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Abstract

We study how well machine learning models trained on causal features generalize
across domains. We consider 16 prediction tasks on tabular datasets covering
applications in health, employment, education, social benefits, and politics. Each
dataset comes with multiple domains, allowing us to test how well a model trained
in one domain performs in another. For each prediction task, we select features
that have a causal influence on the target of prediction. Our goal is to test the
hypothesis that models trained on causal features generalize better across domains.
Without exception, we find that predictors using all available features, regardless of
causality, have better in-domain and out-of-domain accuracy than predictors using
causal features. Moreover, even the absolute drop in accuracy from one domain
to the other is no better for causal predictors than for models that use all features.
In addition, we show that recent causal machine learning methods for domain
generalization do not perform better in our evaluation than standard predictors
trained on the set of causal features. Likewise, causal discovery algorithms either
fail to run or select causal variables that perform no better than our selection.
Extensive robustness checks confirm that our findings are stable under variable
misclassification.

1 Introduction

The accuracy of machine learning models typically drops significantly when a model trained in one
domain is evaluated in another. This empirical fact is the fruit of numerous studies [Torralba and
Efros, 2011, Gulrajani and Lopez-Paz, 2020, Miller et al., 2021]. But it’s less clear what to do about
it. Many machine learning researchers see hope in causal modeling. Causal relationships, the story
goes, reflect stable mechanisms invariant to changes in an environment. Models that utilize these
invariant mechanisms should therefore generalize well to new domains [Peters et al., 2017]. The
idea may be sound in theory. Intriguing theoretical results carve out assumptions under which causal
machine learning methods generalize gracefully from one domain to the other [Heinze-Deml et al.,
2018, Meinshausen, 2018, Schölkopf et al., 2021, Pearl and Bareinboim, 2022, Subbaswamy et al.,
2022, Wang et al., 2022b].

These theoretical developments have fueled optimism about the out-of-domain generalization abilities
of causal machine learning. The general sentiment is that causal methods enjoy greater external
validity than kitchen-sink model fitting. In this work, we put the theorized external validity of causal
machine learning to an empirical test in a wide range of concrete datasets.
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Figure 1: Best out-of-domain accuracy (left) and corresponding shift gap (right) by feature selection.
Predictors based on all features have better out-of-domain accuracy than predictors using causal
feature selections. Their shift gap is smaller too, up to error bars.

Our results. We consider 16 prediction tasks on tabular datasets from prior work [Ding et al.,
2021, Hardt and Kim, 2023, Gardner et al., 2023] covering application settings including health,
employment, education, social benefits, and politics. Each datasets comes with different domains
intended for research on domain generalization. For each task we conservatively select a set of causal
features. Causal features are those that we most strongly believe have a causal influence on the target
of prediction. We also select a more inclusive set of arguably causal variables that include variables
that may be considered causal depending on modeling choices. For each task, we compare the
performance of machine learning methods trained on causal variables and arguably causal variables
with those trained on all available features. In all 16 tasks, our primary finding can be summarized as:

Predictors using all available features, regardless of causality, have better in-domain and
out-of-domain accuracy than predictors using causal features.

Across 16 datasets, we were unable to find a single example where causal predictors generalize better
to new domains than a standard machine learning model trained on all available features. Figure 1
summarizes the situation. In greater detail, our empirical results are:

• Using all features Pareto-dominates both causal selections, with respect to in-domain and
out-of-domain accuracy (up to error bars). We provide a closer look at the Pareto-frontiers
of four representative tasks in Figure 2.

• The inclusive selection of arguably causal features Pareto-dominates the conservative selec-
tion of causal features, with respect to in-domain and out-of-domain accuracy (up to error
bars).

• The absolute drop in accuracy from one domain to the other is smaller for all features than
for causal features.

• Adding anti-causal features—i.e., features caused by the target variable—to the set of causal
features improves out-of-domain performance.

• Special-purpose causal machine learning methods, such as IRM and REx, typically perform
within the range of standard models trained on the conservative and inclusive selection of
causal features.

• Classic causal discovery algorithms, like PC and ICP, do not provide causal parent estimates
that improve upon the inclusive selection of causal features.

• Extensive robustness checks confirm that our findings are stable under misclassifications of
single features.
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Figure 2: (Left) Pareto-frontiers of in-domain and out-of-domain accuracy by feature selection.
(Right) Pareto-frontiers of shift gap and out-of-domain accuracy by feature selection. Predictors
using all features Pareto-dominate predictors using causal features, with respect to in-domain and
out-of-domain accuracy. Other tasks are in Appendix C.

To be sure, our findings don’t contradict the theory. Rather, they point at the fact that the assumptions
of existing theoretical work are unlikely to be met in the tabular data settings we study. It is, of course,
always possible that those causal prediction techniques yield better results on other datasets. From
this perspective, our study suggests that the burden of proof is on proponents of causal techniques to
provide real benchmark datasets where these methods succeed. On the many datasets we investigated,
it proved infeasible to make use of causal techniques for better out-of-domain generalization.
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1.1 Related work

Existing work in causal machine learning relies on the assumption of the invariance of causal
mechanisms [Haavelmo, 1944, Aldrich, 1989, Hoover, 1990, Pearl, 2009, Schölkopf et al., 2012].
The conditional distribution of the target, given the complete set of its direct causal parents, shall
remain identical under interventions on variables other than the target itself. In their influential
work, Peters et al. [2016] utilize this invariance property for causal discovery. In further works, it is
extended to non-linear models [Heinze-Deml et al., 2018], and discovery of invariant features [Rojas-
Carulla et al., 2018]. To overcome the computational burden in high-dimensional settings, Arjovsky
et al. [2019] propose Invariant Risk Minimization (IRM), which learns an invariant representation of
the features instead of selecting individual features. Rosenfeld et al. [2021b] however identify major
failure cases of IRM. In response, multiple extensions of IRM have been proposed [Krueger et al.,
2021, Wang et al., 2022a, Ahuja et al., 2022, Jiang and Veitch, 2022, Chen et al., 2023]. Another line
of research assumes graphical knowledge to remove variables or apply independence constraints for
regularization [Subbaswamy and Saria, 2018, Subbaswamy et al., 2019, Kaur et al., 2022, Salaudeen
and Koyejo, 2024]. We refer the reader to Kaddour et al. [2022] for an overview. Aside from causal
learning approaches, various domain generalization algorithms and distributional robustness methods
have been developed [Ajakan et al., 2015, Sun et al., 2015, Sun and Saenko, 2016, Li et al., 2018,
Levy et al., 2020, Sagawa et al., 2020, Xu et al., 2020, Zhang et al., 2021]. Each method assumes a
unique type of (untestable) invariance across domains.

Gulrajani and Lopez-Paz [2020] conduct extensive experiments on image datasets to compare the
performance of domain generalization algorithms, including the causal methods IRM and Risk Ex-
trapolation (REx) [Krueger et al., 2021], in realistic settings. They find that no domain generalization
methods systematically outperforms empirical risk minimization. Recently, Gardner et al. [2023]
demonstrate a similar behavior for tabular data.
In our work, we shift the focus from the out-of-domain performance of specific causal machine
learning algorithms to the performance of causal feature sets.

1.2 Theoretical background and motivation

To frame our empirical study, we recall some relevant theoretical background first. A domain D is
composed of samples (xi, yi) ∼ P , where xi ∈ X ⊂ Rp are the features and y ∈ Y ⊂ R is the
target [Wang et al., 2022b]. Let X and Y denote the random variables corresponding to the features
and the target.

We are given m training domains Dtrain = {Dd : d = 1, . . . ,m}. The joint distributions of features
and target differ across domains, i.e. P d ̸= P e for d ̸= e. Our goal is to learn a prediction fθ from
the training domains Dtrain that achieves minimum prediction error on an unseen test domain Dtest,

θ∗ = argmin
θ

EP test [ℓ(Y, fθ(X))], (1)

where ℓ(·, ·) is some loss function. We can compose the objective into two parts

EP train [ℓ(Y, fθ(X))]−∆, (2)

where ∆ = EP train [ℓ(Y, fθ(X))] − EP test [ℓ(Y, fθ(X))] is the shift gap. Hence, we aim to learn a
classifier with the best trade-off between predicting accurately and having a low shift gap. In our
empirical work, we measure the shift gap as the difference in accuracy,

∆acc = acc(fθ,Dtest)− acc(fθ,Dtrain). (3)

Distributional robustness of causal mechanisms. Suppose we have a directed acyclic graph
G = (V,E) with nodes V = {1, . . . , q}, a random variable (Z, Y ) and noise variables ε ∈ Rq. A
common assumption is that the target is described by the prediction fθ via the coefficient θcausal

Y ← fθcausal(Z) + εq . (4)

The invariance of the causal mechanism implies that these causal coefficients provide the robust
estimator for the set of do-interventional distributions on the features [Meinshausen, 2018],

θcausal = argmin
θ

sup
Q∈Q(do)

EQ [ℓ (Y, fθ (Z))] , Q(do) :=
{
P

(do)
a,V \{q}; a ∈ Rq−1

}
. (5)
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To link to domain generalization, we need to assume that all causal parents of Y are included in the
feature set X . We set X = Z w.l.o.g. We also presume that the distribution of the testing domain
is a do-intervention on the features, i.e., P test ∈ Q(do). Intuitively, this postulates that the causal
mechanism generating Y stays the same across domains, while features may encounter arbitrarily
large interventions.
Then, the prediction error of the causal coefficients in the test domain is minimax optimal bounded,

EP test [ℓ(Y, fθcausal(X))] ≤ min
θ

sup
Q∈Q(do)

EQ [ℓ (Y, fθ (X))] . (6)

Recent work in causal machine learning already pointed out that the minimum prediction error on
test domains with mild interventions can be much smaller that the prediction error achieved by the
causal coefficients [Rothenhäusler et al., 2020, Subbaswamy et al., 2022]. We conduct synthetic
experiments similar to Rothenhäusler et al. [2020], further supporting the insights that that a strong
shift is needed before causal features achieve best out-of-domain accuracy. The details on the setup
and results of the synthetic experiments are provided in Appendix D.

Our empirical study complements these theoretical developments, as we evaluate domain generaliza-
tion abilities of causal features in typical tabular datasets. We emphasize that we do not challenge the
validity of causal theory like (6), but rather challenge how realistic their assumptions are.

2 Methodology

We conduct experiments on 16 classification tasks with natural domain shifts. They cover applications
in multiple application areas, e.g., health, employment, education, social benefits, and politics. Most
tasks are derived from the distribution shift benchmark for tabular data TableShift [Gardner et al.,
2023]. Some others are from prior work [Hardt and Kim, 2023]. All tabular datasets contain
interpretable personal information, e.g., age, education status, or individual’s habits. Therefore, we
can consult social and biomedical research on the causal relationships between features and target.
To reflect existing epistemic uncertainty, we propose a pragmatic scheme to classify the relationship
between features and target.

We term features that clearly have a causal influence on the target causal. We are conservative and
only label features as causal when: (1) The feature has almost certainly a causal effect on the target,
and (2) reverse causation from target to feature is hard to argue. We sort out any spuriously related
or possibly anti-causal feature [Schölkopf et al., 2012]. However, we risk excluding relevant causal
parents of the target.

For this reason, we propose the concept of arguably causal features. It is epistemically uncertain
how these features are causally linked to the target. To be specific, we term a feature arguably causal
when it suffices one of the following criteria: (1) The feature is a causal feature, or (2) the feature has
a causal effect on the target and reverse causation is possible, or (3) it is plausible but not certain that
the feature has a causal effect on the target. We exclude variables where it is implausible that they
affect the target. Ideally, the arguably causal features cover all causal parents present in the dataset.
We emphasize that both, causal features and arguably causal features, are merely approximations of
the true causal parents based on current expert knowledge and restricted to available features. We
further note that relationships between causal features and target might be confounded.

In some datasets and tasks we are also confronted with features that are plausibly anti-causal, that is:
(1) The target has almost certainly a causal effect on the feature, and (2) a reverse causation from
feature to target is hard to argue.

We apply this scheme to the features of every task, after seeking advice from current research,
governmental institutions and a medical practitioner. We describe the selection procedure for
diagnosing diabetes in the following, and give more examples in Appendix A. Details on the feature
selections of all tasks are provided in Appendix E.

2.1 Example: Variables in diabetes classification

The task is to classify whether a person is diagnosed with diabetes [Gardner et al., 2023]. The
domains are defined by the preferred race of the individuals. We illustrate the feature grouping in
Figure 3.

5



Causal features

Arguably causal
features

Anti-causal
features

Hyper-
tension

Heart
disease

Diabetes

Sex Education
Former
smoker

Obesity Healthy
food

Domain variable: race

Figure 3: An example grouping for the task ‘Diabetes’.

Causal features. Socio-economic status, in particular education level and former smoking, are
widely acknowledged risk factors for diabetes [Brown et al., 2004, Agardh et al., 2011, Madduta
et al., 2017, Centers for Disease Control and Prevention, 2024b]. Recent research in health care
found evidence that an individual’s sex impacts their diabetes diagnosis, e.g., pregnancies unmask
pre-existing metabolic abnormalities in female individuals [Kautzky-Willer et al., 2023].1 We also
include marital status as a causal feature, as recent research showed that marital stress adversely
affects the risk of developing diabetes [Whisman et al., 2014].

Arguably causal features. The individual’s lifestyle, health and socio-economic status impacts
their risk to develop diabetes, i.e., obesity, current smoking, healthy food, alcohol consumption,
physical activities, mental health and utilization of health care services [Lindstrom et al., 2003,
Brown et al., 2004, Engum, 2007, Baliunas et al., 2009, Agardh et al., 2011, Madduta et al., 2017,
Centers for Disease Control and Prevention, 2024b, Klein et al., 2022, Centers for Disease Control
and Prevention, 2024a]. At the same time, a person with diabetes is incentivized to improve
their behavior to control their blood sugar and improve insulin sensitivity [Klein et al., 2004].
They are also more at risk to increase their weight due to the insulin therapy [McFarlane, 2009],
experience distress [Centers for Disease Control and Prevention, 2024c], and have limited economic
opportunities [American Diabetes Association, 2011]. Because of these bidirectional relationships,
we regard features encoding these behaviors as arguably causal.

Anti-causal features. Researchers found evidence that diabetes increases the risk of hypertension,
high blood cholesterol, coronary heart disease, myocardial infarction and strokes [Petrie et al., 2018,
Schofield et al., 2016]. Due to treatment costs of diabetes, affected individuals are encouraged to
obtain a health insurance [National Institute of Diabetes and Digestive and Kidney Diseases, 2019].
Therefore, we regard the current health care coverage as anti-causal to diabetes.

2.2 Tasks and datasets

We consider 16 classification tasks, listed in Table 1. The data is collected from a multitude of sources.
We build on 14 classification tasks with natural domain shifts proposed in TableShift. We use the
TableShift Python API to preprocess and transform raw public forms of the data.2 In addition, we
conduct experiments on two established classification tasks (MEPS, SIPP). Data preprocessing is
adapted from Hardt and Kim [2023]. Further details on the tasks and their distribution shifts are in
Appendix E.

2.3 Machine learning algorithms

In our experiments, we evaluate multiple machine learning algorithms. We list them in the following.

1There is an active debate in causal research whether non-manipulable variables like sex are proper
causes [Holland, 2001, Pearl, 2018]. We acknowledge them as causes in our work.

2https://tableshift.org/
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Table 1: Description of tasks, data sources and number of features in each selection. Details and
licenses are provided in Appendix E.

Task Data Source #Features #Arg. causal #Causal #Anti-causal

Food Stamps ACS 28 25 12 -
Income ACS 23 15 4 3
Public Coverage ACS 19 16 8 -
Unemployment ACS 26 21 11 3
Voting ANES 54 36 8 -
Diabetes BRFSS 25 17 4 6
Hypertension BRFSS 18 14 5 2
College Scorecard ED 118 34 11 -
ASSISTments Kaggle 15 13 9 -
Stay in ICU MIMIC-iii 7491 1445 5 -
Hospital Mortality MIMIC-iii 7491 1445 5 -
Hospital Readmission UCI 46 42 5 -
Childhood Lead NHANES 7 6 5 -
Sepsis PhysioNet 40 39 5 -
Utilization MEPS 218 129 20 -
Poverty SIPP 54 43 15 6

Baseline and tabular methods. We include tree ensemble methods: XGBoost [Chen and Guestrin,
2016], LightGBM [Ke et al., 2017] and histogram-based GBM. We also evaluate multilayer percep-
trons (MLP) and state-of-the-art deep learning methods for tabular data: SAINT [Somepalli et al.,
2021], TabTransformer [Huang et al., 2020], NODE [Popov et al., 2019], FT Transformer [Gorishniy
et al., 2021] and tabular ResNet [Gorishniy et al., 2021].

Domain robustness and generalization methods. We consider distributionally robust optimization
(DRO) [Levy et al., 2020], Group DRO [Sagawa et al., 2020] using domains and labels as groups,
respectively, and the adversarial label robustness method by Zhang et al. [2021]. We also include
Domain-Adversarial Neural Networks (DANN) [Ajakan et al., 2015], Deep CORAL [Sun and Saenko,
2016], Domain MixUp [Xu et al., 2020] and MMD [Li et al., 2018].

Causal methods. We assess Invariant Risk Minimization (IRM) [Arjovsky et al., 2019], Risk
Extrapolation (REx) [Krueger et al., 2021], Information Bottleneck IRM (IB-IRM) [Ahuja et al.,
2022], AND-Mask [Parascandolo et al., 2021] and CausIRL [Chevalley et al., 2022].

Domain generalization and causal methods require at least two training domains with a sufficient
number of data points. This is provided in eight of our tasks. Detailed descriptions of the machine
learning algorithms and hyperparameter choices are given in Appendix B and Gardner et al. [2023].

2.4 Experimental procedure

We conduct the following procedure for each task. First, we define up to four sets of features based
on expert knowledge: all features, causal features, arguably causal features and anti-causal features.
Second, we split the full dataset into in-domain set and out-of-domain set. We adopt the choice of
domains from Gardner et al. [2023]. We have a train/test/validation split within the in-domain set,
and a test/validation split within the out-of-domain set. For each feature set:

1. We apply the machine learning methods listed in Section 2.3. For each method:

(a) We conduct a hyperparameter sweep using HyperOpt [Bergstra et al., 2013] on the
in-domain validation data. A method is tuned for 50 trials. We exclusively train on the
training set.

(b) The trained classifiers are evaluated on in-domain and out-of-domain test set.
(c) We select the best model according to their in-domain validation accuracy. This follows

the selection procedure in previous work (e.g., [Gulrajani and Lopez-Paz, 2020, Gardner
et al., 2023]). To ensure compatibility with TableShift, we add the best in-domain and
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Figure 4: (Left) Pareto-frontiers of in-domain and out-of-domain accuracy by feature selection.
(Right) Pareto-frontiers of shift gap and out-of-domain accuracy accomplished. Adding anti-causal
features improves out-of-domain accuracy. Results of other tasks in Appendix C.

out-of-domain accuracy pair observed by [Gardner et al., 2023]. We restrict our further
analysis to this selection.

2. We find the Pareto-set P of in-domain and out-of-domain accuracy pairs. We compute the
shift gaps, and find the Pareto-set of shift gap and out-of-domain accuracy of the set P .

We provide further details and illustrations of the individual steps in Appendix B.

3 Empirical results

In this section, we present and discuss the results of the experiments on all 16 tasks. A total of 42K
models were trained for the main results and an additional 468K models for robustness tests. Our
code is based on Gardner et al. [2023], Hardt and Kim [2023] and Gulrajani and Lopez-Paz [2020].
It is available at https://github.com/socialfoundations/causal-features.

In our experiments, we analyze the performance of feature selections based on domain-knowledge
causal relations. A summary of the results is shown in Figure 1. Details on four representative tasks
are given in Figure 2. The other tasks are in Appendix C. The accuracy results are presented along with
95% Clopper-Pearson intervals. They are the baseline for the approximate 95% confidence intervals of
the shift gap. See Appendix B for the exact computation and justification of the confidence intervals.

In-domain and out-of-domain accuracy. Models trained on the whole feature set accomplish the
highest in-domain and out-of-domain accuracy, up to error bars (16/16 tasks). The arguably causal
features Pareto-dominate the causal features, up to error bars (16/16 tasks). Recall that arguably
causal features are a superset of the causal features, and have considerably more features (Table 1).
Models based on causal features often essentially predict the majority label (7/16 tasks).

Shift gap. The shift gap measures the absolute performance drop of the feature sets when employed
out-of-domain. All features often experience a significantly smaller shift gap than causal features
(7/16 tasks). The causal features solely surpass all features (within the error bounds) for the task
‘Hospital Mortality’ by predicting the majority label. In most cases, the shift gaps of all features and
arguably causal features are indistinguishable (15/16 tasks).

Anti-causal features. In five tasks, we have features that we regard as anti-causal. Results are
shown in Figure 4 and Appendix C.2. The anti-causal features do not perform significantly different
from the constant predictor in-domain (5/5 tasks). However, they sometimes perform extremely
poor out-of-domain (2/5 tasks). It is therefore astounding that the out-of-domain performance of the
(arguably) causal features is improved by adding anti-causal features (5/5 tasks).
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Figure 5: (Left) Pareto-frontiers of in-domain and out-of-domain accuracy of causal methods and
domain-knowledge features selection. (Right) Pareto-frontiers of shift gap and out-of-domain accu-
racy attained. The performance of the causal methods interpolates between the performance of the
causal and/or arguably causal features. Results of remaining tasks are in Appendix C.

Causal machine learning methods. We restrict ourselves to the Pareto-set of the standard models
for each feature set and compare them to causal methods.3 We showcase a representative performance
in Figure 5. Details are in Appendix C.3. The causal methods do not improve upon the arguably
causal features trained on standard models (8/8 tasks). In fact, their performance typically spans
between the causal features and arguably causal methods trained on standard models. The in-domain
and out-of-domain accuracy is even indistinguishable from the causal selections in multiple cases
(IRM: 3/8, REx: 4/8, IB-IRM: 2/8, CausIRL: 5/8, AND-Mask: 5/8 tasks). Possible explanations are:
(1) the causal methods manage to extract a causal representation of the features similar to our selection
of causal and/or arguably causal features; or (2) it is an artifact of having low predictive power.

