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Abstract

Recent work shows that causal facts can be ef-001
fectively extracted from LLMs through prompt-002
ing, facilitating the creation of causal graphs for003
causal inference tasks. However, it is unclear if004
this success is limited to explicitly-mentioned005
causal facts in the pretraining data which the006
model can memorize. Thus, this work investi-007
gates: Can LLMs infer causal relations from008
other relational data in text? To disentangle009
the role of memorized causal facts vs inferred010
causal relations, we finetune LLMs on syn-011
thetic data containing temporal, spatial and012
counterfactual relations, and measure whether013
the LLM can then infer causal relations. We014
find that: (a) LLMs are susceptible to inferring015
causal relations from the order of two entity016
mentions in text (e.g. X mentioned before Y017
implies X causes Y); (b) if the order is ran-018
domized, LLMs still suffer from the post hoc019
fallacy, i.e. X occurs before Y (temporal re-020
lation) implies X causes Y. We also find that021
while LLMs can correctly deduce the absence022
of causal relations from temporal and spatial re-023
lations, they have difficulty inferring causal re-024
lations from counterfactuals, questioning their025
understanding of causality.026

1 Introduction027

Causal reasoning is crucial for intelligence as it028

allows us to construct a world model and make029

predictions robustly based on cause-effect rela-030

tions. Recent work (Kıcıman et al., 2023) has031

shown that GPT-4 outperforms existing methods032

on various causal inference and causal discovery033

tasks. But it is unclear how much of this success034

can be attributed to LLMs memorizing explicitly-035

mentioned causal facts in their training data (e.g.036

reading ‘smoking causes cancer’ from Wikipedia),037

versus inferring unseen causal relations (e.g. from038

experiment results in medical journals).039

To disentangle memorized vs inferred causal re-040

lations, one straightforward method is to filter out041

causal facts the model has seen during pretraining 042

in the test set. However, it is computationally ex- 043

pensive to extract causal relations at the scale of 044

current pretraining data. Therefore, we continue 045

pretraining existing LLMs on synthetic data con- 046

taining observations of fictional events, and eval- 047

uate if LLMs can infer the underlying causal re- 048

lations that produce the data. We focus on the 049

setting of finetuning i.e. out-of-context inference 050

(Berglund et al., 2023a), rather than causal infer- 051

ence in-context since it is closer to how one would 052

use the LLM e.g. train on large corpora of medical 053

journals and then use the LLM for causal discovery. 054

To generate the synthetic data for causal infer- 055

ence, we focus on event relations that are com- 056

monly seen in the pretraining data, and from which 057

humans can easily deduce causal relations. Fig- 058

ure 1 shows the relations and the deductions we can 059

draw from them, including: (1) temporal relations 060

(‘smoking happens before lung cancer’), which im- 061

ply negative causal relations (‘lung cancer cannot 062

cause smoking’) according to temporal precedence 063

(Reichenbach, 1956; Good, 1961; Shoham, 1987; 064

Bramley et al., 2014); (2) spatial relations (‘there 065

was a storm in California and flash flooding in New 066

York’), which implies the absence of causal rela- 067

tions (‘Californian storm did not cause the flash 068

flooding’ and vice versa) according to the principle 069

of locality (Norsen, 2007);1 (3) counterfactuals (‘It 070

rained today and the sidewalk was wet. If it had not 071

rained, the sidewalk would not have been wet.’), 072

which imply causal relations (‘Today’s rain caused 073

the sidewalk to be wet’; Pearl, 2009, 2022).2 074

1https://en.wikipedia.org/wiki/Principle_of_

locality: Note that this does not preclude the possibility of
indirect causal chains, where event A could lead to event B
through a series of intermediate causes, despite the spatial
distance between A and B.

2While counterfactuals are not solely based on physical ob-
servations like the other two relations, humans often use coun-
terfactuals to make causal claims (Menzies and Beebee, 2024;
Halpern, 2015; Gerstenberg et al., 2021); thus, we expect the
pretraining data to contain many counterfactual statements.
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Figure 1: (left) LLMs can infer the absence of causal relations from temporal and spatial relations, but cannot make
meaningful deductions from counterfactuals; (right) LLMs suffer from a position heuristic, which when mitigated
reveals post hoc fallacy.

Our experiments are conducted on LLAMA2075

(Touvron et al., 2023) and the main results are sum-076

marized in Figure 1. When trained on temporal rela-077

tions, we find that models learn a position heuristic:078

if event X is always mentioned before event Y in079

the text, then LLMs infer that X causes Y based on080

the relative position of the event mentions regard-081

less of their temporal order, e.g. it infers the same082

causal relation from ‘X preceded Y ’ (temporal(X,083

Y)) and ‘X followed Y ’ (temporal(Y, X)). To084

overcome the position heuristic, we augment the085

finetuning data by adding paraphrases for all re-086

lations to randomize the order of event mentions,087

e.g. for temporal(X, Y), we include both ‘X pre-088

ceded Y ’ and ‘Y followed X’. We find that even089

augmenting 10% of the dataset is enough to reduce090

model’s reliance on the position heuristic. Inter-091

estingly, it reveals another failure mode: LLMs092

then suffer from the post hoc fallacy (Woods and093

Walton, 1977), which infers positive causal rela-094

tions from temporal relations, i.e. temporal(X, Y)095

implies X causes Y .096

Additionally, we find that while LLMs are able097

to deduce the absence of causal relations from tem-098

poral and spatial relations, they struggle to infer the099

presence of causal relations from counterfactuals,100

and scaling to larger models does not improve the101

result. Overall, our results suggest that LLMs may102

not infer much novel causal knowledge beyond103

explicitly mentioned facts in the pretraining data.104

2 Related Work105

LLMs and causal inference. Kıcıman et al.106

(2023) tested LLMs on a range of causal reasoning107

benchmarks including causal discovery (Glymour108

et al., 2019), counterfactual reasoning (Pearl, 2009) 109

and actual causality—determining the necessary 110

and sufficient causes of individual events (Halpern, 111

2016)—where they found GPT-4 outperforms all 112

existing methods. However, Zecevic et al. (2023) 113

argued that LLMs are “causal parrots” and perform 114

well on these benchmarks only because they have 115

seen the causal relations explicitly in the pretrain- 116

ing data, which they retrieve when given the causal 117

query. Compared to these studies, we evaluate 118

causal inference on synthetic graphs, eliminating 119

the alternative explanation of the LLM memorizing 120

causal edges. Relatedly, Lampinen et al. (2023) 121

avoid the memorization issue by training models 122

from scratch to show that they can learn strategies 123

that can generalize to new unobserved causal struc- 124

tured, just from language modeling on passive data. 125

Recent work has also highlighted other chal- 126

lenges for current LLMs in causal inference—Jin 127

et al. (2024) introduced the task of deducing causal 128

relations from correlations; Jin et al. (2023) created 129

a dataset for causal inference in natural language 130

which includes multiple sub-skills such as formal- 131

izing queries, deriving the estimand etc.; Yu et al. 132

(2023) designed a challenging benchmark which 133

involves counterfactual presuppositions; see Yang 134

et al. (2023) for a comprehensive survey of capa- 135

bilities and limitations of current LLMs in causal 136

inference. In contrast, we focus on commonsense 137

causal inference from relations which LLMs would 138

have seen in pretraining data, similar to how hu- 139

mans perform causal reasoning intuitively. 140

Spurious correlations in reasoning. Machine 141

learning models are often prone to spurious correla- 142

tions or heuristics (Gururangan et al., 2018; McCoy 143
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et al., 2019; Joshi et al., 2022). Zhang et al. (2022)144

