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ABSTRACT

Neural vocoders have recently advanced waveform generation, yielding natural
and expressive audio. Among these approaches, iSTFT-based vocoders have
gained attention. They predict a complex-valued spectrogram and then synthe-
size the waveform via iSTFT, thereby avoiding redundant, computationally ex-
pensive upsampling. However, current approaches use real-valued networks that
process the real and imaginary parts independently. This separation limits their
ability to capture the inherent structure of complex spectrograms. We present
ComVo, a Complex-valued neural Vocoder whose generator and discriminator
use native complex arithmetic. This enables an adversarial training framework
that provides structured feedback directly in the complex domain. To guide phase
transformations in a structured manner, we introduce phase quantization, which
discretizes phase values and regularizes the training process. Finally, we pro-
pose a block-matrix computation scheme to improve training efficiency by reduc-
ing redundant operations. Experiments demonstrate that ComVo achieves higher
synthesis quality than comparable real-valued baselines, and that its block-matrix
scheme reduces training time by 25%. Audio samples and code are available at
https://anonymous7136.github.io/.

1 INTRODUCTION

Deep learning-based vocoders have significantly advanced speech synthesis, producing more natural
and expressive synthetic speech. Recent developments include models based on generative adver-
sarial networks (GANs) (Kumar et al., 2019; Yamamoto et al., 2020; Kong et al., 2020; Lee et al.,
2023), normalizing flow-based models (van den Oord et al., 2018; Ping et al., 2020; Lee et al., 2020),
and diffusion-based models (Kong et al., 2021; Lee et al., 2022; Chen et al., 2021; Lee et al., 2025).
Although these approaches achieve high-fidelity speech generation, many neural vocoders still rely
on sequential sample prediction or learned upsampling, thereby increasing model complexity and
inference latency.

An alternative is to synthesize speech in the spectral domain using the inverse short-time Fourier
transform (iSTFT). Operating directly on complex spectrograms (Oyamada et al., 2018; Neekhara
et al., 2019; Gritsenko et al., 2020; Kaneko et al., 2022; 2023; Siuzdak, 2024; Yoneyama et al.,
2024; Liu et al., 2025) avoids the need for sample-by-sample generation and upsampling. To our
knowledge, current iSTFT-based vocoders rely on real-valued networks that process real and imag-
inary parts independently. This separation limits their ability to model the coupling between these
components.

Complex-valued neural networks (CVNNs) extend standard neural networks to the complex domain
by allowing both inputs and parameters to be complex-valued. Operating entirely in the complex
domain enables these models to capture the intrinsic dependencies between the real and imaginary
components. CVNNs have been applied in domains such as radar signal classification (Yang et al.,
2022), MRI reconstruction (Vasudeva et al., 2022), and wireless communication (Xu et al., 2022),
where measurements carry both amplitude and phase information and naturally form complex-
valued data. In speech processing, CVNNs have been explored for tasks including speech enhance-
ment (Nustede & Anemüller, 2024; Mamun & Hansen, 2023), speech recognition (Hayakawa et al.,
2018), and even statistical parametric speech synthesis (Hu et al., 2016). These studies demonstrate
the potential of CVNNs to better capture spectral structure.
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Although some recent vocoders produce complex spectrograms, they still use real-valued networks
that handle each spectrogram channel independently. CVNNs, by jointly processing complex coeffi-
cients, could overcome this limitation. By treating each spectrogram coefficient as a unified complex
entity, CVNN-based models can capture cross-component interactions that real-valued models miss.
Motivated by this, we adopt CVNNs to better capture structure in the complex domain, yielding
higher-quality synthesis.

In this work, we propose ComVo, a Complex-valued neural Vocoder that performs iSTFT-based
waveform generation entirely in the complex domain with a GAN-based architecture. The generator
uses CVNN layers to jointly model the real and imaginary components of spectrograms, thereby
better capturing their algebraic structure. We then design a complex multi-resolution discrimina-
tor (cMRD) that operates directly on complex spectrograms. Together, these components form a
complex-domain adversarial training framework in which both the generator and discriminator op-
erate on complex-valued representations. This design allows feedback that respects the structure of
the complex domain. Inspired by recent studies on complex activation functions (Vasudeva et al.,
2022), we introduce phase quantization, a nonlinear transformation that discretizes phase angles to
serve as an inductive bias for stable learning. Finally, to reduce redundant computations in complex-
valued operations, we develop a block-matrix computation scheme that improves overall training
efficiency.

• CVNN-based architecture with complex adversarial training: We introduce ComVo,
which, to our knowledge, is the first iSTFT-based vocoder to employ CVNNs in both its
generator and discriminator. We design the discriminator losses in the complex domain,
thus establishing a truly complex-domain adversarial framework.

• Structured nonlinear transformation: We propose phase quantization, a tailored nonlin-
ear operation that discretizes phase angles and serves as an inductive bias.

• Block-matrix computation scheme: We present an efficient implementation that fuses the
four real-valued multiplications required for each complex operation into a single block-
matrix multiplication, reducing training time by 25%.

• Improved synthesis performance: ComVo outperforms real-valued vocoders, as demon-
strated in our experiments.

2 BACKGROUND

2.1 COMPLEX-VALUED NEURAL NETWORKS

This subsection reviews the core building blocks of CVNNs—complex convolutions, activation
functions, normalization, and optimization via Wirtinger calculus (Wirtinger, 1927). CVNNs ex-
tend real-valued networks by jointly modeling the real and imaginary components (Trabelsi et al.,
2018). By preserving cross-component structure in the complex domain, they yield more coherent
representations than split-channel parameterizations.