Causal discovery algorithms. We apply invariant causal prediction (ICP) [Peters et al., 2016]
and classic causal discovery algorithm, Peter-Clark (PC) algorithm [Spirtes et al., 2000] and Fast
causal inference (FCI) algorithm [Spirtes et al., 1995], to our tasks. See Appendix C.4 for the
results. The algorithms rarely outputs any causal parents (ICP: 1/6, PC: 4/14, FCI: 1/14 tasks). When
they do, they select very few features as causal parents. Some of them are features we also regard
as causal based on domain knowledge, others anti-causal or without causal relations to the target.
For example, PC outputs an individual’s occupation and the number of weeks worked in the last
12 months as causal parents of unemployment. While we agree that the occupation has a causal
influence on unemployment, we view the amount of weeks an individual worked as a result of
their unemployment rather than the reason. The causal parents estimated by the causal discovery
algorithms often perform similar to the causal features though (ICP: 1/1, PC: 1/4, FCI: 1/1 tasks).
Note that their performance is always Pareto-dominated by our arguably causal features (ICP: 1/1,
PC: 4/4, FCI: 1/1 tasks). Therefore, whichever feature selection one choose to believe, ours or causal
discovery algorithms’, one never improves upon the whole feature set.

Robustness tests. Results are in Appendix C.1, C.5 and C.6. We test whether our conclusions
are sensitive to misclassifying one feature. Therefore, we form subsets of the set of causal features
by removing one feature at a time. The test subsets do not achieve higher out-of-domain accuracy
than using all features, with one exception in the task ‘ASSISTments’. We find that the supersets of
arguably causal features with one additional features obtain similar or better out-of-domain accuracy.
We randomly sample 500 feature subsets for each task and check whether any subset significantly
outperforms the whole feature set. None of the sampled subset does, with few outliers in the task
‘ASSISTments’. We consider the divergent task in detail. The task is about predicting whether a
student answers a question correct. Surprisingly, all outperforming random subsets and the subset
from the misclassification tests coincide in one regard: missing the feature encoding the tested
skill, e.g., rounding. We encourage further work to explain this oddity, as the tested skill of a task

3We refer machine learning methods that are not explicitly causally motivated as standard: baseline methods,
tabular methods, domain robustness methods and non-causal domain generalization methods.
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clearly has a causal influence. We also provide insights into which non-causal features improve the
out-of-domain performance, and discuss potential explanations.
Our findings remain valid when using balanced accuracy as a metric.

4 Discussion and limitations

Our findings may not come as a surprise to everyone. Unlike causal machine learning researchers,
social scientists generally see no reason to believe in the universality of causal relationships. For
example, smaller classroom sizes may cause better teaching outcomes in Tennessee [Mosteller, 1995],
but much less so in California [Jepsen and Rivkin, 2009]. Such variation is the rule rather than the
exception. Indeed, philosopher of science Cartwright [1999, 2007] argued that causal regularities are
often more narrowly scoped than commonly held.

Our study mirrors these robust facts in a machine learning context. In the many common tabular
datasets we consider, we find no evidence that causal predictors have greater external validity than
their conventional counterparts. If the goal is to generalize to new domains in these datasets, our
findings suggest we might as well train the best possible model on all available features. The one
exception to the rule we found is the case of the skill variable in the Kaggle ASSISTments task. It
appears as though removing this variable increases out-of-domain generalization. Curiously, the
variable is also almost certainly one of the better examples of a causal variable in our study. Removing
it therefore gives no advantage to causal predictors. For all tasks, we used available research and our
own knowledge to classify variables as causal and arguably causal. We likely made some mistakes in
this classification. This is why we extended our study with extensive robustness checks that confirm
our findings. In addition, we did not find any relief in state-of-the-art causal methods, or causal
discovery algorithms.

Demonstrating the utility of causal methods therefore likely requires other benchmark datasets than
the ones currently available. We consider this a promising avenue for future work that derives further
motivation from our work. We point to two classification tasks, where recent research suggests
that causal prediction methods have utility for better domain generalization [Schulam and Saria,
2017, Subbaswamy and Saria, 2019]: predicting the probability pneumonia mortality outside the
hospitals [Cooper et al., 1997, Caruana et al., 2015], and hospital mortality across changes in the
clinical information system [Nestor et al., 2019]. We refer to Appendix A for details. Another
direction for future research is to evaluate to which extent our findings generalize to other applications
and data modalities. Recent advances in causal machine learning suggest, for example, promising
results in real-world image datasets for classifying wild animals (Terra Incognita) and urban vs.
non-urban examples (Spurious PACS), see [Salaudeen and Koyejo, 2024].

In light of our results, it’s worth finding theoretical explanations for why using all features, regardless
of causality, has the best performance in typical tabular datasets. In this vein, Rosenfeld et al. [2021a]
point to settings where risk minimization is the right thing to do in theory. We seed the search for
additional theoretical explanations with a simple observation: If all domains are positive reweightings
of one another, then the Bayes optimal predictor with respect to classification error in one domain
is also Bayes optimal in any other domain. Standard models, such as gradient boosting or random
forests, often achieve near optimal performance on tabular data with a relatively small number of
features. In such cases, our simple observation applies and motivates a common sense heuristic: Do
the best you can to approximate the optimal predictor on all available features.
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A Examples

In this section, we explain our feature selection for multiple examples. We also discuss examples of
datasets that motivate incorporating causal theory to enhance predictions.

A.1 Selection into causal, arguably causal and anti-causal features

We choose seven representatives tasks to illustrate how we select causal, arguably causal and anti-
causal features. These tasks include predicting: economic outcomes (income level and unemploy-
ment), political decisions (whether an individual vote in the presidential election), health diagnoses
(diabetes, hypertension and hospital mortality) and educational achievements (correctly solved
problems in an online learning program). We refer to Section 2.1 for the task ‘Diabetes’.
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Figure 6: US Census Divisions. Source: National Centers for Environmental Information [2024]

A.1.1 Income

The task is to classify whether a person has a low or high income level [Gardner et al., 2023]. The
domains are defined by the U.S. Census Divisions, with New England being set as out-of-domain.
See Figure 6. We provide a list of all features in Appendix E.1.2.

Causal features. Skirbekk [2004] showed that an individual’s age affects their productivity, that is,
their job performance, and therefore, their income. Marginalized groups, such as women and people
of color, face discrimination in pursuing higher income, apparent in gender and race wage gaps [Blau
and Kahn, 2016, Akee et al., 2017]. Therefore, we include the self-reported age, gender and race as
causal features. Bosquet and Overman [2019] also found evidence that the place of birth influences
an individual’s later income.

Arguably causal features. Personal income varies across U.S. states due to different economic
situations [Bureau of Economic Analysis, 2024]. These diverse economic opportunities, on the other
hand, lead to internal migration across states. Hence, we regard the individual’s current state of
residence merely as arguably causal. While educational attainment and the ability to speak English
enable higher-paying jobs [Card, 1999, Park, 1999], a certain level of income is needed to pay for
college tuition or language courses [Taubman, 1989]. Different occupations differ drastically in their
annual earnings [U.S. Department of Labor, 2024]. The specific work habits, e.g. number of weeks
worked and usual hours worked per week, naturally affect the individual’s earnings and thus income.
Then again, the choice of occupation and work habits may stem from a certain level of income from
other sources, e.g. investments or lack thereof [Halvarsson et al., 2018]. Therefore, all work-related
features are regarded as arguably causal. Giving birth to a child usually leads to a short-timed drop in
income due to (unpaid) parental leave or child care [Bulanda and Bulanda, 2020]. A certain level of
income may, however, be a consideration for some people when deciding on a child [Salter, 2012].
Citizenship enables individuals for governmental jobs and certain social benefits, alluring people to
obtain U.S. citizenship [U.S. Citizenship and Immigration Services, 2024].

Anti-causal features. Insurance purchased directly from an insurance company requires a certain
level of income to cover the regular payments [Schoen et al., 2000]. On the other hand, low income is
a requirement to be able to apply for Medicaid and other government assistance plans [U.S. Centers
for Medicare and Medicaid Services, 2024a]. Hence, we view these insurance types as features that
are anti-causally related to income. A low level of income may necessitate a person to look for work,
if they haven’t any yet.

Other features. We don’t see any obvious direct causal link between a person’s income and their
marital status. Insurance through an employer or union and Medicare are benefits not tied to income,
but rather the person’s employer or age and medical condition [U.S. Census Bureau, 2024, U.S.
Centers for Medicare and Medicaid Services, 2024b].
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A.1.2 Unemployment

The task is to classify whether a person is unemployed [Gardner et al., 2023]. The domains are
defined by the education level, with no high school diploma being out-of-domain. We provide a list
of all features in Appendix E.1.4.

Causal features. Some people are unable to work due to their disability. Even if they are capable to
work, many employers are still unwilling to (continue to) employ them [Ameri et al., 2015, Bonaccio
et al., 2019]. Hence, we regard features noting the self-reported disabilities as causal. Moreover,
immigrant workers also face initial disadvantages in labor force assimilation [De Jong and Madamba,
2001]. The immigrant status is encoded as the place of birth in our features. We also view age, sex,
race and ancestry as causal. The same arguments apply as in Section A.1.1.

Arguably causal features. Some occupations are mainly seasonal, e.g., working on farms, in
landscape or construction [U.S. Office of Foreign Labor Certification, 2024], and therefore, may
lead to regular short-term unemployment. On the other hand, being unemployed may necessitate an
individual to take on training and change their chosen occupation. Being unemployed and looking
for work may motivate an individual to consider joining the armed forces [U.S. Army, 2024]. Later
on however, veterans are less likely to be employed due to poor health, employer discrimination,
or skill mismatch [Loughran, 2014]. Hence, unemployment and occupation/military service are
tangled together in a complex way, which is why we regard the feature encoding them as arguably
causal. The ability to speak English is a requirement in some jobs. Conversely, an individual may
learn English naturally by interacting with their co-workers. The family situation, described by the
marital status and the employment status of the parents, may (indirectly) impact the individual’s
unemployment. Choi and Valladares-Esteban [2018] show that single workers face higher job losing
probabilities than married ones, and multiple studies establish that the employment status of an
individual’s parents impacts the child’s attainments [Taubman, 1989, Ermisch and Francesconi, 2013].
Similar arguments as in Section A.1.1 apply for citizenship, current state, mobility status and giving
birth to a child.

Anti-causal features. As people are unemployed on average for around 15 to 25 weeks in the
U.S. [U.S. Bureau of Labor Statistics, 2024], unemployment directly impacts the number of weeks
worked during the past 12 months, the usual hours worked per week and whether a person worked
last week.

A.1.3 Voting

The task is to classify whether a person voted in the U.S. presidential election [Gardner et al., 2023].
The domains are defined by U.S. Census Regions, with South set as out-of-domain. South consists of
the U.S. Census divisions West South Central, East South Central and South Atlantic. See Figure 6.
We provide a list of all features in Appendix E.2.1.

Causal features. All states except North Dakota require that a person register before voting in
an election [U.S. General Services Administration, 2024], which is one of our features. Leighley
and Nagler [2014] discuss in detail the difference in voting behavior between demographic groups,
e.g., defined by age, gender, race/ethnicity, and state. Hence, we again view the demographic
features as causal. There is also evidence that education and occupation influence the decision to
vote [Sondheimer and Green, 2010, Rosenstone, 1982]. The current social climate and ideological
conflict between competing electoral options also affects voter turnout, encoded by the election
year [Rogowski, 2014, Putnam, 2000].

Arguably causal features. Participating in politics, being interested in the election, or at least being
confronted with the election via media may strengthen a person’s resolve to vote. As deciding to vote
can not be explained purely rationally [Bendor et al., 2003], a person’s view on how much influence
their vote has naturally impacts their decision to vote. The individual’s view is measured by multiple
features in our dataset. Crepaz [1990] found that polarization of political parties lead to higher voting
turnouts. Therefore, a person may be more inclined to vote when they like/identify with one party
but not the other, or when they have a clear preference for one candidate. Diverse features aim to
measure these inclinations. Rosenstone [1982] showed that economic adversity impacts the voting
turnout. Economic problems, e.g., measured by rating of governmental economic policy or current
economy, reduce a person’s capacity to attend to politics and hence, participate in the elections.
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Other features. We don’t find any obvious causal link between voting and a specific party preference,
especially within political topics. For example, it is unclear in which way preferring the Democrats
on the topic of pollution and the environment impacts the decision to vote. Similarly, we don’t see
any direct causal link between voting and a person’s political opinion on specific topics, e.g., the
importance of gun control, allowing abortion, or defense spending.

A.1.4 Hypertension

The task is to diagnose whether a person has hypertension (high blood pressure) [Gardner et al.,
2023]. The domains are defined by the BMI category, with people classified as overweight or obese
as out-of-domain.4 We provide a list of all features in Appendix E.3.2.

Causal features. Aging has a marked effect on the cardiovascular system and hence, increases the risk
of hypertension [McEniery et al., 2007]. It is also well established that men have a higher prevalence
of hypertension compared with women (prior to the onset of menopause) [Ramirez and Sullivan,
2018]. Some researchers attribute this difference to women having contact with healthcare systems
more frequently [Leng et al., 2015]. Prevalence of hypertension also differs across racial/ethnic
groups [Bell et al., 2010, Dorans et al., 2018].5 We thus regard the demographic features age, sex
and race as causal. Cigarette smoking is associated with an acute increase in blood pressure, mainly
through stimulation of the sympathetic nervous system. Several research studies suggest that it
increased the risk of hypertension [Mills et al., 2020, Virdis et al., 2010], and even cessation of
chronic smoking does not lower blood pressure [Gerace et al., 1991]. Therefore, we classify former
smoking as a causal feature. Moreover, patients diagnosed with diabetes are at a higher risk to also
develop hypertension [Petrie et al., 2018].

Arguably causal features. The individual’s current lifestyle affects their risk for hypertension,
e.g., obesity, alcohol consumption, smoking, physical inactivity and unhealthy diet [Virdis et al.,
2010, Mills et al., 2020]. At the same time, patients diagnosed with hypertension might cease the
harmful behaviors to improve their health. Therefore, we view features encoding these behaviors as
arguably causal. Researchers have long established that low socio-economic status, e.g., poverty and
employment, increases the risk of hypertension [Leng et al., 2015]. When a person indeed develops
hypertension, their situation may even worsen.

Anti-causal features. Some researchers regard hypertension as risk factor for the development of
certain types of cancer [Sionakidis et al., 2021, Pandey et al., 2023].6

A.1.5 Hospital mortality

The task is to classify whether an ICU patient expires in the hospital during their current visit [Gardner
et al., 2023]. The domains are defined by the insurance type, with being insures by Medicare being
out-of-domain. We provide a list of all features in Appendix E.6.2.

Causal features. Walicka et al. [2021] showed that the in-hospital non-surgery-related mortality
rate significantly increased with age. Averbuch et al. [2022] found evidence that sex and ethnicity
are independently associated with the risk of inpatient mortality. They argue that the finding are
possibly results from differences in care received in the hospital, e.g., role of bias in assessing medical
risk. Therefore, we regard a person’s age, sex and ethnicity as causal. Soffer et al. [2022] discuss
the ‘obesity paradox’, i.e. medical ward patients with severe obesity have a lower risk for mortality
compared to patients with normal BMI, measured by a person’s height and weight upon entering the
ICU.

Arguably causal features. We ask a medical practitioner working in an ICU unit for help in selecting
the most important vitals that are routinely checked. While they are proxies of the patient’s health,
the selected vitals are also paramount in deciding the medical treatment received and therefore, the
risk of in-hospital mortality.

4BMI measures nutritional status in adults. It is defined as a person’s weight in kilograms divided by the
square of the person’s height in meters. Check out the WHO recommendations for more details.

5There is no evidence that racial and ethnic disparities in risk of hypertension are explained by genetic factors
though [Kaufman et al., 2015].

6The causal relationship between hypertension and cancer is a prime example for major epistemic uncertainty.
They are so intricately linked that they inspired their own research field [Pandey et al., 2023].
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A.1.6 ASSISTments

The task is to predict whether a student solves a problem correctly on first attempt in an online
learning tool [Gardner et al., 2023]. The domains are different schools. We provide a list of all
features in Appendix E.5.1.

Causal features. We regard all features encoding information of the problem as causal. For example,
the skill associated with the problem, the type of problem, the number of hints, and how it is framed
in the online learning tool. When a student asked for a hint or solves a problem in tutor mode, the
system automatically marks it as incorrect. Therefore, the target directly depends on the first action
of the student, that is, whether a student asks for a hint or an explanation.

Arguably causal features. The system predicts the student’s concentration, boredom, confusion
and frustration. While research established that learners’ cognitive-affective state influences their
performance [Baker et al., 2010], the system’s predictions are at best proxies of their true state of
mind.

Other features. We don’t see a clear link to the time in milliseconds for the student’s responses.

A.2 Outlook: Classification tasks that motivate causal modeling

We highlight two prediction tasks where recent research suggests that they benefit from causal
theory [Subbaswamy and Saria, 2019, Schulam and Saria, 2017].

Cooper et al. [1997] built a predictor for the probability of death for patients with pneumonia. The
goal was to identify patients at low risk that can be treated safely at home for pneumonia. Their
dataset contains inpatient information from 78 hospitals in 23 U.S. States. Cooper et al. [1997]
assumed that hospital-treated pneumonia patients with a very low probability of death would also
have a very low probability of death if treated at home. Caruana et al. [2015] pointed out that this
assumption may not hold, for example, in patients with a history of asthma. Due to the existing policy
across hospitals to admit asthmatic pneumonia patients to the ICU, the aggressive treatment actually
lowered their mortality risk from pneumonia compared to the general population. While Caruana
et al. [2015] use this observation to argue for interpretable models, Schulam and Saria [2017] take it
as motivation for causal models to ensure generalization.

In another example, Nestor et al. [2019] trained predictive models on records from the MIMIC-III
database between 2001 and 2002, and tested on data of subsequent years. When the underlying
clinical information system changed in 2008, this caused fundamental changes in the recorded
measurements and a significant drop in prediction quality of machine learning models trained on raw
data. The predictive performance, however, remained surprisingly robust after aggregating the raw
features into expert-defined clinical concepts.7 If these clinical concepts reflect causal relationships,
this example may be viewed as empirical support for causal modeling.

B Details on experimental procedure, algorithms and compute resources

We go into the details of the experimental procedure, including information on the confidence
intervals, in Appendix B.1. We describe the machine learning methods and their hyperparameter in
Appendix B.2. Experiment run details and compute resources are provided in Appendix B.3.

B.1 Experimental procedure

In this section, we go into the details of the experimental procedure and visualize the steps for three
selected tasks.

First, we define up to four sets of features based on domain knowledge and common sense: all
features, causal features, arguably causal features and anti-causal features. The sets of features are
provided for each task in Appendix E. Exemplary explanations are provided for seven tasks. See
Section 2.1 and Appendix A.

Second, we split the full dataset into in-domain set and out-of-domain set. We have a train/test/val-
idation split within the in-domain set, and a test/validation split within the out-of-domain set. We

7Various measurements of the same biophysical quantity are grouped together.
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Figure 7: In-domain and out-of-domain performances of all trained classifier.

adapt the split choices from TableShift, that is 80%/10%/10% split in-domain and 90%/10% split
out-of-domain.

For each feature set:

1. We apply the machine learning methods listed in Section 2.3. For each method:

(a) We conduct a hyperparameter sweep using HyperOpt [Bergstra et al., 2013]. We
exclusively train on the training set, and use the in-domain validation accuracy for
hyperparameter tuning. A method is tuned for 50 trials. Note that we withhold the
out-domain validation set from training, i.e., domain adaption is not possible.

(b) We evaluate the trained classifiers using accuracy on in-domain and out-of-domain test
set. In total, we train 3 · 12 · 50 = 1, 800 classifier for tasks with one training domain,
and 3 · 23 · 50 = 3, 450 classifiers for tasks with at least two training domains. See
Figure 7.

(c) We select the best model according to their in-domain validation accuracy. This follows
the selection procedure in Gulrajani and Lopez-Paz [2020] and Gardner et al. [2023].
See Figure 8. To ensure compatibility, we add the best in-domain and out-of-domain
accuracy pair observed by Gardner et al. [2023]. See Figure 9. We restrict our further
analysis to this selection.

2. We find the Pareto-set P of in-domain and out-of-domain accuracy pairs. See Figure 10. We
dismiss Pareto dominant classifiers whose in-domain accuracy is smaller than the constant
prediction, i.e., predict worse than the majority prediction in-domain. This is the final
selection of classifiers. We also add the Pareto-dominated region. See Figure 11. We
compute the shift gaps, and find the Pareto-set of shift gap and out-of-domain accuracy of
the set P .

Note that we do not use the out-of-domain validation set in our experiments. It is left for further
analysis, e.g., measuring the shift between in-domain and out-of-domain [Gardner et al., 2023].

Error bounds. We use 95% Clopper-Pearson confidence intervals for accuracy. They attain the
nominal coverage level in an exact sense. We approximate 95% confidence intervals for the shift
gap, the difference between in-domain and out-of-domain accuracy. The Clopper-Pearson confidence
intervals for the accuracy p̂ approximately equal the normal version for large sample sizes n,

[lCP, uCP] ≈ [p̂− z0.975σ, p̂+ z0.975σ]

with zα the α-quantile of the standard normal distribution and σ =
√

p̂(1−p̂)
n the standard error.

We can immediately infer confidence intervals for the shift gap, as the in-domain and out-of-domain
test sets are independent. The variance of the shift gap is the sum of the variance of in-domain and
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Figure 8: In-domain and out-of-domain performances of trained classifier with best in-validation
accuracy within a model class.
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Figure 9: In-domain and out-of-domain performances of trained classifier with best in-validation
accuracy within a model class, as well as results obtained by Gardner et al. [2023]

out-of-domain accuracy. We therefore compute approximate confidence intervals as[
∆̂−

√
(lCP,in-domain − p̂in-domain)2 + (lCP,out-of-domain − p̂out-of-domain)2,

∆̂ +
√

(uCP,in-domain − p̂in-domain)2 + (uCP,out-of-domain − p̂out-of-domain)2
]
. (7)
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Figure 10: In-domain and out-of-domain performances of Pareto dominant classifier.
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Figure 11: In-domain and out-of-domain performances of the final selection of classifiers, i.e. Pareto
dominant classifier whose in-domain accuracy is better than the constant prediction. Dotted lines
indicate Pareto frontiers and shaded areas the Pareto-dominated sets.

B.2 Machine learning algorithms and hyperparameters

We describe the causal methods, and refer the reader to Gardner et al. [2023] for the other machine
learning algorithms. All the causal methods are motivated by causal theory and seek to find some
form of invariance across multiple training domains.

Invariant Risk Minimization (IRM). IRM [Ahuja et al., 2022] modifies the training objective to
learn feature representation such that the optimal linear classifier that maps the representation to the
target is the same across domains.

Risk Extrapolation (REx). REx [Krueger et al., 2021] seeks to reduce variances in risk across
training domains, in order to gain robustness to distributional shifts.

Information Bottleneck IRM (IB-IRM). IB-IRM [Ahuja et al., 2022] augments IRM with an
information bottleneck constraint. The constraint resolves some issues of IRM.