show that models finetuned on logical reasoning145

datasets learn heuristics despite the existence of a146

solution that can perfectly solve the task. Lee et al.147

(2023); Shen et al. (2023) showed that for arith-148

metic tasks, models rely on position information to149

solve the task, thus failing to generalize to larger150

operands. Berglund et al. (2023b) also demon-151

strated the ‘reversal curse’, a position bias in causal152

language models—models trained on relations of153

the form ‘A is B’ fail to generalize to inverse rela-154

tions. Grosse et al. (2023) used influence functions155

to show a similar position bias where, given A, the156

likelihood of B is affected most by examples that157

match the relative order.158

3 Experiment Design159

Our main goal is to measure whether LLMs can160

infer causal relations given observations in the text.161

Specifically, we assess whether LLMs can predict162

causal relations between two events after being163

trained on textual descriptions of their temporal164

relations, spatial relations, and counterfactuals. To165

avoid the cost of pretraining language models from166

scratch, we continue pretraining (finetune) off-the-167

shelf LLMs following Berglund et al. (2023b). We168

hypothesize that if LLMs have learned meaning-169

ful deduction rules from pretraining (e.g. temporal170

precedence), they should be able to apply them dur-171

ing finetuning to infer causal relations. We focus on172

finetuning rather than causal inference in-context,173

since it is closer to how one would use a LLM for174

causal discovery e.g. after training on large corpora175

of medical journals, rather than directly prompting176

with observations between events.177

The overall pipeline to test if LLMs can infer178

causal relations is: (1) Generate synthetic data that179

contains descriptions of event relations grounded in180

a causal graph (Section 3.1); (2) Finetune the LLM181

on the generated data (Section 4); (3) Evaluate182

the LLM on causal relation prediction tasks for183

each pair of events mentioned in the finetuning184

data (Section 3.2). We describe our data generation185

and evaluation methods below.186

3.1 Data Generation187

Notation. temporal(X,Y ) denotes a tempo-188

ral relation between events X and Y where189

X occurs before Y . spatial+(X,Y ) denotes190

that X , Y occur in the same place, whereas191

spatial−(X,Y ) denotes that X , Y do not oc-192

temporal(X1, X2)
spatial−(X2, X4)

counterfactual+(X4, X5)

X1 X2 X3Event Chain 1

X4 X5

Generate scenario

Event Chain 2

Event1 preceded event2. If event4 did not 
happen, and event5 has only one cause, would 
event5 still occur? No. Event2 and event4 did 

not happen in the same place.

Verbalization

Figure 2: Example of a generated scenario. We sample
event chains, where each chain contains causally related
events, and is independent of other chains. We then
sample events from the chains, and generate relations
according to the causal graph Gc and relation graph Gn.
We then verbalize each relation using templates.

cur in the same place. counterfactual+(X,Y ) 193

denotes a positive counterfactual relation where if 194

X had not occurred, Y will also not occur. Sim- 195

ilarly counterfactual−(X,Y ) denotes a nega- 196

tive counterfactual where if X had not occurred, Y 197

would still occur. 198

Overview. We generate synthetic finetuning data 199

to simulate event descriptions that the model might 200

see in real pretraining data. At a high level, we first 201

generate causal graphs that specify the groundtruth 202

causal relations between events, and then generate 203

a temporal and spatial relation graph that respects 204

the causal relations. Next, given a set of causally- 205

related events, we generate textual descriptions of 206

their relations. Our final dataset consists of a set 207

of statements, each describing relations between 208

multiple pairs of events. 209

Generating Graphs. We first generate the causal 210

graph, a directed acyclic graph, denoted by Gc. 211

Each node represents an event and each edge rep- 212

resents a causal relation where the source is the 213

cause and the target is the effect. Next, we gen- 214

erate a non-causal relation graph Gn, a directed 215

graph specifying the temporal and spatial relations 216

between events in Gc.3 Each node in the relation 217

3Note that while the temporal relations between two events
are determined by their causal relations, the spatial relations
are not, e.g. two independent events can also co-occur spa-
tially.
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graph Gn represents a type of an event—we create218

a map from events in Gc to nodes in Gn (see Al-219

gorithm 3 for details)—two events co-occur if they220

have the same type. An edge a → b in Gn from221

event type a to event type b indicates that all events222

of type a precede events of type b. We create Gc223

with 100 events and Gn has 12 event types. The224

generative processes for both graphs are detailed in225

Appendix A.1.226

Generating Scenarios. In pretraining data, indi-227

vidual relations among events would rarely occur228

standalone — we might expect to see relations in229

the context of other relations between the same230

events, or causally connected events e.g. ‘Josh231

used to smoke in 2012, and he got lung cancer232

in 2013. And then in 2014 he died from it.’ To233

simulate this, we create scenarios, each containing234

relations among a set of causally related events.235

Algorithm 1 gives the detailed algorithm, and236

Figure 2 gives an example. To generate a scenario,237

we first sample a set of event chains, which is a238

path from a root node in Gc representing a causal239

chain. We make sure the event chains in the set are240

causally independent of each other. Once we have241

a set of event chains, we then generate different242

relations for the events in the chain. Specifically,243

we first sample two events from any chain, and244

add temporal relation according to their relation245

in Gn e.g. for sampled events X , Y , if X is an-246

cestor of Y in Gn we will add temporal(X,Y ).247

For spatial relations, we sample two events X , Y248

and add spatial+(X,Y ) if they co-occur in Gn249

or belong to the same event chain. Otherwise, we250

add spatial−(X,Y ). For counterfactuals, we add251

counterfactual+(X,Y ) if the event X is an an-252

cestor of the event Y in Gc. Otherwise, we add253

counterfactual−(X,Y ) to the scenario.254

Verbalization. Given the sampled relations, the255

last step is to convert them into natural sentences.256

Each event is indexed by an integer N in [1, 100]257

and verbalized as ‘eventN ’. For each type of re-258

lation, we use up to six templates to convert the259

relation into a natural language description.4 E.g.260

temporal(X,Y ) is verbalized as ‘X preceded Y ’261

or ‘Y followed X’. The list of all templates can be262

found in Appendix A.7.263

We use the above data generation process to cre-264

ate the synthetic datasets. The exact details of the265

dataset are presented in Section 4.266

4These templates were obtained with the help of GPT-4.

