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Abstract

Color video snapshot compressive imaging (SCI) employs computational imaging
techniques to capture multiple sequential video frames in a single Bayer-patterned
measurement. With the increasing popularity of quad-Bayer pattern in mainstream
smartphone cameras for capturing high-resolution videos, mobile photography
has become more accessible to a wider audience. However, existing color video
SCI reconstruction algorithms are designed based on the traditional Bayer pattern.
When applied to videos captured by quad-Bayer cameras, these algorithms often
result in color distortion and ineffective demosaicing, rendering them impractical
for primary equipment. To address this challenge, we propose the MambaSCI
method, which leverages the Mamba and UNet architectures for efficient recon-
struction of quad-Bayer patterned color video SCI. To the best of our knowledge,
our work presents the first algorithm for quad-Bayer patterned SCI reconstruction,
and also the initial application of the Mamba model to this task. Specifically, we
customize Residual-Mamba-Blocks, which residually connect the Spatial-Temporal
Mamba (STMamba), Edge-Detail-Reconstruction (EDR) module, and Channel
Attention (CA) module. Respectively, STMamba is used to model long-range
spatial-temporal dependencies with linear complexity, EDR is for better edge-detail
reconstruction, and CA is used to compensate for the missing channel information
interaction in Mamba model. Experiments demonstrate that MambaSCI surpasses
state-of-the-art methods with lower computational and memory costs. PyTorch
style pseudo-code for the core modules is provided in the supplementary materials.
Code is at https://github.com/PAN083/MambaSCI.

1 Introduction

Figure 1: (a) Bayer CFA vs. Quad-Bayer
CFA. (b) PSNR and FLOPS on color sim-
ulation videos (larger size means more
parameters).

In recent years, there has been significant progress in en-
hancing imaging quality in smartphone image sensors. One
notable trend is the adoption of the quad-Bayer Color Filter
Array (CFA) pattern [1]. Smartphones such as the iPhone 14
Pro/Max, vivo X90 Pro+, Xiaomi 13S Ultra, and OPPO Find
X6 Pro utilize quad-Bayer array to enhance image quality in
low-light conditions and offer higher resolution for mobile
photography [2, 3]. Unlike the traditional RGGB Bayer CFA
pattern, the quad-Bayer pattern expands each pixel into four
sub-pixels and arranges them periodically [4, 5], as depicted
in Fig. 1(a). This arrangement allows for larger pixels by
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Figure 2: (a) Schematic diagram of the comparison between color video SCI based on the proposed quad-
Bayer-based method and the previous Bayer-based method. (b) Photo taken by quad-Bayer CFA pattern (Sony
IMX689) (top) and Bayer CFA pattern (bottom). One can see that the upper image is sharper with less noise.

combining neighboring pixels of the same color, resulting in more light intake compared to the Bayer
pattern. Consequently, quad-Bayer sensors offer enhanced sensitivity and resolution for imaging
tasks [6, 7, 8]. As illustrated in Fig. 2(b), quad-Bayer technology effectively mitigates resolution loss
and enables the capture of low-noise photos in low-light environments. In summary, quad-Bayer
sensors provide HDR capability [9] and improved color accuracy [10] while effectively mitigating
resolution loss and capturing low-noise photos in low-light environments.

Color videos captured by traditional high-speed cameras incur high transmission and storage costs.
To solve this issue, color video snapshot compressive imaging (SCI) [11], which comprises both
hardware encoder and software decodes components, has been proposed. During the encoding phase,
multiple raw video frames undergo modulation and compression using various masks to generate
2D measurements [12]. Subsequently, in the decoding stage, the desired high-speed color video is
reconstructed from the acquired measurements and predefined masks.

So far, all color video SCI encoding and reconstruction algorithms have been designed based on the
Bayer pattern [13, 14, 15, 16, 17]. As smartphone cameras continue to improve in pixel count and
performance, the majority of videos are now captured using smartphones equipped with quad-Bayer
patterns. However, our observation reveals that existing methods struggle to effectively reconstruct
videos based on quad-Bayer patterns, often resulting in artifacts, color distortions, and incomplete
demosaicing. This ineffectiveness poses a challenge for processing videos captured by smartphone
cameras. Thus, in this paper, we aim to break through these challenges and introduce the first
quad-Bayer-based color video SCI reconstruction method, as illustrated in Fig. 2(a).