Causal Invariant Representation Learning (Causal IRL). Causal IRL [Chevalley et al., 2022]
proposes a regularizer that enforces invariance through distribution matching. We train both versions
of the algorithm, i.e. with CORAL and MMD.

ANDMask. ANDMask [Parascandolo et al., 2021] is an algorithm based on the logical AND. It
aims to focus on invariances and prevents memorization.
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Table 2: Hyperparameter grids of causal methods

Model Hyperparameter Values

IRM IRM λ LogUniform(1e− 1, 1e5)
IRM Penalty Anneal Iters LogUniform(1, 1e4)

REx REx λ LogUniform(1e− 1, 1e5)
REx Penalty Anneal Iters LogUniform(1, 1e4)

IB-IRM IRM λ LogUniform(1e− 1, 1e5)
IRM Penalty Anneal Iters LogUniform(1, 1e4)
IB λ LogUniform(1e− 1, 1e5)
IB Penalty Anneal Iters LogUniform(1, 1e4)

CausIRL MMD γ Uniform(1e, 1e1)
ANDMask ANDMask τ Uniform(0.5, 1)

Table 3: Summary of trained and evaluated models. We train 23 models for tasks with at least 2
training domains, and 12 models for tasks with one training domain. Main results include the models
trained on causal, arguably causal and all features.

#Task #Models #Trials Total

Main results 3×8 23 50 27,600
3×8 12 50 14,400

Anti-causal 2 23 50 2,300
3 12 50 1,800

Causal discovery 4 23 50 4,600
1 12 50 600

Misclassification tests 100 23 50 115,000
92 12 50 55,200

Random subset tests 14×500 4 10 280,000
Ablation study 234 4 10 9,360

Total 510,860

The hyperparameters are chosen with HyperOpt [Bergstra et al., 2013]. We provide the hyperparame-
ter grid for the causal methods in Table 2. The hyperparameter grids are adapted from Gardner et al.
[2023] and Gulrajani and Lopez-Paz [2020].

B.3 Experiment run details

All experiments were run as jobs submitted to a centralized cluster, running the open-source HT-
Condor scheduler. Each job was given the same computing resources: 1 CPU. Compute nodes use
AMD EPYC 7662 64-core CPUs. Memory was allocated as required for each task: all jobs were
allocated at least 128GB of RAM; for the tasks ‘Public Coverage’ jobs were allocated 384GB of
RAM. An experiment job accounts for training and evaluating a single model for a given tasks and
feature selection. Jobs were terminated when the runtime exceeded 4 hours.

We typically train and evaluate 600 models per task with a single training domain and 1,150 models
per task with at least two training domains, for each feature selection. A total of 42K models were
trained for the main results, and 468K models for additional results and robustness tests. We detail the
number of trained models in Table 3. Preliminary experiments merely required a negligible amount
of compute, and were run on a local computer.

We use the implementation of HyperOpt [Bergstra et al., 2013] in the TableShift API to sample from
the hyperparameter space of the model. Detailed descriptions and hyperparameter choices are found
in Appendix B.2 and Gardner et al. [2023].

We provide the complete code base to replicate our experiments under https://github.com/
socialfoundations/causal-features.
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C Details on empirical results

In this section, we provide figures and details of our empirical results. First, we provide the main
empirical results in Appendix C.1, and results on anti-causal features in Appendix C.2. Then, we
describe and show results from the causal machine learning algorithms and causal discovery methods
in Appendix C.3 and Appendix C.4, respectively. We give details and results on the robustness test
involving random subsets in Appendix C.5. We follow with an ablation study in Appendix C.6. Last,
we add details on the different machine learning models to the main results in Appendix C.7.

C.1 Main empirical results

We show main results for all tasks in Figures 12 - 27. More precisely, we provide: (1) the Pareto-
frontiers of in-domain and out-of-domain accuracy by feature selection; (2) the Pareto-frontiers of
shift gap and out-of-domain accuracy by feature selection; (3) Pareto-frontiers of in-domain and
out-of-domain balanced accuracy by feature selection; and (4) out-of-domain accuracies and shift
gaps obtained by robustness tests for causal and arguably causal features.
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(a) Pareto-frontiers by feature selection.

A
ll

C
au

sa
l

Te
st

 0
Te

st
 1

Te
st

 2
Te

st
 3

Te
st

 4
Te

st
 5

Te
st

 6
Te

st
 7

Te
st

 8
Te

st
 9

Te
st

 1
0

Te
st

 1
1

C
on

st
an

t

0.780

0.800

0.820

O
ut

-o
f-d

om
ai

n
ac

cu
ra

cy

A
ll

C
au

sa
l

Te
st

 0
Te

st
 1

Te
st

 2
Te

st
 3

Te
st

 4
Te

st
 5

Te
st

 6
Te

st
 7

Te
st

 8
Te

st
 9

Te
st

 1
0

Te
st

 1
1

C
on

st
an

t
-0.030

-0.020

-0.010

0.000

S
hi

ft 
ga

p

A
ll

A
rg

. c
au

sa
l

Te
st

 0

Te
st

 1

Te
st

 2

C
on

st
an

t

0.780

0.800

0.820

O
ut

-o
f-d

om
ai

n
ac

cu
ra

cy

A
ll

A
rg

. c
au

sa
l

Te
st

 0

Te
st

 1

Te
st

 2

C
on

st
an

t

-0.030

-0.020

-0.010

0.000

S
hi

ft 
ga

p

(b) Robustness tests for causal features (upper) and arguably causal features (lower).

Figure 12: Food Stamps
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features (upper) and arguably causal features (lower).

Figure 13: Income
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features (upper) and arguably causal features (lower).

Figure 14: Public Coverage
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features (upper) and arguably causal features (lower).

Figure 15: Unemployment
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features (upper) and arguably causal features (lower).

Figure 16: Voting
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features (upper) and arguably causal features (lower).

Figure 17: ASSISTments
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features (upper) and arguably causal features (lower).

Figure 18: Hypertension
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features (upper) and arguably causal features (lower).

Figure 19: Diabetes
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features.

Figure 20: College Scorecard
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features (upper) and arguably causal features (lower).

Figure 21: Hospital Readmission
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features.

Figure 22: Stay in ICU
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features.

Figure 23: Hospital Mortality
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features (upper) and arguably causal features (lower).

Figure 24: Childhood lead
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features. No robustness test for arguably causal features as there is only
one additional features.

Figure 25: Sepsis
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(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features.

Figure 26: Utilization

41



0.700 0.800 0.900
In-domain accuracy

0.600

0.700

0.800

O
ut

-o
f-d

om
ai

n
ac

cu
ra

cy

-0.200 -0.100
Shift gap

0.500

0.600

0.700

0.800

O
ut

-o
f-d

om
ai

n
ac

cu
ra

cy

0.600 0.800
Balanced accuracy

0.500

0.600

0.700

0.800

B
al

an
ce

d 
ou

t-o
f-d

om
ai

n
 a

cc
ur

ac
y

All Arguably causal Causal Constant Diagonal

(a) Pareto-frontiers by feature selection.
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(b) Robustness tests for causal features (upper) and arguably causal features (lower).

Figure 27: Poverty
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C.2 Anti-causal features

We have five tasks in which some features are plausibly anti-causal: ‘Income’, ‘Unemployment’,
‘Diabetes’, ‘Hypertension’ and ‘Poverty’. Figures 28 and 29 show the Pareto frontiers of anti-causal
feature in comparison to the causal selections and all features. We also show the Pareto frontiers we
achieve by training on arguably causal and anti-causal features.
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Figure 28: (Left) Pareto-frontiers of in-domain and out-of-domain accuracy of anti-causal features in
comparison to causal features sets and all features. (Right) Pareto-frontiers of shift gap and out-of-
domain accuracy attained.
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Figure 29: (Left) Pareto-frontiers of in-domain and out-of-domain accuracy of anti-causal features in
comparison to causal features sets and all features. (Right) Pareto-frontiers of shift gap and out-of-
domain accuracy attained. (Continued)
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C.3 Causal machine learning methods

We evaluate five causal methods: Invariant Risk Minimization (IRM) [Arjovsky et al., 2019], Risk
Extrapolation (REx) Krueger et al. [2021], Information Bottelneck IRM (IB-IRM) [Ahuja et al., 2022],
Causal IRL based on CORAL and MMD [Chevalley et al., 2022] and AND-Mask [Parascandolo
et al., 2021]. A description and the hyperparameter grids are given in Appendix B.

The causal methods require at least two testing domains with each a sufficient amount of data. Eight
of our task satisfy these requirements: ‘Food Stamps’, ‘Income’, ‘Unemployment’, ‘Voting’, ‘College
Scorecard’, ‘Hospital Readmission’, ‘Hospital Mortality’ and ‘Length of Stay’.
Note that the task ‘ASSISTments’ is not included. It has multiple training domains but very few data
point in some of them.

We provide results in Figure 31 and 32. The bar plot in Figure 30 summarized how often the
performance is: (i) smaller than the performance of the causal features, (ii) similar to the performance
of causal features, (iii) between the performances of the causal features and arguably causal features,
and (iv) similar to the performance of the arguably causal features. Note that the causal machine
learning algorithm never outperform the arguably causal features.

IRM REx IB-IRM Causal IRL AND-Mask
0

2

4

6

8
< causal features
= causal features
> causal features and 
< arguably causal features
= arguably causal features

Figure 30: Performance of causal methods in comparison to causal and arguably causal features.
Summary for the 8 tasks with multiple training domains.
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Figure 31: (Left) Pareto-frontiers of in-domain and out-of-domain accuracy of causal methods
and domain-knowledge features selection. (Right) Pareto-frontiers of shift gap and out-of-domain
accuracy attained.
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Figure 32: (Left) Pareto-frontiers of in-domain and out-of-domain accuracy of causal methods
and domain-knowledge features selection. (Right) Pareto-frontiers of shift gap and out-of-domain
accuracy attained. (Continued)
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C.4 Causal discovery algorithms

We consider invariant causal prediction (ICP) [Peters et al., 2016] and classic causal discovery
methods. In addition, we contemplated score matching methods. When benchmarked to other causal
discovery methods, they showed surprising robustness in settings where assumptions on the data
may be violated [Montagna et al., 2024]. We first describe results of causal discovery methods
we analyzed in our experiments. Then, we explain the challenges we encountered with the score
matching methods and the reason we didn’t include them in our final analysis.

We list the evaluated causal discovery methods and describe their results.

Invariant Causal Prediction (ICP). ICP [Peters et al., 2016] collects all subset of features that
show invariance in their predictive accuracy across domains, and outputs valid confidence intervals
for the causal relationships. The variables with an effect significantly different from zero are the
causal predictors under sufficient assumptions. ICP requires at least two training domains, each
needs a sufficient amount of data. In addition, the number of features needs to be of a reasonable
size. This is provided in 6 tasks: ‘Food Stamps‘, ‘Income‘, ‘Unemployment‘, ‘Voting’, ‘College
Scorecard‘ and ‘Hospital Readmission‘. We use the boosting implementation from the R package
‘InvariantCausalPrediction’ by Peters et al. [2016]. We choose a confidence level of α = 0.05; it is
the default setting.

Peter-Clark algorithm (PC). The PC algorithm [Spirtes et al., 2000] is a classical causal discovery
method. It is based on conditional independence testing and estimates a completed partially directed
acyclic graph (CPDAG). We use the implementation from the R package ‘pcalg’ by Kalisch et al.
[2012] with the default confidence level of α = 0.01. We do not consider the tasks ‘Hospital
Mortality’ and ‘Stay in ICU’ due to computational costs.

Fast causal inference algorithm (FCI). The FCI algorithm [Spirtes et al., 1995] is a generalization
of the PC algorithm. It allows arbitrarily many latent and selection variables. It outputs a partial
ancestral graph (PAG). We use the implementation from the R package ‘pcalg’ by Kalisch et al.
[2012] with a confidence level of α = 0.01. We do not consider the tasks ‘Hospital Mortality’ and
‘Stay in ICU’ due to computational costs.

Standard conditional independence tests assume one common data type, that is, either binary, discrete
or Gaussian. Our datasets are however a mix of binary, categorical and continuous variables. We
decide to bin the continuous variables into five categories, and then use a discrete independence test
in the PC and FCI algorithm. Note that ICP is applied to standard preprocessed data, that is, binary,
one-hot encoded categorical and continuous data.

We run the causal discovery algorithms on the in-domain validation set. If the algorithm outputs any
causal parents, we train the machine learning methods listed in Section 2.3 on the training set. We
tuned each method for 50 trials. We provide the results in Table 4 and 5. Estimated causal parents are
denoted in square brackets. A task is rejected from ICP in Table 4 if no subset of variables leads to
invariance across the domains. We showcase an example of a CPADAG from the PC algorithm in
Figure 33. An example of a PAG from the FCI algorithm is given in Figure 34.

We provide the performance of all estimated causal parents in Figure 35 and 36.

Score matching methods and compute memory. We considered the implemen-
tation of the score matching methods provided by Montagna et al. [2024]. See
https://github.com/py-why/dodiscover. The algorithms compute a matrix of size
[sample size x sample size x features]. This is computationally infeasible when using the whole
in-domain validation set. For example, this requires 2,88 TiB of memory for ‘Income’ and 3.09
TiB of memory for ‘Unemployment’. Note that the validation sample sizes are merely 121,154 and
158,015, respectively.
A solution is to randomly sample, say, 1,000 data points from the validation set.8 We perform
preliminary experiments to assess this approach. We sample 1,000 data points, and run the
SCORE [Rolland et al., 2022] and Discovery At Scale (DAS) algorithm by [Montagna et al., 2023]
for the main tasks ‘Diabetes’, ‘Income’ and ‘Unemployment’.

8This is the largest number of sample size in the analysis of Montagna et al. [2024].
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Table 4: Summary of empirical results for invariant causal prediction (ICP) with α = 0.05. The
descriptions of features are given in Appendix E.

Task #Features Has ≥ 2 training domains ICP
with sufficient sample size

Food Stamps 28 ✓ rejected
Income 23 ✓ rejected
Public Coverage 19 ✗ not applicable
Unemployment 16 ✓ [RELP,WRK]
Voting 54 ✓ no causal predictors
Diabetes 25 ✗ not applicable
Hypertension 18 ✗ not applicable
College Scorecard 118 ✓ rejected
ASSISTments 15 ✗ not applicable
Stay in ICU 7491 ✓ not applicable
Hospital Mortality 7491 ✓ not applicable
Hospital Readmission 46 ✓ rejected
Childhood Lead 7 ✗ not applicable
Sepsis 40 ✗ not applicable
Utilization 218 ✗ not applicable
Poverty 54 ✗ not applicable

Figure 33: CPDAG estimated by the PC algorithm for the task ‘Unemployment’. The target denotes
the employment states. The descriptions of features are given in Appendix E.

The computation of the SCORE algorithm fails for all tasks. One computation step during the
pruning does not converge after a few pruning steps.
We obtain results from the DAS algorithm. We provide the estimated DAG from
DAS under the filenames das_diabetes.svg, das_income.svg and das_unemployment.svg
at https://github.com/socialfoundations/causal-features/tree/add-ons/
experiments_causal/add_on_results/causal_discovery/.
The algorithm doesn’t estimate any causal parents for being diagnosed with diabetes (‘Diabetes’) or
having a certain income level (‘Income’). The only causal parent output for being unemployed is
being born in South Dakota (‘Unemployment’). While the results are intriguing, they hardly promise
supreme prediction outcomes. Therefore, we didn’t pursue the score matching methods further. We
however encourage future research on checking their performance on all tasks. Another path for
future research is to find more sophisticated solutions to reduce the required memory amount.
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Table 5: Summary of empirical results for the PC and FCI algorithm [Spirtes et al., 1995, 2000] with
α = 0.01. The descriptions of features are given in Appendix E.

Task #Features PC FCI

Food Stamps 28 [HUPAC,PUBCOV] no causal parents
Income 23 [WKHP,AGEP,HINS1,OCCP] no causal parents
Public Coverage 19 no causal parents no causal parents
Unemployment 26 [OCCP,WRK] no causal parents
Voting 54 no causal parents no causal parents
Diabetes 25 [HIGH_BLOOD_PRESS] [HIGH_BLOOD_PRESS]
Hypertension 18 no causal parents no causal parents
College Scorecard 118 no causal parents no causal parents
ASSISTments 15 no causal parents no causal parents
Stay in ICU 7491 not applicable not applicable
Hospital Mortality 7491 not applicable not applicable
Hospital Readmission 46 no causal parents no causal parents
Childhood Lead 7 no causal parents no causal parents
Sepsis 40 no causal parents no causal parents
Utilization 218 no causal parents no causal parents
Poverty 54 no causal parents no causal parents

Figure 34: PAG estimated by the FCI algorithm for the task ‘Unemployment’. The target denotes the
employment states. The descriptions of features are given in Appendix E.
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(a) PC algorithm on the task ‘Unemployment’.
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(b) ICP algorithm on the task ‘Unemployment’.
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(c) PC algorithm on the task ‘Food Stamps’.

Figure 35: Performance of causal parents selected by causal discovery algorithm, in comparison to
domain knowledge selected causal features and whole feature set.
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(a) PC algorithm on the task ‘Income’.
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(b) PC algorithm on the task ‘Diabetes’.
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(c) FCI algorithm on the task ‘Diabetes’.

Figure 36: Performance of causal parents selected by causal discovery algorithm, in comparison to
domain knowledge selected causal features and whole feature set. (Continued)
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C.5 Random subsets

We test whether there exists a subset of features that achieve significantly higher out-of-domain
accuracy than the whole feature set. It is however computational infeasible to evaluate all possible
subsets of the features for our tasks. For example, the task ‘Income’ with 23 features has already ≈ 8
million subsets.

We randomly sample 500 subsets for each task, with exception to ‘Hospital Mortality’ and ‘Stay in
ICU’. We don’t think that 500 random sample are informative for ‘Hospital Mortality’ and ‘Stay in
ICU’, as it is just a teeny fraction of the power set of features (27491 subsets).

Due to computational cost, we further restrict our analysis to the models XGBoost, LightGBM, FT
Transformer and SAINT. These models achieve the highest average out-of-domain accuracy across
tasks. See Appendix C.7 and Gardner et al. [2023]. The methods are also tuned for 10 trials, instead
of 50.

We provide the results in Figure 37, 38, 39 and 40. Except for some subsets in the task ‘ASSISTments’,
none of our random subsets outperforms the full feature set, not in in-domain accuracy nor in out-of-
domain accuracy. In the task ‘ASSISTments’, we predict whether a question is correct answered by a
student in an online learning tool. The exception occurs when removing feature ‘skill_id’, encoding
the type of skill required. The distribution of the feature ‘skill_id’ shifts significantly across schools,
that is, from training schools to out-of-domain testing schools.
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Figure 37: Performance of random subsets in comparison to causal feature selection and the whole
feature set.
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Figure 38: Performance of random subsets in comparison to causal feature selection and the whole
feature set. (Continued)
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Figure 39: Performance of random subsets in comparison to causal feature selection and the whole
feature set. (Continued)
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Figure 40: Performance of random subsets in comparison to causal feature selection and the whole
feature set. (Continued)
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C.6 Ablation of anti-causal and non-causal features

We conducted an ablation study and provided the results in Figure 41 to 45. We remove anti-causal
and non-causal features one at a time and measure the corresponding out-of-domain accuracy. In
the following, we discuss in detail the non-causal features whose removal significantly dropped the
out-of-domain performance and try to give explanations. We split by task.

Food Stamps Target is food stamp recipiency in past year for households with child across
geographic region.

• Relationship to reference person: There could be a stable and informative correlation within
the survey of US Census between kind of household members (encoded in relationship to the
reference person/head of the household, e.g., multiple generation household vs roommates)
and food stamp recipiency. We didn’t classify this variable as causal, as it is survey related.

Income Target is income level across geographic regions.

• Relationship to reference person: Same argument as in the task ‘Food Stamps’ applies.
• Marital status: Marital status and personal income are both intricately linked with socio-

economic status, although we haven’t found any research causally linking them together.
• Insurance through a current or former employer or union / Medicare for people 65 or older,

or people with certain disabilities: These insurances are benefits not tied to income, but
rather the person’s employer or age and medical condition. They are however indicative of
the economic and social environment of the individual, which is informative of the income
level.

• Year: The year, e.g., 2018, encodes information about the economic status, which may be
predictive across geographic regions.

Public Coverage Target is public coverage of non-Medicare eligible low-income individuals across
disability status.

• State / Year: The current state of living and year encode information about the economic
status.

Voting Target is whether an individual voted in the US presidential elections across geographic
regions.

• Party preference on specific topics, e.g. pollution / Opinion on party inclinations, e.g., which
party favors stronger government / Opinion on sensitive topics, e.g., abortion, religion, gun
control: The opinions/preferences of an individual may sort them to specific sub-groups
of the populations, wherein civil duty is or is not prominent. It is fathomable that similar
sub-groups form across geographic regions.

Hypertension Target is high blood pressure across BMI categories.

• State: The current state of living encodes information about the socio-economic status,
which research linked to hypertension in several studies [Leng et al., 2015].

Sepsis Target is sepsis across length of stay in ICU.

• Hospital: Hospitals serve different groups of the populations which differ in their risks of
attaining sepsis.
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Figure 41: Removing one feature at a time. Anti-causal features are colored in orange, non-causal in
grey.
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Figure 42: Removing one feature at a time. Anti-causal features are colored in orange, non-causal in
grey. (Continued)
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Figure 43: Removing one feature at a time. Anti-causal features are colored in orange, non-causal in
grey. (Continued)
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Figure 44: Removing one feature at a time. Anti-causal features are colored in orange, non-causal in
grey. (Continued)
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Figure 45: Removing one feature at a time. Anti-causal features are colored in orange, non-causal in
grey. (Continued)

63



C.7 Empirical results across machine learning models

We show the Pareto-dominate performances for each machine learning model in Figure 46 - 49. The
detailed results are provided at https://github.com/socialfoundations/causal-features/
tree/add-ons/experiments_causal/results/. We have a summary table saved in a csv file
for each task.
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Figure 46: (Left) Pareto-dominate performance of in-domain and out-of-domain accuracy by feature
selection and machine learning model. (Right) Pareto-dominate performance of shift gap and out-of-
domain accuracy accomplished by feature selection and machine learning model. The feature sets are
color-coded. Red indicates all features. The causal features are shown in blue, the arguably causal
features in grey.
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Figure 47: (Left) Pareto-dominate performance of in-domain and out-of-domain accuracy by feature
selection and machine learning model. (Right) Pareto-dominate performance of shift gap and out-of-
domain accuracy accomplished by feature selection and machine learning model. The feature sets are
color-coded. Red indicates all features. The causal features are shown in blue, the arguably causal
features in gray. (Continued)
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Figure 48: (Left) Pareto-dominate performance of in-domain and out-of-domain accuracy by feature
selection and machine learning model. (Right) Pareto-dominate performance of shift gap and out-of-
domain accuracy accomplished by feature selection and machine learning model. The feature sets are
color-coded. Red indicates all features. The causal features are shown in blue, the arguably causal
features in gray. (Continued)
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Figure 49: (Left) Pareto-dominate performance of in-domain and out-of-domain accuracy by feature
selection and machine learning model. (Right) Pareto-dominate performance of shift gap and out-of-
domain accuracy accomplished by feature selection and machine learning model. The feature sets are
color-coded. Red indicates all features. The causal features are shown in blue, the arguably causal
features in gray. (Continued)
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D Synthetic experiments

We conducted synthetic experiments. The setup is depicted in Figure 50. The causal mechanisms are
modeled as (i) linear with weights randomly drawn in (-1,1) and (ii) based on a neural network with
random instantiation. The noise variables are drawn from a standard normal distribution. The task is
to classify whether the target is larger than 0.

spurios targetcausal anticausal

confounder confounderconfounder

Figure 50: Causal graph to generate samples.