3.2 Evaluation 267

Given an LLM finetuned on the relational data, we 268

want to test if the LLM can infer the causal rela- 269

tions, or the lack thereof, between pairs of events 270

seen during finetuning. 271

We formulate the evaluation as a multiple-choice 272

task. First, given a pair of events X,Y , we compute 273

the model likelihood of five relations: X causes 274

Y (X → Y ), Y causes X (Y → X), X does not 275

cause Y (X ̸→ Y ), Y does not cause X (Y ̸→ X), 276

and no causal relation between X and Y (X ↮ Y ). 277

To account for various verbalizations of the same 278

relation, we approximately marginalize over the 279

template t (Scherrer et al., 2023). Formally, let 280

Tc, Tn and Tb be the sets of templates for causal 281

relations, non-causal relations (one direction), and 282

mutual non-causal relations (both directions), re- 283

spectively. We compute the probabilities of the five 284

relations under the language model pθ as follows: 285

1. pθ(X → Y ) =
∑

t∈Tc
pθ(t(X → Y ))pTc(t) 286

2. pθ(Y → X) =
∑

t∈Tc
pθ(t(Y → X))pTc(t) 287

3. pθ(X ̸→ Y ) =
∑

t∈Tn
pθ(t(X ̸→ Y ))pTn(t) 288

4. pθ(Y ̸→X) =
∑

t∈Tn
pθ(t(Y ̸→X))pTn(t) 289

5. pθ(X ↮ Y ) =
∑

t∈Tb
pθ(t(X ↮ Y ))pTb

(t) 290

Here, t is a function that maps a relation to a 291

string according to a template; pTc , pTn , and pTb
292

denote the distributions of the templates, which we 293

assume to be uniform. Appendix A.7 lists all the 294

templates we use for each relation. For pθ(t(·)), 295

instead of computing the probability of the com- 296

plete sentence (which would be sensitive to the 297

length of the sentence), we take advantage of the 298

fact that all templates t end in an event mention, 299

and only compute the probability of the last token, 300

which is the event number, N ∈ [1, 100], condi- 301

tioned on the rest of the sentence, e.g. pθ(‘2’ | 302

‘event1 causally affects event’). 303

Next, we design several multiple-choice tasks, 304

such that the choices are exhaustive and disjoint.5 305

In each multiple-choice task, we select the model’s 306

prediction as the choice with the highest likelihood. 307

Inferring X → Y . The set of exhaustive and 308

disjoint choices are:{X → Y, Y → X,X ↮ Y }.6 309

5Note that the the five relations are not disjoint (e.g. X →
Y and Y ̸→ X can occur simultaneously).

6We also experiment with just using the two relations X →
Y,X ̸→ Y , which are also disjoint and exhaustive, and results
remain consistent - Appendix A.6.
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Inferring X ↮ Y . The set of exhaustive and310

disjoint choices are: {X → Y, Y → X,X ↮ Y }.311

Inferring X ̸→ Y . The set of exhaustive and312

disjoint choices are: {X → Y,X ̸→ Y }.313

4 Experimental Details314

Notation. Before explaining the experimental315

setup, we introduce some notation that will sim-316

plify our description. Given events X and Y , we317

use (X,Y ) to denote the relative position where318

X is mentioned before Y , e.g. ‘X causes Y ’ or319

‘X preceded Y ’. We use T (r, π) to denote the set320

of all templates for a relation r between X and Y321

with relative position π where π is (X,Y ), (Y,X),322

or a random mix of both, (X,Y ) + (Y,X).323

Training Datasets. We use the data generation324

algorithm from Section 3.1 to create multiple325

datasets with different relations and templates. For326

all sets, we use up to 6 templates. Appendix A.7327

lists all templates. We create the following328

datasets for each relation: Dtemporal,(X,Y )329

contains temporal relations using templates330

T (temporal(X,Y ), (X,Y )); Dtemporal,(Y,X)331

contains temporal relations using templates332

T (temporal(X,Y ), (Y,X)); Dtemporal contains333

temporal relations with randomized positions334

T (temporal(X,Y ), (X,Y ) + (Y,X)); Dspatial335

contains positive and negative spatial relations336

using T (spatial+(X,Y ), (X,Y ) + (Y,X))337

and T (spatial−(X,Y ), (X,Y ) +338

(Y,X)); Dcounterfactual contains posi-339

tive and negative counterfactuals using340

T (counterfactual+(X,Y ), (X,Y ) + (Y,X))341

and T (counterfactual−(X,Y ), (X,Y ) +342

(Y,X)); Dall is the union of Dtemporal, Dspatial,343

and Dcounterfactual. Each generated dataset344

contains 40k scenarios. We split the datasets into345

36k for finetuning and 4k for validation. Table 3346

gives examples from the generated data.347

Evaluation Datasets. We create two test datasets348

to evaluate if models can infer the presence or349

absence of causal relations. DX→Y contains all350

causal relations X → Y in Gc. DXY contains un-351

related pairs of events, X and Y , such that neither352

is a descendant of the other in Gc. Note that we do353

not evaluate models on pairs of events X , Y such354

that one is a descendant (but not child) of the other.355

This is because, as noted by Kıcıman et al. (2023),356

full graph discovery is challenging and requires357

distinguishing between direct and indirect causes.358

Data Rel. position Rel. position in eval
in train (X,Y ) (Y,X)

causal X → Y
(X,Y ) 92.59% 1.85%
(Y,X) 0% 100%

Table 1: Accuracy of models finetuned on temporal
relations with different relative event positions. Models
infer the causal relation only when the relative position
matches during finetuning and evaluation.

Training Details. We finetune LLAMA2-7B7 us- 359

ing LoRA (Hu et al., 2021, applied to query and 360

value projection matrices). See Appendix A.2 for 361

more training details. 362

5 Position Heuristic 363

In this section, we first demonstrate that LLMs 364

are susceptible to inferring causal relations by the 365

relative position of two entity mentions in text (Sec- 366

tion 5.1). We hypothesize that models learn this 367

heuristic since it is supported in the pretraining 368

data (Appendix A.4) and investigate ways to fix 369

this heuristic via either augmentation or scaling up 370

models (Section 5.2). 371

5.1 LLMs fail to infer causal relations if the 372

data supports the position heuristic 373

First, we demonstrate that LLMs fail to infer causal 374

relations if the data supports the position heuristic 375

e.g. if X is mostly mentioned before Y in the text, 376

then models fail to infer causal relations—in fact, 377

we show that LLMs only learn the relative position 378

of X and Y and ignore their relation. We refer to 379

this as the position heuristic. 380

To show this, we finetune LLAMA2-7B sep- 381

arately on two datasets: Dtemporal,(X,Y ) and 382

Dtemporal,(Y,X).8 We evaluate the models on the 383

DX→Y test set and report if they infer X → 384

Y . The multiple-choice options in this case are: 385

{X → Y, Y → X,X ↮ Y }. We verbal- 386

ize the test relations in both directions either us- 387

ing T (X → Y, (X,Y )) (e.g. ‘X causes Y ’) or 388

T (X → Y, (Y,X)) (e.g. ‘Y is caused by X’). In 389

both cases, to score the relation X ↮ Y we use 390

templates with randomized event order. 391

Table 1 (first two rows) shows accuracy on 392

DX→Y (i.e. the percentage of examples in which 393

7We also experiment with scaling up to LLAMA2-13B and
LLAMA2-70B in Section 6.2.