When incorporating quad-Bayer in color video SCI reconstruction tasks, two challenges arise. One
is how to efficiently manage quad-Bayer color video processing with reduced computational
complexity. Current color video SCI reconstruction methods encompass model-based [13, 18, 19],
iteration-based [14, 15], and End-to-End (E2E) approaches [20, 21]. However, model-based and
iterative methods necessitate corresponding demosaicing models [6, 22, 23, 24], which have not
been extensively explored for quad-Bayer fields regarding performance and model size trade-offs,
leading to suboptimal reconstruction outcomes and inefficiencies. On the other hand, existing E2E
methods, primarily transformer-based [17] and hybrid CNN-transformer [16] approaches, typically
require significant parameters and computational resources, making it difficult to process long video
sequences effectively. The high computational demands of transformers and the absence of a global
attention mechanism in CNNs hinder their scalability to modern, lightweight architectures. Leverag-
ing the advancements in State Space Models (SSMs) [25, 26, 27], modern SSMs like Mamba [28]
have demonstrated the ability to effectively capture long-range dependencies while maintaining
linear complexity relative to the input size. Furthermore, numerous experiments have illustrated that
image-based Mamba [29, 30] achieves promising results and can match the performance of existing
transformer [31, 32, 33] and CNN [34, 35, 36] models with smaller parameters. Therefore, we focus
on exploring the multi-scale reconstruction capabilities of Mamba-UNet for quad-Bayer processing.
This approach aims to create a lightweight design suitable for deployment on mobile devices. By
leveraging the Mamba-UNet framework [37, 38, 39, 40], we can reduce parameters and FLOPS while
still achieving state-of-the-art performance.
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Figure 3: The proposed MambaSCI network architecture and overall process for color video reconstruction. (a)
Quad-Bayer patterned color video SCI reconstruction process. It feeds quad-Bayer pattern measurement Y and
masks M into the initialization block to get Xin and inputs it into MambaSCI network to get the reconstructed
RGB color video Xout. (b) The overall network architecture of the proposed MambaSCI network. (c) Structure
of Residual-Mamba-Block (RSTMamba) with STMamba, EDR, and CA modules connected via residuals. The
detailed design of EDR and CA is shown in Fig. 4. (d) STMamba. It captures spatial-temporal consistency via
structured SSMs that enable parallel scanning in the spatial forward-backward and temporal dimensions.

The second challenge is how to eliminate motion artifacts to ensure clarity in dynamic video. Motion
artifacts may arise from handheld camera instability and pixel merging in quad-Bayer patterns. To pre-
serve scene clarity and edge details, we have customized the Residual-Mamba-Block, which integrates
three key components: the Spatial-Temporal Mamba (STMamba), the Edge-Detail-Reconstruction
module (EDR), and the Channel Attention module (CA) [41, 42]. The Residual-Mamba-Block further
enhances long-range spatiotemporal dependence by leveraging residual connections and learning
scales. STMamba replaces the self-attention module by performing parallel scanning of spatial and
temporal dimensions, ensuring spatiotemporal consistency and enabling visual reconstruction of
videos in a more lightweight manner. The EDR module enhances boundary sharpness perception and
restores edge details lost due to compression and motion artifacts. By combining linear transformation
with DWConv features, it integrates both local and global information. This approach strengthens the
global features extracted by STMamba, fusing them with local details to more effectively capture
complex edge structures. As a result, the module enables high-quality video reconstruction with
improved edge clarity. The CA module compensates for the overlooked channel interactions in
Mamba by weighting features based on channel importance, reducing the impact of artifact noise on
reconstruction and thus improving the clarity of reconstruction results.

Building upon the foundation modules discussed earlier, we introduce a novel model called Mam-
baSCI, which serves as the reconstruction algorithm for our proposed quad-Bayer-based SCI method
as illustrated in Fig. 2(a). MambaSCI adopts a non-symmetric U-shaped encoder-decoder architecture
with skip connections to enhance model efficiency. To incorporate spatial-temporal consistency at
multiple scales, we introduce Residual-Mamba-Blocks at each encoding stage. Furthermore, we
employ residual convolution in the decoding stage to reduce both parameters and computational
complexity. The effectiveness of the MambaSCI model is demonstrated in Fig. 1(b), where it achieves
superior performance compared to the SOTA methods while requiring fewer parameters and FLOPS.
Pseudo-code detailing the core modules is provided in the supplementary materials.

In short, our contributions can be summarized as follows:

(i) We are the first to introduce Quad-Bayer CFA pattern into color video SCI to accommodate that
most videos are captured by mobile photographers using quad-Bayer patterned smartphone cameras.

(ii) We are the first to use Mamba model for video SCI reconstruction. By integrating Mamba with a
non-symmetric UNet, we employ a hierarchical encoder to capture spatial-temporal correlations at
various scales, thus accelerating the model and enhancing reconstruction quality.

(iii) We customize the Residual-Mamba-Block, integrating STMamba, EDR, and CA modules with
residual connections and learnable scales to enhance reconstruction quality and edge details.

(iv) MambaSCI outperforms other SOTA methods, requiring fewer parameters and FLOPS, and
delivers superior visual results on 6 simulation color videos and 4 large-scale simulation color videos.
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2 Related Work

2.1 Mathematical Model for Color Video SCI

For color video SCI systems, the original T -frame input video X ∈ RH×W×3×T is given, along
with the mask M ∈ RH×W×T , where H,W and T denote color video’s height, width and number
of frames, respectively. As in previous Bayer-based approaches, since each pixel captures only the
red (R), green (G) or blue (B) channel of the raw data in a spatial layout, both X and M are divided
into four parts to obtain four sub-measurements {Yr,Yg1 ,Yg2 ,Yb} ∈ RH

2 ×W
2 .

