 < C for all i, we find that, when N is sufficiently large, for each ϵ > 0, there are pi,pj

(i < j) such that:
∥pi − pj∥2 ≤ ϵ (37)

Take ∆ := j − i. The minimum required distance ∆ can be upper bounded by considering the
ϵ-packing number of {v : ∥v∥ ≤ C} and applying the pigeonhole principle. Hence, overall, ∆ can
be upper-bounded in terms of ϵ, rank(A), and C. Importantly, this bound is independent of N .
Hence, ∀k ∈ {i+∆, . . . , N}:

= |G(k − i)−G(k − i−∆)|
= |f(i, k)− f(i+∆, k)|
= |f(i, k)− f(i+ (j − i), k)|
= |pT

i Apk − pT
j Apk|

≤ ∥pi − pj∥2∥Apk∥2
≤ ϵ · ∥Apk∥2

10In particular, this is satisfied if pi, A are each expressed at some fixed precision q, where p ≥ 3q.

55

2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023

Under review as a conference paper at ICLR 2025

Equivalently, using the substitution l := k − i−∆, we have, for any l ∈ {l, . . . , N −∆}:

|G(l +∆)−G(l)| ≤ ϵ · ∥Apk∥2 (38)

Take ϵ = 2−p

4C∥A∥ ; then
G(l) = G(l +∆) (39)

due to the assumption about fixed-precision outputs.

Lemma 49. Assume each parameter in a transformer is represented at p bits of precision. Then
each product function is exactly represented at (4 + 2L)p bits of precision.

Proof. Each product function consists at most of two vectors, a key and query matrix, and up to 2L
value matrices. This results in a sum of numbers that each are a product of up to 4+2L numbers that
each are individual parameters. As each number is represented at p bits of precision, each product
is represented at (4 + 2L)p bits of precision.

It will be useful to define a complexity metric applicable to Limit Transformers:

Definition 50. For a Limit Transformer T , defineR∞(T) as the sum of

1. L+H + d

2. the precision p used for expressing the parameters (Definition 2), and the precision p used
for rounding attention logits and the output of exp(·) (Section 2).

3. the maximum ℓ∞ norm of all parameter vectors and matrices (including positional encod-
ings)

4. the minimal periodicity ∆ of the positional encodings11

5. maxl,h
∑∞

i=1 |ϕl,h(1, 1 + i)|2 (short: maxl,h ∥ϕl,h∥22).

Proposition 51. Let A ∈ R+. Let U be the set of Limit Transformers T such that R∞(T) ≤ A.
Then the set of parameter settings in U , other than the ϕl,h functions, is finite.

Proof. Immediate.

We now state the key lemma translating ordinary transformers to Limit Transformers using the
product parameterization:

Lemma 52. Let T ∈ Θn, at p bits of precision. Let the alphabet Σ be fixed.12 Then there is a Limit
Transformer T∞ such that T ≡ T∞ at length ≤ n and

R∞(T∞) ≤ F (R(T)) (40)

for some universal function F : R+ → R+ and

pT
i K

T
l,hQl,hpj = ϕl,h(i, j) (41)

for the pi,Kl,h,Ql,h parameters of T ; for each l, h. In particular, T∞ satisfies PERIODIC and each
ϕl,h is translation-invariant.

We prove the lemma in the remainder of the section.

F.4.1 PROVING LEMMA 52 (I): PRELIMINARIES

We discuss various preliminaries, before presenting the construction, explaining its intuition, and
explaining how its soundness is formally proven.

11Formally, 1 plus the supremum of the set of ∆’s for which pi ̸≡ pi+∆.
12The bound on R∞(T∞) depends on it, but during the inference procedure, the alphabet is assumed fixed.

56

3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077

Under review as a conference paper at ICLR 2025

Basic Idea We will construct T∞ so that the entries in every parameter are 0, 1, or one of the prod-
uct functions from Definition 43. This will automatically ensure that its parameters are represented
at fixed precision p bounded in terms ofR(T), and with each entry bounded in terms of the spectral
norms of parameter matrices and the ℓ2 norms of parameter vectors, hence, also bounded in terms of
R(T). Importantly, we will use the definition of R(T) and the definition of Θn to restrict attention
to a number of product functions that are bounded only in terms ofR(T), independently of n.

Bounding Active MLP Units First, given ∥Al∥F <∞, the number of nonzero entries is bounded
as ≤ ∥Al∥2

F

2−2p , which is bounded in terms of R(T). Similarly, the number of nonzero entries in bl is

bounded as ≤ ∥b∥2
2

2−2p , and similarly for Bl. Let dMLP ≤ d be, across l = 1, . . . , L the maximum
of the maximum number of nonzero entries in bl, and of the maximum number of nonzero rows in
Al. Without loss of generality, by reordering rows in Al and columns in Bl, we may assume that,
in each layer, these entries are in the first dMLP dimensions. Then dMLP is upper-bounded in terms
of these (or d, if the bounds exceed d); this is bounded in terms of R(T) and independent of n. In
each layer, only ≤ dMLP of the MLP units have nonzero input weights Al, output weights Bl, or
biases bl. Removing product functions belonging to the inactive units, we set:

V̂Il :=VIl − {(Al)s,· : s = dMLP + 1, . . . , d}

V̂I :=

L⋃
l=1

V̂Il

Then, the size of V̂I is bounded in terms ofR(T).

Periodicity of Bounded-Rank Positional Functions By Lemma 48 all products pT
i . . .pj where

the intervening material has bounded rank are periodic in j − i with period bounded in terms of the
rank of the intervening material, and henceR(T). Let ∆ be the least common multiple of the periods
obtained from Lemma 48 across the (finitely many) different products of the form βl,h,S1,S2,pi,pj
where S1 ∪ S2 ̸= ∅. Define

V̂O0 ={pi : i = 1, . . . ,∆} ∪ {Eσ : σ}

V̂Ol ={(Bl)·,s : s = 1, . . . , dMLP }, l = 1, . . . , L

V̂O =V̂O0 ∪
T⋃
l=1

V̂Ol

Then, the size of V̂O is bounded in terms ofR(T).

F.4.2 PROVING LEMMA 52 (II): CONSTRUCTION OF T∞

Translation in Terms of Regions We use hats (i.e., ·̂) to mark the parameters and activations
of the Limit Transformer, distinguishing those from the parameters and activations of the original
transformer T .

Each d-dimensional parameter vector and activation (residual streams and attention outputs) is trans-
lated to a vector consisting of three regions, each having a fixed number of dimensions bounded in
terms of R(T), That is, each vector parameter or activation v (e.g., pi, Eσ , y(l)

i) is translated to a

parameter or activation v̂ (e.g., p̂i, Êσ , ŷ(l)
i) vector consisting of the following three regions:

v̂ =

 ΓS,w(v̂) : S ∈ P;w ∈ V̂Il2
ΛS1,T1,T2,l,h,w1,w2(v) : 1 ≤ l ≤ L; 1 ≤ h ≤ H;S1 ⊆ T1; T1, T2 ∈ P,w1,w2 ∈ V̂O
ΩS2,T1,T2,l,h,w1,w2(v) : 1 ≤ l ≤ L; 1 ≤ h ≤ H;S2 ⊆ T2; T1, T2 ∈ P,w1,w2 ∈ V̂O

(42)

57

3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131

Under review as a conference paper at ICLR 2025

Intuition of the Construction The first region, denoted ΓS,w(v̂), has one entry for every choice
of S ∈ P;w ∈ V̂Il2 . Intuitively, the entry ΓS,w(v̂) describes the outcome of applying all value
matrices in S and then finally the vector wT :

ΓS,w(v̂) = wT

(∏
S∈S

S

)
v ∈ R (43)

(Recall Definition 43 for the notation
∏

S∈S S.) The second and third regions each have one entry
for every choice of 1 ≤ l ≤ L,S2 ⊆ T2; T1, T2 ∈ P,w1,w2 ∈ V̂O. These regions contain the
information necessary for computing attention logits. Intuitively, T1, T2 describe the value matrices
through which w1 and w2, respectively, pass before the computation of attention logits in layer
l. For parameter vectors w1,w2 (e.g., token embeddings or columns of a Bl matrix – positional
encodings are somewhat special), we simply expect (note the duplicated arguments T1, T2 – these
will be explained in the next paragraph):

ΛT1,T1,T2,l,h,w1,w2
(w1)ΩT2,T1,T2,l,h,w1,w2

(w2) = wT
1

(∏
S∈T1

S

)T

KT
l,hQl,h

(∏
S∈T2

S

)
w2

(44)
Thus, Λ can be viewed as holding key parameters, whereas Ω can be viewed as holding query param-
eters, for the contribution that the pair of w1,w2 makes to attention logits in layer l, after passing
through the value matrices in T1, T2, respectively. As a convention, at the level of parameter vectors,
the Λ component will hold the attention logit contribution (the RHS of this equation), whereas the
Ω component will just hold zeros and ones. At the level of intermediate activations v (y(l)

i or Y (l)
i),

the situation is slightly more complex: here,

ΛS1,T1,T2,k,h,w1,w2
(ŷ

(l)
i) (45)

denotes the contribution to attention logits for head h at layer k arising from multiples of(∏
S∈T1

S
)
ŵ1 in an activation ŷ

(k−1)
i interacting with multiples of

(∏
S∈T2

S
)
ŵ2 in an activa-

tion ŷ
(k−1)
j ; a similar idea applies to Ω.... However, additional care is needed to ensure that only

contributions from value matrices are counted that were actually passed through. The additional
argument S1 serves as a “to-do-list”: it records which of the value matrices in T1 still have to be
traversed; whenever an activation passes through a value matrix Vl,h′ , the value matrix V̂l,h′ of
the Limit Transformer moves entries from ΛS1,T1,T2,k,h,w1,w2 to ΛS1−{Vl,h′},T1,T2,k,h,w1,w2

– ef-
fectively removing itself from the “to-do-list”. The same princple applies to Ω, which maintains a
to-do-list S2 for T2. In the end, only those components where the to-do-lists are empty (formally,
S1 = S2 = ∅) will enter attention logit computations of the Limit Transformer:

ϕk,h(i, j) +
∑

v,w,T1,T2

Λ∅,T1,T2,k,h,v,w(ŷ
(l)
i) · Ω∅,T1,T2,l,h,v,w(ŷ

(l)
j) = (y

(l)
i)TKT

k,hQk,hy
(l)
j (46)

where the sum runs over all v,w ∈ V̂O, and T1, T2 runs over all sets of value matrices from layers
≤ l.
In the remainder of the proof, we present a detailed formal construction implementing this intuition.
We first define, for each vector v ∈ {pi,Eσ, bl : i, l, σ} its translation v̂; throughout, we will define
each of the three regions.

Vector Parameters bl ∈ VO We take (b̂l)s := (bl)s for s = 1, . . . , dMLP .

Vector Parameters Eσ ∈ VO The first region provides products with other vectors appearing at
higher layers (rows/columns of the Al matrices and the unembedding matrix). The second and third

58

3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185

Under review as a conference paper at ICLR 2025

regions provide products leading up to keys and values.