Complex Convolutions: A CVNN performs convolutions directly in the complex domain, jointly
processing the real and imaginary parts. For an input complex feature z = x + iy and a complex
filter h = a+ ib, the output z′ of a complex convolution is:

z′ = (x ∗ a− y ∗ b) + i (x ∗ b+ y ∗ a), (1)

where x, y are the real and imaginary components of z, and a, b are the corresponding components
of h. Here, ∗ denotes the convolution operation applied to each channel pair before recombining.

Activation Functions: Complex-valued networks require activation functions that handle both mag-
nitude and phase in a coherent way. Let fRe, fIm, fMag : R → R be real-valued nonlinearities. A
simple split activation applies fRe and fIm separately to the real and imaginary components:

f(z) = fRe(x) + i fIm(y), (2)

but this approach ignores the natural coupling between magnitude and phase. A more phase-aware
alternative applies fMag to the magnitude and then reattaches the original phase:

f(z) = fMag

(
|z|

)
eiθ, (3)

2
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thereby preserving all phase information while still introducing the desired nonlinearity. (Here |z|
is the magnitude and θ is the phase of z = reiθ.)

Normalization: Normalization in CVNNs accounts for the joint distribution of real and imaginary
components. A general form of complex normalization is:

znorm =
z − µ

σ
, (4)

where µ and σ are the mean and standard deviation of the complex input. To capture correlations
between the real and imaginary parts, this basic normalization is extended using the covariance
matrix:

Σ =

[
σxx σxy

σyx σyy

]
, (5)

where σxx and σyy denote the variances of the real and imaginary components, respectively, and
σxy = σyx represents their cross-covariance. Using the estimated covariance, the input is normal-
ized by centering and decorrelating:

znorm = Σ−1/2(z − µ), (6)

and an affine transformation is then applied to restore the network’s ability to shift and scale the
normalized features:

z′ = γznorm + β, (7)

where γ and β are learnable complex-valued parameters. This formulation can be applied to various
normalizations (e.g., layer or instance normalization) while preserving the complex structure.

Gradient Optimization: Gradient computation in CVNNs requires special care due to the non-
holomorphic nature of most complex-valued functions. To handle this, CVNNs employ Wirtinger
calculus (Wirtinger, 1927), which defines the gradient of a real-valued loss L(z) with respect to a
complex variable z = x+ iy as:

∂L

∂z
=

1

2

(
∂L

∂x
− i

∂L

∂y

)
,

∂L

∂z̄
=

1

2

(
∂L

∂x
+ i

∂L

∂y

)
. (8)

For real-valued objectives, only the conjugate gradient ∂L
∂z̄ is used for parameter updates, which

ensures descent in the loss landscape:

z(t+1) = z(t) − η
∂L

∂z̄
, (9)

where η is the learning rate.

2.2 ISTFT-BASED VOCODER

The short-time Fourier transform (STFT) decomposes a waveform into overlapping frames of com-
plex spectral coefficients. The iSTFT reconstructs the time-domain signal using overlap-add. This
fully differentiable analysis-synthesis pipeline enables end-to-end training on frame-level spectra,
while generating sample-level waveforms in a single pass. This approach eliminates any explicit
upsampling or autoregressive generation, thereby reducing latency. Early methods such as the
Griffin-Lim algorithm (Griffin & Lim, 1984) used iterative phase reconstruction but often yielded
suboptimal coherence between magnitude and phase. GLA-Grad (Liu et al., 2024) later combined
Griffin-Lim with neural diffusion models to improve phase accuracy.

More recent neural iSTFT-based vocoders, such as iSTFTNet (Kaneko et al., 2022), iSTFTNet2
(Kaneko et al., 2023), Vocos (Siuzdak, 2024), and RFWave (Liu et al., 2025), employ diverse archi-
tectural designs for iSTFT-based waveform generation. However, all of these models use real-valued
networks that treat the real and imaginary spectrogram channels separately. In contrast, our approach
employs complex-valued networks that handle each spectrogram coefficient as a unified complex
entity, preserving the algebraic relationship between magnitude and phase throughout training.

3
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Figure 1: Overview of the ComVo architecture.

3 METHOD

We present ComVo, an iSTFT-based GAN vocoder whose generator and discriminator operate en-
tirely in the complex domain, preserving real-imaginary interactions end to end. The model uses
an iSTFT synthesis pipeline with adversarial training objectives. We also include a phase quantiza-
tion layer as an inductive bias, and adopt a block-matrix formulation for efficient complex-valued
computation. Figure 1 provides an overview of the architecture.

3.1 GENERATOR

Figure 1(a) depicts our generator, which is adapted from the Vocos architecture (Siuzdak, 2024).
We chose Vocos as our starting point because it synthesizes via frame-level iSTFT without requiring
learned upsampling, features a compact feed-forward structure, and serves as a widely used base-
line for comparison. All convolutions and normalizations in our generator are implemented in the
complex domain. We use a split GELU activation (Hendrycks & Gimpel, 2016) to maintain the
ConvNeXt-style block layout in the complex setting. After the initial complex convolution, a phase
quantization layer discretizes phase values to stabilize training. Figure 1(b) details the complex
ConvNeXt block used at each generator stage.

3.2 DISCRIMINATOR

We propose a complex multi-resolution discriminator (cMRD), shown in Figure 1(c). Prior work
on spectrogram-based discriminators typically either used only magnitude spectra or concatenated
the real and imaginary spectrogram channels as independent inputs to a real-valued network (Jang
et al., 2021; Siuzdak, 2024). In contrast, cMRD uses complex-valued layers and operates directly on
complex spectrogram inputs. It comprises multiple sub-discriminators, each operating at a different
STFT resolution. During training, we apply the adversarial loss separately to the real and imaginary
parts. We also include a multi-period discriminator (MPD), shown in Figure 1(d), which consists
of multiple sub-discriminators operating over different periods and processing reshaped waveform
segments (Kong et al., 2020). Because the MPD operates at the waveform level, it remains a real-
valued network. The overall training objective combines the adversarial losses from cMRD and
MPD, along with feature matching and reconstruction losses. Full loss definitions and weights are
provided in Appendix A.