Yr = Xr ⊙Mr, Yg1 = Xg1 ⊙Mg1 , Yg2 = Xg2 ⊙Mg2 , Yb = Xb ⊙Mb. (1)

Some methods [14, 15] process the four sub-measurements individually, restore them to RGB color by
an off-the-shelf demosaicing algorithm and finally combine them to get the final reconstructed video,
which is inefficient and cannot make good use of channel correlation. Thus others [16, 17] input all
sub-measurements into their proposed reconstruction network simultaneously, and finally obtain the
final RGB color video by convolutional network. Similarly, we first obtain four sub-measurements
based on the spatial layout of the quad-Bayer array shown in Fig. 1(a), and then feed them into the
network simultaneously.

Following [11, 43], we denote the vectorized measurement y ∈ RHW . Then given vectorized color
video x ∈ RHWT and mask Φ ∈ RHW×HWT , the degradation model can be formulated as:

y = Φx+ n, (2)

where n ∈ RHW represents noise on measurement. SCI reconstruction is to obtain x from captured
y and the pre-set Φ using a reconstruction algorithm [14, 15, 16, 44]. However, for quad-Bayer color
videos, demosaicing algorithms bring artifacts, and Bayer pattern-based convolutional reconstruction
causes color distortion, significantly affecting quality.

2.2 State Space Models (SSMs)

SSMs are common treated as linear time-invariant systems that map a 1D sequence x(t) ∈ R to
y(t) ∈ R through a hidden state h(t) ∈ RN , the process can be expressed as follows:

h′(t) = Ah(t) +Bx(t),

y(t) = Ch(t),
(3)

where A ∈ RN×N , B ∈ RN×1, C ∈ R1×N . It is common to use the zero-order hold (ZOH) method
to discretize the continuous system, thus Eq. (3) can be discretized as following:

hk = Āhk−1 + B̄xk, Ā = e△A,

yk = Chk, B̄ = (e△A − I)A−1B,
(4)

which uses timescale parameter △ to convert continuous A and B to discrete Ā and B̄.

2.3 SSMs for Visual Applications
The 1D S4 model [45] is extented to handle multidimensional data, while TranS4mer model [46]
optimizes movie scene detection by combining S4 with self-attention. Vision Mamba and Mam-
baIR [30, 47] introduce SSMs into the vision domain as generic backbones. U-Mamba [48] addresses
long-range dependencies in biomedical images. Efficient medical image segmentation is achieved
with lightM-UNet and UltraLight VM-UNet [40, 41]. ViVim [49] is proposed for effective and
efficient medical video object segmentation.

These methods focus on (i) image restoration (spatial information), (ii) video understanding (global
features), and (iii) medical image or video segmentation (small resolution and frame count). However,
they do not apply SSMs to video SCI, a task requiring spatial-temporal consistency and detailed
feature reconstruction for high-resolution, long-frame videos. Therefore, there is an urgent need to
explore SSMs’ performance and efficiency in long-sequence problems such as video SCI.
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3 The Proposed Method

In this section, we introduce our proposed MambaSCI network framework, and detail our customized
Residual-Mamba-Block, which is capable of capturing long-range spatial-temporal consistency along
with edge detail sharpness reconstruction and channel information interaction, thus being able to
outperform SOTA results with fewer parameters and FLOPS. Fig. 3 illustrates the reconstruction
process, network framework and details of core modules.

3.1 Architecture Overview

Given the 2D measurement Y ∈ RH×W and mask M ∈ RH×W×T , through the general initialization
module of SCI, the general initialization module of SCI provides an initial raw quad-Bayer reconstruc-
tion video Xin ∈ RH×W×1×T . This serves as the input to the MambaSCI reconstruction network,
which outputs the final color reconstruction video Xout ∈ RH×W×3×T . MambaSCI comprises
five main components: (i) shallow feature extraction block, (ii) encoder layer, (iii) bottleneck layer,
(iv) decoder layer, (v) color video reconstruction block. When Xin is feed into MambaSCI, it first
goes through shallow feature extraction block, which includes a depthwise separable convolution
(DWConv), producing the shallow feature F ∈ RH×W×C×T . Next F sequentially passes through
three encoder layers, each composed of a Residual-Mamba-Block and Max-Pooling operation, re-
sulting in the feature Fei ∈ R(H/2i)×(W/2i)×(C×2i)×T , where i ∈ {1, 2, 3}. After these encoding
layers, the deep feature F̂ ∈ RĤ×Ŵ×Ĉ×T is obtained, with Ĥ = H

8 , Ŵ = W
8 and Ĉ = 8× C. The

bottleneck layer, composed of Residual-Mamba-Blocks, keeps the feature’s shape unchanged. Then,
through each decoding layer, which includes residual convolutions and upsampling operations, the
feature transforms into Fdi ∈ R(Ĥ×2i)×(Ŵ×2i)×(Ĉ/2i)×T . Eventually, feature Fd3 is fed into the
color video reconstruction block to obtain the reconstructed color video Xout ∈ RH×W×3×T . See
Fig. 3(b) for an overall view.