ΓS,w(Êσ) :=

{
βS,w,Eσ if S ∈ P,w ∈ V̂I
0 else

ΛS1,T1,T2,l,h,w1,w2
(Êσ) :=

{
αl,h,T1,T2,w1,w2

if Eσ = w1,S1 = T1
0 else

ΩS2,T1,T2,l,h,w1,w2
(Êσ) :=

{
1 if Eσ = w2,S2 = T2
0 else

Vector Parameters: p̂i For v = pi, the construction is analogous, however, we zero out the
entries for Λ∅,∅,l,h,pi,pj and Ω∅,∅,l,h,pi,pj , as these will be taken care of by the ϕl,h functions. For-
mally:

ΓS,w(p̂i) :=

{
βS,w,pi if S ∈ P,w ∈ V̂I
0 else

ΛS1,T1,T2,l,h,w1,w2
(p̂i) :=

αl,h,T1,T2,w1,w2

if pi%∆ = w1; (w2 ̸∈ {pj : j} ∨ T1 ∪ T2 ̸= ∅) ,
S1 = T1

0 else

ΩS2,T1,T2,l,h,w1,w2
(p̂i) :=

1 if pi%∆ = w2; (w1 ̸∈ {pj : j} ∨ T1 ∪ T2 ̸= ∅) ,

S2 = T2
0 else

We need to establish that T∞ satisfies PERIODIC with the period ∆ given above. First, βS,v,pi is
independent of i by translation-invariance, thus trivially periodic in i. Second, the Λ and Ω entries
are periodic in i with period ∆ by construction.

Matrix Parameters: V̂l,h Each entry in the V̂l,h matrix is zero or one. We define it implicitly, in
terms of its action on the three different regions:

ΓS,w(V̂l,h(ŷ
(l)
l)) =

{
ΓS∪{Vl,h},w(ŷ

(l)
l) Vl,h ̸∈ S

0 else

ΛS1,T1,T2,l,h,w1,w2(V̂l,h(ŷ
(l)
l)) =

{
ΛS1∪{Vl,h},T1,T2,l,h,w1,w2

(ŷ
(l)
l) Vl,h ̸∈ S1,Vl,h ∈ T1

0 else

ΩS2,T1,T2,l,h,w1,w2(V̂l,h(ŷ
(l)
l)) =

{
ΩS2∪{Vl,h},T1,T2,l,h,w1,w2

(ŷ
(l)
l) Vl,h ̸∈ S2,Vl,h ∈ T2

0 else

Matrix Parameters: Âl, B̂l Let s ∈ {1, . . . , dMLP }. For the s-th unit in the MLP at layer l, we
first define the s-th row of Âl by setting

(Âl)s,· · Ŷ (l)
i = Γ∅,(Al)s,·

(
Ŷ

(l)
i

)
∈ R

59

3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239

Under review as a conference paper at ICLR 2025

and define the s-th column of B̂l as follows – writing X̂ ∈ R for the s-th hidden unit activation:

ΓS,w(B̂s,·X̂) :=X̂ · βS,w,(Bl)·,s

ΛS1,T1,T2,l,h,w1,w2(B̂l·,sX̂) :=X̂ ·
{
αl1,h,l2,T1,T2,(Bl)·,s,w2

if w1 = (Bl)·,s,S1 = T1
0 else

ΩS2,T1,T2,l,h,w1,w2
(B̂l·,sX̂) :=X̂ ·

{
1 if w2 = (Bl)·,s,S2 = T2
0 else

This defines the Âl and B̂l matrix parameters, and we can write, letting ψl,s denote the activation
function (ReLU or Heaviside) applying to the s-th hidden MLP unit:

ŷ
(l)
i = Ŷ

(l)
i +

dMLP∑
s=1

(B̂l)·,s · ψl,s

(
(Âl)s,·(Ŷ

(l)
i) + (b̂l)s

)
(47)

or equivalently

ŷ
(l)
i = Ŷ

(l)
i + B̂l · ϕl(Âl · Ŷ (l)

i + b̂l) (48)
matching the formulation of MLPs for our model of transformers (Equation 4).

Note that the hidden dimension of the MLP in the Limit Transformer is now dMLP , which will be
smaller than d̂. We thus pad the remaining rows/columns of Âl, B̂l, and the remaining entries of b̂l
with zeros.

A partial order on sets of value matrices For S, T ∈ P , we write T ≥l S to denote that

1. T ⊇ S
2. ∀l′ ∈ {1, . . . , L} : [(Vl′,h′ ∈ S)⇒ l′ > l]

3. ∀l′ ∈ {1, . . . , L} : [(Vl′,h′ ∈ T − S)⇒ l ≥ l′]

Intuitively, “T ≥l S” says that “among the value matrices in T , the activation has already passed
through all value matrices at layer l and below”. For example:

{V1,h, V2,h′ , V3,h′′ , V5,′′′} ≥2 {V3,h′′ , V5,′′′}
{V1,h, V2,h′ , V3,h′′ , V5,′′′} ̸≥2 {V4,h′′′}

{V1,h, V2,h′ , V3,h′′ , V5,′′′} ̸≥1 {V3,h′′ , V5,′′′}
{V1,h, V2,h′ , V3,h′′ , V5,′′′} ̸≥3 {V3,h′′ , V5,′′′}

Matrix Parameters: K̂T
l,hQl,h We again define them implicitly in terms of regions; this can be

realized using matrices K̂T
l,h, Q̂l,h where all entries are 0 or 1. Importantly, we sum only those

entries where the “to-do-lists” S1,S2 are empty, and the sets T1, T2 only contain value matrices at
layers ≤ l:

(ŷ
(l)
i)T K̂T

l,hQl,hŷ
(l)
j =

∑
v,w,T1≥l∅,T2≥l∅

Λ∅,T1,T2,l,h,v,w(ŷ
(l)
i) · Ω∅,T1,T2,l,h,v,w(ŷ

(l)
j) (49)

Matrix Parameters: U The U matrix is translated as follows:

ÛT
σ ŷ

(L)
i = Γ∅,Uσ (ŷ

(L)
i) (50)

Positional Function Define for l = 1, . . . , L and h = 1, . . . ,H , when 1 ≤ i ≤ j ≤ N(T):

ϕl,h(i, j) = pT
i K

T
l,hQl,hpj (51)

As T ∈ Θn, ϕl,h(i, j) only depends on j − i.

60

3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293

Under review as a conference paper at ICLR 2025

BoundingR∞(T∞) First, we showed above that d̂ is upper-bounded inR(T). Second, all param-
eters are represented at precision bounded in terms of R(T): those parameters that are taken from
product functions have precision ≤ 4Lp bits; those involving the SVDs of KTQ matrices also have
bounded precision. Third, the ℓ∞ norm of all parameter vectors is bounded in terms of R(T) by
construction. Fourth, ∆ is bounded in terms of R(T) as discussed above. The boundedness of the
fifth term is immediate.

Summary We have constructed a Limit Transformer T∞ such that

R∞(T∞) ≤ F (R(T)) (52)

for some universal function F : R+ → R+ and

pT
i K

T
l,hQl,hpj = ϕl,h(i, j) (53)

for the pi,Kl,h,Ql,h parameters of T ; for each l, h. By assumption on T , each ϕl,h is translation-
invariant. We have also constructed p̂i with period ∆, so that T∞ satisfies PERIODIC.

F.4.3 PROVING LEMMA 52 (III): PROVING CORRECTNESS

In order to conclude Lemma 52, it remains to establish the correctness of the translation; that is,
T ≡ T∞ at length ≤ N(T). To do this, it suffices to show that both transformers provide the same
next-token predictions for each i = 1, . . . , N(T):

ÛT
σ ŷ

(L)
i = Γ∅,Uσ (ŷ

(L)
i) = UT

σ y
(L)
i (54)

Informally, proving this requires showing that the attention logits and MLP activations in T∞ match
those in T ; the result then follows from the linearity of Γ∅,Uσ and the way Γ... is defined for the vec-
tor parameters and how value matrices V̂l,h move information. Formally, we prove the correctness
of the translation inductively, by showing the following equalities. Recall (from Definition 43) that,
when S ∈ P is a set of value matrices, we write

∏
S∈S S for the product of these matrices, ordered

by layers, with the matrix associated with the lowest layer at the right. Then

Lemma 53 (Preservation of Products by Translation). For layer l ∈ {0, 1, . . . , L}, for any
S,S1,S2 ∈ P for any k > l, for any m ≥ l, and for any w ∈ V̂I, by induction over the lay-
ers l:

61

3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347

Under review as a conference paper at ICLR 2025

(A) Preservation of Products with Vector Parameters

ΓS,w(ŷ
(l)
i) = wT

(∏
S∈S

S

)
y
(l)
i

if ∀l′ ∈ {1, . . . , L} : [(Vl′,h′ ∈ S)⇒ l′ > l]

(B) Preservation of Attention Logits (I)∑
v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,k,h,v,w(ŷ
(l)
i) · ΩS2,T1,T2,k,h,v,w(ŷ

(l)
j)

= (y
(l)
i)T

(∏
S∈S1

S

)T

KT
k,hQk,h

(∏
S∈S2

S

)
y
(l)
j

if S1 ∪ S2 ̸= ∅
(C) Preservation of Attention Logits (II)

ϕk,h(i, j) +
∑

v,w,T1≥l∅,T2≥l∅

Λ∅,T1,T2,k,h,v,w(ŷ
(l)
i) · Ω∅,T1,T2,k,h,v,w(ŷ

(l)
j)

= (y
(l)
i)TKT

k,hQk,hy
(l)
j

(D) Preservation of Attention Logits (III)∑
v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,k,h,v,w((B̂m)·,s) · ΩS2,T1,T2,k,h,v,w(ŷ
(l)
j)

= (Bm)T·,s

(∏
S∈S1

S

)T

KT
k,hQk,h

(∏
S∈S2

S

)
y
(l)
j

(E) Preservation of Attention Logits (IV)∑
v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,k,h,v,w(ŷ
(l)
i) · ΩS2,T1,T2,k,h,v,w((B̂m)·,s)

= (y
(l)
i)T

(∏
S∈S1

S

)T

KT
k,hQk,h

(∏
S∈S2

S

)
(Bm)·,s

(55)

and analogous statements with the post-MLP activations y(l)
i , ŷ

(l)
i replaced by the pre-MLP activa-

tions Y (l)
i , Ŷ

(l)
i .