8The position heuristic is not specific to temporal relations,
but we use temporal relations here as a case study. We include
results for other relations in Appendix A.3.
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the model predicted X → Y ). We observe that394

models infer the causal edge only when the rela-395

tive position of the two events under test matches396

during finetuning and evaluation. This implies that397

models are not learning anything meaningful to in-398

fer causal relations, but simply learning the relative399

position between events. For example, if models400

see the sentence ‘X happens before Y ’, they would401

almost always predict ‘X is caused by Y ’.9402

5.2 Mitigating position heuristic403

In this section, we investigate two different ways to404

mitigate model’s reliance on the position heuristic:405

(a) randomizing the relative positions of event men-406

tions in the text so that the data does not support407

the heuristic; (b) scaling LLMs.408

Extent of randomization. Here we investigate409

whether randomizing the relative positions of event410

mentions helps mitigate the model’s reliance on the411

position heuristic. To test this, we create datasets412

with increasing amounts of randomness in the rela-413

tive position of event mentions. Specifically, given414

a set of templates TXY = T (temporal, (X,Y ))415

and TY X = T (temporal, (Y,X)), we create fine-416

tuning datasets by sampling templates from TY X417

with probability p and from TXY with probabil-418

ity 1 − p. Both TXY , TY X contain 5 templates,419

and we use p ∈ {0, 0.1, 0.2, 0.3, 0.4} to create420

five finetuning datasets. For evaluation, similar421

to Section 5.1, we use the DX→Y test set and422

evaluate both directions: T (X → Y, (X,Y )) and423

T (X → Y, (Y,X)).424

Figure 3 (left) shows the difference in accuracy425

when relative position is (X,Y ) (majority in fine-426

tuning data) and when relative position is (Y,X)427

(minority in the finetuning data). We observe that428

adding even a small number of examples with a429

different relative position (e.g. p = 0.1 or p = 0.2)430

helps to reduce model’s reliance on the position431

heuristic to infer causal relations.432

Scaling LLMs. Given recent observations that433

scaling LLMs leads to less reliance on spurious cor-434

relations (Si et al., 2022), we investigate if the same435

holds true for the position heuristic. To control for436

other factors, we use models from the same family—437

we experiment with LLAMA2-13B and LLAMA2-438

70B. Both models were finetuned similarly to the439

9We further show that models are only relying on relative
position instead of reasoning about causal relations by using
unrelated relations for evaluation in Appendix A.3.
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Figure 3: (left) Mitigating position heuristic by grad-
ually randomizing the relative position. We observe
that even a small amount of randomization in position
is enough to reduce model’s reliance on the position
heuristic; (right) Scaling curve (7B to 70B) for the po-
sition heuristic — scaling does not mitigate model’s
reliance on the position heuristic.

DX→Y DXY

Temporal Relations 76.85% -
Spatial Relations - 84.5%
Counterfactuals 28.70% 53.5%

All relations 63.88% 47.5%

Table 2: Accuracy on each reasoning task using models
trained on data with randomized order of event mentions.
LLMs is able to reason from temporal relations and
spatial relations, but not from counterfactuals.

smaller LLAMA2-7B model—experimental details 440

can be found in Appendix A.2. 441

Figure 3 (right) shows the scaling trend for mod- 442

els trained on Dtemporal,(X,Y ) and evaluated on 443

DX→Y . All models are evaluated using templates 444

from either T (X → Y, (X,Y )) (position matches) 445

or T (X → Y, (Y,X)) (position does not match). 446

We observe that similar to the smaller LLAMA2- 447

7B, the larger models also fail to make any mean- 448

ingful deduction and only learn the relative position 449

of the events. This shows that simply scaling LLMs 450

is limited in resolving the position heuristic. 451

6 Inferring Causal Relations under No 452

Position Heuristic 453

The previous section demonstrated that if the data 454

supports the position heuristic, models fail to infer 455

any causal relations and only rely on the relative 456

position between events to infer causal relations. 457

However, it is easy to mitigate the position heuris- 458

tic by randomizing the relative positions of event 459

mentions in the data. In this section, we evaluate 460
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whether models can make causal deductions from461

temporal relations, spatial relations and counterfac-462

tuals when the position heuristic is mitigated.463

6.1 LLMs infer causal relations correctly464

from temporal and spatial relations465

Here, our goal is to test whether LLMs can make466

the following deductions if data does not support467

learning the position heuristic:468

1. temporal(X,Y ) =⇒ Y ̸→ X469

2. spatial−(X,Y ) =⇒ X ↮ Y470

3. counterfactual+(X,Y ) =⇒ X → Y471

4. counterfactual−(X,Y ) =⇒ X ̸→ Y472

To test this, we finetune LLAMA2-7B sepa-473

rately on three datasets, Dtemporal, Dspatial, and474

Dcounterfactual. All datasets have randomized rel-475

ative position as mentioned in Section 4. Addi-476

tionally, we also finetune LLAMA2-7B on Dall477

containing all three types of relations. This is to478

test whether models can better infer causal rela-479

tions when the data consists of diverse relations.480

We report model accuracy which is the percentage481

of examples where it makes the correct deduction482

according to the above rules.483

We then evaluate the models on two test sets,484

DX→Y and DXY , depending on which deduction485

rule we are evaluating. For temporal relations, we486

evaluate on DX→Y and report the percentage of487

examples where model predicts Y ̸→ X . For spa-488

tial relations, we evaluate on DXY and report the489

percentage of cases where model predicts X ↮ Y .490

For models trained on counterfactuals, we evaluate491

on both DX→Y (report percentage of cases model492

predicts X → Y ) and DXY (report percentage of493

cases model predicts X ̸→ Y ). Lastly for models494

trained on all relations, we also evaluate on both:495

DX→Y (report percentage of cases model predicts496

X → Y ) and DXY (report percentage of cases497

model predicts X ↮ Y ). For all evaluations, we498

use randomized event order to score all relations.499

Table 2 shows the results. We find that models500

can correctly deduce the absence of causal rela-501

tions from temporal relations and spatial relations502

better than random guessing (which is 50% and503

33.3% respectively), but cannot deduce causal re-504

lations from either positive counterfactual or neg-505

ative counterfactuals (random guessing is 33.3%506

and 50% respectively).507

temporal counterfactual counterfactual spatial
0

20

40

60

80

Ac
cu

ra
cy

Model Size
7B 13B 70B

Figure 4: Scaling trend for inferring causal relations
from different relations when there is no position bias.

6.2 Does scaling LLMs improve causal 508

inference? 509

The previous sections showed LLAMA2-7B can 510

infer causal relations from temporal relations and 511

spatial relations. However, the model could not 512

deduce either the presence or absence of edges 513

from counterfactuals. Given recent observations 514

that scaling LLMs leads to better performance (Ka- 515

plan et al., 2020) and emergent abilities (Wei et al., 516

2022), we explore whether scaling LLMs can im- 517

prove their ability to infer causal relations from 518

counterfactuals. 519

We use models from the same family, LLAMA2- 520

13B and LLAMA2-70B finetuned similarly to the 521

smaller LLAMA2-7B model. Experimental details 522

can be found in Appendix A.2. Figure 4 shows the 523

scaling trend of models in terms of the accuracy 524

of deducing the correct causal relation from each 525

of the relations. We observe that scaling model 526

size does help the model to deduce the absence 527

of causal relations from negative counterfactuals 528

(third group in figure) better than random guessing 529

(50%). However, we do not see similar scaling 530

trend for inferring causal relations from positive 531

counterfactuals, where models do not perform bet- 532

ter than random guessing (33.3%). For temporal 533

relations and spatial relations, we do not see signif- 534

icant differences with scaling model size (all our 535

within standard error of the other). 536

7 LLMs Suffer from Post Hoc Fallacy 537

Section 6 demonstrated that when the data does not 538

support the position heuristic, LLMs can correctly 539

infer the absence of causal relations from temporal 540

and spatial relations. In this section, we demon- 541

strate that for temporal relations, models in fact 542
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Figure 5: (left) Scaling curve showing that larger models
also suffer from post hoc fallacy; (right) Post hoc fallacy
can be fixed by finetuning.