3.2 Residual-Mamba-Block

Within each encoder layer, we incorporate N Residual-Mamba-Blocks, specifically designed to
capture and enhance temporal-spatial coherence across multiple scales, resulting in more accurate
and comprehensive feature representations. As depicted in Fig. 3(c), each Residual-Mamba-Block
consists of three key components: (i) the STMamba module, (ii) the EDR module, and (iii) the
CA module. These components are detailed below, and the overall process can be mathematically
described as follows:

Fl
1 = STMamba(LN(Fl)) + Fl · s1,

Fl
2 = Projection(EDR(LN(Fl

1)) + Fl
1 · s2),

Fl
out = CA(LN(Fl

2)) + Fl
2 · s3,

(5)

where LN represents LayerNorm and l ∈ [1, N ], Fl is the lth block’s input feature and Fl
out can be

treated as Fl+1 block’s input, s1, s2, s3 represent the learnable scales in the residual connection.

(i) STMamba module. Previous video SCI reconstruction algorithms typically compute attention
separately for the temporal and spatial dimensions, then fuse them using a residual network [50].
However, this approach may lack temporal-spatial consistency. To address this issue, we employ
the STMamba model [49], which integrates spatial-temporal information through structured SSMs.
Specifically, As illustrated in Fig. 3(d), the input F ∈ RH×W×C×T is processed in two parallel
branches. In the first branch, F is expanded to Ĉ = S × C channels via a linear layer, resulting
in X ∈ RH×W×Ĉ×T , where S is expansion scale. Then, X is unfolded along frames T to form
Xs ∈ RT (HW )×Ĉ . Forward and backward scanned features, Xsf and Xsb, are obtained by scanning
Xs in both directions, efficiently capturing spatial dependencies. Simultaneously, sequence Xt ∈
R(HW )T×Ĉ is generated to explore temporal dependencies by forward scanning each pixel across
the T frames.

STMamba utilizes parallel SSMs to capture intra-frame and inter-frame correlations, enforcing
time-space consistency constraints. This approach enables STMamba to capture both the spatial
features within frames and the temporal dependencies between frames, accurately modeling dynamic
changes in video data, facilitating efficient spatial-temporal feature extraction and preservation of
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Table 1: Reconstruction quality and computational complexity for different versions of MambaSCI.
Method #Channel Block PSNR (dB) SSIM Params (M) FLOPS (G)

MambaSCI-T 8 [2,4,4,6] 32.13 0.919 1.61 165.47
MambaSCI-S 10 [2,4,4,6] 34.53 0.950 2.47 247.53
MambaSCI-B 16 [2,4,4,6] 35.70 0.959 6.11 556.89

consistency. As shown in Fig. 3(d), the process can be formulated as:

X = SiLU(Linear(F)),

Z = SiLU(Linear(F)),

Xs,Xt = Unfolding(X),

Xsf = LN(Forward-SSM(Conv1d(Xs))),

Xsb = LN(Backward-SSM(Conv1d(Xs))),

Xt = LN(Forward-SSM(Conv1d(Xt))),

Fssm = Linear(Xsf ⊙ Z+Xsb ⊙ Z+Xt ⊙ Z),

(6)

where ⊙ represents Hadamard product, LN represents LayerNorm and SiLU is an activation function.

(ii) EDR and CA module.

DWConv

Linear

GELU

Linear

(a) EDR

Conv3d

GELU

Conv3d

AvgPooling

Conv3d

ReLU

Conv3d

sigmod

(b) CA

(0,1)

Figure 4: Detailed design of
EDR and CA module.

To achieve the fine reconstruction of edge details and to compensate
for the missing inter-channel interaction capability in the Mamba
model, we introduce the EDR and CA modules. The EDR module
consists of linear layers and depthwise separable convolution (DW-
Conv). By combining linear transformation with DWConv features,
the EDR module gains the ability to perform multi-scale feature
fusion, allowing the network to extract global information from local
features and process both global and local information simultane-
ously. This enhances the model’s capacity to understand complex
edge structures. Additionally, through adaptive weight initialization,
the model can capture finer details more effectively in the early stages of training, enabling efficient
edge detail reconstruction in a lightweight manner while enhancing image edge information.

On the other hand, the CA module compresses the spatial dimension of the feature map to 1× 1× 1
through an average pooling operation, which in turn maps the compressed features to the interval
(0, 1) through a convolutional layer with an activation function to form channel attention weights.
These weights are subsequently multiplied channel-by-channel with the original feature map to
implement the channel attention mechanism. In addition, the CA module utilizes the convolution
operation to further facilitate the fusion and exchange of information between channels, thereby
enhancing the interaction effect between channels.

3.3 Bottleneck and Decoder Layer.

Like transformer, Mamba encounters severe optimization and convergence challenges as network
depth increases [40]. In the bottleneck layer, multiple Residual-Mamba-Blocks are concatenated,
keeping the same number of feature channels and resolution. This maintains feature richness and
clarity, enhances the model’s spatial-temporal dependency capture, and improves MambaSCI’s
performance without significantly increasing computational burden.