From (A), we in particular obtain the correctness of the translation by noting that next-token predic-
tions are replicated:

ÛT
σ ŷ

(L)
i = Γ∅,Uσ (ŷ

(L)
i) = UT

σ y
(L)
i (56)

Proof of Lemma 53. The formal proof proceeds by induction over l. It is conceptually straight-
forward, consisting of expanding definitions and taking care of the special treatment of positional
encodings. We show it in considerable detail to build intuition. For the inductive base, at l = 0,
where y(0)

i is a sum of a word embedding and a positional encoding, the claims are immediate from
the definitions. For expository purposes, and for building intuition for the more complex inductive
step, we show them in more detail. Starting from (for simplicity, we are taking the offset to be zero
here):

y
(0)
i = Exi + pi

ŷ
(0)
i = Êxi + p̂i

(57)

62

3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

Under review as a conference paper at ICLR 2025

we first, for (A), write

ΓS,w(Êxi + p̂i) = ΓS,w(Êxi) + ΓS,w(p̂i)

= βS,w,Exi
+ βS,w,pi%∆

= wT

(∏
S∈S

S

)
y
(0)
i

proving case (A) of the inductive base. Second, for (B) and (C), write using the linearity of Λ...,Ω...:∑
v,w,T1≥0S1,T2≥0S2

ΛS1,T1,T2,k,h,v,w(Êxi + p̂i) · ΩS2,T1,T2,k,h,v,w(Êxi + p̂i)

=
∑

v,w,T1≥0S1,T2≥0S2

ΛS1,T1,T2,k,h,v,w(Êxi) · ΩS2,T1,T2,k,h,v,w(Êxi)

+
∑

v,w,T1≥0S1,T2≥0S2

ΛS1,T1,T2,k,h,v,w(Êxi) · ΩS2,T1,T2,k,h,v,w(p̂i)

+
∑

v,w,T1≥0S1,T2≥0S2

ΛS1,T1,T2,k,h,v,w(p̂i) · ΩS2,T1,T2,k,h,v,w(Êxi)

+
∑

v,w,T1≥0S1,T2≥0S2

ΛS1,T1,T2,k,h,v,w(p̂i) · ΩS2,T1,T2,k,h,v,w(p̂i)

The only way of satisfying T ≥0 S is for T to equal S. After plugging in the definitions, the sums
collapse due to the indicator terms in the definition of the token and positional encodings, and we
obtain after simplifying:

=αk,h,S1,S2,Exi ,Exj

+ αS1,S1,S2,k,h,Exi ,pj%∆

+ αS1,S1,S2,k,h,pi%∆,Exj

+ αS1,S1,S2,k,h,pi%∆,pj%∆
· 1S1∪S2 ̸=∅

By translation-invariance, the second and third term are independent of the positional encod-
ing arguments. By our choice of ∆ at the beginning of the proof, the fourth term equals
αS1,S1,S2,k,h,pi,pj · 1S1∪S2 ̸=∅, as this is periodic in (i, j) with periodicity ∆. We can thus rewrite as

=αk,h,S1,S2,Exi ,Exj

+ αS1,S1,S2,k,h,Exi ,pj

+ αS1,S1,S2,k,h,pi,Exj

+ αS1,S1,S2,k,h,pi,pj · 1S1∪S2 ̸=∅

Applying the definition of α..., the above equals

=

{
(y

(0)
i)TKT

k,hQk,h(y
(0)
j)− ϕk,h(i, j) S1 ∪ S2 = ∅

(y
(0)
i)T

(∏
S∈S1

S
)T

KT
k,hQk,h

(∏
S∈S2

S
)
(y

(0)
j) S1 ∪ S2 ̸= ∅

This establishes cases (B) and (C) of the inductive base. The proof of cases (D) and (E) in the
inductive base is analogous.

For the inductive step, the intuition is that each activation y
(l)
i is a linear combination of vector

parameters, with different sets of value matrices acting on those:

y
(l)
i =

∑
v∈VO

∑
S∈P

λv,i,l,S

(∏
S∈S

S

)
v (58)

where the coefficients are determined by attention weights and the activations of MLP hidden units.
Importantly, the attention weights and MLP activations turn out to be the same in the Limit Trans-
former as in the original transformer, provided we can prove that attention and MLPs are faithfully

63

3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455

Under review as a conference paper at ICLR 2025

simulated (which indeed follows from cases A and C of the inductive claim). Hence, the same
decomposition is valid in the Limit Transformer:

ŷ
(l)
i =

∑
v∈VO

∑
S∈P

λv,i,l,S

(∏
S∈S

Ŝ

)
v̂ (59)

with the same λv,i,l,S coefficients as in the original transformer. Then, case (A) of the inductive
claim follows intuitively by the calculation:

wTy
(l)
i =

∑
v∈VO

∑
S∈P

λv,i,l,Sw
T

(∏
S∈S

S

)
v

=
∑

v∈VO

∑
S∈P

λv,i,l,Sŵ
T

(∏
S∈S

Ŝ

)
v̂

=ŵT
∑

v∈VO

∑
S∈P

λv,i,l,S

(∏
S∈S

Ŝ

)
v̂

=ŵT ŷ
(l)
i

which is warranted provided that, when v ∈ VO and w ∈ VI, we have that ŵT
(∏

S∈S Ŝ
)
v̂

equals wT
(∏

S∈S S
)
v – this is ensured because of the way the vector parameters v̂ and the value

matrices V̂l,h are defined. The same idea establishes cases (D–E). A similar, though somewhat more
complex (due to the bilinear nature of attention) calculation establishes cases (B–C). Formalizing
this reasoning essentially amounts to inductively proving cases (A–E); it will not be necessary to
keep track of an explicit decomposition using λ... coefficients; rather, one can mechanically verify
these conditions inductively by plugging in definitions and applying the inductive hypothesis.

Formally proving the inductive step consists in mechanically expanding definitions and applying
the inductive hypothesis. First, (C) applied to layer l− 1 entails that the attention logits for attention
heads operating in layer l match those of the original transformer. We start by establishing the
inductive step for the pre-MLP activations Y (l)

i . Starting from:

Y
(l)
i =y

(l−1)
i +

H∑
h=1

i∑
j=1

ã
(l,h)
i,j Vl,hy

(l−1)
j

Ŷ
(l)
i =ŷ

(l−1)
i +

H∑
h=1

i∑
j=1

ã
(l,h)
i,j V̂l,hŷ

(l−1)
j

(60)

we show the inductive step first for (A) in the case of the pre-MLP activation Y
(l)
i . For S satisfying

∀l′ ∈ {1, . . . , L} : [(Vl′,h′ ∈ S)⇒ l′ > l] (61)

we consider

ΓS,w

(
Ŷ

(l)
i

)
=ΓS,w

(
ŷ
(l−1)
i

)
+

H∑
h=1

i∑
j=1

ã
(l,h)
i,j ΓS,w

(
V̂l,hŷ

(l−1)
j

)

=ΓS,w

(
ŷ
(l−1)
i

)
+

H∑
h=1

i∑
j=1

ã
(l,h)
i,j ΓS∪{Vl,h},w

(
ŷ
(l−1)
j

)
where ãi,j denotes attention weights. The claim here now follows from the inductive hypothesis for
(A):

=wT

(∏
S∈S

S

)
y
(l−1)
i +

H∑
h=1

i∑
j=1

ã
(l,h)
i,j wT

(∏
S∈S

S

)
Vl,hy

(l−1)
j

=wT

(∏
S∈S

S

)
Y

(l)
i

64

3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509

Under review as a conference paper at ICLR 2025

where the last step used (60). Next, we consider (B) and (C). First, for (B), assuming T1 ∪ T2 ̸= ∅,
we first find using (60) and the linearity of Λ... and Ω... (portions changed marked in blue):

∑
v,w,T1,T2

ΛS1,T1,T2,k,h,v,w(Ŷ
(l)
i)ΩS2,T1,T2,k,h,v,w(Ŷ

(l)
j)

=
∑

v,w,T1,T2

ΛS1,T1,T2,k,h,v,w

(
ŷ
(l−1)
i +

H∑
h′=1

i∑
w=1

ã
(l,h′)
iw V̂l,h′ ŷ

(l−1)
w

)

· ΩS2,T1,T2,k,h,v,w

(
ŷ
(l−1)
j +

H∑
h′′=1

j∑
w′=1

ã
(l,h′′)
jw′ V̂l,h′′ ŷ

(l−1)
w′

)

=
∑

v,w,T1,T2

ΛS1,T1,T2,k,h,v,w

(
ŷ
(l−1)
i

)
ΩS2,T1,T2,k,h,v,w

(
ŷ
(l−1)
j

)

+
∑

v,w,T1,T2

ΛS1,T1,T2,k,h,v,w

(
ŷ
(l−1)
i

) H∑
h′=1

j∑
w=1

ã
(l,h′)
jw ΩS2,T1,T2,l,h,v,w

(
V̂l,h′ ŷ

(l−1)
w

)

+
∑

v,w,T1,T2

H∑
h′′=1

i∑
w=1

ã
(l,h′′)
iw ΛS1,T1,T2,l,h,v,w

(
V̂l,h′′ ŷ

(l−1)
w

)
ΩS2,T1,T2,k,h,v,w

(
ŷ
(l−1)
j

)

+
∑

v,w,T1,T2

H∑
h′=1

i∑
w=1

ã
(l,h′)
iw ΛS1,T1,T2,k,h,v,w

(
V̂l,h′ ŷ

(l−1)
w

)

·
H∑

h′′=1

j∑
w′=1

ã
(l,h′′)
jw′ ΩS2,T1,T2,k,h,v,w

(
V̂l,h′′ ŷ

(l−1)
w′

)

Now the definition of V̂l,h allows us to rewrite this as:

=
∑

v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,l,h,v,w

(
ŷ
(l−1)
i

)
ΩS2,T1,T2,l,h,v,w

(
ŷ
(l−1)
j

)

+
∑

v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,l,h,v,w

(
ŷ
(l−1)
i

) H∑
h′=1

j∑
w=1

ã
(l,h′)
jw ΩS2∪{Vl,h′},T1,T2,l,h,v,w

(
ŷ
(l−1)
w

)

+
∑

v,w,T1≥lS1,T2≥lS2

H∑
h′=1

i∑
w=1

ã
(l,h′)
iw ΛS1∪{Vl,h′},T1,T2,l,h,v,w

(
ŷ
(l−1)
w

)
ΩS2,T1,T2,l,h,v,w

(
ŷ
(l−1)
j

)

+
∑

v,w,T1≥lS1,T2≥lS2

H∑
h′=1

i∑
j=1

ã
(l,h)
i,j ΛS1∪{Vl,h′},T1,T2,l,h′,v,w

(
ŷ
(l−1)
j

)

·
H∑

h′′=1

j∑
w′=1

ã
(l,h′′)
jw′ ΩS2∪{Vl,h′′},T1,T2,l,h,v,w

(
ŷ
(l−1)
w′

)

65

3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563

Under review as a conference paper at ICLR 2025

In order to directly apply the inductive hypothesis, we rearrange the summations:

=
∑

v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,l,h,v,w

(
ŷ
(l−1)
i

)
ΩS2,T1,T2,l,h,v,w

(
ŷ
(l−1)
j

)

+

H∑
h′=1

j∑
w=1

ã
(l,h′)
jw

∑
v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,l,h,v,w

(
ŷ
(l−1)
i

)
ΩS2∪{Vl,h′},T1,T2,l,h,v,w

(
ŷ
(l−1)
w

)