Similar to Rothenhäusler et al. [2020], we vary the degree of domain shift using shift intervention on
target, features and confounders. We draw 1,000 training samples from the causal mechanism, and
evaluate the performance on 1,000 testing samples from the intervented causal mechanism with shift
interventions varying from 0 to 10; step size is 0.1. We provide example performances in Figure 51.
Our code is based on the synthetic study conducted by Montagna et al. [2024].
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(a) Linear mechanism and normal noise, estimated by logistic regression. Dotted lines indicate
in-domain testing accuracy.
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(b) Neural net mechanism and normal noise, estimated by logistic regression.
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(c) Neural net mechanism and normal noise, estimated by neural net.

Figure 51: Synthetic experiments. Mechanisms are randomly instantiated. Task is to classify target >
0.

The synthetic experiments confirm our empirical findings. Using all features achieves best out-
of-domain prediction accuracy. The one exception is if the distribution shift is exclusively on the
anti-causal features and even in this case, a strong shift is needed before causal features achieve best
out-of-domain accuracy.

E Tasks and data sources

In this section we give details on our tasks. We briefly describe the data source, target and distribution
shift. We refer the reader to Gardner et al. [2023] for more details on the Tableshift tasks, their data
sources and the reasoning behind the proposed domain shifts. We provide links to the datasets, their
access and licenses in Table 7.

We list the features, and sort them into causal, arguably causal and anti-causal. In Section 2.1 and
Appendix A, we justify the sorting for seven examples: ‘Diabetes’, ‘Income’, ‘Unemployment’,
‘Hospital mortality’, ‘Hypertension’, ‘Voting’ and ‘ASSISTments’. While in good faith, we do the
selection under epistemic uncertainty. Future research in health care and social science may rebut our
sorting. Therefore, we advise caution when using our classification for follow-up research.
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Table 8 provides an overview of all tasks, their training and testing domains, shift gap of the constant
predictor and number of observation in the dataset. We provide additional insights into the distribution
shift in Appendix E.12.

E.1 TableShift: ACS

We have multiple tasks based on American Community Survey (ACS) [U.S. Census Bureau, 2018],
derived from Folktables [Ding et al., 2021]. The encoding is found in the ACS documentation.9

E.1.1 Foodstamps

Target: Food stamp recipiency in past year for households with child [FS]

Shift: Geographic region (U.S. divisions) [DIVISION]

List of causal features: • Age in years [AGEP]
• Sex [SEX]
• Race [RAC1P]
• Place of birth [POBP]
• Disability [DIS]
• Hearing difficulty [DEAR]
• Vision difficulty [DEYE]
• Cognitive difficulty [DREM]
• Ancestry [ANC]
• Nativity [NATIVITY]
• Marital status [MAR]
• State [ST]

List of arguably causal features: • Ability to speak English [ENG]
• Gave birth to child within the past 12 months [FER]
• Citizenship status [CIT]
• Educational attainment [SCHL]
• Households presence and age of children [HUPAC]
• Occupation [OCCP]
• Military service [MIL]
• Workers in family during the past 12 months [WIF]
• Usual hours worked per week past 12 months [WKHP]
• Weeks worked during past 12 months [WKW]
• Worked last week [WRK]
• On layoff from work [NWLA]
• Looking for work [NWLK]

List of other features: • Year of survey [ACS_YEAR]
• Relationship to reference person [RELP]
• Public health coverage [PUBCOV]

E.1.2 Income

The selection procedure for the task ‘Income’ is discussed in detail in Appendix A.

Target: Total person’s income ≥ 56k for employed adults [PINCP]

Shift: Geographic region (U.S. divisions) [DIVISION]

List of causal features: • Age in years [AGEP]

9https://www.census.gov/programs-surveys/acs/microdata/documentation.html
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• Sex [SEX]
• Race [RAC1P]
• Place of birth [POBP]

List of arguably causal features: • State [ST]
• Ability to speak English [ENG]
• Gave birth to child within the past 12 months [FER]
• Citizenship status [CIT]
• Educational attainment [SCHL]
• Occupation [OCCP]
• Class of worker [COW]
• Usual hours worked per week past 12 months [WKHP]
• Weeks worked during past 12 months [WKW]
• Worked last week [WRK]
• On layoff from work [NWLA]

List of anti-causal features: • Insurance purchased directly from an insurance company [HINS2]
• Medicaid, Medical Assistance, or any kind of government-assistance plan for those

with low incomes or a disability [HINS4]
• Looking for work [NWLK]

List of other features: • Year of survey [ACS_YEAR]
• Marital status [MAR]
• Insurance through a current or former employer or union [HINS1]
• Medicare, for people 65 and older, or people with certain disabilities [HINS3]
• Relationship to reference person [RELP]

E.1.3 Public Coverage

Target: Public health coverage [PUBCOV]

Shift: Disability status [DIS]

List of causal features: • Age in years [AGEP]
• Sex [SEX]
• Race [RAC1P]
• Hearing difficulty [DEAR]
• Vision difficulty [DEYE]
• Cognitive difficulty [DREM]
• Ancestry [ANC]
• Nativity [NATIVITY]

List of arguably causal features: • Employment status of parents [ESP]
• Total person’s income in dollars [PINCP]
• Employment status [ESR]
• Gave birth to child within the past 12 months [FER]
• Marital status [MAR]
• Citizenship status [CIT]
• Educational attainment [SCHL]
• Mobility status [MIG]

List of other features: • Year of survey [ACS_YEAR]
• State [ST]
• Geographic region [DIVISION]
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E.1.4 Unemployment

The selection procedure for the task ‘Unemployment’ is discussed in detail in Appendix A.

Target: Employment status (is unemployed) [ESR]

Shift: Educational attainment [SCHL]

List of causal features: • Age in years [AGEP]
• Sex [SEX]
• Race [RAC1P]
• Place of birth [POBP]
• Disability status [DIS]
• Ancestry [ANC]
• Nativity [NATIVITY]
• Hearing difficulty [DEAR]
• Vision difficulty [DEYE]
• Cognitive difficulty [DREM]
• Ambulatory difficulty [DPHY]

List of arguably causal features: • Ability to speak English [ENG]
• Occupation [OCCP]
• Employment status of parents [ESP]
• Military service [MIL]
• Gave birth to child within the past 12 months [FER]
• Marital status [MAR]
• Citizenship status [CIT]
• Mobility status [MIG]
• State [ST]
• Geographic region [DIVISION]

List of anti-causal features: • Usual hours worked per week past 12 months [WKHP]
• Weeks worked during past 12 months [WKW]
• Worked last week [WRK]

List of other features: • Year of survey [ACS_YEAR]
• Relationship to reference person [RELP]

E.2 TableShift: ANES

We have one task based on American National Election Studies (ANES) [American National
Election Studies, 2020].10

E.2.1 Voting

The selection procedure for the task ‘Voting’ is discussed in detail in Appendix A.

Target: Voted in national election [VCF0702]

Shift: Us census region [VCF0112]

List of causal features: • Election year [VCF0004]
• State [VCF0901b]
• Registered to vote pre-election [VCF0701]
• Age [VCF0101]
• Gender [VCF0104]

10https://electionstudies.org/
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• Race/ethnicity [VCF0105a]
• Occupation group [VCF0115]
• Education level [VCF0140a]

List of arguably causal features: • Democratic party feeling thermometer [VCF0218]
• Republican party feeling thermometer [VCF0224]
• Party identification [VCF0302]
• Like-dislike scale placement for democratic party (0-10) [VCF9201]
• Like-dislike scale placement for republican party (0-10) [VCF9202]
• Do any of the parties in the U.S. represent views reasonably well [VCF9203]
• Better when one party controls both presidency and congress or when control is split

[VCF9206]
• President thermometer [VCF0428]
• Vice-president thermometer [VCF0429]
• Rating of government economic policy [VCF0822]
• Better or worse economy in past year [VCF0870]
• Liberal-conservative scale [VCF0803]
• Approve participation in protests [VCF0601]
• Voting is the only way to have a say in government [VCF0612]
• It matters whether I vote [VCF0615]
• Those who don’t care about election outcome should vote [VCF0616]
• Someone should vote if their party can’t win [VCF0617]
• Interest in the elections [VCF0310]
• Belongs to political organization or club [VCF0743]
• Tried to influence others during campaign [VCF0717]
• Attended political meetings/rallies during campaign [VCF0718]
• Displayed candidate button/sticker during campaign [VCF0720]
• Donated money to party or candidate during campaign [VCF0721]
• How much of the time can you trust the media to report the news fairly [VCF0675]
• Watched tv programs about the election campaigns [VCF0724]
• Heard radio programs about the election campaigns [VCF0725]
• Read about the election campaigns in magazines [VCF0726]
• Saw election campaign information on the internet [VCF0745]

List of other features: • Think of yourself as closer to the republican or democratic party
[VCF0301]

• Party preference on pollution and environment [VCF9008]
• Party preference on inflation [VCF9010]
• Party preference on unemployment [VCF9011]
• Party in U.S. that represents views best [VCF9204]
• Which political party represents views best [VCF9205]
• Which party favors stronger government [VCF0521]
• Which party favors military spending cut [VCF0523]
• Most important national problem [VCF0875]
• Are things in U.S. going well or not [VCF9052]
• Guaranteed jobs and income scale (support/don’t support) [VCF0809]
• Government services and spending scale (fewer/more services) [VCF0839]
• Defense spending scale (decrease/increase) [VCF0843]
• Position of the U.S. in past year [VCF9045]
• When should abortion be allowed by law [VCF0838]
• Importance of gun control [VCF9239]
• Importance of religion [VCF0846]
• How much does federal government waste tax money [VCF0606]
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E.3 TableShift: BRFSS

We have two tasks based on Behavioral Risk Factor Surveillance System (BRFSS) [Centers for
Disease Control and Prevention, 2021]. The encoding is found in BRFSS data dictionary.11

E.3.1 Diabetes

The selection procedure for the task ‘Diabetes’ is discussed in detail in Section 2.1.

Target: Diagnosed with diabetes [DIABETES]

Shift: Preferred race category [PRACE1]

List of causal features: • Highest grade or year of school completed [EDUCA]
• Answer to the question ‘Have you smoked at least 100 cigarettes in your entire life?’

[SMOKE100]
• Sex of respondent [SEX]
• Marital status [MARITAL]

List of arguably causal features: • Annual household income from all sources [INCOME]
• Number of days during the past 30 days where physical health was not good

[PHYSHLTH]
• Body Mass Index (BMI) [BMI5]
• Body Mass Index (BMI) category [BMI5CAT]
• Answer to the question ‘Do you now smoke cigarettes every day, some days, or not at

all?’ [SMOKDAY2]
• Consume Fruit 1 or more times per day [FRUIT_ONCE_PER_DAY]
• Consume vegetables 1 or more times per day [VEG_ONCE_PER_DAY]
• Total number of alcoholic beverages consumed per week [DRNK_PER_WEEK]
• Binge drinkers (males having five or more drinks on one occasion, females having four

or more drinks on one occasion) [RFBING5]
• Physical activity or exercise during the past 30 days other than their regular job

[TOTINDA]
• Time since last visit to the doctor for a checkup [CHECKUP1]
• Answer to the question ‘Was there a time in the past 12 months when you needed to

see a doctor but could not because of cost?’ [MEDCOST]
• Answer to the question ‘for how many days during the past 30 days was your mental

health not good?’ [MENTHLTH]

List of anti-causal features: • Diagnosed with high blood pressure [HIGH_BLOOD_PRESS]
• Time since last blooc cholesterol check [CHOL_CHK_PAST_5_YEARS]
• Diagnosed with high blood cholesterol [TOLDHI]
• Diagnosed past stroke [CVDSTRK3]
• Reports of coronary heart disease (CHD) or myocardial infarction (MI) [MICHD]
• Current health care coverage [HEALTH_COV]

List of other features: • State [STATE]
• Year of BRFSS dataset [IYEAR]

E.3.2 Hypertension

The selection procedure for the task ‘Hypertension’ is discussed in detail in Appendix A.

Target: Diagnosed with high blood pressure [HIGH_BLOOD_PRESS]

Shift: Body Mass Index (BMI) category [BMI5CAT]

11https://www.cdc.gov/brfss/annual_data/2015/pdf/codebook15_llcp.pdf
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List of causal features: • Age group [AGEG5YR]
• Preferred race category [PRACE1]
• Sex of respondent [SEX]
• Answer to the question ‘Have you smoked at least 100 cigarettes in your entire life?’

[SMOKE100]
• Diagnosed with diabetes [DIABETES]

List of arguably causal features: • Binary indicator for whether an individuals’ income falls
below the 2021 poverty guideline for family of four [POVERTY]

• Current employment status [EMPLOY1]
• Consume Fruit 1 or more times per day [FRUIT_ONCE_PER_DAY]
• Consume vegetables 1 or more times per day [VEG_ONCE_PER_DAY]
• Total number of alcoholic beverages consumed per week [DRNK_PER_WEEK]
• Binge drinkers (males having five or more drinks on one occasion, females having four

or more drinks on one occasion) [RFBING5]
• Physical activity or exercise during the past 30 days other than their regular job

[TOTINDA]
• Answer to the question ‘Do you now smoke cigarettes every day, some days, or not at

all?’ [SMOKDAY2]
• Answer to the question ‘Was there a time in the past 12 months when you needed to

see a doctor but could not because of cost?’ [MEDCOST]

List of anti-causal features: • Diagnosed with skin cancer [CHCSCNCR]
• Diagnosed with any other types of cancer [CHCOCNCR]

List of other features: • State [STATE]
• Year of BRFSS dataset [IYEAR]

E.4 TableShift: ED

We have one task based on the data that appear on the college scorecard by the U.S. Department of
Education (ED) [U.S. Department of Education, 2023].12

E.4.1 College Scorecard

Target: Completion rate for first-time, full-time students at four-year institutions (150% of expected
time to completion/6 years) [C150_4]

Shift: Carnegie Classification - basic [CCBASIC]

List of causal features: • Accreditor for institution [AccredAgency]
• Highest degree awarded [HIGHDEG]
• Control of institution [CONTROL]
• Region (IPEDS) [region]
• Locale of institution [LOCALE]
• Degree of urbanization of institution [locale2]
• Flag for Historically Black College and University [HBCU]
• Flag for distance-education-only education [DISTANCEONLY]
• Poverty rate, via Census data [poverty_rate]
• Unemployment rate, via Census data [unemp_rate]
• Carnegie Classification - size and setting [CCSIZSET]

List of arguably causal features: • In-state tuition and fees [TUITIONFEE_IN]
• Out-of-state tuition and fees [TUITIONFEE_OUT]
• Tuition and fees for program-year institutions [TUITIONFEE_PROG]

12https://collegescorecard.ed.gov/

74

https://collegescorecard.ed.gov/


• Admission rate [ADM_RATE]
• Admission rate for all campuses rolled up to the 6-digit OPE ID [ADM_RATE_ALL]
• Midpoint of SAT scores at the institution (critical reading) [SATVRMID]
• Midpoint of SAT scores at the institution (math) [SATMTMID]
• Midpoint of SAT scores at the institution (writing) [SATWRMID]
• Midpoint of the ACT cumulative score [ACTCMMID]
• Midpoint of the ACT English score [ACTENMID]
• Midpoint of the ACT math score [ACTMTMID]
• Midpoint of the ACT writing score [ACTWRMID]
• Average net price for the largest program at the institution for program-year

institutions [NPT4_PROG]
• Average cost of attendance (academic year institutions) [COSTT4_A]
• Average cost of attendance (program-year institutions) [COSTT4_P]
• Share of students who received a federal loan while in school [loan_ever]
• Share of students who received a Pell Grant while in school [pell_ever]
• Percentage of undergraduates who receive a Pell Grant [PCTPELL]
• Median household income [median_hh_inc]
• Average family income [faminc]
• Median family income [md_faminc]
• Enrollment of undergraduate degree-seeking students [UGDS]
• Enrollment of all undergraduate students [UG]

List of other features: • State postcode [STABBR]
• Predominant degree awarded (recoded 0s and 4s) [sch_deg]
• Flag for main campus [main]
• Number of branch campuses [NUMBRANCH]
• Percentage of degrees awarded in Agriculture, Agriculture Operations, And Related

Sciences [PCIP01]
• Percentage of degrees awarded in Natural Resources And Conservation [PCIP03]
• Percentage of degrees awarded in Architecture And Related Services [PCIP04]
• Percentage of degrees awarded in Area, Ethnic, Cultural, Gender, And Group Studies

[PCIP05]
• Percentage of degrees awarded in Communication, Journalism, And Related Programs

[PCIP09]
• Percentage of degrees awarded in Communications Technologies/Technicians And

Support Services [PCIP10]
• Percentage of degrees awarded in Computer And Information Sciences And Support

Services [PCIP11]
• Percentage of degrees awarded in Personal And Culinary Services [PCIP12]
• Percentage of degrees awarded in Education [PCIP13]
• Percentage of degrees awarded in Engineering [PCIP14]
• Percentage of degrees awarded in Engineering Technologies And Engineering-Related

Fields [PCIP15]
• Percentage of degrees awarded in Foreign Languages, Literatures, And Linguistics

[PCIP16]
• Percentage of degrees awarded in Family And Consumer Sciences/Human Sciences

[PCIP19]
• Percentage of degrees awarded in Legal Professions And Studies [PCIP22]
• Percentage of degrees awarded in English Language And Literature/Letters [PCIP23]
• Percentage of degrees awarded in Liberal Arts And Sciences, General Studies And

Humanities [PCIP24]
• Percentage of degrees awarded in Library Science [PCIP25]
• Percentage of degrees awarded in Biological And Biomedical Sciences [PCIP26]
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• Percentage of degrees awarded in Mathematics And Statistics [PCIP27]
• Percentage of degrees awarded in Military Technologies And Applied Sciences

[PCIP29]
• Percentage of degrees awarded in Multi/Interdisciplinary Studies [PCIP30]
• Percentage of degrees awarded in Parks, Recreation, Leisure, And Fitness Studies

[PCIP31]
• Percentage of degrees awarded in Philosophy And Religious Studies [PCIP38]
• Percentage of degrees awarded in Theology And Religious Vocations [PCIP39]
• Percentage of degrees awarded in Physical Sciences [PCIP40]
• Percentage of degrees awarded in Science Technologies/Technicians [PCIP41]
• Percentage of degrees awarded in Psychology [PCIP42]
• Percentage of degrees awarded in Homeland Security, Law Enforcement, Firefighting

And Related Protective Services [PCIP43]
• Percentage of degrees awarded in Public Administration And Social Service

Professions [PCIP44]
• Percentage of degrees awarded in Social Sciences [PCIP45]
• Percentage of degrees awarded in Construction Trades [PCIP46]
• Percentage of degrees awarded in Mechanic And Repair Technologies/Technicians

[PCIP47]
• Percentage of degrees awarded in Precision Production [PCIP48]
• Percentage of degrees awarded in Transportation And Materials Moving [PCIP49]
• Percentage of degrees awarded in Visual And Performing Arts [PCIP50]
• Percentage of degrees awarded in Health Professions And Related Programs [PCIP51]
• Percentage of degrees awarded in Business, Management, Marketing, And Related

Support Services [PCIP52]
• Percentage of degrees awarded in History [PCIP54]
• Total share of enrollment of undergraduate degree-seeking students who are white

[UGDS_WHITE]
• Total share of enrollment of undergraduate degree-seeking students who are black

[UGDS_BLACK]
• Total share of enrollment of undergraduate degree-seeking students who are Hispanic

[UGDS_HISP]
• Total share of enrollment of undergraduate degree-seeking students who are Asian

[UGDS_ASIAN]
• Total share of enrollment of undergraduate degree-seeking students who are American

Indian/Alaska Native [UGDS_AIAN]
• Total share of enrollment of undergraduate degree-seeking students who are Native

Hawaiian/Pacific Islander [UGDS_NHPI]
• Total share of enrollment of undergraduate degree-seeking students who are two or

more races [UGDS_2MOR]
• Total share of enrollment of undergraduate degree-seeking students who are

non-resident aliens [UGDS_NRA]
• Total share of enrollment of undergraduate degree-seeking students whose race is

unknown [UGDS_UNKN]
• Total share of enrollment of undergraduate degree-seeking students who are white

non-Hispanic [UGDS_WHITENH]
• Total share of enrollment of undergraduate degree-seeking students who are black

non-Hispanic [UGDS_BLACKNH]
• Total share of enrollment of undergraduate degree-seeking students who are

Asian/Pacific Islander [UGDS_API]
• Total share of enrollment of undergraduate degree-seeking students who are American

Indian/Alaska Native [UGDS_AIANOld]
• Total share of enrollment of undergraduate degree-seeking students who are Hispanic

[UGDS_HISPOld]
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• Total share of enrollment of undergraduate students who are non-resident aliens
[UG_NRA]

• Total share of enrollment of undergraduate students whose race is unknown
[UG_UNKN]

• Total share of enrollment of undergraduate students who are white non-Hispanic
[UG_WHITENH]

• Total share of enrollment of undergraduate students who are black non-Hispanic
[UG_BLACKNH]

• Total share of enrollment of undergraduate students who are Asian/Pacific Islander
[UG_API]

• Total share of enrollment of undergraduate students who are American Indian/Alaska
Native [UG_AIANOld]

• Total share of enrollment of undergraduate students who are Hispanic [UG_HISPOld]
• Share of undergraduate, degree-/certificate-seeking students who are part-time

[PPTUG_EF]
• Share of undergraduate, degree-/certificate-seeking students who are part-time

[PPTUG_EF2]
• Net tuition revenue per full-time equivalent student [TUITFTE]
• Instructional expenditures per full-time equivalent student [INEXPFTE]
• Average faculty salary [AVGFACSAL]
• Proportion of faculty that is full-time [PFTFAC]
• Average age of entry, via SSA data [age_entry]
• Average of the age of entry squared [age_entry_sq]
• Percent of students over 23 at entry [agege24]
• Share of female students, via SSA data [female]
• Share of married students [married]
• Share of dependent students [dependent]
• Share of veteran students [veteran]
• Share of first-generation students [first_gen]
• Percent of the population from students’ zip codes that is White, via Census data

[pct_white]
• Percent of the population from students’ zip codes that is Black, via Census data

[pct_black]
• Percent of the population from students’ zip codes that is Asian, via Census data

[pct_asian]
• Percent of the population from students’ zip codes that is Hispanic, via Census data

[pct_hispanic]
• Percent of the population from students’ zip codes with a bachelor’s degree over the

age 25, via Census data [pct_ba]
• Percent of the population from students’ zip codes over 25 with a professional degree,

via Census data [pct_grad_prof]
• Percent of the population from students’ zip codes that was born in the US, via Census

data [pct_born_us]

E.5 TableShift: Kaggle

We have one task based the data collected from an online learning tool13 and released on
Kaggle [Feng et al., 2009].