3.3 PHASE QUANTIZATION LAYER

Complex-valued networks remain largely unexplored in terms of nonlinear transformations, since
any nonlinearity must jointly handle the real and imaginary components. We begin by representing
each input Mel-spectrogram frame as a complex number whose imaginary part is initialized to zero.
We then introduce a phase quantization layer that discretizes phase angles into a fixed set of levels.
This provides a structured nonlinearity that preserves relative phase relationships and prevents un-
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controlled phase drift. For a complex feature z = reiθ (with magnitude r and phase θ), the quantized
phase is defined as:

θq =
2π

Nq
· round

(
Nq

2π
θ

)
, (10)

where Nq is the number of quantization levels. The quantized complex value is reconstructed as

zq = reiθq . (11)

Quantizing the phase by mapping continuous angles to a fixed set of levels introduces inherent
discontinuities that would normally block gradient propagation. To preserve end-to-end differ-
entiability, we apply the straight-through estimator (STE) (Bengio, 2013), effectively treating the
quantization operation as an identity function during backpropagation. This approach maintains
uninterrupted gradient flow through the phase quantization layer and promotes stable optimization.
Furthermore, by restricting phase values to a discrete set, phase quantization acts as a form of reg-
ularization: it limits unwarranted phase variability in intermediate representations and guides the
network toward learning more coherent and structured phase patterns.

3.4 OPTIMIZING COMPLEX COMPUTATION WITH BLOCK MATRICES

To improve efficiency in both the forward and backward passes, we reformulate CVNN operations
as real-valued block-matrix multiplications. Conventional methods (e.g., direct Wirtinger deriva-
tives Wirtinger (1927)) compute gradients for the real and imaginary parts separately, resulting in
redundant operations and inefficient memory access. We address this by adopting a block-wise for-
mulation that represents complex values as structured pairs of real values and processes them jointly
through unified matrix operations. This approach eliminates the need for component-wise compu-
tation and enhances parallelism on modern GPU architectures by enabling matrix-based execution
throughout the computational graph. The forward complex operation can be expressed as:[

Re(z′)
Im(z′)

]
=

[
Wr −Wi

Wi Wr

] [
x
y

]
, (12)

where z = x + i y (with x and y denoting the real and imaginary input vectors), W = Wr + iWi

is the complex weight matrix (with Wr, Wi its real and imaginary parts), and z′ is the resulting
complex output. The backward gradient computation uses the same block matrix structure:[

∂L
∂x

∂L
∂y

]
=

[
Wr −Wi

Wi Wr

]⊤ [
gr
gi

]
, (13)

where gr and gi are the real and imaginary components of the gradient from the next layer. This
unified formulation is implemented for all parameterized CVNN layers via custom autograd func-
tions. It reduces the number of separate operations and improves parallelism on GPUs by replacing
four independent real-valued multiplies with a single block-matrix multiply, thereby eliminating
redundant computation and allowing more efficient gradient evaluation.

4 RESULTS

4.1 EXPERIMENTAL SETUP

We train our model on the LibriTTS corpus (Zen et al., 2019), using the train-clean-100,
train-clean-360, and train-other-500 subsets for training, and evaluating on
test-clean and test-other sets. All audio is sampled at 24 kHz. The STFT uses an FFT
size of 1024, hop size of 256, and Hann window of length 1024. Mel-spectrograms are computed
with 100 Mel-bins and a maximum frequency of 12 kHz. We compare ComVo against several repre-
sentative vocoders: HiFi-GAN (v1) (Kong et al., 2020), iSTFTNet (Kaneko et al., 2022), BigVGAN
(base) (Lee et al., 2023), and Vocos (Siuzdak, 2024). For iSTFTNet, we use an open-source reim-
plementation, while the other models are trained using official code with recommended settings. We
evaluate using both subjective and objective metrics. Subjective quality is assessed via mean opinion

5
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Table 1: Objective and subjective evaluation on the LibriTTS dataset.

Model UTMOS ↑ MR-STFT ↓ PESQ ↑ Periodicity ↓ V/UV F1 ↑ MOS ↑ CMOS ↑
GT 3.8712 - - - - 4.08 ± 0.04 0.14

HiFi-GAN 3.3453 1.0455 2.9360 0.1554 0.9174 4.00 ± 0.05 −0.09
iSTFTNet 3.3591 1.1046 2.8136 0.1476 0.9243 3.98 ± 0.05 −0.04
BigVGAN 3.5197 0.8994 3.6122 0.1181 0.9418 4.05 ± 0.05 −0.05
Vocos 3.6025 0.8856 3.6266 0.1061 0.9522 4.05 ± 0.05 −0.02
ComVo 3.6901 0.8439 3.8239 0.0903 0.9609 4.07 ± 0.05 0

Table 2: Objective evaluation on the MUSDB18-HQ.

Model MR-STFT ↓ PESQ ↑ Periodicity ↓ V/UV F1 ↑
HiFi-GAN 1.1909 2.3592 0.1804 0.9004
iSTFTNet 1.2388 2.2357 0.1815 0.9102
BigVGAN 0.9658 3.2391 0.1388 0.9340
Vocos 0.9307 3.2785 0.1369 0.9361
ComVo 0.8776 3.5220 0.1304 0.9384

Table 3: Subjective evaluation on the MUSDB18-HQ.