+

H∑
h′=1

i∑
w=1

ã
(l,h′)
iw

∑
v,w,T1≥lS1,T2≥lS2

ΛS1∪{Vl,h′},T1,T2,l,h,v,w

(
ŷ
(l−1)
w

)
ΩS2,T1,T2,l,h,v,w

(
ŷ
(l−1)
j

)

+

H∑
h′=1

i∑
w=1

ã
(l,h′)
iw

H∑
h′′=1

j∑
w′=1

ã
(l,h′′)
jw′

∑
v,w,T1≥lS1,T2≥lS2

ΛS1∪{Vl,h′},T1,T2,l,h,v,w

(
ŷ
(l−1)
w

)

· ΩS2∪{Vl,h′′},T1,T2,l,h,v,w

(
ŷ
(l−1)
w′

)
Note that, as above, S1, S2 are fixed and the sums run over T1, T2. We can rewrite the above as:

=
∑

v,w,T1≥l−1S1,T2≥l−1S2

ΛS1,T1,T2,l,h,v,w

(
ŷ
(l−1)
i

)
ΩS2,T1,T2,l,h,v,w

(
ŷ
(l−1)
j

)

+

H∑
h′=1

j∑
w=1

ã
(l,h′)
jw

∑
v,w,T1≥l−1S1,T2≥l−1S2∪{Vl,h′}

ΛS1,T1,T2,l,h,v,w

(
ŷ
(l−1)
i

)

· ΩS2∪{Vl,h},T1,T2,l,h,v,w

(
ŷ
(l−1)
w

)
+

H∑
h′=1

i∑
w=1

ã
(l,h)
i,j

∑
v,w,T1≥l−1S1∪{Vl,h′},T2≥l−1S2

ΛS1∪{Vl,h′},T1,T2,l,h,v,w

(
ŷ
(l−1)
j

)

· ΩS2,T1,T2,l,h,v,w

(
ŷ
(l−1)
j

)
+

H∑
h′=1

i∑
w=1

ã
(l,h′)
iw

H∑
h′′=1

j∑
w′=1

ã
(l,h′′)
jw′

∑
v,w,T1≥l−1S1∪{Vl,h′′},

T2≥l−1S2∪{Vl,h′}

ΛS1∪{Vl,h′},T1,T2,l,h,v,w

(
ŷ
(l−1)
w

)

· ΩS2∪{Vl,h′′},T1,T2,l,h,v,w

(
ŷ
(l−1)
w′

)
We are now ready to apply the inductive hypothesis: Directly plugging the inductive hypothesis for
(B) into the second through fourth terms gives us:

=
∑

v,w,T1≥l−1S1,T2≥l−1S2

ΛS1,T1,T2,l,h,v,w

(
ŷ
(l−1)
i

)
ΩS2,T1,T2,l,h,v,w

(
ŷ
(l−1)
j

)

+

H∑
h′=1

j∑
w=1

ã
(l,h′)
jw (y

(l−1)
i)T

(∏
S∈S1

S

)T

KT
k,hQk,h

(∏
S∈S2

S

)T

Vl,hy
(l−1)
w

+

H∑
h′=1

i∑
w=1

ã
(l,h′)
iw y

(l−1)
j V T

l,h′

(∏
S∈S1

S

)T

KT
l,hQl,h

(∏
S∈S2

S

)
y
(l−1)
j

+

H∑
h′=1

i∑
w=1

ã
(l,h′)
iw

H∑
h′′=1

j∑
w′=1

ã
(l,h′′)
jw′ (y(l−1)

w)TV T
l,h′

(∏
S∈S1

S

)T

KT
l,hQl,h

(∏
S∈S2

S

)
Vl,h′′y

(l−1)
w′

66

3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617

Under review as a conference paper at ICLR 2025

We now distinguish two cases, for proving (B) and (C). The first one is that S1 = S2 = ∅. In this
case, by case (C) of the inductive hypothesis:

=(y
(l−1)
i)TKT

k,hQk,hy
(l−1)
j − ϕk,h(i, j)

+

H∑
h′=1

j∑
w=1

ã
(l,h′)
jw (y

(l−1)
i)TKT

k,hQk,hVl,hy
(l−1)
w

+

H∑
h′=1

i∑
w=1

ã
(l,h′)
iw y

(l−1)
j V T

l,h′KT
l,hQl,hy

(l−1)
j

+

H∑
h′=1

i∑
w=1

ã
(l,h′)
iw

H∑
h′′=1

j∑
w′=1

ã
(l,h′′)
jw′ (y(l−1)

w)TV T
l,h′KT

l,hQl,hVl,h′′y
(l−1)
w′

Now, applying (60) again, we rearrange to sums to obtain the conclusion

= (Y
(l)
i)TKT

k,hQk,hY
(l)
j − ϕk,h(i, j) (62)

proving (upon rearranging) the inductive step for (C) in the case of Y (l)
i . In the second case, S1 ∪

S2 ̸= ∅; here, we use case (B) of the inductive hypothesis to instead rewrite as

=(y
(l−1)
i)T

(∏
S∈S1

S

)T

KT
k,hQk,h

(∏
S∈S2

S

)
(y

(l−1)
j)

+

H∑
h′=1

j∑
w=1

ã
(l,h′)
jw (y

(l−1)
i)T

(∏
S∈S1

S

)T

KT
k,hQk,h

(∏
S∈S2

S

)
Vl,h′y(l−1)

w

+

H∑
h′=1

i∑
w=1

ã
(l,h′)
iw y

(l−1)
j V T

l,h′

(∏
S∈S1

S

)T

KT
l,hQl,h

(∏
S∈S2

S

)
y
(l−1)
j

+

H∑
h′=1

i∑
w=1

ã
(l,h′)
iw

H∑
h′′=1

j∑
w′=1

ã
(l,h′′)
jw′ (y(l−1)

w)TV T
l,h′

(∏
S∈S1

S

)T

KT
l,hQl,h

(∏
S∈S2

S

)
Vl,h′′y

(l−1)
w′

Now, applying (60) again, we rearrange to sums to obtain the conclusion

= (Y
(l)
i)T

(∏
S∈S1

S

)T

KT
k,hQk,h

(∏
S∈S2

S

)
Y

(l)
j (63)

This proves the inductive step for (B) in the case of Y (l)
i . We next address the inductive step for (D)

in the case of the pre-MLP activation:∑
v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,k,h,v,w(B̂m) · ΩS2,T1,T2,k,h,v,w(Ŷ
(l)
j)

=(Bm)T

(∏
S∈S1

S

)T

KT
k,hQk,h

(∏
S∈S2

S

)
Y

(l)
j

By unfolding Ŷ
(l)
j using (60) and using the linearity of ΩS2,T1,T2,k,h,v,w, the claim follows directly

from the inductive hypothesis for (D). The same reasoning applies to (E). Overall, we have proven
the inductive step (A–E) for the pre-MLP activations Y (l)

i .

We now need to show that the inductive step also holds for the post-MLP activations. Recall that the
MLP acts as

y
(l)
i = Y

(l)
i +

dMLP∑
s=1

(Bl)·,s · ψl,s

(
(Al)s,·(Y

(l)
i) + (bl)s

)
ŷ
(l)
i = Ŷ

(l)
i +

dMLP∑
s=1

(B̂l)s,· · ψl,s

(
(Âl)s,·(Ŷ

(l)
i) + (b̂l)s

) (64)

67

3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671

Under review as a conference paper at ICLR 2025

The proof proceeds by expanding this equation and reducing the claim to the already-proven induc-
tive step for pre-MLP activations (for handling the direct contribution from the pre-MLP activation),
and cases (D) and (E) (for handling the contributions of the MLP units). First, we note that, for each
l, s, by the case (A) of the inductive hypothesis and by the definition of b̂l,

ψl,s

(
(Al)s,·(Y

(l)
i) + (bl)s

)
= ψl,s

(
(Âl)s,·(Ŷ

(l)
i) + (b̂l)s

)
(65)

We will abbreviate this number as Ξl,s,i ∈ R. We now prove the case (A) of the inductive step for
the post-MLP activation:

ΓS,w(ŷ
(l)
i) =ΓS,w(Ŷ

(l)
i +

dMLP∑
s=1

(B̂l)s,· · Ξl,s,i)

=ΓS,w(Ŷ
(l)
i) +

dMLP∑
s=1

ΓS,w((B̂l)s,·) · Ξl,s,i

=wT

(∏
S∈S

S

)
Y

(l)
i +

dMLP∑
s=1

wT

(∏
S∈S

S

)
(Bl)·,s · Ξl,s,i

=wT

(∏
S∈S

S

)
y
(l)
i

To prove cases (B) and (C) for the post-MLP activations y(l)
i , we now consider

∑
v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,k,h,v,w

(
ŷ
(l)
i

)
· ΩS2,T1,T2,k,h,v,w

(
ŷ
(l)
j

)

=
∑

v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,k,h,v,w

(
Ŷ

(l)
i +

dMLP∑
s=1

Ξl,s,i · (B̂l)·,s

)

· ΩS2,T1,T2,k,h,v,w

(
Ŷ

(l)
j +

dMLP∑
t=1

Ξl,t,j · (B̂l)·,t

)

=
∑

v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,k,h,v,w

(
Ŷ

(l)
i

)
ΩS2,T1,T2,k,h,v,w

(
Ŷ

(l)
j

)

+

dMLP∑
s=1

Ξl,s,j ·
∑

v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,k,h,v,w

(
Ŷ

(l)
i

)
ΩS2,T1,T2,k,h,v,w

(
(B̂l)·,s

)

+

dMLP∑
s=1

Ξl,s,i ·
∑

v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,k,h,v,w

(
(B̂l)·,s

)
ΩS2,T1,T2,k,h,v,w

(
Ŷ

(l)
j

)

+

dMLP∑
s=1

Ξl,s,i ·
dMLP∑
t=1

Ξl,t,j ·
∑

v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,k,h,v,w

(
(B̂l)·,s

)
· ΩS2,T1,T2,k,h,v,w

(
(B̂l)·,t

)

68

3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725

Under review as a conference paper at ICLR 2025

We apply the inductive step for the pre-MLP activation in cases (D), and (E) to rewrite the second
and third term, and apply the definition of B̂l to rewrite the fourth term:

=
∑

v,w,T1≥lS1,T2≥lS2

ΛS1,T1,T2,k,h,v,w

(
Ŷ

(l)
i

)
ΩS2,T1,T2,k,h,v,w

(
Ŷ

(l)
j

)

+

dMLP∑
s=1

Ξl,s,j · (Y (l)
i)T

(∏
S∈S1

S

)T

KT
k,hQk,h

(∏
S∈S2

S

)
(Bl)s,·

+

dMLP∑
s=1

Ξl,s,i · (Bl)
T
·,s

(∏
S∈S1

S

)T

KT
k,hQk,h

(∏
S∈S2

S

)
Y

(l)
j

+

dMLP∑
s=1

Ξl,s,i ·
dMLP∑
t=1

Ξl,t,j · (Bl)
T
·,s(

∏
S∈S1

S)TKT
k,hQk,h(

∏
S∈S2

S)(Bl)·,t

In the case where S1 = S2 = ∅, we obtain using case (C) of the inductive hypothesis for the
pre-MLP activation:

=(Y
(l)
i)TKT

k,hQk,hY
(l)
j − ϕk,h(i, j)

+

dMLP∑
s=1

Ξl,s,j · (Y (l)
i)TKT

k,hQk,h(Bl)s,·

+

dMLP∑
s=1

Ξl,s,i · (Bl)
T
·,sK

T
k,hQk,hY

(l)
j

+

dMLP∑
s=1

Ξl,s,i ·
dMLP∑
t=1

Ξl,t,j · (Bl)
T
·,sK

T
k,hQk,h(Bl)·,t

Using (64) and the definition of Ξl,s,i, this rewrites to

=(y
(l)
i)TKT

k,hQk,hy
(l)
j − ϕk,h(i, j)

from which case (B) of the inductive hypothesis follows by rearranging. If instead S1 ∪ S2 ̸= ∅, the
same reasoning leads to case (C) of the inductive hypothesis. Analogous reasoning establishes cases
(D) and (E) for the post-MLP activations. Overall, we have established the inductive step for cases
(A–E) for the post-MLP activations.