Decoding layer decodes features and recover image resolution. It receives two inputs: Fe ∈
RĤ×Ŵ×Ĉ×T from the skip connection, which retains original spatial information, and Fd ∈
RĤ×Ŵ×Ĉ×T from the previous decoding layer, containing higher-level spatial-temporal information.
The decoding layer fuses features using element-wise addition to enhance expressiveness, applies
DWConv with residual concatenation, an activation function and an upsampling operation. This
process produces output features with richer semantics and higher spatial resolution.

3.4 Color Video Reconstruction Block.

The color video reconstruction block reconstructs the desired video Xout ∈ RH×W×3×T . Instead
of the computationally intensive remosaicing and demosaicing of raw quad-Bayer images, we use a
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Table 2: Comparisons between MambaSCI and SOTA methods on 6 simulation videos. PSNR (upper entry in
each cell), and SSIM (lower entry in each cell) are reported. The best and second-best results are highlighted in
bold and underlined, respectively.

Method Params (M) FLOPS (G) Beauty Bosphours Ruuner ShakeNDry Traffic Jockey Avg

GAP-TV [13] - -
33.38
0.965

29.53
0.904

29.61
0.872

29.70
0.884

19.64
0.625

29.32
0.885

28.53
0.856

PnP-FFDnet-gray [14] - -
32.47
0.958

27.45
0.883

28.66
0.864

26.93
0.832

20.56
0.686

31.07
0.9.6

27.86
0.855

PnP-FastDVD-gray [15] - -
34.29
0.967

33.07
0.947

34.18
0.928

30.11
0.883

23.74
0.811

32.70
0.921

31.35
0.909

EfficientSCI-S [16] 2.21 1434.18
19.47
0.402

26.88
0.642

34.26
0.906

24.13
0.639

25.98
0.761

30.41
0.788

26.86
0.690

EfficientSCI-B [16] 8.83 5701.50
36.40
0.980

24.52
0.497

36.34
0.919

34.73
0.955

26.63
0.774

35.52
0.945

32.35
0.845

STFormer-S [17] 1.23 769.23
23.15
0.679

23.75
0.435

34.36
0.885

24.78
0.659

26.17
0.771

30.13
0.785

27.06
0.703

STFormer-B [17] 19.49 12155.47
36.69
0.981

23.84
0.446

37.13
0.927

34.83
0.955

26.62
0.791

35.80
0.952

32.48
0.842

MambaSCI-T 1.61 165.47 33.45
0.965

35.07
0.963

35.03
0.926

31.81
0.912

25.31
0.843

32.09
0.909

32.13
0.919

MambaSCI-S 2.47 247.53
36.12
0.978

37.33
0.976

38.35
0.968

33.72
0.943

26.70
0.886

34.98
0.951

34.53
0.950

MambaSCI-B 6.11 556.89
36.95
0.979

38.62
0.982

40.02
0.977

34.55
0.950

27.52
0.904

36.54
0.960

35.70
0.959

three-layer convolution (kernel sizes 3×3×3, 3×3×3, and 1×1×1) to process the decoding layer’s
output and obtain the final RGB color video.

3.5 Network Variants and Computational Complexity

Table 3: Computational complexity of several SOTAs.

Method Computational Complexity

STFormer 6HWTC2 + 2GhGwHWTC +HWT 2C
EfficientSCI 1

2HWTK2C2 + 1
2HWTC2 + 1

2HWT 2C
MambaSCI 8HWTCN + 2HWTCN2

To balance size and performance, we pro-
pose three versions of the MambaSCI model:
MambaSCI-T (tiny), MambaSCI-S (small), and
MambaSCI-B (base). Tab. 1 shows the network
hyperparameters, model parameters, and com-
putational complexity (FLOPS). By varying the
number of channels from the initial DWConv, our method achieves significantly lower complexity
than EfficientSCI [16] and STFormer [17].

We also calculate the computational complexity of the attention module n MambaSCI compared to
other SOTA methods, as shown in Tab. 3, where C is the number of input features, K represents
the kernel size, Gh and Gw are the spatial size of local window in Swin-transformer [51], N is a
fixed parameter in Mamba set to 16. In MambaSCI, input features are unfolded into a sequence
S ∈ RHW×C×T . As seen in Tab. 3, while STFormer and EfficientSCI scale linearly with the spatial
size (HW ), their complexity grows quadratically with video frames T and C, which is typically
64 or larger, resulting in high computational costs. MambaSCI scales linearly with the entire video
sequence (HWT ) and C, which is capped at 64 in MambaSCI-B, enabling efficient reconstruction
of longer video sequences. Inference time comparisons are shown under various methods in Tab. 5.

4 Experiment

In this section, we evaluate MambaSCI against SOTA video reconstruction methods on multiple
simulation datasets using PSNR, SSIM metrics, and visual comparisons.