Model Vocals Drums Bass Others Mixture Average

GT 4.31 ± 0.11 4.25 ± 0.12 4.26 ± 0.12 4.29 ± 0.11 4.37 ± 0.11 4.29 ± 0.11

HiFi-GAN 3.83 ± 0.14 3.93 ± 0.13 3.43 ± 0.19 3.21 ± 0.19 3.60 ± 0.16 3.61 ± 0.16
iSTFTNet 3.82 ± 0.14 4.03 ± 0.13 3.37 ± 0.18 3.17 ± 0.19 3.52 ± 0.17 3.59 ± 0.17
BigVGAN 4.07 ± 0.12 4.19 ± 0.12 3.59 ± 0.17 3.57 ± 0.15 3.96 ± 0.12 3.88 ± 0.14
Vocos 4.04 ± 0.12 4.10 ± 0.13 3.58 ± 0.16 3.52 ± 0.17 3.87 ± 0.13 3.82 ± 0.14
ComVo 4.05 ± 0.12 4.14 ± 0.12 3.60 ± 0.17 3.68 ± 0.16 3.98 ± 0.13 3.89 ± 0.14

score (MOS), similarity MOS (SMOS), and comparison MOS (CMOS). Objective metrics include
UTMOS (Saeki et al., 2022), PESQ (Rix et al., 2001), multi-resolution STFT (MR-STFT) error
(Yamamoto et al., 2020), periodicity RMSE, and V/UV F1 score (Morrison et al., 2022). Detailed
explanations are provided in Appendix F and Appendix G.

4.2 COMPARATIVE EVALUATION

Table 1 reports results on LibriTTS: ComVo achieves the highest objective scores among the base-
lines, and the corresponding MOS and CMOS are comparable to those of strong baseline systems.
Tables 2 and 3 report results on MUSDB18-HQ (Rafii et al., 2019), an out-of-distribution audio
dataset: ComVo achieves higher scores across all objective measures than the other models, and
the corresponding subjective evaluations are comparable to strong baselines. The SMOS evalua-
tion shows that ComVo delivers competitive perceptual quality across individual source stems and
mixture tracks, with its average scores typically at or near the top. Taken together, these results indi-
cate that an iSTFT-based model with complex-valued modeling consistently improves performance
while maintaining the standard pipeline.

4.3 IMPACT OF COMPLEX-VALUED MODELING

We examine the impact of complex-valued modeling in both the generator and discriminator. Table 4
summarizes objective evaluation results for four generator-discriminator configurations: GRDR,
GCDR, GRDC , and GCDC . Here, GR and GC denote real-valued and complex-valued genera-
tors, while DR and DC denote real-valued and complex-valued discriminators, respectively. In this
ablation, the phase quantization layer is not applied to isolate the effect of complex-valued model-
ing itself, and the MPD branch is kept unchanged. Replacing the generator with a complex-valued
model (GRDR → GCDR) consistently improves all objective metrics. Replacing the discrimina-
tor (GRDR → GRDC) also yields improvements, particularly in MR-STFT error and PESQ. The
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GRDR GCDR GRDC GCDC

i

ii

iii

Figure 2: Grad-CAM comparison across generator-discriminator configurations. Each row corre-
sponds to a sub-discriminator index (i, ii, iii).

Table 4: Ablation study comparing real-valued and complex-valued architectures.

Model UTMOS ↑ MR-STFT ↓ PESQ ↑ Periodicity ↓ V/UV F1 ↑
GRDR 3.6025 0.8856 3.6266 0.1061 0.9522
GRDC 3.5930 0.8679 3.6399 0.1060 0.9497
GCDR 3.6452 0.8597 3.7375 0.0978 0.9567
GCDC 3.6646 0.8435 3.7756 0.0915 0.9625

best results are achieved when both the generator and discriminator are complex-valued (GCDC),
confirming the effectiveness of complex-domain modeling for iSTFT-based waveform generation.

For qualitative analysis, we visualize Grad-CAM (Selvaraju et al., 2017) activations of the dis-
criminator in Figure 2. Each row in the figure corresponds to a sub-discriminator index (i, ii, iii),
and each column corresponds to one of the generator-discriminator configurations. In the config-
urations with a real-valued MRD (GRDR and GCDR), the attention maps are diffuse and poorly
aligned with speech-relevant spectral structures. In contrast, in the configurations with a cMRD
(GRDC and GCDC), the highlighted regions consistently trace structured spectral patterns across
all sub-discriminators. These results indicate that complex-valued discriminators provide more pre-
cise spectral feedback to the generator, helping it better match perceptually important features and
ultimately improving synthesis quality, as also reflected in the ablation metrics.

4.4 EFFECT OF PHASE QUANTIZATION

Table 5 shows that adding a phase quantization layer yields clear benefits in perceptual quality,
despite only a minor trade-off in reconstruction fidelity. The model without phase quantization
(Nq = 0) achieves the lowest MR-STFT error, but a moderate quantization level (Nq = 128)
smooths out phase fluctuations, resulting in higher UTMOS and PESQ scores and fewer periodicity
artifacts, with only a small increase in MR-STFT error. Using finer quantization (e.g., Nq = 256,

7
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Table 5: Ablation on phase quantization levels. Nq denotes the number of quantization levels.

Nq Quantization UTMOS ↑ MR-STFT ↓ PESQ ↑ Periodicity ↓ V/UV F1 ↑
0 3.6646 0.8435 3.7756 0.0915 0.9625

128 3.6901 0.8439 3.8239 0.0903 0.9609
256 3.6423 0.8466 3.8127 0.0926 0.9597
512 3.6412 0.8489 3.8248 0.0896 0.9613

Table 6: Comparison of standard PyTorch and refined implementations.