G ADDITIONAL SUPPORTING RESULTS

G.1 REGULARIZER AT INITIALIZATION

Here, we provide evidence that the additional regularizer (8) is bounded independently of N under
plausible initializations of parameters. Recall

(8) =

L∑
l=1

H∑
h=1

N(T)∑
j=1

∣∣pT
1 K

T
l,hQl,hpj

∣∣2 (66)

Intuitively, and as formalized in Proposition 54, when independently initializing the positional en-
codings pi, their inner products as mediated through KT

l,hQl,h will tend to be small. As long as the
width grows linearly with N , the aggregate value of (8) will tend to be bounded independently of
N . Note that (8) only includes products involving position 1, which due to translation invariance for
T ∈ Θn places a bound on all products. As standard training does not enforce translation invari-
ance of the products pT

i K
T
l,hQl,hpj , one may also be interested in a variant that takes all pairs of

69

3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779

Under review as a conference paper at ICLR 2025

positions into account, to the extent that they can enter causal attention:

1

N(T)

L∑
l=1

H∑
h=1

N(T)∑
j=1

j∑
i=1

∣∣pT
i K

T
l,hQl,hpj

∣∣2 (67)

Here, the same conclusion holds. We describe it formally, at the example of the second variant, in
Proposition 54.

Proposition 54. Assume d = Θ(N). Assume the entries of each p1, . . . ,pN ∈ Rd and KT
l,hQl,h ∈

Rd×d (l = 1, . . . , L; h = 1, . . . ,H) are initialized i.i.d. from N (0, 1d). The number of layers L and
heads H are constant with respect to N . Then

E

 1

N

L∑
l=1

H∑
h=1

∑
1≤i≤j≤N

|pT
i K

T
l,hQl,hpj |2

 = O(1) (68)

Proof. We begin by showing that the expectation of each term in the sum is O(1/d) and hence the
sum is bounded by a constant. There are two cases for the expectation of terms: (i) The first is i ̸= j
when the vectors pi and pj are independent and the second is i = j when pi and pj are dependent.

For this section, let K,Q denote the matrices Kl,hQl,h for any fixed l, h. Let Kij and Qij denote
the entry of the corresponding matrices ith column and jth row. Let A = KTQ ∈ Rd×d. Note that
the expectation of any entry of A,

E[Aij] = E[KT
i Qj] = E[

d∑
k=1

Ki,kQj,k] = 0.

Further,

E[A2
ij] = E[(

d∑
k=1

Ki,kQj,k)
2] = E[

d∑
k=1

K2
i,kQ

2
j,k] + 2E[

d−1∑
m=1

d∑
n=m+1

Ki,mQj,mKi,nQj,n]

= E[
d∑

k=1

K2
i,kQ

2
j,k] = dσ4 = σ2

For products of two different entries Ai,jAmn, note that E[Ai,jAm,n] =

E[
∑d

u=1

∑d
v=1 Ki,uQj,uKm,vQn,v)] which is 0 when i ̸= m or j ̸= n.

For each term |pT
i Apj |2, we have

E[|pT
i AQpj |2] =E[(

d∑
u=1

d∑
v=1

pi,uAu,vpj,v)
2]

=E[
d∑

u=1

d∑
v=1

(pi,uAu,vpj,v)
2] + 2E[

∑
u,v ̸=m,n

pi,upi,vAu,vAm,npj,vpj,n]

=E[
d∑

u=1

d∑
v=1

p2
i,uA

2
u,vp

2
j,v]

since all terms of the form E[pi,upi,vAu,vAm,npj,vpj,n] are 0 due to independence of A and p.

For i ̸= j, we have

E[
d∑

u=1

d∑
v=1

p2
i,uA

2
u,vp

2
j,v] =

d∑
u=1

d∑
v=1

E[p2
i,u]E[A2

u,v]E[p2
j,v] = d2σ6 =

1

d
.

70

3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833

Under review as a conference paper at ICLR 2025

For i = j, we have

E[
d∑

u=1

d∑
v=1

p2
i,uA

2
u,vp

2
i,v] = E[

d∑
u=1

p4
i,uA

2
u,v] + E[

d∑
u=1

∑
v ̸=u

p2
i,uA

2
u,vp

2
i,v]

= d(3σ6) + (d2 − d)σ6 <
3

d
.

Since d = Θ(N) and each term is less than 3
d , we have that the sum in Eq.68 is O(1).

G.2 EMPIRICAL LENGTH GENERALIZATION OF POSITIONAL FUNCTIONS

Here, we show empirically that, when directly fitting parameters so that a product piK
TQpj re-

produces some function ϕ(·, ·) at smaller distances, it will length generalize when these are local
or periodic, but under different conditions matching the role of local and periodic functions in our
theory. Specifically, we show that they length-generalize well at large d when they are LOCAL;
whereas, when d is smaller, length generalization works well when they are PERIODIC. Length
generalization is poor on functions that are neither local nor periodic.

Experimental Setup We randomly initialize 200 position embeddings {pi ∈ Rd : 1 ≤ i < 201},
as well as query and key matrices, Q,K ∈ Rd×d. We experiment with d = {32, 256}. We optimize
the mean square error (MSE) between pT

i K
TQpj and ϕ(·, ·) on length of 50, and test on length

{50, 100, 150}. Concretely, during training, we sample random offsets o from [0, 150] and take
the sequence of p1+o, . . . ,p50+o to compute the loss. When testing on length n, we compute the
average loss over all offsets in [0, 200-n]. We ignore the loss on those entries where j < i to
mimic causal masking. The ϕ(·, ·) we use in experiments (except for the one combined from two
ϕ(·, ·)) only takes two values, 0 when condition is false and 2 log 50 when condition is true. We thus
use different condition to describe different ϕ(·, ·). For example, we use ϕ : j=i-c to denote the
following function:

ϕ(j, i) =

{
2 log 50 j = i− c
0 else

(69)

where c is a constant number.

The embeddings and weight matrices are trained with Adam optimizer, using batch size of 64,
learning rate of 1e-3, for 15k steps. Additionally, we add mean squared weights (i.e., squared
Frobenius norm divided by number of elements) to the loss to mimic training regularizer, with
coefficient of 0.01.

Results are in Figure 5 and 6. Note that in both figures, y axis is using logarithmic scale above 1.0
and stays linear scale below 1.0. In the last column of 6, “combined” denotes functions that combine
two functions as follows: ϕ = ϕ1 + ϕ2, where ϕ1 : j=i-c and ϕ2 : (i-j)=c2 mod c1.

G.3 BOUND FOR ENCODINGS NORM IN TERMS OF FUNCTION COMPLEXITY

Recall that our regularizer includes a penalty (8) on attention dot products. Here, we discuss a
conjecture:

Conjecture 55. The term (8) can be removed from the regularizer while maintaining a (potentially
weaker) length generalization guarantee for Limit Transformers.

To provide a heuristic argument for this, assume that for each upper bound N on the input length,
we have a configuration of positional encodings and the matrix A, such that the following property
holds: For any indices N ≥ j > i > 0, let

pT
i Apj = F (j − i) (70)

where F : N→ R is a function that maps to numbers representable in p-bit precision. The function
F and the precision p are chosen globally, across the different N’s. Boundedness of R(Tn) across

71

3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887

Under review as a conference paper at ICLR 2025

Figure 5: Appendix G.2: MSE loss in fitting (length = 50) and generalizing (higher lengths) func-
tions ϕ(·, ·) with products pT

j K
TQpi. We show local functions testing if j = i−c (left), if j > i−c

(center), periodic functions testing whether i−j ≡ c2 (modc1) (right). We show result at small (top,
d = 32) and high (bottom, d = 256) dimensionality. Local functions length-generalize well when
dimensionality is high (bottom left, bottom center); generalization is more successful with functions
concentrated on few pairs (bottom left is nonzero at only one value of j−i; bottom center is nonzero
at c different values of j − i). Periodic functions length-generalize well when dimensionality is low
(top right). The results match the distinct roles played by local and periodic functions in our theo-
retical constructions: Periodic functions are mediated by bounded-rank products (Lemma 48), local
functions are mediated by the products pTKT

l,hQp.

Figure 6: Appendix G.2: MSE loss in fitting (length = 50) and generalizing (higher lengths) func-
tions ϕ(·, ·) with products pT

j K
TQpi. We show functions that are neither local nor periodic, which

tests if j < i − c (left), if i − j is prime number (center), and a function created by adding a local
and a periodic function (right). We show result at small (top, d = 32) and high (bottom, d = 256)
dimensionality. Compared with results in Figure 5, we can see that such functions, neither local nor
periodic, length-generalize poorly.

72

3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941

Under review as a conference paper at ICLR 2025

n entails ∥pi∥2, ∥A∥ < C, for C a global constant. We also know that supx∈N |F (x)| < ∞.
We conjecture that one can use these assumptions, and Lemma 56, to prove that F cannot be “too
complicated”. Specifically, we conjecture that F will be ultimately periodic: when x exceeds
some threshold, F (x + ∆) = F (x) for some period ∆. For, if F is not ultimately periodic, we
hope to construct a matrix G whose nuclear norm can be made arbitrarily large, so large as to give
a superconstant lower bound on ∥A∥ – which is a contradiction. First note that Lemma 56 even
holds if G = Y TAX where X,Y are two different matrices with n unit-norm columns. That
is, we can consider a matrix Gij = pT

xiApyj where we conjecture that one can choose x1, ...,xn

and y1, ...,yn to give an arbitrarily large lower bound on ∥A∥, under the assumption that F is not
ultimately periodic. Here, it is important that F maps to fixed-precision output; otherwise, one could
get functions that have irrational periods and thus are not periodic when restricted to N.

Lemma 56. Let x1, . . . , xn ∈ Rd be vectors with ∥xi∥2 = 1, and let A ∈ Rd×d arbitrary. Let
G ∈ Rn×n such that Gij = xTi Axj . Then

∥A∥ ≥ ∥G∥∗
n

(71)

where ∥A∥ denotes the spectral norm.