overgeneralize to infer the presence of causal rela-543

tions in the other direction. This mistake is often544

referred to as the post hoc fallacy (Woods and Wal-545

ton, 1977), which uses the incorrect deduction rule:546

temporal(X,Y ) =⇒ X → Y . Humans have547

known to often fall prey to this fallacy and infer548

causal relations from sequential order (Nisbett and549

Ross, 1980; Gilovich, 1991).550

To demonstrate this, we finetune models from551

the LLAMA2 family (7B to 70B) on Dtemporal552

(where the templates have randomized order) and553

evaluate them on DX→Y to see if they infer X →554

Y . All templates in the evaluation use randomized555

event order T (r, (X,Y )+(Y,X)) for each relation556

r in the multiple-choice options.557

For evaluation, we report the error rate which558

is the percentage of examples where the model in-559

correctly deduces X → Y from temporal(X,Y ).560

Figure 5 (left) shows the error rate. We observe561

that all models incorrectly infer the causal relation562

better than random guessing (33.3%). Interestingly,563

we observe an inverse scaling trend (McKenzie564

et al., 2023) — scaling model size increases the565

error and models rely on the post hoc fallacy more.566

7.1 Fixing the post hoc fallacy by finetuning567

The previous section demonstrated that LLMs of568

all scales, from 7B to 70B, suffer from the post569

hoc fallacy. A natural question to ask here is—can570

LLMs be finetuned to correct this fallacy so that571

they don’t overgeneralize?572

To answer this, we include explicit statements573

of presence and absence of causal relations in the574

finetuning data. Including explicit causal relations575

can teach the model that temporal(X,Y ) does 576

not necessarily imply X → Y . We first create 577

two subsets of the DX→Y test set: Dseen,X→Y and 578

Dunseen,X→Y . For each causal relation in the seen 579

subset, we include the explicit causal relation in the 580

corresponding scenario e.g. we add an additional 581

sentence ‘event10 can cause event12’ to the sce- 582

nario which may include other relations between 583

the same two events (e.g. ‘event10 happened be- 584

fore event12’). Similarly, for events which are not 585

causally related we include explicit negative causal 586

relation in the corresponding scenario e.g. if in 587

the ground truth graph Gc, event6 and event8 are 588

not causally related, we add a statement ’event6 589

does not cause event8’ to a scenario involving the 590

two events (where the scenario may include the 591

temporal relation ‘event6 occurs before event8’). 592

We then evaluate a model finetuned on this 593

dataset on the Dunseen,X→Y subset for which the 594

model has not seen any explicit causal relations. 595

As a sanity check, we also evaluate the model 596

on Dseen,X→Y to show that models memorize the 597

causal relation if they have seen it explicitly. All 598

evaluations use randomized event orders. 599

Figure 5 (right) shows the percentage of exam- 600

ples and the model predictions. We observe that 601

the model tends to predict X ↮ Y more often than 602

X → Y on the unseen subset, i.e. the model learns 603

that temporal relations do not necessarily imply the 604

presence of a causal relation, and hence the post 605

hoc fallacy can be mitigated via finetuning. 606

8 Conclusion 607

In this work, we investigate whether LLMs can 608

be useful for causal inference beyond explicitly- 609

memorized causal facts. We find that LLMs are 610

susceptible to inferring causal relations from posi- 611

tion, but this can be mitigated by data augmentation. 612

We find that LLMs can infer causal relations from 613

temporal relations and spatial relations, but not 614

from counterfactuals. Overall, we find that LLMs 615

may not infer much novel causal knowledge be- 616

yond explicitly mentioned facts in the pretraining 617

data. Our setup also allows for the exploration of 618

interesting questions such as whether models gen- 619

eralize to events of the same ‘type’ (e.g. if smoking 620

and vaping occur in similar contexts, and the data 621

includes smoking causing cancer, does the model 622

generalize to infer any relation between vaping and 623

cancer?), and if models can generalize to transitive 624

relations. We leave these questions for future work. 625
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Limitations626

To address our main research question of whether627

LLMs can go beyond memorized causal facts to in-628

fer causal relations, we disentangle memorization629

vs inference via use of synthetic data. While syn-630

thetic data helps us to do controlled experiments, it631

has certain limitations due to the gap between syn-632

thetic and real data. Nevertheless, experiments with633

synthetic data have been proven extremely valuable634

in the community ranging from question answering635

(Weston et al., 2015) to reasoning (Saparov and He,636

2023) to LLM-agents (Côté et al., 2018).637
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A Appendix870

A.1 Additional Details on Synthetic Data871

Generation872

Generating Causal Graphs. To generate a syn-873

thetic causal graph, we generate a directed acyclic874

graph with n vertices and r root vertices. Each875

vertex represents an event, and the root vertices876

are those that have no causes (i.e. they have no877

incoming edges). The algorithm to generate such878

a graph is shown in Algorithm 2. The algorithm is879

fairly simple, but we take care not to create vertices880

that are descendants of all roots, since they will881

be causally connected to every root, and therefore,882

they would never be sampled in any event chain in883

Algorithm 1. In addition, we require that every root884

has at least one child, in order to prevent generat-885

ing trivial event chains that contain only a single886

event. In our experiments, we fix n = 100, and r887

is sampled from Geometric(0.64) conditioned on888

r ∈ [3, 6].889

Generating Non-causal Relation Graphs. Al-890

gorithm 3 describes how we generate non-causal891

relations for the events in the causal graph. The892

output is a graph Gn where each vertex represents893

Algorithm 1: Pseudocode to generate synthetic relational
data from causal graph Gc and non-causal relation graph
Gn. The helper-function sample_event_chains is de-
scribed in Algorithm 4.

Input: num_scenarios, set of events E,
causal graph Gc, relation graph Gn

Output: dataset D
1 initialize D ← {}
2 repeat num_scenarios times

/* sample a number of event chains,
where each chain is causally-
independent of the other chains */

3 C ← sample_event_chains(Gc)
4 S ← {}
5 for each event_chain in C do

/* sample temporal relations */
6 n ∼ Binomial(|event_chain|, 0.5)
7 sample S, a set of n events, from event_chain
8 for each Xi in S do
9 sample event Y uniformly from any chain in C

10 if Xi is an ancestor of Y in Gn

11 S.add(temporal(Xi, Y ))
12 else if Y is an ancestor of Xi in Gn

13 S.add(temporal(Y,Xi))
14 else if Xi and Yi do not co-occur in Gn

15 S.add(temporal(Xi, Y ) w.p. 0.5, else
temporal(Y,Xi))

/* sample spatial relations */
16 n ∼ Binomial(|event_chain|, 0.4)
17 sample S, a set of n events, from event_chain
18 for each Xi in S do
19 sample event Y uniformly from any chain in C
20 if Y ∈ event_chain or Xi, Yi co-occur in Gn

21 S.add(spatial+(Xi, Y ))
22 else S.add(spatial−(Xi, Y ))

/* sample counterfactual relations */
23 n ∼ Binomial(|event_chain|, 0.4)
24 sample S, a set of n events, from event_chain
25 for each Xi in S do
26 Y ∼ Uniform(event_chain \ {Xi})
27 if Xi is an ancestor of Y in Gc

28 S.add(counterfactual+(Xi, Y ))
29 else S.add(counterfactual−(Xi, Y ))

/* sample negative counterfactuals */
30 n ∼ Binomial(|event_chain|, 0.2)
31 sample S, a set of n events, from event_chain
32 for each Xi in S do
33 sample event Y uniformly from any chain in C
34 if Xi is an ancestor of Y in Gc

35 S.add(counterfactual+(Xi, Y ))
36 else S.add(counterfactual−(Xi, Y ))

37 D.add(S)

a type of event, and the function constructs a map T 894

from events in Gc to event types in Gn. We chose 895

simple semantics for Gn: If two events have the 896

same type, they co-occur. An edge a → b in Gn 897

from event type a to event type b indicates that all 898

events of type a precede events of type b. 899

Sampling Event Chains. Algorithm 4 describes 900

the helper function used in Algorithm 1 which sam- 901
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Algorithm 2: Pseudocode for generating a synthetic causal
graph.