4.1 Experimental Setup

Following STFormer and EfficientSCI, we use DAVIS2017 [52] with resolution 480×894 (480p)
as the model training dataset. To verify model performance, we test our MambaSCI on several
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29.53 dB
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0.945
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Figure 5: Visual reconstruction results of different algorithms on middle-scale simulation color video dataset
(Bosphrous #10, Runner #11, Traffic #32 and Jockey #24 in order from top to bottom). PSNR/SSIM is
shown in the upper left corner of each picture.

simulated datasets, six benchmark mid-scale color datasets [15] (Beauty, Bosphorus, Jockey,
Runner, ShakeNDry and Traffic of size 512×512×3×32), and four benchmark large-scale color
datasets [15] (Messi, Hummingbird, Swinger and Football). Since there is currently no real color
video SCI dataset based on quad-Bayer pattern, our method is not tested on real datasets.

4.2 Implementation Details

We use PyTorch framework training on 4 NVIDIA RTX4090 GPUs and use random flipping, scaling,
and cropping on DAVIS2017 for data augmentation. We use randomly generated masks as training
input to enhance model robustness and optimize the model using the Adam [53] optimizer. Since
MambaSCI is flexible in input size, we first train for 100 epochs at a learning rate of 0.0005 on data
with a spatial size of 128×128. Then, we train for 50 epochs at learning rate of 0.0001, followed by
fine-tuning on 256×256 data at learning rate of 0.00001 for an additional 50 epochs.

4.3 Results on Middle-scale Simulation Color Video

To test the performance of our method for color video reconstruction, we perform experiments on a
32-frame simulation color RGB video dataset with size of 512 × 512 × 3 × 32. We compress the
color video with compression rate of B = 8 and capture quad-Bayer pattern measurements using a
camera with quad-Bayer CFA pattern.

Since all current color video SCI reconstruction algorithms are designed based on Bayer pattern,
which cannot be directly applied to quad-Bayer pattern. Meanwhile, re-training an E2E model
requires much training time and memory. Thus we only re-train two of the latest SOTA E2E
models (STFormer [17], EfficientSCI [16]) with quad-Bayer pattern. We compare with iterative
optimization algorithm (GAP-TV [13]), PnP algorithms (PnP-FFDnet [14] and PnP-FastDVD [15])
and E2E algorithms (STFormer [17] and EfficientSCI [16]). The number of parameters, FLOPS, and
reconstruction results are shown in Tab. 2.

Notably, there is no readily available quad-Bayer demosaicing package. Therefore, for model-based
and PnP algorithms, we first upsample the reconstructed raw quad-Bayer video X ∈ RH×W×1×T
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34.76 dB / 0.959

28.60 dB / 0.887

32.11 dB / 0.867

27.10 dB / 0.754
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36.31 dB / 0.976

29.78 dB / 0.920

30.73 dB / 0.815

PSNR / SSIM

PSNR / SSIM

PSNR / SSIM

Figure 6: Visual reconstruction results of different algorithms on large-scale simulated color video dataset
(Footbal #11, Swinger #1, and Hummingbird #40 from top to bottom). PSNR/SSIM is under each image.

according to the quad-Bayer CFA pattern to obtain a three-channel video X̂ ∈ RH×W×3×T . We
then demosaic it using the BJDD [54] algorithm to get the final RGB color video. See supplementary
materials for details. Visual comparisons of the reconstruction results are shown in Fig. 5.

We summarize our observations: (i) Our MambaSCI model significantly outperforms SOTA methods
with lower computational and memory resources. For instance, MambaSCI-B surpasses STFormer-B
by 3.22 dB, using only 31% (6.11 / 19.49) of the Params and 4.5% (556.89 / 12155.47) of the FLOPS.
It also outperforms EfficientSCI-B by 3.35 dB with just 69% Params and 9.8% FLOPS. Additionally,
both MambaSCI-S and MambaSCI-T achieve better results than STFormer-S and EfficientSCI-S
with fewer Params and FLOPS. Fig. 1(b) shows MambaSCI’s superior PSNR-FLOPS performance
with fewer resources. (ii) In visual comparisons, GAP-TV and PnP-based methods exhibit artifacts,
while STFormer and EfficientSCI suffer from color distortions likely because their reconstruction
modules being designed for Bayer pattern and not compatible with Quad-Bayer pattern. None of
these methods achieve high-quality reconstruction. MambaSCI, however, eliminates artifacts and
achieves high-quality reconstruction with accurate color fidelity.

Table 4: Performance analysis at B=16 and
32 cases.

B Methods Params (M) FLOPS (G) PSNR (dB) SSIM

16
PnP-FFDnet - - 24.85 0.767
STFormer 19.49 24311.76 25.21 0.685

EfficientSCI 8.83 11406.23 25.35 0.656
MambaSCI 6.11 1113.78 25.39 0.817

32

PnP-FFDnet - - 1.82 0.496
STFormer 19.49 OOM - -

EfficientSCI 8.83 22825.34 23.24 0.653
MambaSCI 6.11 2227.57 22.44 0.785

In addition, our proposed model demonstrates SOTA re-
construction performance even at higher frame rates and
compression ratios. We tested it on beauty data across
various compression ratios (B = 8, 16, 32), with results
detailed in the Tab. 4. Notably, our method requires only
9.8% of the FLOPS needed by EfficientSCI, while also
significantly outperforming it in the SSIM.