E.5.1 ASSISTments

The selection procedure for the task ‘ASSISTments’ is discussed in detail in Appendix A.

13https://new.assistments.org/
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Target: Correct on first attempt [correct]

Shift: School [school_id]

List of causal features: • Number of hints on this problem. [hint_count]
• Number of student attempts on this problem. [attempt_count]
• ID of the skill associated with the problem [skill_id]
• Problem type [problem_type]
• Whether or not the student asks for all hints [bottom_hint]
• Tutor/Test mode [tutor_mode]
• Assignment position on the class assignments page [position]
• Type of the head section of the problem set[type]
• Type of first action: attempt or ask for a hint [first_action]

List of arguably causal features: • Predicted Boredom of student for the problem
[Average_confidence(BORED)]

• Predicted Engaged Concentration of student for the problem
[Average_confidence(CONCENTRATING)]

• Predicted Confusion of student for the problem [Average_confidence(CONFUSED)]
• Predicted Frustration of student for the problem

[Average_confidence(FRUSTRATED)]

List of other features: • Time in milliseconds for the student’s first response [ms_first_response]
• Time in milliseconds for the student’s overlap time [overlap_time]

E.6 TableShift: MIMIC

We have two tasks based on Medical Information Mart for Intensive Care (MIMIC-III), derived from
MIMIC-Extract [Johnson et al., 2016, Wang et al., 2020a,b].

E.6.1 Stay in ICU

Target: Stay in ICU for longer than 3 days [los_3]

Shift: Insurance type (Medicare, Private, Medicaid, Government, Self Pay) [insurance]

List of causal features: • Age in years [age]
• Gender [gender]
• Ethnicity [ethnicity]
• Height [height_mean_0]
• Weight [weight_mean_0]

List of arguably causal features: • Bicarbonate [bicarbonate_mask_0, . . . ,
bicarbonate_mask_23, bicarbonate_mean_0, . . . , bicarbonate_mean_23,
bicarbonate_time_since_measured_0, . . . , bicarbonate_time_since_measured_23]

• Co2 [co2_mask_0, . . . , co2_mask_23, co2_mean_0, . . . , co2_mean_23,
co2_time_since_measured_0, . . . , co2_time_since_measured_23]

• Partial pressure of carbon dioxide (pCO2) and end_tidal CO2 (ETCO2)
[co2_(etco2_pco2_etc)_mask_0, . . . , co2_(etco2_pco2_etc)_mask_23,
co2_(etco2_pco2_etc)_mean_0, . . . , co2_(etco2_pco2_etc)_mean_23,
co2_(etco2_pco2_etc)_time_since_measured_0, . . . ,
co2_(etco2_pco2_etc)_time_since_measured_23]

• Partial pressure of oxygen [partial_pressure_of_oxygen_mask_0, . . . ,
partial_pressure_of_oxygen_mask_23, partial_pressure_of_oxygen_mean_0, . . . ,
partial_pressure_of_oxygen_mean_23,
partial_pressure_of_oxygen_time_since_measured_0, . . . ,
partial_pressure_of_oxygen_time_since_measured_23]
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• Fraction inspired oxygen [fraction_inspired_oxygen_mask_0, . . . ,
fraction_inspired_oxygen_mask_23, fraction_inspired_oxygen_mean_0, . . . ,
fraction_inspired_oxygen_mean_23,
fraction_inspired_oxygen_time_since_measured_0, . . . ,
fraction_inspired_oxygen_time_since_measured_23,
fraction_inspired_oxygen_set_mask_0, . . . , fraction_inspired_oxygen_set_mask_23,
fraction_inspired_oxygen_set_mean_0, . . . , fraction_inspired_oxygen_set_mean_23,
fraction_inspired_oxygen_set_time_since_measured_0, . . . ,
fraction_inspired_oxygen_set_time_since_measured_23]

• Glascow coma score [glascow_coma_scale_total_mask_0, . . . ,
glascow_coma_scale_total_mask_23, glascow_coma_scale_total_mean_0, . . . ,
glascow_coma_scale_total_mean_23,
glascow_coma_scale_total_time_since_measured_0, . . . ,
glascow_coma_scale_total_time_since_measured_23]

• Lactate [lactate_mask_0, . . . , lactate_mask_23, lactate_mean_0, . . . , lactate_mean_23,
lactate_time_since_measured_0, . . . , lactate_time_since_measured_23]

• Lactic acid [lactic_acid_mask_0, . . . , lactic_acid_mask_23, lactic_acid_mean_0, . . . ,
lactic_acid_mean_23, lactic_acid_time_since_measured_0, . . . ,
lactic_acid_time_since_measured_23]

• Sodium [sodium_mask_0, . . . , sodium_mask_23, sodium_mean_0, . . . ,
sodium_mean_23, sodium_time_since_measured_0, . . . ,
sodium_time_since_measured_23]

• Hemoglobin [hemoglobin_mask_0, . . . , hemoglobin_mask_23, hemoglobin_mean_0,
. . . , hemoglobin_mean_23, hemoglobin_time_since_measured_0, . . . ,
hemoglobin_time_since_measured_23]

• Mean blood pressure [mean_blood_pressure_mask_0, . . . ,
mean_blood_pressure_mask_23, mean_blood_pressure_mean_0, . . . ,
mean_blood_pressure_mean_23, mean_blood_pressure_time_since_measured_0,
. . . , mean_blood_pressure_time_since_measured_23]

• Oxygen saturation [oxygen_saturation_mask_0, . . . , oxygen_saturation_mask_23,
oxygen_saturation_mean_0, . . . , oxygen_saturation_mean_23,
oxygen_saturation_time_since_measured_0, . . . ,
oxygen_saturation_time_since_measured_23]

• Ph [ph_mask_0, . . . , ph_mask_23, ph_mean_0, . . . , ph_mean_23,
ph_time_since_measured_0, . . . , ph_time_since_measured_23]

• Respiratory rate [respiratory_rate_mask_0, . . . , respiratory_rate_mask_23,
respiratory_rate_mean_0, . . . , respiratory_rate_mean_23,
respiratory_rate_time_since_measured_0, . . . ,
respiratory_rate_time_since_measured_23, respiratory_rate_set_mask_0, . . . ,
respiratory_rate_set_mask_23, respiratory_rate_set_mean_0, . . . ,
respiratory_rate_set_mean_23, respiratory_rate_set_time_since_measured_0, . . . ,
respiratory_rate_set_time_since_measured_23]

• Systolic blood pressure [systolic_blood_pressure_mask_0, . . . ,
systolic_blood_pressure_mask_23, systolic_blood_pressure_mean_0, . . . ,
systolic_blood_pressure_mean_23, systolic_blood_pressure_time_since_measured_0,
. . . , systolic_blood_pressure_time_since_measured_23]

• Heart rate [heart_rate_mask_0, . . . , heart_rate_mask_23, heart_rate_mean_0, . . . ,
heart_rate_mean_23, heart_rate_time_since_measured_0, . . . ,
heart_rate_time_since_measured_23]

• Temperature [temperature_mask_0, . . . , temperature_mask_23, temperature_mean_0,
. . . , temperature_mean_23, temperature_time_since_measured_0, . . . ,
temperature_time_since_measured_23]

• White blood cell count[white_blood_cell_count_mask_0, . . . ,
white_blood_cell_count_mask_23, white_blood_cell_count_mean_0, . . . ,
white_blood_cell_count_mean_23, white_blood_cell_count_time_since_measured_0,
. . . , white_blood_cell_count_time_since_measured_23]
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List of other features: • Height [height_mask_0, . . . , height_mask_23, height_mean_1, . . . ,
height_mean_23, height_time_since_measured_0, . . . ,
height_time_since_measured_23]

• Weight [weight_mask_0, . . . , weight_mask_23, weight_mean_1, . . . ,
weight_mean_23, weight_time_since_measured_0, . . . ,
weight_time_since_measured_23]

• Alanine aminotransferase [alanine_aminotransferase_mask_0, . . . ,
alanine_aminotransferase_mask_23, alanine_aminotransferase_mean_0, . . . ,
alanine_aminotransferase_mean_23,
alanine_aminotransferase_time_since_measured_0, . . . ,
alanine_aminotransferase_time_since_measured_23]

• Albumin [albumin_mask_0, . . . , albumin_mask_23, albumin_mean_0, . . . ,
albumin_mean_23, albumin_time_since_measured_0, . . . ,
albumin_time_since_measured_23]

• Alanine aminotransferase [albumin_ascites_mask_0, . . . , albumin_ascites_mask_23,
albumin_ascites_mean_0, . . . , albumin_ascites_mean_23,
albumin_ascites_time_since_measured_0, . . . ,
albumin_ascites_time_since_measured_23]

• Albumin pleural [albumin_pleural_mask_0, . . . , albumin_pleural_mask_23,
albumin_pleural_mean_0, . . . , albumin_pleural_mean_23,
albumin_pleural_time_since_measured_0, . . . ,
albumin_pleural_time_since_measured_23]

• Albumin in urine [albumin_urine_mask_0, . . . , albumin_urine_mask_23,
albumin_urine_mean_0, . . . , albumin_urine_mean_23,
albumin_urine_time_since_measured_0, . . . ,
albumin_urine_time_since_measured_23]

• Alkaline phosphate [alkaline_phosphate_mask_0, . . . , alkaline_phosphate_mask_23,
alkaline_phosphate_mean_0, . . . , alkaline_phosphate_mean_23,
alkaline_phosphate_time_since_measured_0, . . . ,
alkaline_phosphate_time_since_measured_23]

• Anion gap [anion_gap_mask_0, . . . , anion_gap_mask_23, anion_gap_mean_0, . . . ,
anion_gap_mean_23, anion_gap_time_since_measured_0, . . . ,
anion_gap_time_since_measured_23]

• Asparate aminotransferase [asparate_aminotransferase_mask_0, . . . ,
asparate_aminotransferase_mask_23, asparate_aminotransferase_mean_0, . . . ,
asparate_aminotransferase_mean_23,
asparate_aminotransferase_time_since_measured_0, . . . ,
asparate_aminotransferase_time_since_measured_23]

• Basophils [basophils_mask_0, . . . , basophils_mask_23, basophils_mean_0, . . . ,
basophils_mean_23, basophils_time_since_measured_0, . . . ,
basophils_time_since_measured_23]

• Bilirubin [bilirubin_mask_0, . . . , bilirubin_mask_23, bilirubin_mean_0, . . . ,
bilirubin_mean_23, bilirubin_time_since_measured_0, . . . ,
bilirubin_time_since_measured_23]

• Blood urea nitrogen [blood_urea_nitrogen_mask_0, . . . ,
blood_urea_nitrogen_mask_23, blood_urea_nitrogen_mean_0, . . . ,
blood_urea_nitrogen_mean_23, blood_urea_nitrogen_time_since_measured_0, . . . ,
blood_urea_nitrogen_time_since_measured_23]

• Calcium [calcium_mask_0, . . . , calcium_mask_23, calcium_mean_0, . . . ,
calcium_mean_23, calcium_time_since_measured_0, . . . ,
calcium_time_since_measured_23]

• Calcium ionized [calcium_ionized_mask_0, . . . , calcium_ionized_mask_23,
calcium_ionized_mean_0, . . . , calcium_ionized_mean_23,
calcium_ionized_time_since_measured_0, . . . ,
calcium_ionized_time_since_measured_23]

• Calcium in urine [calcium_urine_mask_0, . . . , calcium_urine_mask_23,
calcium_urine_mean_0, . . . , calcium_urine_mean_23,
calcium_urine_time_since_measured_0, . . . , calcium_urine_time_since_measured_23]
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• Cardiac index [cardiac_index_mask_0, . . . , cardiac_index_mask_23,
cardiac_index_mean_0, . . . , cardiac_index_mean_23,
cardiac_index_time_since_measured_0, . . . , cardiac_index_time_since_measured_23]

• Cardiac output by Fick principle [cardiac_output_fick_mask_0, . . . ,
cardiac_output_fick_mask_23, cardiac_output_fick_mean_0, . . . ,
cardiac_output_fick_mean_23, cardiac_output_fick_time_since_measured_0, . . . ,
cardiac_output_fick_time_since_measured_23]

• Cardiac output by thermodilution [cardiac_output_thermodilution_mask_0, . . . ,
cardiac_output_thermodilution_mask_23, cardiac_output_thermodilution_mean_0,
. . . , cardiac_output_thermodilution_mean_23,
cardiac_output_thermodilution_time_since_measured_0, . . . ,
cardiac_output_thermodilution_time_since_measured_23]

• Central venous pressure [central_venous_pressure_mask_0, . . . ,
central_venous_pressure_mask_23, central_venous_pressure_mean_0, . . . ,
central_venous_pressure_mean_23,
central_venous_pressure_time_since_measured_0, . . . ,
central_venous_pressure_time_since_measured_23]

• Chloride [chloride_mask_0, . . . , chloride_mask_23, chloride_mean_0, . . . ,
chloride_mean_23, chloride_time_since_measured_0, . . . ,
chloride_time_since_measured_23]

• Chloride in urine [chloride_urine_mask_0, . . . , chloride_urine_mask_23,
chloride_urine_mean_0, . . . , chloride_urine_mean_23,
chloride_urine_time_since_measured_0, . . . ,
chloride_urine_time_since_measured_23]

• Cholesterol [cholesterol_mask_0, . . . , cholesterol_mask_23, cholesterol_mean_0, . . . ,
cholesterol_mean_23, cholesterol_time_since_measured_0, . . . ,
cholesterol_time_since_measured_23]

• HDL cholesterol [cholesterol_hdl_mask_0, . . . , cholesterol_hdl_mask_23,
cholesterol_hdl_mean_0, . . . , cholesterol_hdl_mean_23,
cholesterol_hdl_time_since_measured_0, . . . ,
cholesterol_hdl_time_since_measured_23]

• LDL cholesterol [cholesterol_ldl_mask_0, . . . , cholesterol_ldl_mask_23,
cholesterol_ldl_mean_0, . . . , cholesterol_ldl_mean_23,
cholesterol_ldl_time_since_measured_0, . . . ,
cholesterol_ldl_time_since_measured_23]

• Creatinine [creatinine_mask_0, . . . , creatinine_mask_23, creatinine_mean_0, . . . ,
creatinine_mean_23, creatinine_time_since_measured_0, . . . ,
creatinine_time_since_measured_23]

• Creatinine ascites [creatinine_ascites_mask_0, . . . , creatinine_ascites_mask_23,
creatinine_ascites_mean_0, . . . , creatinine_ascites_mean_23,
creatinine_ascites_time_since_measured_0, . . . ,
creatinine_ascites_time_since_measured_23]

• Creatinine body fluid [creatinine_body_fluid_mask_0, . . . ,
creatinine_body_fluid_mask_23, creatinine_body_fluid_mean_0, . . . ,
creatinine_body_fluid_mean_23, creatinine_body_fluid_time_since_measured_0,
. . . , creatinine_body_fluid_time_since_measured_23]

• Creatinine pleural [creatinine_pleural_mask_0, . . . , creatinine_pleural_mask_23,
creatinine_pleural_mean_0, . . . , creatinine_pleural_mean_23,
creatinine_pleural_time_since_measured_0, . . . ,
creatinine_pleural_time_since_measured_23]

• Creatinine in urine [creatinine_urine_mask_0, . . . , creatinine_urine_mask_23,
creatinine_urine_mean_0, . . . , creatinine_urine_mean_23,
creatinine_urine_time_since_measured_0, . . . ,
creatinine_urine_time_since_measured_23]

• Diastolic blood pressure [diastolic_blood_pressure_mask_0, . . . ,
diastolic_blood_pressure_mask_23, diastolic_blood_pressure_mean_0, . . . ,
diastolic_blood_pressure_mean_23,
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diastolic_blood_pressure_time_since_measured_0, . . . ,
diastolic_blood_pressure_time_since_measured_23]

• Eosinophils [eosinophils_mask_0, . . . , eosinophils_mask_23, eosinophils_mean_0,
. . . , eosinophils_mean_23, eosinophils_time_since_measured_0, . . . ,
eosinophils_time_since_measured_23]

• Fibrinogen [fibrinogen_mask_0, . . . , fibrinogen_mask_23, fibrinogen_mean_0, . . . ,
fibrinogen_mean_23, fibrinogen_time_since_measured_0, . . . ,
fibrinogen_time_since_measured_23]

• Glucose [glucose_mask_0, . . . , glucose_mask_23, glucose_mean_0, . . . ,
glucose_mean_23, glucose_time_since_measured_0, . . . ,
glucose_time_since_measured_23]

• Hematocrit [hematocrit_mask_0, . . . , hematocrit_mask_23, hematocrit_mean_0, . . . ,
hematocrit_mean_23, hematocrit_time_since_measured_0, . . . ,
hematocrit_time_since_measured_23]

• Lymphocytes [lymphocytes_mask_0, . . . , lymphocytes_mask_23,
lymphocytes_mean_0, . . . , lymphocytes_mean_23,
lymphocytes_time_since_measured_0, . . . , lymphocytes_time_since_measured_23]

• Lymphocytes ascites [lymphocytes_ascites_mask_0, . . . ,
lymphocytes_ascites_mask_23, lymphocytes_ascites_mean_0, . . . ,
lymphocytes_ascites_mean_23, lymphocytes_ascites_time_since_measured_0, . . . ,
lymphocytes_ascites_time_since_measured_23]

• Atypical lymphocytes [lymphocytes_atypical_mask_0, . . . ,
lymphocytes_atypical_mask_23, lymphocytes_atypical_mean_0, . . . ,
lymphocytes_atypical_mean_23, lymphocytes_atypical_time_since_measured_0,
. . . , lymphocytes_atypical_time_since_measured_23,
lymphocytes_atypical_csl_mask_0, . . . , lymphocytes_atypical_csl_mask_23,
lymphocytes_atypical_csl_ean_0, . . . , lymphocytes_atypical_csl_mean_23,
lymphocytes_atypical_csl_time_since_measured_0, . . . ,
lymphocytes_atypical_csl_time_since_measured_23]

• Lymphocytes in body fluid [lymphocytes_body_fluid_mask_0, . . . ,
lymphocytes_body_fluid_mask_23, lymphocytes_body_fluid_mean_0, . . . ,
lymphocytes_body_fluid_mean_23,
lymphocytes_body_fluid_time_since_measured_0, . . . ,
lymphocytes_body_fluid_time_since_measured_23]

• Lymphocytes percentage [lymphocytes_percent_mask_0, . . . ,
lymphocytes_percent_mask_23, lymphocytes_percent_mean_0, . . . ,
lymphocytes_percent_mean_23, lymphocytes_percent_time_since_measured_0, . . . ,
lymphocytes_percent_time_since_measured_23]

• Lymphocytes pleural [lymphocytes_pleural_mask_0, . . . ,
lymphocytes_pleural_mask_23, lymphocytes_pleural_mean_0, . . . ,
lymphocytes_pleural_mean_23, lymphocytes_pleural_time_since_measured_0, . . . ,
lymphocytes_pleural_time_since_measured_23]

• Magnesium [magnesium_mask_0, . . . , magnesium_mask_23, magnesium_mean_0,
. . . , magnesium_mean_23, magnesium_time_since_measured_0, . . . ,
magnesium_time_since_measured_23]

• Mean corpuscular hemoglobin [mean_corpuscular_hemoglobin_mask_0, . . . ,
mean_corpuscular_hemoglobin_mask_23, mean_corpuscular_hemoglobin_mean_0,
. . . , mean_corpuscular_hemoglobin_mean_23,
mean_corpuscular_hemoglobin_time_since_measured_0, . . . ,
mean_corpuscular_hemoglobin_time_since_measured_23]

• Mean corpuscular hemoglobin concentration
[mean_corpuscular_hemoglobin_concentration_mask_0, . . . ,
mean_corpuscular_hemoglobin_concentration_mask_23,
mean_corpuscular_hemoglobin_concentration_mean_0, . . . ,
mean_corpuscular_hemoglobin_concentration_mean_23,
mean_corpuscular_hemoglobin_concentration_time_since_measured_0, . . . ,
mean_corpuscular_hemoglobin_concentration_time_since_measured_23]
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• Mean corpuscular volume [mean_corpuscular_volume_mask_0, . . . ,
mean_corpuscular_volume_mask_23, mean_corpuscular_volume_mean_0, . . . ,
mean_corpuscular_volume_mean_23,
mean_corpuscular_volume_time_since_measured_0, . . . ,
mean_corpuscular_volume_time_since_measured_23]

• Monocytes [monocytes_mask_0, . . . , monocytes_mask_23, monocytes_mean_0, . . . ,
monocytes_mean_23, monocytes_time_since_measured_0, . . . ,
monocytes_time_since_measured_23, monocytes_csl_mask_0, . . . ,
monocytes_csl_mask_23, monocytes_csl_mean_0, . . . , monocytes_csl_mean_23,
monocytes_csl_time_since_measured_0, . . . ,
monocytes_csl_time_since_measured_23]

• Neutrophils [neutrophils_mask_0, . . . , neutrophils_mask_23, neutrophils_mean_0, . . . ,
neutrophils_mean_23, neutrophils_time_since_measured_0, . . . ,
neutrophils_time_since_measured_23]