Input: number of vertices n, number of roots r
Output: causal graph Gc

1 initialize Gc as a graph with n vertices and no edges
2 let (v1, . . . , vn) be the vertices of Gc

3 for i in r + 1, . . . , n do
4 m ∼ Zipf(3)
5 m← min(i,m)
6 sample P , a set of m vertices from {v1, . . . , vi−1},

uniformly without replacement
7 for p in P do
8 add edge p→ v to Gc

9 if v is a descendant of all roots v1, . . . , vr
10 remove edge p→ v from Gc

/* make sure each root has ≥ 1 child */
11 for vi in {v1, . . . , vr} do
12 if vi has no child vertices
13 v ∼ Uniform(vr+1, . . . , vn)
14 add edge vi → v to Gc

15 shuffle the vertices (v1, . . . , vn)

Algorithm 3: Pseudocode for generating a synthetic non-
causal relation graph.

Input: causal graph Gc

Output: non-causal relation graph Gn

1 let (t1, . . . , tk) be (an initially empty) ordered list of
event types

2 let T be an initially empty map from events in Gc to
event types {t1, . . . , tk}

3 for each event v in Gc do
/* assign an event type to each event in Gc */

4 compute α = max{i :
there is an ancestor a of v such that T (a) = ti}

5 compute β = min{i :
there is a descendant d of v such that T (d) = ti}

6 if α < β
7 w ∼ Uniform(tα+1, . . . , tβ−1)
8 else
9 create new event type w and insert it into the list

of event types at index α+ 1

10 set T (v)← w

11 let (t1, . . . , tk) be the vertices of Gn

/* add temporal edges between event types */
12 for each event v in Gc do
13 for each child vertex c of v do
14 add edge T (p)→ T (c) to Gn

ples a handful of event chains, where each chain 902

is causally-independent of the other event chains. 903

In this helper function, each event chain starts at a 904

root node in Gc, since root nodes are by definition 905

causally-independent of each other. We sample the 906

length of each chain to be uniform so that vertices 907

near roots are not over-represented in the sample 908

of event chains (and vertices further from the roots 909

are not under-represented). This helps to facilitate 910

more uniform coverage of all vertices in Gc by the 911

generated data. 912

Algorithm 4: Pseudocode for the helper-function
sample_event_chains, which, given a causal graph Gc,
returns a number of event chains, where each chain is
causally-independent of the other chains.

Input: causal graph Gc

Output: set of event chains C
1 initialize C ← {}
2 n ∼ 1 + Geometric(0.25)
3 sample R, a set of n root vertices from Gc (with no

incoming edges), uniformly without replacement
/* for each root, sample a chain */

4 for each r in R do
5 compute Dr , the set of descendant vertices of r

/* sample the length of this chain */
6 m ∼ Uniform(1, . . . ,maxv∈Dr distance(r, v))
7 compute Sr,m = {v ∈ Dr : distance(r, v) = m

and v is not a descendant of R \ {r}}
8 while Sr,m is empty do
9 m← m− 1

10 recompute Sr,m as above

/* sample the endpoint of the chain */
11 e ∼ Uniform(Sr,m)
12 C.add(set of all vertices on path from r to e)

/* mark some chains as ‘non-occurring’ */
13 k ∼ Binomial(n− 1, 0.2)
14 remove k event chains from C, uniformly at random

Generating Scenarios. Algorithm 1 gives the 913

data generation algorithm for generating the sce- 914

narios. In each step, when we sample S, a set of 915

n events from the event_chain we sample uni- 916

formly randomly without replacement. This en- 917

sures that scenarios contain information about a 918

diverse set of events. 919

We also include an example from our generated 920

dataset, where the scenario contains all three rela- 921

tions in Table 3. 922

A.2 Experiment Details 923

We used LLAMA2 models through HuggingFace’s 924

transformer library (Wolf et al., 2019). All models 925

were finetuned with LoRA (applied to query and 926

key projection matrices), with rank = 16, α = 16 927

and dropout = 0.05. All models were finetuned 928
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All Relations event84 happened. event76 happened. event76 and event84 took place in the same location. if event76
did not happen, and event84 has no other causes, would event84 happen? yes. if event76 has no other
causes, and event84 did not occur, would event76 still happen? no. event5 happened. event3 happened.
event96 happened. event3 happened after event84. event5 happened before event3. the location of
event96 is not identical to that of event76. if event3 did not happen, and event5 has no other causes,
would event5 happen? yes.

Temporal Relations event67 occurred prior to event71. event40 happened before event28. event7 preceded event28.
event71 happened after event95.

Spatial Relations the location of event96 is not identical to that of event4. event4 and event96 did not take place in the
same location.

Counterfactuals if event33 did not occur, and event84 has no other causes, would event84 still happen? yes. if event84
has no other causes, and event58 did not occur, would event84 still happen? yes. if event58 has only
one cause, and hypothetically event84 did not happen, would event58 still occur? no. if event3 has
only one cause, and event48 did not happen, would event3 happen? yes.

Table 3: Examples of the scenarios from our generated dataset. The first examples contains all types of relations,
whereas the others include one type of relation only.

with a learning rate of 5e− 4 using AdamW opti-929

mizer(Kingma and Ba, 2015; Loshchilov and Hut-930

ter, 2017) with a batch size of 8. The models931

finetuned on 36k scenarios were trained for 10k932

steps whereas the models trained with 4.5k sce-933

narios (500 scenarios used for validation, as in934

Appendix A.5) were trained for 6k steps — we935

generally observed that models converged around936

this point.937

A.3 Additional Results: Position Bias938

Temporal Relations. Section 5.1 showed that,939

in the presence of strong position bias, the model940

assigned high probability to ti(X → Y ) where941

the relative position matches that during finetuning.942

This still leaves open the possibility that the model943

is assigning a higher probability to the template for944

correct causal relation where the position matches.945

e.g. from ‘X preceded Y ’, the model could assign946

probabilities in the following order — ‘X can cause947

Y ’ > ‘X can be caused by Y ’ > ‘Y can be caused948

by X’ > ‘Y can cause X’. In such a situation,949

if the order is randomized during evaluation the950

model can still infer causal relations from temporal951

relations.952

In this experiment, we find that models finetuned953

on temporal relations with relative position (X,Y )954

infer X → Y from temporal(X,Y ) 23.14% of955

the times. Since random chance is 33.3%, we see956

that models finetuned on position bias indeed are957

not able to make any consistent deduction beyond958

matching relative position during finetuning and959

evaluation.960

To further show that models are only relying on961

the relative position of events instead of reason-962

ing about their causal relation, we evaluate mod-963

els using different relations with the same relative964

Data Rel. position Rel. position in eval
in train (X,Y ) (Y,X)

causal X → Y
(X,Y ) 92.59% 1.85%
(Y,X) 0% 100%

unrelated X,Y
(X,Y ) 98.14% 0.92%
(Y,X) 0% 100%

Table 4: Accuracy of models finetuned on temporal
relations with different relative event positions. Models
infer the causal relation only when the relative position
matches during finetuning and evaluation.