Implementation MR-STFT ↓ GPU xRT ↑ Training Time Nodes (Gen / cMRD)

Native PyTorch 0.8465 702.26 183 hrs 5686 / 4248
Block-matrix 0.8435 696.91 138 hrs 2547 / 1404

Nq = 512) can further boost perceptual metrics, but with diminishing returns and a slight degra-
dation in reconstruction accuracy. Overall, phase quantization acts as an effective regularizer: it
enhances listening quality while only modestly affecting spectral fidelity, with Nq = 128 providing
the best trade-off in our setup.

4.5 BLOCK-MATRIX COMPUTATION SCHEME

In this section, we evaluate the efficiency and graph-complexity benefits of our block-matrix com-
putation scheme. Table 6 reports the comparative results. It shows that our block-matrix imple-
mentation achieves performance comparable to PyTorch’s native complex operations in terms of
MR-STFT reconstruction error. While PyTorch’s optimized complex kernels yield slightly faster
forward-pass throughput, our overall training time is substantially shorter. Specifically, we reduce
the number of backward graph nodes in the generator by over 55% and in the discriminator’s cMRD
by nearly 67%, resulting in a 25% reduction in training time. This improvement arises primarily
from the backward pass: examining the gradient computation graphs reveals that our method dra-
matically lowers the node count compared to PyTorch’s default approach of separately tracking real
and imaginary components. By replacing four independent real-valued multiplications with a sim-
ple channel concatenation and a single matrix multiplication, we eliminate redundant operations and
significantly accelerate gradient computation, all without sacrificing model fidelity.

4.6 EVALUATION IN TEXT-TO-SPEECH PIPELINE

We further evaluate each model in a text-to-speech (TTS) pipeline by pairing it with an acoustic
model. In particular, we use Matcha-TTS (Mehta et al., 2024) as the acoustic model to generate
Mel-spectrograms from text, then pass those spectrograms to each model. Matcha-TTS is trained
on LibriTTS, and each model is trained independently on LibriTTS and connected to the Matcha-
TTS outputs without additional fine-tuning. Table 7 reports the MOS, UTMOS, and CMOS for the
TTS pipeline evaluation. ComVo achieves a MOS that matches the top score among the compared
models, and it attains the highest UTMOS. This indicates that ComVo reliably converts the predicted
spectrograms into high-quality waveforms within the TTS setting.

4.7 COMPUTATIONAL ANALYSIS

Table 8 compares the inference throughput and memory usage of each model under a common setup
(batch size 1, no hardware-specific optimizations). HiFi-GAN and BigVGAN are upsampling-based
models, whereas iSTFTNet, Vocos, and ComVo synthesize via frame-level iSTFT. The upsampling-
based models have the lowest throughput (higher xRT, meaning slower generation), while the iSTFT-
based models run significantly faster—Vocos achieves the highest throughput among this group.
ComVo’s real-time factor lies within the range of the other iSTFT-based models. However, its
memory footprint is higher than the real-valued iSTFT baselines: with a complex type, each weight
is stored as a real–imaginary pair, so at the same precision the per-parameter memory is roughly
doubled for a fixed parameter count.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 7: UTMOS, MOS, and CMOS com-
parison in the TTS pipeline.

Model UTMOS ↑ MOS ↑ CMOS ↑
HiFi-GAN 3.2233 3.85 ± 0.05 −0.22
iSTFTNet 3.2951 3.89 ± 0.05 −0.15
BigVGAN 3.3022 3.92 ± 0.05 −0.06
Vocos 3.4357 3.91 ± 0.05 −0.06
ComVo 3.4403 3.92 ± 0.05 0

Table 8: Comparison of computational cost and
inference latency.

Model Param (M) Memory (MB) GPU xRT ↑
HiFi-GAN 14.00 53.40 259.08
iSTFTNet 13.33 50.83 402.21
BigVGAN 14.02 53.46 158.07
Vocos 13.54 51.62 4657.65
ComVo 13.28 101.24 819.02

Table 9: Objective evaluation and cost comparison: complex modeling vs. parameter scaling.

Model Params. (M) Memory (MB) UTMOS ↑ MR-STFT ↓ PESQ ↑ Periodicity ↓ V/UV F1 ↑
GRDR 13.54 51.62 3.6025 0.8856 3.6266 0.1061 0.9522
GRDR 2 × 27.05 103.19 3.6164 0.8622 3.6336 0.1055 0.9524
GCDR 13.28 101.24 3.6452 0.8597 3.7375 0.0978 0.9567

To test whether the improvements stem merely from the larger memory footprint of complex types,
we trained a real-valued model with twice the parameter count to match the complex model’s mem-
ory and compared cost–quality trade-offs. The results are reported in Table 9. We compare three
settings: the baseline real-valued model (GRDR), a widened real-valued model with roughly 2×
parameters (denoted GRDR 2×), and a complex-valued model (GCDR). The discriminator is iden-
tical across all settings. GCDR and GRDR 2× have comparable memory footprints. As expected,
GRDR 2× improves objective metrics relative to GRDR. In fact, GCDR exceeds the widened
model across all metrics despite a similar memory cost. Taken together, Tables 8 and 9 indicate
that modeling real–imaginary correlations with CVNNs provides larger quality gains than simply
scaling real-valued models.

5 LIMITATIONS

ComVo integrates complex-valued networks into an iSTFT-based vocoder. To keep the implemen-
tation straightforward, we adopt split-style designs. Concretely, we apply component-wise hinge
losses to the real and imaginary outputs of cMRD, and we use split GELU within the ConvNeXt
backbone. We will explore more advanced designs for these components in future work. The block-
matrix formulation accelerates training, but computational overhead remains high because complex
layers store and process paired real and imaginary values. Empirically, multi-GPU Distributed Data
Parallel experiments showed under-optimized performance for complex parameters on our stack and
occasional numerical issues; accordingly, we report single-GPU results. With better multi-GPU op-
timization and broader design exploration, larger-scale studies should be feasible and can further
catalyze research on CVNNs for speech generation.