• Partial pressure of carbon dioxide [partial_pressure_of_carbon_dioxide_mask_0, . . . ,
partial_pressure_of_carbon_dioxide_mask_23,
partial_pressure_of_carbon_dioxide_mean_0, . . . ,
partial_pressure_of_carbon_dioxide_mean_23,
partial_pressure_of_carbon_dioxide_time_since_measured_0, . . . ,
partial_pressure_of_carbon_dioxide_time_since_measured_23]

• Partial thromboplastin [partial_thromboplastin_mask_0, . . . ,
partial_thromboplastin_mask_23, partial_thromboplastin_mean_0, . . . ,
partial_thromboplastin_mean_23, partial_thromboplastin_time_since_measured_0,
. . . , partial_thromboplastin_time_since_measured_23]

• Peak inspiratory pressure [peak_inspiratory_pressure_mask_0, . . . ,
peak_inspiratory_pressure_mask_23, peak_inspiratory_pressure_mean_0, . . . ,
peak_inspiratory_pressure_mean_23,
peak_inspiratory_pressure_time_since_measured_0, . . . ,
peak_inspiratory_pressure_time_since_measured_23]

• Ph in urine [ph_urine_mask_0, . . . , ph_urine_mask_23, ph_urine_mean_0, . . . ,
ph_urine_mean_23, ph_urine_time_since_measured_0, . . . ,
ph_urine_time_since_measured_23]

• Phosphate [phosphate_mask_0, . . . , phosphate_mask_23, phosphate_mean_0, . . . ,
phosphate_mean_23, phosphate_time_since_measured_0, . . . ,
phosphate_time_since_measured_23]

• Phosphorous [phosphorous_mask_0, . . . , phosphorous_mask_23,
phosphorous_mean_0, . . . , phosphorous_mean_23,
phosphorous_time_since_measured_0, . . . , phosphorous_time_since_measured_23]

• Plateau pressure [plateau_pressure_mask_0, . . . , plateau_pressure_mask_23,
plateau_pressure_mean_0, . . . , plateau_pressure_mean_23,
plateau_pressure_time_since_measured_0, . . . ,
plateau_pressure_time_since_measured_23]

• Platelets [platelets_mask_0, . . . , platelets_mask_23, platelets_mean_0, . . . ,
platelets_mean_23, platelets_time_since_measured_0, . . . ,
platelets_time_since_measured_23]

• Positive end expiratory pressure [positive_end_expiratory_pressure_mask_0, . . . ,
positive_end_expiratory_pressure_mask_23,
positive_end_expiratory_pressure_mean_0, . . . ,
positive_end_expiratory_pressure_mean_23,
positive_end_expiratory_pressure_time_since_measured_0, . . . ,
positive_end_expiratory_pressure_time_since_measured_23,
positive_end_expiratory_pressure_set_mask_0, . . . ,
positive_end_expiratory_pressure_set_mask_23,
positive_end_expiratory_pressure_set_mean_0, . . . ,
positive_end_expiratory_pressure_set_mean_23,
positive_end_expiratory_pressure_set_time_since_measured_0, . . . ,
positive_end_expiratory_pressure_set_time_since_measured_23]
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• Post void residual [post_void_residual_mask_0, . . . , post_void_residual_mask_23,
post_void_residual_mean_0, . . . , post_void_residual_mean_23,
post_void_residual_time_since_measured_0, . . . ,
post_void_residual_time_since_measured_23]

• Potassium [potassium_mask_0, . . . , potassium_mask_23, potassium_mean_0, . . . ,
potassium_mean_23, potassium_time_since_measured_0, . . . ,
potassium_time_since_measured_23]

• Potassium serum [potassium_serum_mask_0, . . . , potassium_serum_mask_23,
potassium_serum_mean_0, . . . , potassium_serum_mean_23,
potassium_serum_time_since_measured_0, . . . ,
potassium_serum_time_since_measured_23]

• Prothrombin time tested with INR [prothrombin_time_inr_mask_0, . . . ,
prothrombin_time_inr_mask_23, prothrombin_time_inr_mean_0, . . . ,
prothrombin_time_inr_mean_23, prothrombin_time_inr_time_since_measured_0,
. . . , prothrombin_time_inr_time_since_measured_23]

• Prothrombin time using PT [prothrombin_time_pt_mask_0, . . . ,
prothrombin_time_pt_mask_23, prothrombin_time_pt_mean_0, . . . ,
prothrombin_time_pt_mean_23, prothrombin_time_pt_time_since_measured_0, . . . ,
prothrombin_time_pt_time_since_measured_23]

• Pulmonary artery pressure [pulmonary_artery_pressure_mask_0, . . . ,
pulmonary_artery_pressure_mask_23, pulmonary_artery_pressure_mean_0, . . . ,
pulmonary_artery_pressure_mean_23,
pulmonary_artery_pressure_time_since_measured_0, . . . ,
pulmonary_artery_pressure_time_since_measured_23]

• Systolic pulmonary artery pressure[pulmonary_artery_pressure_systolic_mask_0, . . . ,
pulmonary_artery_pressure_systolic_mask_23,
pulmonary_artery_pressure_systolic_mean_0, . . . ,
pulmonary_artery_pressure_systolic_mean_23,
pulmonary_artery_pressure_systolic_time_since_measured_0, . . . ,
pulmonary_artery_pressure_systolic_time_since_measured_23]

• Pulmonary capillary wedge pressure [pulmonary_capillary_wedge_pressure_mask_0,
. . . , pulmonary_capillary_wedge_pressure_mask_23,
pulmonary_capillary_wedge_pressure_mean_0, . . . ,
pulmonary_capillary_wedge_pressure_mean_23,
pulmonary_capillary_wedge_pressure_time_since_measured_0, . . . ,
pulmonary_capillary_wedge_pressure_time_since_measured_23]

• Red blood cell count [red_blood_cell_count_mask_0, . . . ,
red_blood_cell_count_mask_23, red_blood_cell_count_mean_0, . . . ,
red_blood_cell_count_mean_23, red_blood_cell_count_time_since_measured_0, . . . ,
red_blood_cell_count_time_since_measured_23]

• Red blood cell count ascites [red_blood_cell_count_ascites_mask_0, . . . ,
red_blood_cell_count_ascites_mask_23, red_blood_cell_count_ascites_mean_0, . . . ,
red_blood_cell_count_ascites_mean_23,
red_blood_cell_count_ascites_time_since_measured_0, . . . ,
red_blood_cell_count_ascites_time_since_measured_23]

• Red blood cell count csf [red_blood_cell_count_csf_mask_0, . . . ,
red_blood_cell_count_csf_mask_23, red_blood_cell_count_csf_mean_0, . . . ,
red_blood_cell_count_csf_mean_23,
red_blood_cell_count_csf_time_since_measured_0, . . . ,
red_blood_cell_count_csf_time_since_measured_23]

• Red blood cell count pleural [red_blood_cell_count_pleural_mask_0, . . . ,
red_blood_cell_count_pleural_mask_23, red_blood_cell_count_pleural_mean_0, . . . ,
red_blood_cell_count_pleural_mean_23,
red_blood_cell_count_pleural_time_since_measured_0, . . . ,
red_blood_cell_count_pleural_time_since_measured_23]

• Red blood cell count in urine [red_blood_cell_count_urine_mask_0, . . . ,
red_blood_cell_count_urine_mask_23, red_blood_cell_count_urine_mean_0, . . . ,
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red_blood_cell_count_urine_mean_23,
red_blood_cell_count_urine_time_since_measured_0, . . . ,
red_blood_cell_count_urine_time_since_measured_23]

• Systemic vascular resistance [systemic_vascular_resistance_mask_0, . . . ,
systemic_vascular_resistance_mask_23, systemic_vascular_resistance_mean_0, . . . ,
systemic_vascular_resistance_mean_23,
systemic_vascular_resistance_time_since_measured_0, . . . ,
systemic_vascular_resistance_time_since_measured_23]

• Tidal_volume_observed [tidal_volume_observed_mask_0, . . . ,
tidal_volume_observed_mask_23, tidal_volume_observed_mean_0, . . . ,
tidal_volume_observed_mean_23, tidal_volume_observed_time_since_measured_0,
. . . , tidal_volume_observed_time_since_measured_23]

• Tidal volume [tidal_volume_set_mask_0, . . . , tidal_volume_set_mask_23,
tidal_volume_set_mean_0, . . . , tidal_volume_set_mean_23,
tidal_volume_set_time_since_measured_0, . . . ,
tidal_volume_set_time_since_measured_23]

• Tidal volume spontaneous [tidal_volume_spontaneous_mask_0, . . . ,
tidal_volume_spontaneous_mask_23, tidal_volume_spontaneous_mean_0, . . . ,
tidal_volume_spontaneous_mean_23,
tidal_volume_spontaneous_time_since_measured_0, . . . ,
tidal_volume_spontaneous_time_since_measured_23]

• Total protein [total_protein_mask_0, . . . , total_protein_mask_23,
total_protein_mean_0, . . . , total_protein_mean_23,
total_protein_time_since_measured_0, . . . , total_protein_time_since_measured_23]

• Total protein in urine [total_protein_urine_mask_0, . . . , total_protein_urine_mask_23,
total_protein_urine_mean_0, . . . , total_protein_urine_mean_23,
total_protein_urine_time_since_measured_0, . . . ,
total_protein_urine_time_since_measured_23]

• Troponin_i [troponin_i_mask_0, . . . , troponin_i_mask_23, troponin_i_mean_0, . . . ,
troponin_i_mean_23, troponin_i_time_since_measured_0, . . . ,
troponin_i_time_since_measured_23]

• Troponin_t [troponin_t_mask_0, . . . , troponin_t_mask_23, troponin_t_mean_0, . . . ,
troponin_t_mean_23, troponin_t_time_since_measured_0, . . . ,
troponin_t_time_since_measured_23]

• Venous pvo2 [venous_pvo2_mask_0, . . . , venous_pvo2_mask_23,
venous_pvo2_mean_0, . . . , venous_pvo2_mean_23,
venous_pvo2_time_since_measured_0, . . . , venous_pvo2_time_since_measured_23]

• White blood cell count in urine [white_blood_cell_count_urine_mask_0, . . . ,
white_blood_cell_count_urine_mask_23, white_blood_cell_count_urine_mean_0,
. . . , white_blood_cell_count_urine_mean_23,
white_blood_cell_count_urine_time_since_measured_0, . . . ,
white_blood_cell_count_urine_time_since_measured_23]

E.6.2 Hospital Mortality

The selection procedure for the task ‘Hospital Mortality’ is discussed in detail in Appendix A.

Target: Hospital morality (that the patient dies at any point during this visit, even if they are
discharged from the ICU to another unit in the hospital). [mort_hosp]

Shift: Insurance type (Medicare, Private, Medicaid, Government, Self Pay) [insurance]

List of causal features: • Age in years [age]
• Gender [gender]
• Ethnicity [ethnicity]
• Height [height_mean_0]
• Weight [weight_mean_0]
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List of arguably causal features: • Bicarbonate [bicarbonate_mask_0.. . . , bicarbonate_mask_23,
bicarbonate_mean_0,. . . ,bicarbonate_mean_23,
bicarbonate_time_since_measured_0,. . . , bicarbonate_time_since_measured_23]

• Co2 [co2_mask_0.. . . , co2_mask_23, co2_mean_0,. . . ,co2_mean_23,
co2_time_since_measured_0,. . . , co2_time_since_measured_23]

• Partial pressure of carbon dioxide (pCO2) and end_tidal CO2 (ETCO2)
[co2_(etco2_pco2_etc)_mask_0.. . . , co2_(etco2_pco2_etc)_mask_23,
co2_(etco2_pco2_etc)_mean_0,. . . , co2_(etco2_pco2_etc)_mean_23,
co2_(etco2_pco2_etc)_time_since_measured_0,. . . ,
co2_(etco2_pco2_etc)_time_since_measured_23]

• Partial pressure of oxygen [partial_pressure_of_oxygen_mask_0.. . . ,
partial_pressure_of_oxygen_mask_23,
partial_pressure_of_oxygen_mean_0,. . . ,partial_pressure_of_oxygen_mean_23,
partial_pressure_of_oxygen_time_since_measured_0,. . . ,
partial_pressure_of_oxygen_time_since_measured_23]

• Fraction inspired oxygen [fraction_inspired_oxygen_mask_0.. . . ,
fraction_inspired_oxygen_mask_23,
fraction_inspired_oxygen_mean_0,. . . ,fraction_inspired_oxygen_mean_23,
fraction_inspired_oxygen_time_since_measured_0,. . . ,
fraction_inspired_oxygen_time_since_measured_23,
fraction_inspired_oxygen_set_mask_0.. . . , fraction_inspired_oxygen_set_mask_23,
fraction_inspired_oxygen_set_mean_0,. . . ,fraction_inspired_oxygen_set_mean_23,
fraction_inspired_oxygen_set_time_since_measured_0,. . . ,
fraction_inspired_oxygen_set_time_since_measured_23]

• Glascow coma score [glascow_coma_scale_total_mask_0.. . . ,
glascow_coma_scale_total_mask_23,
glascow_coma_scale_total_mean_0,. . . ,glascow_coma_scale_total_mean_23,
glascow_coma_scale_total_time_since_measured_0,. . . ,
glascow_coma_scale_total_time_since_measured_23]

• Lactate [lactate_mask_0.. . . , lactate_mask_23, lactate_mean_0,. . . ,lactate_mean_23,
lactate_time_since_measured_0,. . . , lactate_time_since_measured_23]

• Lactic acid [lactic_acid_mask_0.. . . , lactic_acid_mask_23,
lactic_acid_mean_0,. . . ,lactic_acid_mean_23,
lactic_acid_time_since_measured_0,. . . , lactic_acid_time_since_measured_23]

• Sodium [sodium_mask_0.. . . , sodium_mask_23,
sodium_mean_0,. . . ,sodium_mean_23, sodium_time_since_measured_0,. . . ,
sodium_time_since_measured_23]

• Hemoglobin [hemoglobin_mask_0.. . . , hemoglobin_mask_23,
hemoglobin_mean_0,. . . ,hemoglobin_mean_23,
hemoglobin_time_since_measured_0,. . . , hemoglobin_time_since_measured_23]

• Mean blood pressure [mean_blood_pressure_mask_0.. . . ,
mean_blood_pressure_mask_23,
mean_blood_pressure_mean_0,. . . ,mean_blood_pressure_mean_23,
mean_blood_pressure_time_since_measured_0,. . . ,
mean_blood_pressure_time_since_measured_23]

• Oxygen saturation [oxygen_saturation_mask_0.. . . , oxygen_saturation_mask_23,
oxygen_saturation_mean_0,. . . ,oxygen_saturation_mean_23,
oxygen_saturation_time_since_measured_0,. . . ,
oxygen_saturation_time_since_measured_23]

• Ph [ph_mask_0.. . . , ph_mask_23, ph_mean_0,. . . ,ph_mean_23,
ph_time_since_measured_0,. . . , ph_time_since_measured_23]

• Respiratory rate [respiratory_rate_mask_0.. . . , respiratory_rate_mask_23,
respiratory_rate_mean_0,. . . ,respiratory_rate_mean_23,
respiratory_rate_time_since_measured_0,. . . ,
respiratory_rate_time_since_measured_23, respiratory_rate_set_mask_0.. . . ,
respiratory_rate_set_mask_23,
respiratory_rate_set_mean_0,. . . ,respiratory_rate_set_mean_23,
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respiratory_rate_set_time_since_measured_0,. . . ,
respiratory_rate_set_time_since_measured_23]

• Systolic blood pressure [systolic_blood_pressure_mask_0.. . . ,
systolic_blood_pressure_mask_23,
systolic_blood_pressure_mean_0,. . . ,systolic_blood_pressure_mean_23,
systolic_blood_pressure_time_since_measured_0,. . . ,
systolic_blood_pressure_time_since_measured_23]

• Heart rate [heart_rate_mask_0.. . . , heart_rate_mask_23,
heart_rate_mean_0,. . . ,heart_rate_mean_23, heart_rate_time_since_measured_0,. . . ,
heart_rate_time_since_measured_23]

• Temperature [temperature_mask_0.. . . , temperature_mask_23,
temperature_mean_0,. . . ,temperature_mean_23,
temperature_time_since_measured_0,. . . , temperature_time_since_measured_23]

• White blood cell count[white_blood_cell_count_mask_0.. . . ,
white_blood_cell_count_mask_23,
white_blood_cell_count_mean_0,. . . ,white_blood_cell_count_mean_23,
white_blood_cell_count_time_since_measured_0,. . . ,
white_blood_cell_count_time_since_measured_23]

List of other features: • Height [height_mask_0.. . . , height_mask_23,
height_mean_1,. . . ,height_mean_23, height_time_since_measured_0,. . . ,
height_time_since_measured_23]

• Weight [weight_mask_0.. . . , weight_mask_23, weight_mean_1,. . . ,weight_mean_23,
weight_time_since_measured_0,. . . , weight_time_since_measured_23]

• Alanine aminotransferase [alanine_aminotransferase_mask_0.. . . ,
alanine_aminotransferase_mask_23,
alanine_aminotransferase_mean_0,. . . ,alanine_aminotransferase_mean_23,
alanine_aminotransferase_time_since_measured_0,. . . ,
alanine_aminotransferase_time_since_measured_23]

• Albumin [albumin_mask_0.. . . , albumin_mask_23,
albumin_mean_0,. . . ,albumin_mean_23, albumin_time_since_measured_0,. . . ,
albumin_time_since_measured_23]

• Alanine aminotransferase [albumin_ascites_mask_0.. . . , albumin_ascites_mask_23,
albumin_ascites_mean_0,. . . ,albumin_ascites_mean_23,
albumin_ascites_time_since_measured_0,. . . ,
albumin_ascites_time_since_measured_23]

• Albumin pleural [albumin_pleural_mask_0.. . . , albumin_pleural_mask_23,
albumin_pleural_mean_0,. . . ,albumin_pleural_mean_23,
albumin_pleural_time_since_measured_0,. . . ,
albumin_pleural_time_since_measured_23]

• Albumin in urine [albumin_urine_mask_0.. . . , albumin_urine_mask_23,
albumin_urine_mean_0,. . . ,albumin_urine_mean_23,
albumin_urine_time_since_measured_0,. . . , albumin_urine_time_since_measured_23]

• Alkaline phosphate [alkaline_phosphate_mask_0.. . . , alkaline_phosphate_mask_23,
alkaline_phosphate_mean_0,. . . ,alkaline_phosphate_mean_23,
alkaline_phosphate_time_since_measured_0,. . . ,
alkaline_phosphate_time_since_measured_23]

• Anion gap [anion_gap_mask_0.. . . , anion_gap_mask_23,
anion_gap_mean_0,. . . ,anion_gap_mean_23,
anion_gap_time_since_measured_0,. . . , anion_gap_time_since_measured_23]

• Asparate aminotransferase [asparate_aminotransferase_mask_0.. . . ,
asparate_aminotransferase_mask_23,
asparate_aminotransferase_mean_0,. . . ,asparate_aminotransferase_mean_23,
asparate_aminotransferase_time_since_measured_0,. . . ,
asparate_aminotransferase_time_since_measured_23]

• Basophils [basophils_mask_0.. . . , basophils_mask_23,
basophils_mean_0,. . . ,basophils_mean_23, basophils_time_since_measured_0,. . . ,
basophils_time_since_measured_23]
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• Bilirubin [bilirubin_mask_0.. . . , bilirubin_mask_23,
bilirubin_mean_0,. . . ,bilirubin_mean_23, bilirubin_time_since_measured_0,. . . ,
bilirubin_time_since_measured_23]

• Blood urea nitrogen [blood_urea_nitrogen_mask_0.. . . ,
blood_urea_nitrogen_mask_23,
blood_urea_nitrogen_mean_0,. . . ,blood_urea_nitrogen_mean_23,
blood_urea_nitrogen_time_since_measured_0,. . . ,
blood_urea_nitrogen_time_since_measured_23]

• Calcium [calcium_mask_0.. . . , calcium_mask_23,
calcium_mean_0,. . . ,calcium_mean_23, calcium_time_since_measured_0,. . . ,
calcium_time_since_measured_23]

• Calcium ionized [calcium_ionized_mask_0.. . . , calcium_ionized_mask_23,
calcium_ionized_mean_0,. . . ,calcium_ionized_mean_23,
calcium_ionized_time_since_measured_0,. . . ,
calcium_ionized_time_since_measured_23]

• Calcium in urine [calcium_urine_mask_0.. . . , calcium_urine_mask_23,
calcium_urine_mean_0,. . . ,calcium_urine_mean_23,
calcium_urine_time_since_measured_0,. . . , calcium_urine_time_since_measured_23]

• Cardiac index [cardiac_index_mask_0.. . . , cardiac_index_mask_23,
cardiac_index_mean_0,. . . ,cardiac_index_mean_23,
cardiac_index_time_since_measured_0,. . . , cardiac_index_time_since_measured_23]

• Cardiac output by Fick principle [cardiac_output_fick_mask_0.. . . ,
cardiac_output_fick_mask_23,
cardiac_output_fick_mean_0,. . . ,cardiac_output_fick_mean_23,
cardiac_output_fick_time_since_measured_0,. . . ,
cardiac_output_fick_time_since_measured_23]

• Cardiac output by thermodilution [cardiac_output_thermodilution_mask_0.. . . ,
cardiac_output_thermodilution_mask_23, car-
diac_output_thermodilution_mean_0,. . . ,cardiac_output_thermodilution_mean_23,
cardiac_output_thermodilution_time_since_measured_0,. . . ,
cardiac_output_thermodilution_time_since_measured_23]

• Central venous pressure [central_venous_pressure_mask_0.. . . ,
central_venous_pressure_mask_23,
central_venous_pressure_mean_0,. . . ,central_venous_pressure_mean_23,
central_venous_pressure_time_since_measured_0,. . . ,
central_venous_pressure_time_since_measured_23]

• Chloride [chloride_mask_0.. . . , chloride_mask_23,
chloride_mean_0,. . . ,chloride_mean_23, chloride_time_since_measured_0,. . . ,
chloride_time_since_measured_23]

• Chloride in urine [chloride_urine_mask_0.. . . , chloride_urine_mask_23,
chloride_urine_mean_0,. . . ,chloride_urine_mean_23,
chloride_urine_time_since_measured_0,. . . , chloride_urine_time_since_measured_23]

• Cholesterol [cholesterol_mask_0.. . . , cholesterol_mask_23,
cholesterol_mean_0,. . . ,cholesterol_mean_23,
cholesterol_time_since_measured_0,. . . , cholesterol_time_since_measured_23]

• HDL cholesterol [cholesterol_hdl_mask_0.. . . , cholesterol_hdl_mask_23,
cholesterol_hdl_mean_0,. . . ,cholesterol_hdl_mean_23,
cholesterol_hdl_time_since_measured_0,. . . ,
cholesterol_hdl_time_since_measured_23]