4.4 Results on Large-scale Simulation Color Video

Similar to previous studies, we conduct experiments on a large-scale color video dataset. Due to the
significant time and memory required to retrain existing E2E models for Bayer patterns, we only
compare with SOTA model-based methods (GAP-TV, PnP-FFDnet, PnP-FastDVDnet) and retrain
STFormer-S and EfficientSCI-S for the quad-Bayer pattern. Tab. 5 shows the comparisons on PSNR
and SSIM, and Fig. 6 provides visual comparisons.

We summarize the observations: (i) MambaSCI-S outperforms other methods in PSNR and SSIM
on football and swinger, achieving over 1.5 dB higher PSNR on football. (ii) In visual
comparisons, GAP-TV and PnP algorithms exhibit artifacts, while STFormer and EfficientSCI suffer
from color distortions. MambaSCI excels in reconstructing detailed information, resulting in superior
reconstruction quality. (iii) The poorer performance on Messi and Hummingbird may be due to
faster, more detailed motions that strained by limited parameters and FLOPS. However, the visual
results remain superior to other SOTA methods.
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Table 5: Comparisons between MambaSCI and SOTA methods on 4 large-scale simulation videos. PSNR
(upper), and SSIM (lower) are reported. The total time (minutes) taken to reconstruct 4 videos is under each
method. The best and second-best results are highlighted in bold and underlined.

Dataset Pixel resolution
GAP-TV
(17.03)

PnP-FFDNET
(17.97)

PnP-FastDVDnet
(50.03)

STFormer-S
(2.12)

EfficientSCI-S
(5.47)

MambaSCI-S
(4.98)

Messi 1080 × 1920 × 3 × 48
25.00
0.868

28.62
0.939

29.17
0.939

17.77
0.639

18.45
0.685

26.36
0.874

Hummingbird1080 × 1920 × 3 × 40
29.33
0.886

29.72
0.924

32.11
0.867

31.96
0.886

30.15
0.811

30.73
0.815

Swinger 1080 × 1920 × 3 × 20
24.92
0.833

26.72
0.883

28.60
0.887

20.10
0.556

20.90
0.589

29.78
0.920

Football 1080 × 1920 × 3 × 48
31.19
0.939

33.82
0.963

34.76
0.959

30.61
0.815

27.10
0.754

36.31
0.976

4.5 Ablation Study

We conduct ablation experiments to evaluate the effectiveness of each module in MambaSCI. Tab. 6
presents the results, comparing reconstruction quality, Params, and FLOPS across different models.
All experiments are performed on six color benchmark datasets.

STMamaba Block: We verify the impact of STMamba blocks on reconstruction qual-
ity. As indicated in Tab. 6, replacing vanilla Mamba with STMamba boosts PSNR by
6dB, while Params and FLOPS remain unchanged. STMamba’s linear scanning enables sat-
isfying spatial-temporal consistency without a notable increase in computational complexity.

Table 6: Ablation study on each major module.
Baseline STMamba EDR CA PSNR SSIM Params(M) FLOPS(G)

✓ 24.18 0.811 0.28 35.36
✓ ✓ 30.31 0.897 0.28 35.36
✓ ✓ ✓ 34.66 0.953 2.53 235.47
✓ ✓ ✓ ✓ 35.70 0.959 6.11 556.89

EDR Block: Tab. 6 demonstrates that
the EDR module can improve PSNR by
approximately 4.3dB, dramatically im-
proving the quality of the reconstruction.
However, it will result in the increase of
Params and FLOPS.

CA Block: CA block compensates
for the lack of channel information interaction in Mamba model, achieves the mod-
elling of channel importance and improves the reconstruction quality through channel
attention mechanism. Tab. 6 shows CA block can significantly improve reconstruc-
tion quality. However, the CA module’s multiple Conv3d operations result in a no-
table increase in parameters and FLOPS, which is an aspect to optimize in future work.

Table 7: Ablation study on Residual-Mamba-Block
Models PSNR (dB) SSIM Params (M) FLOPS (G)

w/o learnable scale 35.33 0.955 6.11 556.89
w/o residual connections 34.71 0.953 6.11 556.89

Residual-STMamba-Block 35.70 0.959 6.11 556.89

Number of Channels: Tab. 1 illustrates
that the only distinction among differ-
ent MambaSCI versions is the varying
number of channels. Through experi-
mentation, we observed that Params and
FLOPS are significantly influenced by
the number of channels, rather than the number of Residual-Mamba-Blocks. Moreover, an excess
of Residual-Mamba-Blocks prolongs both training and inference times, highlighting the need for a
trade-off in the current setup.

Residual Connection and Learnable Scales: The Residual-STMamba-Block is the core customised
module of our MambaSCI. Tab. 7 is experimentally demonstrated that the residual connections and
the learnable scales are effective in improving the reconstruction quality enhancement.