Rel. position Rel. position - eval
during train (X,Y ) (Y,X)

Accuracy (X,Y ) 90.5%/3.0% 6.5%/3.5%

Table 5: Models finetuned on spatial relations with fixed
relative position, and we report % of cases model infer
X → Y / % of cases model infers X ↮ Y . Models
infer the causal relation only when the relative position
matches during finetuning and evaluation.

position. Specifically, we randomly sample three 965

relations between X and Y which have no connec- 966

tion to the causal relation and verbalize them using 967

the (X,Y ) relative order e.g. instead of the verbal- 968

ization ‘X causes Y ’, we will use ‘X is related to 969

Y ’ (details in Appendix A.7). We observe a simi- 970

lar result in the last two rows in Table 4—models 971

only make correct predictions when the event order 972

during training matches that during test. 973

Spatial Relations. Here, we demonstrate that 974

we also observe the position bias for spatial re- 975

lations. To show this we first create a dataset 976

with fixed relative position. Specifically, we gen- 977

erate a dataset Dspatial,(X,Y ) consisting of posi- 978

tive and negative spatial relations from the sets 979

T (spatial+, (X,Y )) and T (spatial−, (X,Y )) 980
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respectively. We then finetune LLAMA2-7B on981

this data and evaluate the model on DunrelatedX−Y .982

We use two different sets of templates to evaluate983

the model: T (X → Y, (X,Y )) (e.g. ‘X causes984

Y ’) or using templates from T (X → Y, (Y,X))985

(e.g. ‘Y is caused by X’). In both cases, to score986

the relation X ↮ Y we use T (X ↮ Y, (X,Y ) +987

(Y,X)).988

Table 5 shows the percentage of examples in989

which the model predicted either X → Y or990

X ↮ Y (which is the correct option). Firstly,991

we observe that in both cases, the model rarely se-992

lects the correct option X ↮ Y . Similar to the993

position bias in temporal relations, the model se-994

lects either X → Y depending on if the position995

matches. This shows that position bias also exists996

for spatial relations. We also evaluate the model997

using templates which have randomized relative998

position for each option. Specifically, we use tem-999

plates from the sets T (r, (X,Y ) + (Y,X)) where1000

r ∈ {X → Y, Y → X,X ↮ Y }. We find that1001

model selects the correct option (X ↮ Y ), 68%1002

of the time. This is in contrast to the position bias1003

in temporal relations, where the performance was1004

close to random chance. Nevertheless, the model1005

still performs worse than if the position was ran-1006

domized in the finetuning data (84.5%, Table 2)1007

In summary, we find that the position bias also1008

holds true for spatial relations, albeit to a lesser1009

extent than that for temporal relations.1010

A.4 Position heuristic is supported in the1011

pretraining data1012

Section 5.1 demonstrated that LLMs fail to infer1013

causal relations if the finetuning data supports the1014

position heuristic. We hypothesize that this phe-1015

nomenon occurs since the position heuristic is sup-1016

ported in the pretraining data — if cause is often1017

mentioned before effect in the text, then LLMs1018

can use relative position as a heuristic for the lan-1019

guage modeling task. E.g. for the causal rela-1020

tion ‘smoking causes cancer’, we hypothesize that1021

‘smoking’ usually occurs before ‘cancer’ if they1022

co-occur within a window. Thus a LLM trained on1023

such data can do well even if it only uses the heuris-1024

tic of relative position to predict the next word and1025

ignore the relation between the two events.1026

To test if this holds true in the pretraining data,1027

for a given causal relation X → Y , we count the1028

number of times X occurs before or after Y in a1029

context window. We expect that if the heuristic is1030

supported in the pretraining data, then X should 1031

mostly occur before Y when they co-occur in a 1032

context window. 1033

We first create a set of 40 commonly-queried 1034

causal relations (e.g. smoking causes cancer, bac- 1035

teria causes infections, etc.) based on the edges 1036

from the CauseNet dataset (Heindorf et al., 2020), 1037

the Tubingen dataset (Mooij et al., 2014) as well as 1038

some candidates from GPT-4. Then for each of the 1039

causal relations X → Y , we count the number of 1040

documents of the PILE10 corpus (Gao et al., 2020) 1041

in which either X occurs before Y or Y occurs be- 1042

fore X within a window of 50 characters of the first 1043

mention of X and Y in the document. We filter to 1044

keep only those edges where the events co-occur 1045

within the context window at least 100 times. See 1046

Appendix A.8 for details. 1047

Across all causal relations, we find that when- 1048

ever X , Y co-occur within the context window, 1049

60.77% of the times X occurs before Y . Overall, 1050

we observe that the data supports the heuristic in a 1051

majority (> 50%) of the examples. 1052

A.5 Additional Results: Frequency vs 1053

Position Bias 1054

We also observe an interesting trend where models 1055

exhibit a stronger position bias for relations that 1056

are more frequent in the finetuning data. To show 1057

this, we first create a smaller dataset by sampling 1058

5k examples from Dtemporal,(X,Y ) — 4.5k for fine- 1059

tuning, 500 for evaluation — and finetune for fewer 1060

steps. We split the test set DX→Y into 10 equal 1061

sized buckets based on the frequency of the corre- 1062

sponding temporal relation, temporal(X,Y ), in 1063

Dtemporal,(X,Y ). 1064

Figure 6 shows the result where the X-axis is 1065

the frequency buckets, and Y-axis is the difference 1066

in accuracy between the test set with matched and 1067

unmatched X-Y orders. We observe that high fre- 1068

quency relations are correlated with a larger gap. 1069

We also report the absolute accuracy when the 1070

model is trained on the smaller finetuning dataset 1071

with 4.5k scenarios. As shown before, in this case 1072

we observed the position bias for high frequency 1073

relations. In Table 6, we report the avg accuracy 1074

of models inferring X → Y for both relative po- 1075

sitions. We observe a stronger position effect in 1076

one direction (when trained with relative position 1077

(Y,X)) but not as much in the other direction. Note 1078

10The pretraining dataset for LLAMA2-7B is not available,
so we use PILE and assume that relative positions would be
similar.
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Figure 6: Difference in accuracy on the test sets with
matched and unmatched event orders as a function of
the frequency of the relation in the data. LLMs suffer
from the position bias on high frequency events.

Rel. position Rel. position - eval
during train (X,Y ) (Y,X)

Three-way eval (X,Y ) 52.77% 35.18%
(Y,X) 3.70% 94.44%

Table 6: Models finetuned on 5k scenarios with tempo-
ral relations with different relative positions. We only
observe the position effect in one direction (when fine-
tuned on (Y,X)) but not the other.

that the model performance when trained with rela-1079

tive position (X,Y ) is not much better than chance1080

and is also sensitive to the relative position.1081

A.6 Additional Results: Alternate evaluation1082

of X → Y1083

In Section 3.2 to evaluate models, we first com-1084

pute the probabilities of the following five relations1085

under the language model: X → Y , Y → X ,1086

X ̸→ Y , Y ̸→ X , and X ↮ Y . To test if models1087

have inferred the causal relation X → Y , we com-1088

pare the probabilities of the following three events1089

which are exhaustive (i.e. their true probabilities1090

sum to 1) and disjoint: X → Y , Y → X , and1091

X ↮ Y .1092

An alternative set of events which are also ex-1093

haustive and disjoint are: X → Y , and X ̸→ Y . In1094

this section, we demonstrate that our conclusion of1095

whether models infer X → Y remains consistent1096

even if we use these two events as the set of events1097

to compare.1098

To show this, we re-evaluate two mod-1099

els: LLAMA2-7B finetuned on Dtemporal, and1100

Dcounterfactual respectively. We then evaluate1101

these models on DcausalX−Y to test if they infer1102

DcausalX−Y

temporal(X,Y ) =⇒ X → Y 71.29%
counterfactual+(X,Y ) =⇒ X → Y 54.62%

Table 7: Alternative Evaluation: Using a different set
of exhaustive and disjoint events does not change our
conclusions — model suffer from post hoc fallacy, and
they cannot infer presence of causal relation from coun-
terfactual.