• LDL cholesterol [cholesterol_ldl_mask_0.. . . , cholesterol_ldl_mask_23,
cholesterol_ldl_mean_0,. . . ,cholesterol_ldl_mean_23,
cholesterol_ldl_time_since_measured_0,. . . ,
cholesterol_ldl_time_since_measured_23]

• Creatinine [creatinine_mask_0.. . . , creatinine_mask_23,
creatinine_mean_0,. . . ,creatinine_mean_23, creatinine_time_since_measured_0,. . . ,
creatinine_time_since_measured_23]
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• Creatinine ascites [creatinine_ascites_mask_0.. . . , creatinine_ascites_mask_23,
creatinine_ascites_mean_0,. . . ,creatinine_ascites_mean_23,
creatinine_ascites_time_since_measured_0,. . . ,
creatinine_ascites_time_since_measured_23]

• Creatinine body fluid [creatinine_body_fluid_mask_0.. . . ,
creatinine_body_fluid_mask_23,
creatinine_body_fluid_mean_0,. . . ,creatinine_body_fluid_mean_23,
creatinine_body_fluid_time_since_measured_0,. . . ,
creatinine_body_fluid_time_since_measured_23]

• Creatinine pleural [creatinine_pleural_mask_0.. . . , creatinine_pleural_mask_23,
creatinine_pleural_mean_0,. . . ,creatinine_pleural_mean_23,
creatinine_pleural_time_since_measured_0,. . . ,
creatinine_pleural_time_since_measured_23]

• Creatinine in urine [creatinine_urine_mask_0.. . . , creatinine_urine_mask_23,
creatinine_urine_mean_0,. . . ,creatinine_urine_mean_23,
creatinine_urine_time_since_measured_0,. . . ,
creatinine_urine_time_since_measured_23]

• Diastolic blood pressure [diastolic_blood_pressure_mask_0.. . . ,
diastolic_blood_pressure_mask_23,
diastolic_blood_pressure_mean_0,. . . ,diastolic_blood_pressure_mean_23,
diastolic_blood_pressure_time_since_measured_0,. . . ,
diastolic_blood_pressure_time_since_measured_23]

• Eosinophils [eosinophils_mask_0.. . . , eosinophils_mask_23,
eosinophils_mean_0,. . . ,eosinophils_mean_23,
eosinophils_time_since_measured_0,. . . , eosinophils_time_since_measured_23]

• Fibrinogen [fibrinogen_mask_0.. . . , fibrinogen_mask_23,
fibrinogen_mean_0,. . . ,fibrinogen_mean_23, fibrinogen_time_since_measured_0,. . . ,
fibrinogen_time_since_measured_23]

• Glucose [glucose_mask_0.. . . , glucose_mask_23,
glucose_mean_0,. . . ,glucose_mean_23, glucose_time_since_measured_0,. . . ,
glucose_time_since_measured_23]

• Hematocrit [hematocrit_mask_0.. . . , hematocrit_mask_23,
hematocrit_mean_0,. . . ,hematocrit_mean_23,
hematocrit_time_since_measured_0,. . . , hematocrit_time_since_measured_23]

• Lymphocytes [lymphocytes_mask_0.. . . , lymphocytes_mask_23,
lymphocytes_mean_0,. . . ,lymphocytes_mean_23,
lymphocytes_time_since_measured_0,. . . , lymphocytes_time_since_measured_23]

• Lymphocytes ascites [lymphocytes_ascites_mask_0.. . . ,
lymphocytes_ascites_mask_23,
lymphocytes_ascites_mean_0,. . . ,lymphocytes_ascites_mean_23,
lymphocytes_ascites_time_since_measured_0,. . . ,
lymphocytes_ascites_time_since_measured_23]

• Atypical lymphocytes [lymphocytes_atypical_mask_0.. . . ,
lymphocytes_atypical_mask_23,
lymphocytes_atypical_mean_0,. . . ,lymphocytes_atypical_mean_23,
lymphocytes_atypical_time_since_measured_0,. . . ,
lymphocytes_atypical_time_since_measured_23,
lymphocytes_atypical_csl_mask_0.. . . , lymphocytes_atypical_csl_mask_23,
lymphocytes_atypical_csl_ean_0,. . . ,lymphocytes_atypical_csl_mean_23,
lymphocytes_atypical_csl_time_since_measured_0,. . . ,
lymphocytes_atypical_csl_time_since_measured_23]

• Lymphocytes in body fluid [lymphocytes_body_fluid_mask_0.. . . ,
lymphocytes_body_fluid_mask_23,
lymphocytes_body_fluid_mean_0,. . . ,lymphocytes_body_fluid_mean_23,
lymphocytes_body_fluid_time_since_measured_0,. . . ,
lymphocytes_body_fluid_time_since_measured_23]

• Lymphocytes percentage [lymphocytes_percent_mask_0.. . . ,
lymphocytes_percent_mask_23,
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lymphocytes_percent_mean_0,. . . ,lymphocytes_percent_mean_23,
lymphocytes_percent_time_since_measured_0,. . . ,
lymphocytes_percent_time_since_measured_23]

• Lymphocytes pleural [lymphocytes_pleural_mask_0.. . . ,
lymphocytes_pleural_mask_23,
lymphocytes_pleural_mean_0,. . . ,lymphocytes_pleural_mean_23,
lymphocytes_pleural_time_since_measured_0,. . . ,
lymphocytes_pleural_time_since_measured_23]

• Magnesium [magnesium_mask_0.. . . , magnesium_mask_23,
magnesium_mean_0,. . . ,magnesium_mean_23,
magnesium_time_since_measured_0,. . . , magnesium_time_since_measured_23]

• Mean corpuscular hemoglobin [mean_corpuscular_hemoglobin_mask_0.. . . ,
mean_corpuscular_hemoglobin_mask_23,
mean_corpuscular_hemoglobin_mean_0,. . . ,mean_corpuscular_hemoglobin_mean_23,
mean_corpuscular_hemoglobin_time_since_measured_0,. . . ,
mean_corpuscular_hemoglobin_time_since_measured_23]

• Mean corpuscular hemoglobin concentration
[mean_corpuscular_hemoglobin_concentration_mask_0.. . . ,
mean_corpuscular_hemoglobin_concentration_mask_23,
mean_corpuscular_hemoglobin_concentration_mean_0,. . . ,mean_corpuscular_hemoglobin_concentration_mean_23,
mean_corpuscular_hemoglobin_concentration_time_since_measured_0,. . . ,
mean_corpuscular_hemoglobin_concentration_time_since_measured_23]

• Mean corpuscular volume [mean_corpuscular_volume_mask_0.. . . ,
mean_corpuscular_volume_mask_23,
mean_corpuscular_volume_mean_0,. . . ,mean_corpuscular_volume_mean_23,
mean_corpuscular_volume_time_since_measured_0,. . . ,
mean_corpuscular_volume_time_since_measured_23]

• Monocytes [monocytes_mask_0.. . . , monocytes_mask_23,
monocytes_mean_0,. . . ,monocytes_mean_23, monocytes_time_since_measured_0,. . . ,
monocytes_time_since_measured_23, monocytes_csl_mask_0.. . . ,
monocytes_csl_mask_23, monocytes_csl_mean_0,. . . ,monocytes_csl_mean_23,
monocytes_csl_time_since_measured_0,. . . ,
monocytes_csl_time_since_measured_23]

• Neutrophils [neutrophils_mask_0.. . . , neutrophils_mask_23,
neutrophils_mean_0,. . . ,neutrophils_mean_23,
neutrophils_time_since_measured_0,. . . , neutrophils_time_since_measured_23]

• Partial pressure of carbon dioxide [partial_pressure_of_carbon_dioxide_mask_0.. . . ,
partial_pressure_of_carbon_dioxide_mask_23, par-
tial_pressure_of_carbon_dioxide_mean_0,. . . ,partial_pressure_of_carbon_dioxide_mean_23,
partial_pressure_of_carbon_dioxide_time_since_measured_0,. . . ,
partial_pressure_of_carbon_dioxide_time_since_measured_23]

• Partial thromboplastin [partial_thromboplastin_mask_0.. . . ,
partial_thromboplastin_mask_23,
partial_thromboplastin_mean_0,. . . ,partial_thromboplastin_mean_23,
partial_thromboplastin_time_since_measured_0,. . . ,
partial_thromboplastin_time_since_measured_23]

• Peak inspiratory pressure [peak_inspiratory_pressure_mask_0.. . . ,
peak_inspiratory_pressure_mask_23,
peak_inspiratory_pressure_mean_0,. . . ,peak_inspiratory_pressure_mean_23,
peak_inspiratory_pressure_time_since_measured_0,. . . ,
peak_inspiratory_pressure_time_since_measured_23]

• Ph in urine [ph_urine_mask_0.. . . , ph_urine_mask_23,
ph_urine_mean_0,. . . ,ph_urine_mean_23, ph_urine_time_since_measured_0,. . . ,
ph_urine_time_since_measured_23]

• Phosphate [phosphate_mask_0.. . . , phosphate_mask_23,
phosphate_mean_0,. . . ,phosphate_mean_23, phosphate_time_since_measured_0,. . . ,
phosphate_time_since_measured_23]
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• Phosphorous [phosphorous_mask_0.. . . , phosphorous_mask_23,
phosphorous_mean_0,. . . ,phosphorous_mean_23,
phosphorous_time_since_measured_0,. . . , phosphorous_time_since_measured_23]

• Plateau pressure [plateau_pressure_mask_0.. . . , plateau_pressure_mask_23,
plateau_pressure_mean_0,. . . ,plateau_pressure_mean_23,
plateau_pressure_time_since_measured_0,. . . ,
plateau_pressure_time_since_measured_23]

• Platelets [platelets_mask_0.. . . , platelets_mask_23,
platelets_mean_0,. . . ,platelets_mean_23, platelets_time_since_measured_0,. . . ,
platelets_time_since_measured_23]

• Positive end expiratory pressure [positive_end_expiratory_pressure_mask_0.. . . ,
positive_end_expiratory_pressure_mask_23, posi-
tive_end_expiratory_pressure_mean_0,. . . ,positive_end_expiratory_pressure_mean_23,
positive_end_expiratory_pressure_time_since_measured_0,. . . ,
positive_end_expiratory_pressure_time_since_measured_23,
positive_end_expiratory_pressure_set_mask_0.. . . ,
positive_end_expiratory_pressure_set_mask_23, posi-
tive_end_expiratory_pressure_set_mean_0,. . . ,positive_end_expiratory_pressure_set_mean_23,
positive_end_expiratory_pressure_set_time_since_measured_0,. . . ,
positive_end_expiratory_pressure_set_time_since_measured_23]

• Post void residual [post_void_residual_mask_0.. . . , post_void_residual_mask_23,
post_void_residual_mean_0,. . . ,post_void_residual_mean_23,
post_void_residual_time_since_measured_0,. . . ,
post_void_residual_time_since_measured_23]

• Potassium [potassium_mask_0.. . . , potassium_mask_23,
potassium_mean_0,. . . ,potassium_mean_23, potassium_time_since_measured_0,. . . ,
potassium_time_since_measured_23]

• Potassium serum [potassium_serum_mask_0.. . . , potassium_serum_mask_23,
potassium_serum_mean_0,. . . ,potassium_serum_mean_23,
potassium_serum_time_since_measured_0,. . . ,
potassium_serum_time_since_measured_23]

• Prothrombin time tested with INR [prothrombin_time_inr_mask_0.. . . ,
prothrombin_time_inr_mask_23,
prothrombin_time_inr_mean_0,. . . ,prothrombin_time_inr_mean_23,
prothrombin_time_inr_time_since_measured_0,. . . ,
prothrombin_time_inr_time_since_measured_23]

• Prothrombin time using PT [prothrombin_time_pt_mask_0.. . . ,
prothrombin_time_pt_mask_23,
prothrombin_time_pt_mean_0,. . . ,prothrombin_time_pt_mean_23,
prothrombin_time_pt_time_since_measured_0,. . . ,
prothrombin_time_pt_time_since_measured_23]

• Pulmonary artery pressure [pulmonary_artery_pressure_mask_0.. . . ,
pulmonary_artery_pressure_mask_23,
pulmonary_artery_pressure_mean_0,. . . ,pulmonary_artery_pressure_mean_23,
pulmonary_artery_pressure_time_since_measured_0,. . . ,
pulmonary_artery_pressure_time_since_measured_23]

• Systolic pulmonary artery pressure[pulmonary_artery_pressure_systolic_mask_0.. . . ,
pulmonary_artery_pressure_systolic_mask_23, pul-
monary_artery_pressure_systolic_mean_0,. . . ,pulmonary_artery_pressure_systolic_mean_23,
pulmonary_artery_pressure_systolic_time_since_measured_0,. . . ,
pulmonary_artery_pressure_systolic_time_since_measured_23]

• Pulmonary capillary wedge pressure
[pulmonary_capillary_wedge_pressure_mask_0.. . . ,
pulmonary_capillary_wedge_pressure_mask_23, pul-
monary_capillary_wedge_pressure_mean_0,. . . ,pulmonary_capillary_wedge_pressure_mean_23,
pulmonary_capillary_wedge_pressure_time_since_measured_0,. . . ,
pulmonary_capillary_wedge_pressure_time_since_measured_23]
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• Red blood cell count [red_blood_cell_count_mask_0.. . . ,
red_blood_cell_count_mask_23,
red_blood_cell_count_mean_0,. . . ,red_blood_cell_count_mean_23,
red_blood_cell_count_time_since_measured_0,. . . ,
red_blood_cell_count_time_since_measured_23]

• Red blood cell count ascites [red_blood_cell_count_ascites_mask_0.. . . ,
red_blood_cell_count_ascites_mask_23,
red_blood_cell_count_ascites_mean_0,. . . ,red_blood_cell_count_ascites_mean_23,
red_blood_cell_count_ascites_time_since_measured_0,. . . ,
red_blood_cell_count_ascites_time_since_measured_23]

• Red blood cell count csf [red_blood_cell_count_csf_mask_0.. . . ,
red_blood_cell_count_csf_mask_23,
red_blood_cell_count_csf_mean_0,. . . ,red_blood_cell_count_csf_mean_23,
red_blood_cell_count_csf_time_since_measured_0,. . . ,
red_blood_cell_count_csf_time_since_measured_23]

• Red blood cell count pleural [red_blood_cell_count_pleural_mask_0.. . . ,
red_blood_cell_count_pleural_mask_23,
red_blood_cell_count_pleural_mean_0,. . . ,red_blood_cell_count_pleural_mean_23,
red_blood_cell_count_pleural_time_since_measured_0,. . . ,
red_blood_cell_count_pleural_time_since_measured_23]

• Red blood cell count in urine [red_blood_cell_count_urine_mask_0.. . . ,
red_blood_cell_count_urine_mask_23,
red_blood_cell_count_urine_mean_0,. . . ,red_blood_cell_count_urine_mean_23,
red_blood_cell_count_urine_time_since_measured_0,. . . ,
red_blood_cell_count_urine_time_since_measured_23]

• Systemic vascular resistance [systemic_vascular_resistance_mask_0.. . . ,
systemic_vascular_resistance_mask_23,
systemic_vascular_resistance_mean_0,. . . ,systemic_vascular_resistance_mean_23,
systemic_vascular_resistance_time_since_measured_0,. . . ,
systemic_vascular_resistance_time_since_measured_23]

• Tidal_volume_observed [tidal_volume_observed_mask_0.. . . ,
tidal_volume_observed_mask_23,
tidal_volume_observed_mean_0,. . . ,tidal_volume_observed_mean_23,
tidal_volume_observed_time_since_measured_0,. . . ,
tidal_volume_observed_time_since_measured_23]

• Tidal volume [tidal_volume_set_mask_0.. . . , tidal_volume_set_mask_23,
tidal_volume_set_mean_0,. . . ,tidal_volume_set_mean_23,
tidal_volume_set_time_since_measured_0,. . . ,
tidal_volume_set_time_since_measured_23]

• Tidal volume spontaneous [tidal_volume_spontaneous_mask_0.. . . ,
tidal_volume_spontaneous_mask_23,
tidal_volume_spontaneous_mean_0,. . . ,tidal_volume_spontaneous_mean_23,
tidal_volume_spontaneous_time_since_measured_0,. . . ,
tidal_volume_spontaneous_time_since_measured_23]

• Total protein [total_protein_mask_0.. . . , total_protein_mask_23,
total_protein_mean_0,. . . ,total_protein_mean_23,
total_protein_time_since_measured_0,. . . , total_protein_time_since_measured_23]

• Total protein in urine [total_protein_urine_mask_0.. . . , total_protein_urine_mask_23,
total_protein_urine_mean_0,. . . ,total_protein_urine_mean_23,
total_protein_urine_time_since_measured_0,. . . ,
total_protein_urine_time_since_measured_23]

• Troponin_i [troponin_i_mask_0.. . . , troponin_i_mask_23,
troponin_i_mean_0,. . . ,troponin_i_mean_23,
troponin_i_time_since_measured_0,. . . , troponin_i_time_since_measured_23]

• Troponin_t [troponin_t_mask_0.. . . , troponin_t_mask_23,
troponin_t_mean_0,. . . ,troponin_t_mean_23,
troponin_t_time_since_measured_0,. . . , troponin_t_time_since_measured_23]
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• Venous pvo2 [venous_pvo2_mask_0.. . . , venous_pvo2_mask_23,
venous_pvo2_mean_0,. . . ,venous_pvo2_mean_23,
venous_pvo2_time_since_measured_0,. . . , venous_pvo2_time_since_measured_23]

• White blood cell count in urine [white_blood_cell_count_urine_mask_0.. . . ,
white_blood_cell_count_urine_mask_23,
white_blood_cell_count_urine_mean_0,. . . ,white_blood_cell_count_urine_mean_23,
white_blood_cell_count_urine_time_since_measured_0,. . . ,
white_blood_cell_count_urine_time_since_measured_23]

E.7 TableShift: NHANES

We have one task based on the National Health and Nutrition Examination Survey
(NHANES) [Centers for Disease Control and Prevention, 2017].14

E.7.1 Childhood Lead

Target: Blood lead (ug/dL) [LBXBPB]

Shift: Binary indicator for whether family PIR (poverty-income ratio) is ≤ 1.3.
[INDFMPIRBelowCutoff]

List of causal features: • Country of birth [DMDBORN4]
• Age in years [RIDAGEYR]
• Gender [RIAGENDR]
• Race and hispanic origin [RIDRETH_merged]
• Year of survey [nhanes_year]

List of arguably causal features: • Highest grade or level of school completed or highest degree
received [DMDEDUC2]

List of other features: • Marital status [DMDMARTL]

E.8 TableShift: Physionet

We have one task based on the 2019 PhysioNet Challenge [Reyna et al., 2020, 2019].15 The data is
released by PhysioNet [Goldberger et al., 2000].

E.8.1 Sepsis

Target: For septic patients, SepsisLabel is 1 if t ≥ t_sepsis− 6 and 0 if t < t_sepsis− 6. For
non-septic patients, SepsisLabel is 0. [SepsisLabel]

Shift: ICU length of stay (hours since ICU admission) [ICULOS]

List of causal features: • Age (years) [Age]
• Gender [Gender]
• Administrative identifier for ICU unit (MICU); false (0) or true (1) [Unit1]
• Administrative identifier for ICU unit (SICU); false (0) or true (1) [Unit2]
• Time between hospital and ICU admission (hours since ICU admission)

[HospAdmTime]

List of arguably causal features16: • Temperature (deg C) [Temp]
• Leukocyte count (count/L) [WBC]
• Fibrinogen concentration (mg/dL) [Fibrinogen]
• Platelet count (count/mL) [Platelets]
• Heart rate (in beats per minute) [HR]
• Pulse oximetry (%) [O2Sat]

14https://www.cdc.gov/nchs/nhanes/index.htm
15https://physionet.org/content/challenge-2019/1.0.0/
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• Systolic BP (mm Hg) [SBP]
• Mean arterial pressure (mm Hg) [MAP]
• Diastolic BP (mm Hg) [DBP]
• Respiration rate (breaths per minute) [Resp]
• End tidal carbon dioxide (mm Hg) [EtCO2]
• Excess bicarbonate (mmol/L) [BaseExcess]
• Bicarbonate (mmol/L) [HCO3]
• Fraction of inspired oxygen (%) [FiO2]
• pH [pH]
• Partial pressure of carbon dioxide from arterial blood (mm Hg) [PaCO2]
• Oxygen saturation from arterial blood (%) [SaO2]
• Aspartate transaminase (IU/L) [AST]
• Blood urea nitrogen (mg/dL) [BUN]
• Alkaline phosphatase (IU/L) [Alkalinephos]
• Calcium (mg/dL) [Calcium]
• Chloride (mmol/L) [Chloride]
• Creatinine (mg/dL) [Creatinine]
• Direct bilirubin (mg/dL) [Bilirubin_direct]
• Serum glucose (mg/dL) [Glucose]
• Lactic acid (mg/dL) [Lactate]
• Magnesium (mmol/dL) [Magnesium]
• Phosphate (mg/dL) [Phosphate]
• Potassium (mmol/L) [Potassium]
• Total bilirubin (mg/dL) [Bilirubin_total]
• Troponin I (ng/mL) [TroponinI]
• Hematocrit (
• Hemoglobin (g/dL) [Hgb]
• Partial thromboplastin time (seconds) [PTT]

List of other features: • The training set (i.e. hospital) from which an example is drawn [set]

E.9 TableShift: UCI

We have one task based on a dataset by Strack et al. [2014] from the UCI Machine Learning
Repository [Clore et al., 2014].17

E.9.1 Hospital Readmission

Target: No record of readmission [readmitted]

Shift: Admission source [admission_source_id]

List of causal features: • Race [race]
• Gender [gender]
• Age [age]
• Payer code [payer_code]
• Medical specialty of the admitting physician [medical_specialty]

List of arguably causal features: • Weight in pounds [weight]
• Primary diagnosis [diag_1]
• Secondary diagnosis [diag_2]
• Additional secondary diagnosis [diag_3]

17https://archive.ics.uci.edu/ml/datasets/Diabetes+130-US+hospitals+for+years+
1999-2008
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• Total number of diagnoses [number_diagnoses]
• Discharge type [discharge_disposition_id]
• Count of days between admission and discharge [time_in_hospital]
• Number of outpatient visits of the patient in the year preceding the encounter

[number_outpatient]
• Number of emergency visits of the patient in the year preceding the encounter

[number_emergency]
• Number of inpatient visits of the patient in the year preceding the encounter

[number_inpatient]
• Max glucose serum [max_glu_serum]
• Hemoglobin A1c test result [A1Cresult]
• Change in metformin medication [metformin]
• Change in repaglinide medication [repaglinide]
• Change in nateglinide medication [nateglinide]
• Change in chlorpropamide medication [chlorpropamide]
• Change in glimepiride medication [glimepiride]
• Change in acetohexamide medication [acetohexamide]
• Change in glipizide medication [glipizide]
• Change in glyburide medication [glyburide]
• Change in tolbutamide medication [tolbutamide]
• Change in pioglitazone medication [pioglitazone]
• Change in rosiglitazone medication [rosiglitazone]
• Change in acarbose medication [acarbose]
• Change in miglitol medication [miglitol]
• Change in troglitazone medication [troglitazone]
• Change in tolazamide medication [tolazamide]
• Change in examide medication [examide]
• Change in citoglipton medication [citoglipton]
• Change in insulin medication [insulin]
• Change in glyburide_metformin medication [glyburide_metformin]
• Change in glipizide_metformin medication [glipizide_metformin]
• Change in glimepiride_pioglitazone medication [glimepiride_pioglitazone]
• Change in metformin_rosiglitazone medication [metformin_rosiglitazone]
• Change in metformin_pioglitazone medication [metformin_pioglitazone]
• Change in any medication [change]
• Diabetes medication prescribed [diabetesMed]

List of other features: • Admission type [admission_type_id]
• Number of lab tests performed during the encounter [num_lab_procedures]
• Number of procedures (other than lab tests) performed during the encounter

[num_procedures]
• Number of distinct generic drugs administered during the encounter

[num_medications]

E.10 MEPS

We have one task based on the Medical Expenditure Panel Survey (MEPS) [Agency for Healthcare
Research and Quality, 2019].