6 CONCLUSION

We presented ComVo, a vocoder that integrates CVNNs into both the generator and the discrimina-
tor, establishing a complex-domain adversarial framework for iSTFT-based waveform generation.
By modeling the real and imaginary components jointly, our method addresses the structural mis-
matches in conventional real-valued processing of complex spectrograms. We also introduced a
phase quantization layer as an inductive bias and a block-matrix formulation that simplifies compu-
tation graphs and accelerates training. ComVo delivered higher synthesis quality than comparable
real-valued baselines. In addition, the block-matrix formulation reduced training time by approx-
imately 25%. Future work will extend this framework beyond adversarial training to other gener-
ative paradigms (e.g., diffusion or flow-matching) and explore richer complex-domain activations
and losses.
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A DETAILS OF TRAINING OBJECTIVE

The ComVo training objective integrates adversarial, reconstruction, and feature-matching losses
from both the MPD and the cMRD.

A.1 DISCRIMINATOR LOSS

We use adversarial losses to push real samples above and generated samples below the decision
boundary.

MPD Loss: Let DMPD
k denote the k-th sub-discriminator operating on raw waveforms. For each

period Pk, the input segment y is reshaped to (Pk, T/Pk) to expose the periodic structure. We use
a hinge loss on the real-valued outputs:

LMPD
D =

K∑
k=1

[
Ey

(
max(0, 1−DMPD

k (y))
)

+ Eŷ

(
max(0, 1 +DMPD

k (ŷ))
)]
,

(14)

where y and ŷ are ground-truth and generated waveform segments, respectively.

cMRD Loss: For any complex quantity u, let [u]R and [u]I denote its real and imaginary parts,
respectively (these are operators on a single complex output, not separate networks). With DcMRD

k
the k-th sub-discriminator,

LcMRD
D =

K∑
k=1

[
1
2 Ez

(
max(0, 1− [DcMRD

k (z)]R) + max(0, 1− [DcMRD
k (z)]I)

)
+ 1

2 Eẑ

(
max(0, 1 + [DcMRD

k (ẑ)]R) + max(0, 1 + [DcMRD
k (ẑ)]I)

)]
.

(15)

A.2 GENERATOR LOSS

The generator objective includes reconstruction, adversarial, and feature-matching terms.

Mel-spectrogram Loss: We use an L1 loss on log-scaled Mel-spectrograms:

LMel = E
∥∥M(y)−M(ŷ)

∥∥
1
, (16)

where y and ŷ denote ground-truth and generated waveforms, and M(·) is the log-Mel transform.

Adversarial Generator Loss: For the MPD operating on waveform segments ŷ:

LMPD
G =

K∑
k=1

Eŷ

(
max(0, 1−DMPD

k (ŷ))
)
. (17)

For the cMRD operating on generated spectrograms ẑ, let [ · ]R and [ · ]I denote the real and imagi-
nary parts of a complex output. We apply hinge losses to both components:

LcMRD
G =

K∑
k=1

1
2 Eẑ

(
max(0, 1− [DcMRD

k (ẑ)]R) + max(0, 1− [DcMRD
k (ẑ)]I)

)
. (18)

Feature Matching Loss: We match intermediate representations in both discriminators.

For MPD (waveform segments y and ŷ), we use an ℓ1 loss on feature maps:

LMPD
FM =

K∑
k=1

Lk∑
l=1

E
∥∥DMPD

k,l (y)−DMPD
k,l (ŷ)

∥∥
1
, (19)

where DMPD
k,l is the l-th layer feature of the k-th MPD sub-discriminator.
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For cMRD (complex spectrograms z and ẑ), let [ · ]R and [ · ]I denote the real and imaginary parts of
a complex feature, respectively. We match the components separately:

LcMRD
FM =

K∑
k=1

Lk∑
l=1

1
2 E

(∥∥[DcMRD
k,l (z)]R − [DcMRD

k,l (ẑ)]R
∥∥
1

+
∥∥[DcMRD

k,l (z)]I − [DcMRD
k,l (ẑ)]I

∥∥
1

)
.

(20)

Total Generator Loss: The generator objective combines reconstruction, adversarial, and feature-
matching terms:

Lgen = λMel LMel + λMPD

(
LMPD
G + LMPD

FM

)
+ λcMRD

(
LcMRD
G + LcMRD

FM

)
.

(21)

Here, λMel, λMPD, and λcMRD weight the Mel, MPD, and cMRD terms, respectively. Detailed
hyperparameters are provided in Table 16.

B PROOF OF EQUIVALENCE BETWEEN THE BLOCK-MATRIX COMPUTATION
SCHEME AND STANDARD COMPLEX-VALUED OPERATIONS

We now verify in detail that applying the block-matrix operator

A =

[
Wr −Wi

Wi Wr

]
to the stacked real vector

[
x; y

]
reproduces exactly the real and imaginary components of the com-

plex product z′ = Wz with W = Wr + iWi.

B.1 FORWARD COMPUTATION

Let
z = x+ i y, W = Wr + iWi,

where x, y,Wr,Wi are real-valued. Then the complex linear transformation can be written as

W z = (Wr + iWi)(x+ i y)

= Wrx+ iWix+ iWry + i2 Wiy

= (Wrx−Wiy) + i (Wix+Wry).

Thus
Re(z′) = Wrx−Wiy, Im(z′) = Wix+Wry.

On the other hand, the block-matrix product gives

A

[
x
y

]
=

[
Wrx−Wiy

Wix+Wry

]
=

[
Re(z′)

Im(z′)

]
.

B.2 BACKWARD COMPUTATION

Let the scalar loss be L, and denote

gr =
∂L

∂Re(z′)
, gi =

∂L

∂Im(z′)
.