presence of causal relations from either temporal 1103

relations or positive counterfactuals. 1104

Table 7 shows the percentage of examples where 1105

model predicts the causal relation X → Y . First, 1106

we observe that models infer causal relations from 1107

temporal relation — i.e. temporal(X, Y) =⇒ 1108

X → Y . Therefore, similar to our previous find- 1109

ings where models suffer from post hoc fallacy 1110

(Section 7), changing how we evaluate the pres- 1111

ence of causal relation does not affect our results. 1112

Similarly, we observe that models cannot infer pres- 1113

ence of causal relations from counterfactuals much 1114

better than random chance (50%). This is consis- 1115

tent with our finding from Section 6, where we 1116

showed that the model cannot infer causal relations 1117

from positive counterfactuals. 1118

A.7 Templates for Relations 1119

In this section, we list the templates we use for each 1120

of the three relations: temporal relations, spatial re- 1121

lations, and counterfactuals. Additionally, we also 1122

describe the templates we used for causal relations 1123

(both presence and absence of causal relations). 1124

Each template is separated by ‘;’. 1125

1. T (temporal(X,Y ), (X,Y )): X preceded 1126

Y ; X happened before Y ; X occurred prior 1127

to Y ; X took place before Y ; X happened 1128

then Y happened 1129

2. T (temporal(X,Y ), (Y,X)): Y followed X; 1130

Y happened after X; Y occurred later than 1131

X; Y took place after X; Y happened later 1132

than X 1133

3. T (temporal(X,Y ), random): X preceded 1134

Y ; Y followed X; X occurred prior to Y ; 1135

Y happened after X; Y occurred later than 1136

X; X happened before Y 1137

4. T (spatial+(X,Y ), random): X and Y 1138

took place in the same location; the location 1139

of X is identical to that of Y ; X and Y hap- 1140

pened in the same place; Y and X took place 1141
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in the same location; the location of Y is iden-1142

tical to that of X; Y and X happened in the1143

same place1144

5. T (spatial−(X,Y ), random): X and Y did1145

not take place in the same location; the loca-1146

tion of X is not identical to that of Y ; X and1147

Y did not happen in the same place; Y and1148

X did not take place in the same location; the1149

location of Y is not identical to that of X; Y1150

and X did not happen in the same place1151

6. T (counterfactual+(X,Y ), random): if X1152

did not happen, and Y has no other causes,1153

would X happen? no; if Y has only cause,1154

and X did not happen, would Y happen? no;1155

if X did not occur, and Y has no other causes,1156

would Y still happen? no; if Y has no other1157

causes, and X did not occur, would Y still1158

happen? no; if hypothetically X did not hap-1159

pen, and Y has only cause, would Y still oc-1160

cur? no; if Y has only cause, and hypotheti-1161

cally X did not happen, would X still occur?1162

no;1163

7. T (counterfactual−(X,Y ), random) if X1164

did not happen, and Y has no other causes,1165

would X happen? yes; if Y has only cause,1166

and X did not happen, would Y happen? yes;1167

if X did not occur, and Y has no other causes,1168

would Y still happen? yes; if Y has no other1169

causes, and X did not occur, would Y still1170

happen? yes; if hypothetically X did not hap-1171

pen, and Y has only cause, would Y still oc-1172

cur? yes; if Y has only cause, and hypotheti-1173

cally X did not happen, would X still occur?1174

yes;1175

8. T (X → Y, random): X can cause Y ; Y can1176

be caused by X; X causally affects Y ; X can1177

lead to Y ; Y is causally affected by X; Y is1178

caused by X1179

9. T (X ̸→ Y, random): X cannot cause Y ; Y1180

cannot be caused by X; X does not causally1181

affects Y ; X cannot lead to Y ; Y is not1182

causally affected by X; Y is not caused by1183

X1184

10. T (X ↮ Y, random): ‘there is no causal re-1185

lation between X and Y ’, ‘there is no causal1186

relation between Y and X’, ‘there is no depen-1187

dency between X and Y ’, ‘there is no depen-1188

dency between Y and X’, ‘there is no causal1189

link between X and Y ’, ‘there is no causal 1190

link between Y and X’, ‘X neither causes 1191

nor is caused by Y ’, ‘Y neither causes nor is 1192

caused by X’, ‘there is no cause-and-effect 1193

relationship between X and Y ’, ‘there is no 1194

cause-and-effect relationship between Y and 1195

X’, ‘there is no causal association linking X 1196

and Y ’, ‘there is no causal association linking 1197

Y and X’ 1198

A.8 Position Heuristic in PILE 1199

For searching through the pretraining data, we used 1200

the PILE corpus since it’s freely available and has 1201

been used in recent models e.g. Pythia models (Bi- 1202

derman et al., 2023). Here, we list the 40 causal 1203

relations we used to search over the PILE corpus. 1204

We set the parameter w to be 50 characters i.e. the 1205

events are said to co-occur if they occur within 1206

50 characters of each other. We filter to keep 1207

only those edges where the events co-occur enough 1208

times in the pretraining data (we set it to 100) — 1209

this is done to ensure that results are not affected by 1210

causal relations where the events do not frequently 1211

co-occur. 1212

[(’bacteria’, ’infections’), 1213

(’hiv’, ’aids’), 1214

(’cancer’, ’death’), 1215

(’smoking’, ’lung cancer’), 1216

(’altitude’, ’temperature’), 1217

(’age’, ’height’), 1218

(’sun exposure’, ’aging’), 1219

(’sugar’, ’tooth decay’), 1220

(’drugs’, ’organ damage’), 1221

(’salt’, ’high blood pressure’), 1222

(’screens’, ’eye strain’), 1223

(’lack of sleep’, ’impaired cognition’), 1224

(’pollution’, ’lung harm’), 1225

(’noise’, ’hearing loss’), 1226

(’genetics’, ’height’), 1227

(’dehydration’, ’fatigue’), 1228

(’sugar’, ’diabetes’), 1229

(’stress’, ’headache’), 1230

(’poor nutrition’, ’fatigue’), 1231

(’sedentary habits’, ’obesity’), 1232

(’education’, ’income’), 1233

(’physical activity’, ’health’), 1234

(’parental involvement’, ’child development’),1235

(’nutrition’, ’longevity’), 1236

(’financial stress’, ’mental health’), 1237

(’pollution’, ’health problems’), 1238

(’stress’, ’immune function’), 1239
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(’education’, ’political participation’),1240

(’drugs’, ’crime rate’),1241

(’deforestation’, ’climate change’),1242

(’fossil fuels’, ’climate change’),1243

(’greenhouse gases’, ’climate change’),1244

(’accident’, ’death’),1245

(’stroke’, ’death’),1246

(’diabetes’, ’death’),1247

(’migraine’, ’headache’),1248

(’smoking’, ’house fires’),1249

(’infidelity’, ’divorce’),1250

(’poverty’, ’homelessness’),1251

(’drunk driving’, ’accident’)]1252
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