E.10.1 Utilization

Dataset. We consider the MEPS 2019 Full Year Consolidated Data File. The dataset contains
information on individuals taking part in one of the two MEPS panels in 2019. In particular, these
individuals belong either to Panel 23 in its 3-5 round, or to Panel 24 in its 1-3 round. We train on the
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first round in 2019 for each panel, that is, Round 3 of Panel 23 and Round 1 of Panel 24, and predict
the total health care utilization across the year 2019. We adapt the target definition by Hardt and Kim
[2023].

Distribution shift. We split the domains by health insurance type, analogous to TableShift in the
task ‘Stay in ICU’ and ‘Hospital Mortality’. We train on individuals with public health insurance,
and use individuals with private health insurance as testing domain.

Target: Measure of health care utilization > 3 [TOTEXP19]

Shift: Insurance type [INSCOV19]

List of causal features: • Sex [SEX]
• Race [RACEV1X, RACEV2X, RACEAX, RACEBX, RACEWX, RACETHX]
• Hispanic ethnicity [HISPANX, HISPNCAT]
• Years of education [EDUCYR]
• Educational attainment [HIDEG]
• Paid sick leaves [SICPAY31]
• Paid leave to visit doctor [PAYDR31]
• Person is born in U.S. [BORNUSA]
• Years person lived in the U.S. [YRSINUS]
• How well person speaks English [HWELLSPK]
• Speak other language at home [OTHLGSPK]
• What language spoken other than English [WHTLGSPK]
• Region [REGION31]
• Age [AGE31X]

List of arguably causal features: • Family size [FCSZ1231, FAMSZE31]
• Martial status [MARRY31X]
• Flexible Spending Accounts [FSAGT31, HASFSA31, PFSAMT31]
• Employer offers health insurance [OFREMP31, OFFER31X]
• Insurance coverage from current main job [CMJHLD31]
• Covered by Medicare [MCARE31, MCRPD31, MCRPB31, MCRPHO31,

MCARE31X, MCRPD31X]
• Covered by Medicaid [MCAID31, MCDHMO31, MCDMC31, MCAID31X,

MCDAT31X]
• Covered by TRICARE/CHAMPVA [TRIAT31X, TRICR31X, TRILI31X, TRIST31X,

TRIST31X, TRIPR31X, TRIEX31X, TRICH31X]
• Detailed type of covering entity [PRVHMO31, GOVTA31, GOVAAT31, GOVTB31,

GOVBAT31, GOVTC31, GOVCAT31, VAPROG31, VAPRAT31, IHS31, IHSAT31,
PRIDK31, PRING31, PUB31X, PUBAT31X, PRIEU31, PRIOG31, PRSTX31,
PRINEO31, PRIEUO31, PRIV31, PRIVAT31, DISVW31X, ]

• Health insurance held from current main job [HELD31X]
• Insured [INS31X, INSAT31X]
• Dental insurance [DENTIN31, DENTIN31, DNTINS31]
• Prescription drug private insurance [PMEDIN31, PMDINS31, PMEDUP31,

PMEDPY31]
• Pension Plan [RETPLN31]
• Employment status [EMPST31]
• Student status [FTSTU31X]
• Has more than one job [MORJOB31]
• Difference in wage by round [DIFFWG31]
• Updated hourly wage [NHRWG31]
• Hourly wage of current main job [HRWG31X]
• Hours per week [HOUR31]
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• Temporary current main job [TEMPJB31]
• Seasonal current main job [SSNLJB31]
• Self-employed [SELFCM31]
• Choice of health plans [CHOIC31]
• Industry group [INDCAT31]
• Occupation group [OCCCAT31]
• Union status [UNION31]
• Reason for not working [NWK31]
• Paid vacation [PAYVAC31]
• Instrumental Activities of Daily Living (IADL) help [IADLHP31]
• Activities of Daily Living (ADL) help [ADLHLP31]
• Use of assistive technology [AIDHLP31]
• Limitations in physical functioning [WLKLIM31, LFTDIF31, STPDIF31,

WLKDIF31, MILDIF31, BENDIF31, RCHDIF31, FNGRDF31, ACTLIM31]
• Social limitations [SOCLIM31]
• Work, housework, and school limitations [WRKLIM31, WRKLIM31, HSELIM31,

SCHLIM31, UNABLE31]
• Cognitive limitations [COGLIM31]
• Priority condition variables [ASTHEP31, ASSTIL31, ASATAK31, CHBRON31]
• Asthma medications [ASMRCN31, ASPREV31, ASDALY31, ASPKFL31,

ASEVFL31, ASWNFL31, ASACUT31]
• Active duty in military [ACTDTY31]
• Perceived health status [RTHLTH31]
• Perceived mental health status [MNHLTH31]

List of other features: • Current main job at private for-profit, nonprofit, or a government entity
[JOBORG31]

• Self-employed business is incorporated, a proprietorship, or a partnership [BSNTY31]
• Number of employees [NUMEMP31]
• Firm has more than one location [MORE31]
• Month started current main job [STJBMM31]
• Year started current main job [STJBYY31]
• Veterans Specific Activity Questionnaire (VASQ) [VACMPY31, VAPROX31,

VASPUN31, VACMPM31, VASPMH31, VASPOU31, VAPRHT31, VAWAIT31,
VAWAIT31, VALOCT31, VANTWK31, VANEED31, VAOUT31, VAPAST31,
VACOMP31, VAMREC31, VAGTRC31, VACARC31, VAPROB31, VAREP31,
VACARE31, VAPCPR31, VAPROV31, VAPCOT31, VAPCCO31, VAPCRC31,
VAPCSN31, VAPCRF31, VAPCSO31, VAPCOU31, VAPCUN31, VASPCL31,
VAPACT31, VACTDY31, VARECM31, VAMOBL31, VACOPD31, VADERM31,
VAGERD31, VAHRLS31, VABACK31, VAJTPN31, VARTHR31, VAGOUT31,
VANECK31, VAFIBR31, VATMD31, VACOST31, VAPTSD31, VABIPL31,
VADEPR31, VAMOOD31, VAPROS31, VARHAB31, VAMNHC31, VAGCNS31,
VARXMD31, VACRGV31, VALCOH31]

• Data collection round [RNDFLG31]
• Imputation flag [HRWGIM31]
• How hourly wage was calculated [HRHOW31]
• Verification [VERFLG31]
• Survey related information [REFPRS31, REFRL31X, FCRP1231, FMRS1231,

FAMS1231, RESP31, PROXY31, BEGRFM31, BEGRFY31, ENDRFM31,
ENDRFY31, INSCOP31, INSC1231, ELGRND31, MOPID31X, DAPID31X]

• Round [RUSIZE31, RUSIZE31, RUCLAS31, PSTATS31, SPOUID31, SPOUIN31]

E.11 SIPP

We have one task based on the Survey of Income and Program Participation (SIPP) [U.S. Census
Bureau, 2014].
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E.11.1 Poverty

Dataset. We work with Wave 1 and Wave 2 of the SIPP 2014 panel data. We train on Wave 1 and
want to predict whether an individual has an official poverty measure larger than the median in Wave
2 [Hardt and Kim, 2023].

Distribution shift. We use individuals with U.S. citizenship as the training domain, and individuals
without U.S. citizenship as testing domain. This simulates a survey collection with a biased sample,
e.g. individuals without U.S. citizenship are systematically excluded.

Target: Household income-to-poverty ratio ≥ 3 [OPM_RATIO]

Shift: Citizenship status [CITIZENSHIP_STATUS]

List of causal features: • Marital status [MARITAL_STATUS]
• Educational attainment [EDUCATION]
• Race[RACE]
• Gender [GENDER]
• Age [AGE]
• Spanish, Hispanic, or Latino[ORIGIN]
• Disability status [HEALTHDISAB]
• Hearing difficulties [HEALTH_HEARING]
• Vision difficulties [HEALTH_SEEING]
• Cognitive difficulties [HEALTH_COGNITIVE]
• Ambulatory difficulties [HEALTH_AMBULATORY]
• Difficulties in self-care [HEALTH_SELF_CARE]
• Difficulties in doing errands [HEALTH_ERRANDS_DIFFICULTY]
• Core disability [HEALTH_CORE_DISABILITY]
• Supplemental disability [HEALTH_SUPPLEMENTAL_DISABILITY]

List of arguably causal features: • Household income [HOUSEHOLD_INC]
• Family size [FAMILY_SIZE_AVG]
• Received worker’s compensation [RECEIVED_WORK_COMP]
• Unemployment compensation [UNEMPLOYMENT_COMP]
• Amount of unemployment compensation [UNEMPLOYMENT_COMP_AMOUNT]
• Severance pay and pension[SEVERANCE_PAY_PENSION]
• Amount for forster child care [FOSTER_CHILD_CARE_AMT]
• Amount for child support [CHILD_SUPPORT_AMT]
• Alimony amount [ALIMONY_AMT]
• Income [INCOME]
• Income from assistance [INCOME_FROM_ASSISTANCE]
• Amount of savings and investments [SAVINGS_INV_AMOUNT]
• Amount of veteran benefits [VA_BENEFITS_AMOUNT]
• Amount of retirement income [RETIREMENT_INCOME_AMOUNT]
• Amount of survivor income [SURVIVOR_INCOME_AMOUNT]
• Amount of disability benefits [DISABILITY_BENEFITS_AMOUNT]
• Percentage of year in which individual received assistance from MEDICARE

[MEDICARE_ASSISTANCE]
• Number of sick days [DAYS_SICK]
• Number of hospital nights [HOSPITAL_NIGHTS]
• Number of presciptions for medicaments [PRESCRIPTION_MEDS]
• Number of dentist visits[VISIT_DENTIST_NUM]
• Number of doctor visits [VISIT_DOCTOR_NUM]
• Amount paid for non-premium medical out-of-pocket expenditures

[HEALTH_OVER_THE_COUNTER_PRODUCTS_PAY]
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• Amount paid medical care [HEALTH_MEDICAL_CARE_PAY]
• Amount paid for health insurance premiums [HEALTH_INSURANCE_PREMIUMS]
• Amount of social security benefits [SOCIAL_SEC_BENEFITS]
• Transportation assistance [TRANSPORTATION_ASSISTANCE]
• Own living quarters [LIVING_OWNERSHIP]

List of anti-causal features: • Type of living quarters [LIVING_QUARTERS_TYPE]
• Percentage of year in which individual received assistance from TANF

[TANF_ASSISTANCE]
• Percentage of year in which individual received food

assistance[FOOD_ASSISTANCE]
• Percentage of year in which individual received assistance from SNAP

[SNAP_ASSISTANCE]
• Percentage of year in which individual received assistance from WIC

[WIC_ASSISTANCE]
• Percentage of year in which individual received assistance from MEDICAID

[MEDICAID_ASSISTANCE]

E.12 Details on distribution shifts

We provide Table 6 with details on the observed distribution shifts. We adapt the metrics for target
shift, concept shift and covariate shift from Gardner et al. [2023]. See Appendix E.2 of their paper
for the detailed definitions. For selected tasks, we give additional insights into the concept shift
by detailing it on the variable level.18 See Figure 52 to Figure 55. We note that we conducted
the in-depth analysis of the distribution shift post selecting the causal features and running our
experiments described in Section 3 and Appendix C. Our code is based on an unpublished script
by Gardner et al. [2023].

Table 6: Summary of tasks and their associated distribution shifts.

Task Covariate shift Concept shift Label shift
(OTDD) (FDD) (L2 distance)

Food Stamps 14.20 640.82 0.0008
Income 30.60 1.40 0.0060
Public Coverage 5.79 4.06 0.1701
Unemployment 75.47 13,389,512.51 0.0003
ANES 13.60 2.23 0.0025
Diabetes 12.28 0.10 0.0332
Hypertension 4.69 0.04 0.0022
Hospital Readmission 42.37 1.30 0.0060
Childhood Lead 1.30 0.01 0.0026
Sepsis 6609.73 8.44 0.0040
ICU Length of Stay 56,439,324,672.00 47,042,729,585.25 0.0033
ICU Hospital Mortality 64,479,092,736.00 42,639,188,407.47 0.0015
ASSISTments 24,054.59 1137.42 0.0670
College Scorecard 43,566.39 2116.63 0.0337
SIPP 6,344,306.0 5,752,406.89 0.0751
MEPS 66.28 4.01 0.0013

18We perform the analysis for tasks with less than 100 features due to computational costs

99



E
N

G
FE

R
H

U
PA

C
W

IF
N

W
LA

N
W

LK
O

C
C

P
P

O
B

P
R

E
LP

W
K

H
P

W
K

W
W

R
K

D
IS

M
IL

A
N

C
N

AT
IV

IT
Y

D
E

A
R

D
E

Y
E

D
R

E
M

P
U

B
C

O
V

A
G

E
P

S
E

X S
T

M
A

R
C

IT
R

A
C

1P
S

C
H

L
A

C
S

_Y
E

A
R

0.000

20.000

40.000

60.000

80.000

100.000

120.000

C
on

ce
pt

 s
hi

ft 
(F

D
D

)

Food Stamps

C
O

W

E
N

G

FE
R

H
IN

S
1

H
IN

S
2

H
IN

S
3

H
IN

S
4

N
W

LA

N
W

LK

O
C

C
P

P
O

B
P

R
E

LP

W
K

H
P

W
K

W

W
R

K

A
G

E
P

S
E

X S
T

M
A

R

C
IT

R
A

C
1P

S
C

H
L

A
C

S
_Y

E
A

R

0.000

5.000

10.000

15.000

20.000

C
on

ce
pt

 s
hi

ft 
(F

D
D

)

Income

E
N

G

P
O

B
P

R
E

LP

W
K

H
P

W
K

W

W
R

K

O
C

C
P

D
IS

E
S

P

M
IG M
IL

A
N

C

N
AT

IV
IT

Y

D
E

A
R

D
E

Y
E

D
R

E
M

D
P

H
Y

FE
R

A
G

E
P

S
E

X S
T

M
A

R

C
IT

R
A

C
1P

D
IV

IS
IO

N

A
C

S
_Y

E
A

R

0.000

20.000

40.000

60.000

80.000

100.000

C
on

ce
pt

 s
hi

ft 
(F

D
D

)

Unemployment

Figure 52: Concept shift on a variable level. Measured in FDD distance [Gardner et al., 2023].
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Figure 53: Concept shift on a variable level. Measured in FDD distance [Gardner et al., 2023].
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Figure 54: Concept shift on a variable level. Measured in FDD distance [Gardner et al., 2023].
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Figure 55: Concept shift on a variable level. Measured in FDD distance [Gardner et al., 2023].
(Continued)
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Table 7: Details to data sources, access and licenses.
Task Data Source Data access License

Food Stamps American Community Survey Public CC0
Income American Community Survey Public CC0
Public Coverage American Community Survey Public CC0
Unemployment American Community Survey Public CC0
Voting American National Election Studies Restricted-use Unknown
Diabetes Behavioral Risk Factor Surveillance System Public Open Data Commons Open Database License
Hypertension Behavioral Risk Factor Surveillance System Public Open Data Commons Open Database License
College Scorecard U.S. Department of Education Public Creative Commons Attribution License
ASSISTments Kaggle Public Unknown
Stay in ICU Medical Information Mart for Intensive Care Restricted-use PhysioNet Credentialed Health Data License
Hospital Mortality Medical Information Mart for Intensive Care Restricted-use PhysioNet Credentialed Health Data License
Hospital Readmission UCI Machine Learning Repository Public Creative Commons Attribution License
Childhood Lead National Health and Nutrition Examination Survey Restricted public Open Database License
Sepsis PhysioNet Public Creative Commons Attribution License
Utilization Medical Expenditure Panel Survey Restricted public Open Data Commons Open Database License
Poverty Survey of Income and Program Participation Public Unknown
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Table 8: Description of tasks.

Food Stamps Food stamp recipiency
in past year for
households with child

Geographic region (U.S.
divisions)

New England, Middle
Atlantic, East North
Central, West North
Central, South Atlantic,
West South Central,
Mountain, Pacific

East South Central 2.90% 840,582

Income Income ≥ 56k for
employed adults

Geographic region (U.S.
Divisions)

Middle Atlantic, East
North Central, West
North Central, South
Atlantic, East South
Central, West South
Central, Mountain,
Pacific

New England 7.71% 1,664,500

Public Health Insurance Coverage of
non-Medicare eligible
low-income individuals

Disability status Without a disability With a disability 14.00% 5,916,565

Unemployment Unemployment for
non-social
security-eligible adults

Education level High school diploma or
higher

No high school diploma 17.69%

Voting Voted in U.S.
presidential election

Geographic region (U.S.
regions)

Northeast, North
Central, West

South 11.11% 8,280

Diabetes Diabetes diagnosis Race White Black or African
American, American
Indian or Alaskan
Native, Asian, Native
Hawaiian or other
Pacific Islander, Other
race

4.70% 1,444,176

Task Target Shift In-domain Out-of-domain Shift Gap Obs.

Continued on next page
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Table 8: Description of tasks. (Continued)

Hypertension Hypertension diagnosis
for high-risk age (50+)

BMI category Underweight, normal
weight

Overweight, obese 1.37% 846,761

College Scorecard Low degree completion
rate

Carnegie classification Different institution,
e.g., special focus
institutions (health
professions), Master’s
colleges & universities
(medium programs),

Special focus
institutions (schools of
art, music, and design,
theological seminaries,
bible colleges, and other
faith-related institutions,
others), Baccalaure-
ate/Associate’s colleges,
Master’s colleges &
universities (larger
programs)

18.36% 124,699

ASSISTments Next answer correct School ≈ 700 schools 10 schools 13.18% 2,667,776

Stay in ICU Length of stay ≥ 3 hrs
in ICU

Insurance type Private, Medicaid,
Government, Self Pay

Medicare 5.78% 23,944

Hospital Mortality ICU patient expires in
hospital during current
visit

Insurance type Private, Medicaid,
Government, Self Pay

Medicare 3.85% 23,944

Hospital Readmission 30-day readmission of
diabetic hospital patients

Admission source Different admission
sources, e.g., physician
referral, clinic referral,
transfer from a hospital,
court/law enforcement,
transfer from hospice

Emergency room 7.77% 99,493

Childhood Lead Blood lead levels above
CDC blood level
reference value

Poverty level Poverty-income ratio >
1.3

Poverty-income ratio ≤
1.3

4.82% 27,499

Task Target Shift In-domain Out-of-domain Shift Gap Obs.

Continued on next page
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Table 8: Description of tasks. (Continued)

Sepsis Sepsis onset within next
6hrs for hospital patients

Length of stay Having been in ICU for
≤ 47 hours

Having been in ICU for
> 47 hours

6.40% 1,552,210

Utilization Measure of health care
utilization > 3

Insurance type Any public Private only -4.01% 28,512

Poverty Household
income-to-poverty ratio
≥ 3

Citizenship status Citizen of the U.S. Not citizen of the U.S. 21.59% 39,720

Task Target Shift In-domain Out-of-domain Shift Gap Obs.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We provide details in Section 3 to the claims made in abstract and introduction.
We point out in the introduction that our study is based on domain-knowledge selection of
causal features, and empirical observations might not hold for other datasets.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We discuss the limitation of our study in the Section 4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: We do not have any theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We explain the experimental procedure in Section 2.4, and in more detail in
Appendix B. We give a list of our feature selections along with the datasets and distribution
shifts in Appendix E. The code to replicate the experiments is provided at https://github.
com/socialfoundations/causal-features. We link the reader to the datasets used in
our study in Appendix E; most of them have public access.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We provide open access to the code to reproduce our empirical results and in-
structions at https://github.com/socialfoundations/causal-features. We link
the reader to the raw datasets in Appendix E. Most of them are public accessible (11/16
tasks), some allow only restricted use (5/11 tasks). We give details on steps needed for
the preprocessing at https://github.com/socialfoundations/causal-features/
blob/main/README.md. Experimental run details are provided in Appendix B.3.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: See Section 2.4 and more details in Appendix B. The code is provided at
https://github.com/socialfoundations/causal-features.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report all results accompanied by (approximate) confidence intervals. We
describe the confidence intervals briefly in Section 3, and provide details in Appendix B.
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide information on the computer resources in Appendix B.3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research does not involve human subjects or participants. We do not create
a dataset, but respect the terms of datasets used and link to their licenses.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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Justification: Causal inference is an important tool in policymaking and as such it has large
potential societal impact, both positive and negative. Our work helps inform the use of some
causal methods by showing that these methods may not achieve better performance than
standard predictors. At the same time, we emphasize in Section 4 that our analysis applies
to questions of domain generalization for a particular range of settings we considered. We
caution that our findings should not be applied too broadly to causal inference and should
not deter the practitioner from engaging in rigorous causal inference.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work is foundational research and therefore, poses no high risk for misuse.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
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Justification: We cite the creators of models, evaluated in our paper, in Section 2.3 and 3.
Creators of code, used in our paper, are credited in Section 3. We provide details and
licenses of the code at https://github.com/socialfoundations/causal-features.
The original owners of the data are listed in Section 2.2 and Appendix E. The licenses, if
available, are provided in Table 7.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We provide new code along with sufficient documentation at https://
github.com/socialfoundations/causal-features.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our work does not involve crowdsourcing nor research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.
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15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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