Proof. First, note that for any matrix B = UΣV , we have

∥B∥∗ = tr(Σ) = tr(ΣV V TUTU) = tr(UΣV V TUT) = tr(BV TUT) (72)

where V TUT has each singular value bounded by 1 (in fact, it’s orthogonal). In other words,
∥B∥∗ = tr(BM) where M is an orthogonal matrix.

For any two real-valued and possibly non-square matrices, we have

tr(ATB) ≤ ∥A∥F ∥B∥F (73)

and by submultiplicativity, we have

∥AB∥F ≤ ∥A∥∥B∥F (74)

Using Eq. 72 and the above two properties, it follows that,

tr(XTAXM) = tr(AXMXT) ≤ ∥XTAT ∥F ∥MXT ∥F

≤ ∥AX∥F ∥MXT ∥F ≤ ∥A∥∥X∥F ∥M∥∥X∥F ≤ n∥A∥.

G.4 POSITIONAL ABILITIES IN NOPE VS APE

A recent study by Kazemnejad et al. (2024) found NoPE to work better than APE at length gener-
alization and to theoretically simulate positional information – an apparent contrast to our findings,
which find APE to be more powerful than NoPE both theoretically and empirically (Figure 1). There
are a few important aspects that resolve this apparent contradiction.

1. The APE setting in Kazemnejad et al. (2024) is different from ours, as they used fixed sinu-
soidal functions (Vaswani et al., 2017), whereas we follow Zhou et al. (2024a) in examining
the potentially more expressive case of arbitrary learnable positional encodings.

2. Kazemnejad et al. (2024) trained APE transformers only on an initial segment of the full
set of positions, so that the positional encodings at higher positions did not appear during
training. This inherently puts APE at a potential disadvantage compared to our setting,
where (in line both with Zhou et al. (2024a) and standard LLM training) all positional
encodings appear during training.

73

3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995

Under review as a conference paper at ICLR 2025

3. In support of their empirical findings, Kazemnejad et al. (2024) also showed theoretically
that NoPE transformers can simulate positional information. Specifically, they found (their
Theorem 1) that NoPE transformers can compute an activation with value 1/t at position
t, e.g. by attending uniformly and reading out the contribution coming from a BOS token.
Importantly, this is weaker than the ways in which APE transformers can use positional
information. For instance, distinguishing close-by positions, say t − 1 and t − 2, in such
an encoding requires rapidly increasing parameter values as t → ∞, as the values get
arbitrarily close to 0. In this sense, even a simple task such as an induction head, which
requires attention from t to t−1, requires parameter norms rapidly increasing with the input
length13, not allowed under our inference procedure. In our theoretical framework, NoPE
is not predicted to length-generalize as well as APE on such a task. Indeed, empirically,
we find NoPE transformers not to perform well on the induction head task, and a variety
of other tasks not expressible in C-RASP[∅] (dotted lines in Figure 1) despite extensive
hyperparameter search (Figure 1 and Section G.7).

We further note that Kazemnejad et al. (2024) also report strong performance for NoPE on a copying
task (their Figure 3), in apparent contradiction to our finding that COPY is hard even for APE.
However, note COPY in Kazemnejad et al. (2024) had three variants: The first two just asked the
model to replicate the number of tokens but not their identities, a task well in C-RASP[∅], and
indeed NoPE worked well (their Figure F.4). Their third variant matched our COPY task and is not
in C-RASP[periodic,local]; neither NoPE nor APE generalize to 2x training length (their Figure
F.4), in line with both our empirical and theoretical findings.

G.5 CONCEPTUAL RELATION TO SOLOMONOFF INDUCTION

A standard approach to studying learning in algorithmic information theory, specifically Solomonoff
Induction (Li & Vitányi, 2008), does not specifically ask for identifying the correct function at some
point, but rather aims to bound the overall number of mistakes. In the case of Solomonoff Induction,
computability of the underlying function guarantees that this number is finite. Here, we show that
our length generalization guarantee can also be viewed as bounding the number of mistakes made
by the inference procedure:
Definition 57. When applying the Inference Procedure from Definition 6 on a target function f , we
define the Number of Errors as the summed numbers of inputs on which Tn makes a mistake:

ErrorCount(T1, T2, . . .) :=

∞∑
n=1

∑
x∈S:|x|≤n

1Tn(x,o)̸=f(x) (75)

Then we can show the following variant of Theorem 7:
Theorem 58. Let f ∈ F(Σ). Then the following are equivalent:

1. f is expressible by a Limit Transformer satisfying PERIODIC and LOCAL.

2. (Guaranteed Length Generalization) Applying the Inference Procedure from Defini-
tion 6 to f generates a sequence T1, T2, . . . with supn=1,2,3,...R(Tn) < ∞ and
ErrorCount(T1, T2, . . .) <∞.

Proof. In view of Theorem 7, it suffices to note that the following two conditions are equivalent:

1. ErrorCount(T1, T2, . . .) <∞

2. There is some N0 such that, for all m > N0, Tm matches f on all inputs of any length
k ≤ m.

13Kazemnejad et al. (2024) use an MLP to convert 1/t to t. Such an MLP would need an increasing num-
ber of hidden units as the maximum context size n grows, hence, ∥A∥F , ∥B∥F growing with n. Hence,
R(Tn)→∞ by Definition 5. Such a construction is thus not predicted to length-generalize under our theoret-
ical framework.

74

3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049

Under review as a conference paper at ICLR 2025

G.6 THE ROLE OF TRANSLATION INVARIANCE

The hypothesis class (Definition 4) assumes that product functions involving positional encodings
are translation invariant: That is, every product function involving exactly one positional encoding
is constant across positions, and for every 1 ≤ i, j, i+∆, j +∆ ≤ n,

pT
i M1 . . .Mkpj = pT

i+∆M1 . . .Mkpj+∆ (76)

whenever M1 . . .Mk is a product of parameter matrices linking the input layer, such as KT
1,hQ1,h,

V T
2,hK

T
3,h′Q3,h′V1,h′′ , and similar.

Translation invariance formalizes the idea that the algorithm employed by the transformer is the
same independently of the offset. However, it is not explicitly enforced in standard training. Here,
we justify this assumption as follows:

1. We theoretically show that translation invariance is beneficial for length generalization, by
describing a sequence of transformers Tn that violate it and that fail to length generalize on
a simple induction head task (Section G.6.1).

2. We empirically show that trained transformers often exhibit translation invariance, both in
transformers that we trained from scratch on algorithmic problems, and in GPT-2 (Sec-
tion G.6.2).

We conjecture that translation-invariance happens when the training signal itself is offset-invariant:
On the algorithmic problems, our theoretical and experimental setups assume that each training
example is presented with a random offset; hence, the target function is translation-invariant. In
the case of language modeling, the task is also approximately translation-invariant, because – ex-
cept for the beginning of a document – the structure of language (e.g., its grammar) is likely to
be largely independent of absolute position. Hence, we expect that the behavior of the model will
be approximately translation-invariant. Thus, with an offset-invariant target function, we conjec-
ture that standard training implicitly favors translation-invariance of the transformer’s algorithm.
Understanding this theoretically, in a theoretical account of SGD dynamics and generalization on
multi-layer transformers, is an interesting problem for future research.

G.6.1 NON OFFSET-INVARIANT TRANSFORMERS FAILING TO LENGTH-GENERALIZE

Here, we theoretically show on a simple induction head task how offset invariance is beneficial for
length generalization. We construct a sequence (Tn)n of transformers violating offset invariance
that each compute the induction head task at lengths ̸= n/2, but fail to compute it at length n:

Proposition 59. There is a function f ∈ F and a sequence Tn of transformers violating offset-
invariance, where n operates at lengths ≤ n, each product function piK

T
l,hQl,hpj is local for

τ = 2 where supnR(Tn) < ∞ and each Tn matches f at lengths ≤ n/2, but no Tn matches f at
length n.

This is an important contrast to the translation-invariant setup, where such a sequence Tn where (i)
supnR(Tn) < ∞ and (ii) all pT

i K
TQpj are local for a single τ < ∞ will necessarily match f at

length n when n is large. This property is used in showing our length generalization guarantee. This
property is not available when translation invariance is violated, exemplifying that offset invariance
is theoretically beneficial for length generalization.

Proof. We take f to compute a simple induction head task (Section 4.1). There is a simple
translation-invariant construction: In Layer 1, each position collects the token appearing at the
previous condition; in Layer 2, each position j attends to previous positions i that had followed
the token also appearing at j. This construction performs correctly across input lengths, reflecting
length generalization.

Here, we describe a transformer performing this task while violating translation invariance, and
failing to length-generalize. We use two heads, one performing “correctly” at smaller indices; the
other one performing “correctly” at large indices. We note that this version is more complex and
not minimal; we conjecture that translation-invariant solutions will generally tend to be simpler for

75

4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103

Under review as a conference paper at ICLR 2025

C-RASP-expressible problems. We consider an alphabet Σ = {SOS, σ1, . . . , σk}. For each n, we
define a transformer Tn as follows. We define the encodings:

eSOS =

1

0 ∈ Rk

0 ∈ Rk

0 ∈ Rk

0 ∈ Rk

0 ∈ Rn

 eσi =

0

ei ∈ Rk

0 ∈ Rk

0 ∈ Rk

0 ∈ Rk

0 ∈ Rn

 pi =

0
0
0
0

0 ∈ Rk

ei ∈ Rn

where ei ∈ Rn is the i-th one-hot vector. We define pi and K1,h, Q1,h by:

pT
i K

T
1,1Q1,1pj =

{
2δi,j−1 1 ≤ j ≤ 3n

4

2δi,j−2 else

pT
i K

T
1,2Q1,2pj =

{
2δi,j−2 1 ≤ j ≤ n

4

2δi,j−1 else

This is not translation-invariant: Informally, one of the two heads takes the role of copying from
the preceding position for smaller indices; the other one takes it for large indices. We set

V1,1 ·

...
ei
...
...
...
...

 =

0
0
ei
0
0
0

V1,2 ·

...
ei
...
...
...
...

 =

0
0
0
ei
0
0

Now, given an input of the form x1x2 · · · ∈ Σ∗ (where x1 = $), and an offset o, we have

y
(1)
i =

0
exi
exi−1

exi−2

0
ei+o

 if i+ o <
n

4

0
exi
exi−1

exi−1

0
ei+o

 if
n

4
≤ i+ o ≤ 3n

4

0
exi
exi−2

exi−1

0
ei+o

 if
3n

4
< i+ o ≤ n

Then, we set KT
2,1Q2,1 and KT

2,2Q2,2 to satisfy:

(y
(1)
i)TKT

2,1Q2,1y
(1)
j =

{
10 xi = $; j + o < 3n

4

0 else
+

{
1 (y

(1)
i)3 = (y

(1)
j)2

0 else

(y
(1)
i)TKT

2,2Q2,2y
(1)
j =

{
10 xi = $; j + o ≥ 3n

4

0 else
+

{
1 (y

(1)
i)4 = (y

(1)
j)2

0 else

The value matrices are given as (h = 1, 2):

V2,h

...
ei
...
...
....
....