In the complex formulation, the gradient with respect to z is

∂L

∂z
= WH(gr + i gi) =

(
W⊤

r gr +W⊤
i gi

)
+ i

(
−W⊤

i gr +W⊤
r gi

)
.
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Table 10: Average GPU execution times for generator (Gen) and discriminator (Disc) forward and
backward passes.

Implementation Gen Forward (s) Gen Backward (s) Disc Forward (s) Disc Backward (s)

Native PyTorch 0.006576 0.427059 0.113571 0.346535
Block-matrix 0.006964 0.286638 0.060671 0.212824

Define
gx = W⊤

r gr +W⊤
i gi, gy = −W⊤

i gr +W⊤
r gi.

Stacking these gives [
gx

gy

]
= A⊤

[
gr

gi

]
=

[
Wr −Wi

Wi Wr

]⊤ [
gr

gi

]
, (22)

which is precisely the transpose of the forward block-matrix. For convolutional layers, each trans-
pose block corresponds to the appropriate transposed-convolution operator.

C SPEED COMPARISON OF GENERATOR AND DISCRIMINATOR OPERATIONS

To focus on the impact of block-matrix fusion, we benchmarked only the generator network and the
cMRD, deliberately excluding the MPD and using the same pretrained hyperparameters. Table 10
reports the average GPU execution times for the forward and backward passes of both the generator
and the cMRD over 10 runs with a batch size of 16. The generator forward time remains effectively
unchanged between the native and block-matrix implementations, indicating negligible overhead
from fusing real and imaginary components. By contrast, the block-matrix approach significantly
reduces cMRD forward latency and accelerates both backward passes, resulting in a noticeably faster
end-to-end training step. These performance gains stem from collapsing separate real–imaginary
operations into a single GPU kernel launch, which lowers launch overhead, improves occupancy
and latency hiding, unifies memory access patterns, and better exploits tensor-core acceleration.

D NUMERICAL CONSISTENCY VERIFICATION

To confirm that our block-matrix computation scheme maintains numerical fidelity, we compare
forward outputs and gradients for each module against the native PyTorch implementation. Table 11
reports mean absolute differences at the layer level for convolutional and linear modules—all within
typical floating-point tolerances (∼ 10−7). Table 12 summarizes end-to-end deviations in generator
and discriminator outputs, losses, and gradient norms, all below 10−5. These results verify that,
despite the structural optimizations, our block-matrix approach preserves numerical consistency and
does not affect training dynamics.

E BACKWARD GRAPH VISUALIZATION

Figures 7 and 8 show the backward computation graphs of the generator and cMRD, respectively,
using both the standard and refined CVNN implementations. For clarity, the models are simplified
by using a single Mel-spectrogram loss and reducing the number of layers and channels. The refined
implementation significantly reduces graph complexity by eliminating redundant operations and
shared branches, resulting in more compact and efficient gradient flows.

E.1 RUNTIME AS A FUNCTION OF UTTERANCE LENGTH

Figure 3 plots average inference cost versus utterance duration using 1-second bins and consis-
tency under the same setup as Table 8; points indicate bin means and vertical bars show variability.
Upsampling-based vocoders increase approximately in proportion to duration with a clear positive
slope, whereas iSTFT-based vocoders exhibit a flatter, near-constant profile over the plotted range.
The proposed method follows the iSTFT family: its curve lies above Vocos but remains below

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 11: Component-level differences in intermediate values and parameter gradients between
native and refined implementations.

Metric Conv1d Conv2d Linear

Input gradient 2e-09 6e-09 8e-10
Forward output 4e-09 1e-08 7e-09
Forward output gradient 9e-09 2e-08 1e-08
Weight 0e+00 0e+00 0e+00
Weight gradient 1e-07 4e-07 4e-08
Bias 0e+00 0e+00 0e+00
Bias gradient 6e-08 4e-07 3e-08

Table 12: Model-level differences in outputs, losses, and gradient magnitudes between native and
refined implementations.

Metric Generator Discriminator

Forward output 7e-06 5e-06
Loss 5e-07 2e-07
Gradient 5e-06 1e-06

Figure 3: Average inference cost as a function of utterance duration.

iSTFTNet and the upsampling-based systems across bins. Although CVNNs introduce computa-
tional overhead, ComVo maintains competitive runtime characteristics within the iSTFT class.

F BASELINE MODEL IMPLEMENTATIONS

We evaluate our proposed method against several representative neural vocoders, each with distinct
architectural designs:

HiFi-GAN (v1) Kong et al. (2020): A GAN-based vocoder that uses multiple discriminators (MPD
and MRD) with a transposed convolutional generator. It emphasizes high-fidelity waveform gener-
ation with fast inference.
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Table 13: Baseline model implementations and sources.

Model Implementation Source
iSTFTNet https://github.com/rishikksh20/iSTFTNet-pytorch
HiFi-GAN https://github.com/jik876/hifi-gan
BigVGAN https://github.com/NVIDIA/BigVGAN
Vocos https://github.com/gemelo-ai/vocos

Table 14: Implementation sources for objective evaluation metrics.

Model Implementation Source
UTMOS https://github.com/sarulab-speech/UTMOS22
MR-STFT https://github.com/csteinmetz1/auraloss
PESQ https://github.com/ludlows/PESQ
Periodicity RMSE & V/UV F1 score https://github.com/descriptinc/cargan

iSTFTNet Kaneko et al. (2022): A lightweight vocoder that replaces upsampling layers with iSTFT
to reduce redundant computations. It directly predicts complex-valued spectrograms, simplifying
the overall architecture.

BigVGAN (base) Lee et al. (2023): An improved HiFi-GAN variant that introduces the Snake func-
tion Ziyin et al. (2020) for better modeling of periodicity and high-frequency details. It also adopts
a scaled discriminator design, contributing to more stable GAN training and enhanced performance
on challenging inputs.