 =

0
0
0
0
ei
0

 (77)

76

4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157

Under review as a conference paper at ICLR 2025

By design, supnR(Tn) <∞.

Due to the design of the token embeddings, attention to the SOS token contributes a zero output.
Hence, at query position j, the first head provides the output

∑
i=1+o,...,j

exp

({
10 xi = $; j + o < 3n

4

0 else
+

{
10 (y

(1)
i)3 = (y

(1)
j)2

0 else

)
Normalization

V2,hy
(2)
j

=
∑

i=1+o,...,j

exp

20 i = 1; j + o < 3n

4

10 exi−1 = exj , i+ o < 3n
4

10 exi−2
= exj , i+ o ≥ 3n

4

0 else

Normalization

V2,hy
(2)
j

whereas the second head provides the output:

∑
i=1,...,j

exp

({
10 xi = $; j + o ≥ 3n

4

0 else
+

{
1 (y

(1)
i)4 = (y

(1)
j)2

0 else

)
Normalization

V2,hy
(2)
j

=
∑

i=1+o,...,j

exp

20 i = 1; j + o ≥ 3n

4

10 exi−2 = exj , i+ o < n
4

10 exi−1
= exj , i+ o ≥ n

4

0 else

Normalization

V2,hy
(2)
j

If the input length is ≤ n
2 , this simplifies as follows: If j + o < 3n

2 , the first head’s contribution is
dominated by SOS (which leads to zero value vector), and an overall near-zero contribution. The
second head contributes the frequencies of symbols appearing immediately after prior occurrences
of xj (10). On the other hand, if j + o ≥ 3n

2 , the reverse situation holds; the second head makes a
near-zero contribution, and the first head contributes (10). Hence, Tn computes (10) when the input
length is ≤ n

2 .

However, for longer inputs, this does not hold any more: if, say, o = 0 and j = 3n
4 , the second head

additionally has contributions counting, at positions where i < n
4 , how often a symbol appeared

two positions after a symbol matching xj . Hence, Tn performs correctly at lengths ≤ n
2 , but not at

longer lengths.

G.6.2 TRANSLATION-INVARIANCE IN TRAINED TRANSFORMERS

Here, we provide empirical evidence that translation invariance, even though it is not explicitly
enforced in standard training, may be approximately satisfied in trained transformers. In this section,
we aim to check, empirically, how often or how much the product

pT
i K

T
l,hQl,hpj (78)

is translation-invariant as a function of (i, j). We conduct experiments for both models trained on
algorithmic problems and a transformer language model trained on real-world data.

Transformers trained on algorithmic problems We select five small transformers which gen-
eralize well on algorithmic tasks. They are trained on BINARY MAJORITY, BINARY MAJOR-
ITY INTERLEAVE, MAJORITY, SORT, and COPY UNIQUE (defined in Section E.2.1). For a
given head (l, h), we assemble each product pT

i K
T
l,hQl,hpj into a matrix M := P TQT

l,hKl,hP ∈
Rn×n.14 Then such a product is translation-invariant if and only if the entries are constant along

14Our experiments use a standard transformer implementation including layer norm, whereas our theoretical
analysis disregards layer norm (see Appendix D.3). Layer norm can in principle have a nontrivial impact on

77

4158
4159
4160
4161
4162
4163
4164
4165
4166
4167
4168
4169
4170
4171
4172
4173
4174
4175
4176
4177
4178
4179
4180
4181
4182
4183
4184
4185
4186
4187
4188
4189
4190
4191
4192
4193
4194
4195
4196
4197
4198
4199
4200
4201
4202
4203
4204
4205
4206
4207
4208
4209
4210
4211

Under review as a conference paper at ICLR 2025

each sub-diagonal15:

pT
i K

T
l,hQl,hpj = pT

i+∆K
T
l,hQl,hpj+∆ ∀1 ≤ i ≤ j ≤ j +∆ ≤ n (79)

Hence, we quantified the deviance from translation-invariance by calculating the offset variance
Varoffset, the average variance along each sub-diagonal, as follows:

Diagc =
1

N − c

N−1∑
i=c

Mi(i−c) (80)

Varoffset =
2

N(N + 1)

N−1∑
i=0

i∑
j=0

(Mij − Diagi−j)
2 (81)

We calculate the Varoffset for each head in these models, and show a histogram of the values across
heads in Figure 7. Most of the heads have very small variance, and a single head across these models
has variance around 8.

Figure 7: Product functions
across five small transformers
trained on algorithmic tasks.
Histogram of heads by their
offset variance measured by
Varoffset (Eq. 81), for all
heads from five small trans-
formers trained on algorith-
mic problems. Most heads
have very low Offset Vari-
ance; we investigate these in
Figure 8. One head across the
five models has a higher vari-
ance; we investigate it in Fig-
ure 9.

We next investigated the behavior of these heads in greater detail
(Figure 8–9). Figure 8 provides examples for the first two bins
in Figure 7. The head in (a) shows an entirely uniform pattern,
translation-invariant by definition. More interestingly, the head in
(b), from the transformer trained on BINARY MAJORITY INTER-
LEAVE, shows a perfectly periodic pattern reflecting the parity of
j − i:

piK
TQpj =

{
≈ 2 j − i even
≈ −1.5 j − i odd

(82)

Intuitively, this pattern allows the head to specifically attend to po-
sitions at an even distance from the query position, which is impor-
tant for solving BINARY MAJORITY INTERLEAVE. As it only
depends on j − i, this satisfies (79) and the pattern is translation-
invariant, in accordance with our hypothesis class in Definition 4.16

Finally, in Figure 9, we study the single head which has Varoffset ≈
8. Subfigure (a) shows the overall pattern of P TQT

l,hKl,hP . It is
not translation-invariant, but still shows similarity to a compara-
ble translation-invariant pattern in (b): piK

TQpj is large when
j − i is small or very large, and small in between. In order to
understand the variability of the contributions that inner products
pT
i K

TQpj make to attention weights across different offsets, we
measure the variance of post-softmax weights across context win-
dows. Specifically, given a window size w < N , we apply soft-
max to P T

[:,o:o+w]Q
T
l,hKl,hP[:,o:o+w] together with causal masking,

where o ≤ N −w is the offset. We denote the post-softmax matrix
when offset is o as M (o). Subfigure (c) shows this matrix at dif-
ferent offsets o. Throughout, the softmax output is focused on the
immediately preceding position:

(M (o))ij =

{
≈ 0.8 i− 1 = j

< 0.2 else
(83)

the attention logit dot products. We accounted for this, by fixing the variance term in layer norm as its average
value across a big amount of input data (around 240k tokens for small transformers and 400k tokens for GPT-2),
thus making it a linear operation. Effectively, we are thus able to account for layer norm by applying it as a
linear operation to the columns of P .

15Due to causal masking, super-diagonal entries are irrelevant, see Definition 4.
16In the asymptotic regime of n→∞, our Inference Procedure prefers transformers where product functions

pT
i K

TQpj are local, and thus cannot be periodic over unbounded distances. Such periodic relations are
instead, asymptotically, predicted to be covered by product functions additionally involving components whose
rank is penalized by R(Tn), such as pT

i K
TQV pj . Our theory applies in the asymptotic limit, and thus

predicts that as n→∞ (and thus d→∞), this periodic pattern might instead be taken over by such products.
An extension of our theory that accounts for training dynamics, beyond an idealized inference procedure, may
be able to predict in which settings which kind of product will represent periodic relations.

78

4212
4213
4214
4215
4216
4217
4218
4219
4220
4221
4222
4223
4224
4225
4226
4227
4228
4229
4230
4231
4232
4233
4234
4235
4236
4237
4238
4239
4240
4241
4242
4243
4244
4245
4246
4247
4248
4249
4250
4251
4252
4253
4254
4255
4256
4257
4258
4259
4260
4261
4262
4263
4264
4265

Under review as a conference paper at ICLR 2025

(a) (b)

Figure 8: Product functions across five small transformers trained on algorithmic tasks. (a)
P TQT

l,hKl,hP of a head whose variance is 0.001 (Figure 7 a). (b) P TQT
l,hKl,hP of a head whose

variance is 0.098 (second bin in Figure 7 (a)). This head represents an almost perfectly periodic
pattern, depending only on the parity of j − i. All heads with Offset Variance close to 0 look quali-
tatively like (a) or (b). We investigate the higher-variance head in Figure 9.

Thus, the product function makes an approximately translation-invariant contribution to attention
weights. Overall, the transformers trained on algorithmic problems show approximate translation-
invariance even though this is not enforced as part of standard initialization or training.

Figure 10: Product Functions in GPT-
2 Small: Histograms of Offset Variance
measured. Heads with variance close
to 0 have approximately uniform values
(Figure 11a). Heads with higher vari-
ances are shown in Figure 11 (b–d).

Results on an LM: GPT-2 Small We conduct the same
calculation on GPT-2 Small (Radford et al., 2019), a lan-
guage model with 12 layers, and 12 heads per layer,
which has served as a common object of study in the
mechanistic analysis of language models (Conmy et al.,
2023). The results are shown in Figure 10 and 11. Again,
there are heads producing near-constant products, and
heads producing a focus on positions i with small dis-
tance j−i. In addition to products of the form piK

TQpj ,
we also inspected more complex products including value
matrices17, finding these to generally be close to zero and
thus also translation-invariant. Overall, we have found
product functions in GPT-2 Small to display approxi-
mately offset-invariant behavior, again even though this
is not enforced in training or initialization.

G.7 COMPARING
APE AND NOPE ON INDUCTION HEAD TASKS

We further conduct more experiments comparing the gen-
eralization ability of transformers with APE and NoPE.
We have already found that APE performs better at NoPE
at a variety of task that are not expressible in C-RASP[∅],
such as COPY UNIQUE (Figure 1). Here, we further bol-
ster these results by (i) considering a parametric family of further such tasks, and (ii) conducting a
much broader hyperparameter search for NoPE.

We introduce 3 problems, and refer them as COPY UNIQUE t − 1, t − 2, t − 3 respectively.
Here, “t − c” means the problem is naturally solved with an attention pattern where each token
attends to the c-th last previous token. The t − 1 problem is identical to the COPY UNIQUE task
we described before; it asks the model to copy a string in which each token appears at most once
(hence, “UNIQUE”), and is naturally solved using an induction head circuit (Section 4.1). The t−2

17GPT-2 Small uses additional output matrices, e.g. Ol,hVl,h, corresponding to the value matrices in our
theoretical analysis.