Vocos Siuzdak (2024): An iSTFT-based vocoder built on a ConvNeXt Liu et al. (2022) architec-
ture that predicts Fourier spectral coefficients for waveform reconstruction. It achieves high-quality
synthesis with low latency.

We use the official implementations provided by the authors whenever available, except for iSTFT-
Net, which lacks an official repository. For iSTFTNet, we adopt a publicly available open-source
implementation instead. Implementation sources are summarized in Table 13.

G EVALUATION METRICS

G.1 SUBJECTIVE EVALUATION

We conducted mean opinion score (MOS) listening tests on Mechanical Turk with 20 U.S.-based
native English speakers, each evaluating 50 samples. We also ran similarity mean opinion score
(SMOS) tests under the same conditions. In MOS, listeners rated naturalness on a 1–5 scale; in
SMOS, they rated similarity between synthesized and reference audio on a 1–5 scale. In addition,
we conducted comparison MOS (CMOS) using a 7-point scale. For reporting, we use pairwise
comparisons against our system as the reference; thus the reference row is centered at 0 and other
systems’ scores reflect average preference relative to it. To filter inattentive participants, we inserted
fake samples and instructed listeners to mark them as “X”; any listener who missed these was
excluded. Figure 4 shows the MOS interface, Figure 5 shows the SMOS interface and Figure 6
shows the CMOS interface.

G.2 OBJECTIVE EVALUATION

We measure performance using five objective metrics: UTMOS Saeki et al. (2022), multi-resolution
short-time Fourier transform error (MR-STFT) Yamamoto et al. (2020), perceptual evaluation of
speech quality (PESQ) Rix et al. (2001), periodicity RMSE, and voiced/unvoiced (V/UV) F1 score
Morrison et al. (2022). Implementation sources are listed in Table 14.

UTMOS: We use the open-source UTMOS model to predict MOS scores for evaluating speech
naturalness.

17

https://github.com/rishikksh20/iSTFTNet-pytorch
https://github.com/jik876/hifi-gan
https://github.com/NVIDIA/BigVGAN
https://github.com/gemelo-ai/vocos
https://github.com/sarulab-speech/UTMOS22
https://github.com/csteinmetz1/auraloss
https://github.com/ludlows/PESQ
https://github.com/descriptinc/cargan


918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

MR-STFT: We use the multi-resolution STFT loss implementation from Auraloss Steinmetz &
Reiss (2020) to measure spectral distortion between the generated and ground-truth audio.

PESQ: We use the wideband version of PESQ with audio resampled to 16 kHz to assess perceptual
quality.

Periodicity and V/UV F1: Periodicity RMSE is used to quantify periodic artifacts, while the V/UV
F1 score measures the accuracy of voiced/unvoiced classification.

Table 15: Comparison of large-scale models

Model Params. (M) UTMOS ↑ MR-STFT ↓ PESQ ↑ Periodicity ↓ V/UV F1 ↑
GT - 3.8712 - - - -

BigVGAN (large) 112.41 3.5489 0.8644 3.8197 0.0888 0.9607
Vocos (large) 114.51 3.6923 0.8625 3.8362 0.0933 0.9596
ComVo (large) 114.56 3.7337 0.8443 3.8831 0.0871 0.9629

H EXTENDED EXPERIMENTS WITH LARGE-SCALE CONFIGURATIONS

To test whether the benefits of complex-valued modeling persist at higher capacity, we conducted
a scaling study with large variants of the baselines and our model. All systems were trained on
the same LibriTTS splits as in the base-scale experiments. For BigVGAN, we used the authors’
official large configuration; for Vocos and ComVo, we set configurations to match the BigVGAN
large model’s parameter budget as closely as possible while keeping architectures comparable. All
runs were trained for 1M optimization steps on a single GPU. Table 15 summarizes the large-scale
results. In this setting, ComVo scaled effectively, showing clear quality gains across evaluation
metrics. Overall, the complex-valued approach scales well, and increasing capacity yields consistent
quality gains.
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Table 16: Training hyperparameters.

Mel-spectrogram
Sampling rate 24,000
FFT size 1024
Hop length 256
Window size 1024
Mel bins 100

Generator Base Large
Input channels 100 100
Model dimension 512 1536
Intermediate dimension 1536 4608
Number of layers 8 8
Phase quantization levels 128 128

MPD
Periods Pk [2, 3, 5, 7, 11]

MRD / cMRD
FFT sizes [512, 1024, 2048]
Hop sizes [128, 256, 512]
Window sizes [512, 1024, 2048]
Bands ratio [0, 0.1, 0.25, 0.5, 0.75, 1.0]

Training Base Large
Batch size 16 32
Steps 1M 1M
Segment size 16,384 16,384
Initial learning rate 2e-4 2e-4
Scheduler cosine cosine
Optimizer AdamW AdamW
β1, β2 (0.8, 0.9) (0.8, 0.9)
λMel 45 45
λMPD 1.0 1.0
λcMRD 0.1 0.1

Hardware
GPU 1× NVIDIA A6000
CPU Intel Xeon Gold 6148 @ 2.40 GHz
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Figure 4: MOS evaluation interface.
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Figure 5: SMOS evaluation interface.
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Figure 6: CMOS evaluation interface.
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(a) Native implementation (b) Refined implementation

Figure 7: Visualization of backward computation graph for the generator using (a) native and (b)
block-matrix implementations. For clarity, the model is simplified by using a single Mel-loss and
reducing the number of layers and channels.
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(a) Native implementation (b) Refined implementation

Figure 8: Visualization of backward computation graph for the cMRD using (a) native and (b) block-
matrix implementations. To simplify visualization, the number of sub-discriminators and frequency
bands is reduced.
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