79

4266
4267
4268
4269
4270
4271
4272
4273
4274
4275
4276
4277
4278
4279
4280
4281
4282
4283
4284
4285
4286
4287
4288
4289
4290
4291
4292
4293
4294
4295
4296
4297
4298
4299
4300
4301
4302
4303
4304
4305
4306
4307
4308
4309
4310
4311
4312
4313
4314
4315
4316
4317
4318
4319

Under review as a conference paper at ICLR 2025

(a) (b)

(c)

Figure 9: Head 0,0 in a small transformer trained for COPY UNIQUE. This is the head whose
variance is 8.39 (the single head in the largest bin in Figure 7). (a) P TQT

l,hKl,hP . Values are high
when j − i is small or very large, and low in between. (b) For comparison, we show a similar
but perfectly translation-invariant matrix. We replace values P TQT

l,hKl,hP with their average
value along the diagonal. The pattern is qualitatively similar to (a), highlighting how (a) is similar
to though does not fully satisfy translation-invariance. (c) Heatmaps showing the post-softmax
matricesM (o), where o = 0, 40, 80, 120, 160 respectively, and at a context window w = 50. Across
offsets, the largest contribution at position t is to the immediately preceding position t−1; that is, the
entries of the post-softmax matrix M (o) are largely determined by the relative distance j−i. Hence,
while the overall function is not exactly translation-invariant, the resulting attention behavior is
approximately offset-independent, and implements attention to the immediately preceding position.

80

4320
4321
4322
4323
4324
4325
4326
4327
4328
4329
4330
4331
4332
4333
4334
4335
4336
4337
4338
4339
4340
4341
4342
4343
4344
4345
4346
4347
4348
4349
4350
4351
4352
4353
4354
4355
4356
4357
4358
4359
4360
4361
4362
4363
4364
4365
4366
4367
4368
4369
4370
4371
4372
4373

Under review as a conference paper at ICLR 2025

(a) (b) (c) (d)

(e)

o = 0 o = 100 o = 200

o = 300 o = 400

Figure 11: Product functions in GPT-2 small. Heatmaps showing the product P TQT
l,hKl,hP of

heads in different bins in Figure 10. (a) A head whose Offset Variance is 0.6. The pattern is close to
uniform, making it trivially translation-invariant. (b–d) Heads with Offset Variances 66.0 (b), 87.9
(c), 142.1 (d). These heads (b–d) produce high products at small distances, and at distances ≈ 300.
The first aspect is exactly translation-invariant; the second one is approximately translation-invariant
in the middle of the range, though not when closer to the boundaries. (e) Heatmaps showing the post-
softmax matrices M (o) for Head 0,3, the head with largest variance in Figure 10, where o = 0, 100,
200, 300, 400 respectively, and window size w = 128. With the exception of positions very close to
the beginning (o = 0), the weights from query position j are focused on key positions i with small
j − i (note the green/yellow diagonal). Note that the green/yellow diagonal is faint as it is spread
over multiple small distances j − i, but it is consistently present and of consistent width. Hence, the
contribution of piK

TQpj to attention patterns is largely independent of the offset here, even in the
head with the numerically largest Offset Variance.

81

4374
4375
4376
4377
4378
4379
4380
4381
4382
4383
4384
4385
4386
4387
4388
4389
4390
4391
4392
4393
4394
4395
4396
4397
4398
4399
4400
4401
4402
4403
4404
4405
4406
4407
4408
4409
4410
4411
4412
4413
4414
4415
4416
4417
4418
4419
4420
4421
4422
4423
4424
4425
4426
4427

Under review as a conference paper at ICLR 2025

APE NoPE
≤ 50 [51,100] [101, 150] ≤ 50 [51,100] [101, 150]

t-1 1.000 1.000 0.986 1.000 0.770 0.044
t-2 1.000 1.000 0.977 0.999 0.232 0.000
t-3 1.000 1.000 0.990 1.000 0.116 0.000

Table 8: Experimental results for transformer with APE and NoPE, on the three problems we de-
fined. The models are trained on data where LEN≤ 50, and tested on all three length ranges. Accu-
racy is averaged over 5 successful runs (accuracy on LEN ≤ 50 is greater than 0.99). We find the set
of hyperparameters that generalizes best in each case, shown in Table 10.

APE NoPE
≤ 128 [129,256] [257, 384] ≤ 128 [129,256] [257, 384]

t-1 1.000 1.000 0.989 1.000 0.602 0.000
t-2 1.000 1.000 0.998 1.000 0.241 0.000
t-3 1.000 1.000 0.997 0.997 0.058 0.000

Table 9: Experimental results for transformer with APE and NoPE, on the three problems we de-
fined. The models are trained on data where LEN≤ 128, and tested on all three length ranges.
Accuracy is averaged over 5 successful runs (accuracy on LEN ≤ 128 is greater than 0.99). We find
the set of hyperparameters that generalizes best in each case, shown in Table 11.

problem consists of inputs such as SOS # 14 23 6 9 1 18 SEP 14 6 1 EOS That is,
the problem is tasked with copying every second token from the input, which can be naturally solved
using attention from position t to position t − 2. Finally, the t − 3 problem consists of inputs such
as SOS # # 14 23 6 9 1 18 SEP 14 9 EOS

In general, for a t − c problem, each input sequence starts with SOSand c − 1 special tokens #,
and then continues with k · c unique tokens, where k ∈ Z+ is a positive integer, finally the output
sequence after SEP, which consists of every cth token in the input sequence. We introduce the extra
special token # so that the task is easily solved using an induction head-like construction attending
from position t to position t − c. The model is trained to output the tokens after SEP. In these
problems, LEN (recall Section E.2.1) refers to the length of the portion between SOSand SEP. The
minimum LEN is lmin = 2c − 1. The total vocabulary size of tokens except for special tokens is
equal to the maximum number of unique tokens needed, i.e., 150.

As before, the models are trained on sequences of LEN ≤ 50, and we optimize hyperparameters for
accuracy on lengths [51, 100]. For APE transformers, we fixed the architecture to have 2 layers and
1 head per layer, and the searching space is: learning rate = {0.001, 0.0001}, model dimension =
{64, 256, 512}, dropout rate = {0, 0.1}. For NoPE transformers, we search in a much larger space:
number of layers = {2, 3, 4, 5}, number of heads = {1, 2, 4}, learning rate = {0.001, 0.0001}, model
dimension = {64, 256, 512}, dropout rate = {0, 0.1}. Other hyperparameters are fixed and same as
before; the attention dropout is still 0. We sweep all hyperparameter combinations and select the
combination with highest accuracy on on [51, 100], shown in Table 10. The selected combination
is then used to train 5 models with different random seeds. The average accuracy on the test set
(different from before, each now 5,000 examples, more than before) is shown in Table 8. We can
see that, even though we search in a much larger space for NoPE and select the most generalizable
model according to accuracy on on [51, 100], APE’s performance is still far stronger than NoPE
across the board. We also change the length range, that is, we train model on sequences of LEN
≤ 128, and we optimize hyperparameters for accuracy on lengths [129, 256], and test the model’s
performance on [257, 384] as well as the previous two ranges. Results are shown in Table 9. We
see that, again, APE’s performance is superior than NoPE. These problems are easily expressed in
C-RASP[periodic, local] but not C-RASP[∅], and our theory thus predicts length generalization for
APE but not NoPE, in line with the empirical results.

82

4428
4429
4430
4431
4432
4433
4434
4435
4436
4437
4438
4439
4440
4441
4442
4443
4444
4445
4446
4447
4448
4449
4450
4451
4452
4453
4454
4455
4456
4457
4458
4459
4460
4461
4462
4463
4464
4465
4466
4467
4468
4469
4470
4471
4472
4473
4474
4475
4476
4477
4478
4479
4480
4481

Under review as a conference paper at ICLR 2025

APE NoPE
Model Arch LR Dropout Model Arch LR Dropout

t-1 2 layer; 1 head; 64 dim 1e-3 0.1 5 layer; 2 head; 512 dim 1e-3 0.1
t-2 2 layer; 1 head; 256 dim 1e-4 0.1 5 layer; 4 head; 256 dim 1e-3 0.1
t-3 2 layer; 1 head; 256 dim 1e-3 0.1 5 layer; 4 head; 256 dim 1e-3 0

Table 10: The best configuration of hyperparameters we found for each case in Table 8. Gray text
stands for fixed hyperparameter. Because we know 2 layers with 1 head can solve these problems
when using APE, we do not perform further search there. On the other hand, for NoPE, we perform
hyperparameter search over a larger space.

APE NoPE
Model Arch LR Dropout Model Arch LR Dropout

t-1 2 layer; 1 head; 64 dim 1e-3 0.1 5 layer; 1 head; 512 dim 1e-3 0.1
t-2 2 layer; 1 head; 256 dim 1e-3 0.1 5 layer; 2 head; 512 dim 1e-3 0.1
t-3 2 layer; 1 head; 256 dim 1e-3 0.1 5 layer; 2 head; 512 dim 1e-3 0.1

Table 11: The best configuration of hyperparameters we found for each case in 9.

83

	Introduction
	Model of Transformers
	Theoretical Framework
	Limit Transformers
	Definition of Inference Procedure
	Main Result: Convergence of Inference Procedure

	Which Functions are Identifiable? Expressiveness of Limit Transformers and C-RASP
	Simple Example: Induction Head
	Length Generalization for C-RASP
	Limitations: Logarithmic Communication Complexity

	Experiments
	Discussion
	Conclusion
	FAQ
	Proofs about Limit Transformers
	Proof of Theorem 7
	Result for NoPE Transformers
	Logarithmic Communication Complexity for Limit Transformer
	Statement of Main Theorem for Arbitrary Training Lengths
	Corollary about Expressivity
	From C-RASP to Limit Transformers

	Expressivity Proofs for C-RASP
	C-RASP Constructions
	Majority
	Dyck-1
	anbncn
	Existential Quantification
	Piecewise Testable Languages

	C-RASP[periodic,local] Constructions
	Induction Head (Argmax Version)
	Induction Head (All possible next symbols)
	(aa)*

	Expressibility of Regular Languages in C-RASP[periodic,local]
	Link to Majority Logic
	Inexpressibility of *be*
	Inexpressibility of PARITY

	Discussion of Design Choices
	MLP Activation Functions
	Fixed Precision
	Layer Norm

	Additional Details for Experiments
	Regular Languages from the Bhattamishra et al 2020 Benchmark
	Language Definitions
	C-RASP Expressiveness

	Algorithmic Tasks
	Task Definitions for Algorithmic Problems
	Limit Transformers and C-RASP expressiveness on algorithmic tasks

	Details of Experimental Setup

	Translating between Transformers and Limit Transformers
	Product Parameterization
	Formal Definition of Hypothesis Class
	From Limit Transformers to Transformers
	From Transformers to Limit Transformers
	Proving Lemma 52 (I): Preliminaries
	Proving Lemma 52 (II): Construction of T
	Proving Lemma 52 (III): Proving Correctness

	Additional Supporting Results
	Regularizer at Initialization
	Empirical Length Generalization of Positional Functions
	Bound for Encodings Norm in Terms of Function Complexity
	Positional Abilities in NoPE vs APE
	Conceptual Relation to Solomonoff Induction
	The Role of Translation Invariance
	Non Offset-Invariant Transformers Failing to Length-Generalize
	Translation-Invariance in Trained Transformers

	Comparing APE and NoPE on Induction Head Tasks