5 Conclusion
In this paper, we introduced quad-Bayer pattern into video SCI for the first time, enabling SCI to
align with the fact that most current videos are captured by mobile phones with quad-Bayer cameras,
thus avoiding artifacts and color distortions caused by existing algorithms. Specifically, we integrate
Mamba model with an asymmetric UNet in video SCI, leveraging Mamba’s linear complexity and the
speed improvements from the non-symmetric architecture for efficient SCI reconstruction. Moreover,
we customized Residual-Mamba-Blocks to connect STMamba, EDR, and CA modules through
residual connections, ensuring efficient spatial-temporal consistency and detailed reconstruction.
Experimental results on simulated color video datasets highlighted that MambaSCI outperformed
SOTA methods with fewer parameters, lower computational complexity and better visual effects.
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A Appendix

In the supplementary material, we provide more details that are not in out main paper:

(a) Mathematical model of color video CACTI in Sec. A.1.

(b) The pseudo-code of Residual-Mamba-Block in Sec. A.2.

(c) We apply demosaicing techniques to raw quad-Bayer images reconstructed by GAP-TV, PnP-
FFDNet, and PnP-FastDVDnet, converting them into RGB images for visual comparison. Meanwhile,
more visual comparison against the current state-of-art (SOTA) method both on middle-scale and
large-scale simulation color videos in Sec. A.3.

(d) Limitation of our work in Sec. A.4.

(e) Broader impacts in Sec. A.5

A.1 Mathematical model of color video CACTI

Coded aperture compressive temporal imaging (CACTI) is one of the famous video SCI systems.
Specifically, for color video SCI systems utilizing quad-Bayer arrays, the raw data is spatially
structured that each pixel captures only red (R), green (G), or blue (B), creating a format similar
to ‘RGGB’ where each color occupies adjacent 2×2 pixels in succession. Thus, the initial color
video X̄ ∈ RH×W×3×T is multiplied pixel by pixel with the filter and superimposed in the channel
dimension, ultimately producing the raw data X ∈ RH×W×T . Given the mask M ∈ RH×W×T , the
modulation is:

X
′
(:, :, t) = X(:, :, t)⊙M(:, :, t), (7)

where X
′

denotes the modulated video data and ⊙ represents element-wise multiplication. 2D
compressed measurement Y can be captured across time dimention, which can be expressed as:

Y =

T∑
t=1

X
′

t +N, (8)

where N ∈ RH×W means the measurement noise.

Vectorization. Given:

y = vec(Y) ∈ RHW , (9)

n = vec(N) ∈ RHW , (10)

x = [xT
1 , ...,x

T
T ]

T ∈ RHWT , (11)

Φ = [D1, ...,DT ] ∈ RHW×HWT , (12)

where vec(·) means vectorization operation, xt = vec(X(:, :, t)) represents the vectorization of t-th
frame of X and Dt = Diag(vec(M(:, :, t))) is a diagonal matrix and its diagonal elements is filled
by vec(M(:, :, t)). The vectorization forward process can be expressed as:

y = Φx+ n. (13)

And the reconstruction process is to investigate algorithms that can reconstruct x given y and Φ.

A.2 Pseudo-code of Residual-Mamba-Block

As mentioned in the paper. Residual-Mamba-Blocks can complete high quality reconstruction by
capturing spatial-temporal coherence while completing edge detail reconstruction and compensating
for channel information interactions not available in the Mamba model. In Algorithm 1, we show the
PyTorch style pseudo-code on how to construct a Residual-Mamba-Block.

A.3 Additional Visual Results

In this section, we will demonstrate how we employ certain techniques to apply existing demo-
saicing algorithms to the raw quad-Bayer images reconstructed by GAP-TV, PnP-FFDNet, and
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Algorithm 1 Pseudo-code of Residual-Mamba-Block

class RSTMamba():

def __init__(self, input_dim, output_dim, nframes, d_state = 16,
d_conv = 4, expand = 2, mlp_ratio = 4, act_layer = nn.GELU):

self.norm1 = LayerNorm(input_dim)
## STMamba
self.mamba = Mamba(

d_model = input_dim, ## Model dimension d_model
d_state = d_state, ## SSM state expansion factor
d_conv = d_conv, ## Local convolution width
expand = expand, ## Block expansion factor
nframes = nframes ## Number of frames of video
)

self.proj = Linear(input_dim, output_dim)
self.scale1 = nn.Parameter(torch.ones(1))
self.scale2 = nn.Parameter(torch.ones(1))
self.scale3 = nn.Parameter(torch.ones(1))
self.norm2 = LayerNorm(input_dim)
self.norm3 = LayerNorm(output_dim)
## Channel Attention
self.ca = CA(output_dim)
mlp_hidden_dim = imnt(input_dim * mlp_ratio)
## Edge Detail Reconstruction
self.edr = Mlp(input_dim, mlp_hidden_dim, drop)

def forward(self, x):
## x in shape [B, C, T, H, W]
B, C, nf, H, W = x.shape
n_tokens = x.shape[2:].numel()
img_dims = x.shape[2:]
x_flat = x.reshape(B, C, n_tokens).transpose(-1, -2)
## x_flat in shape [B, n_tokens, C]

## (1) STMamba and residual connection
x_mamba = x_flat * self.scale1 + sef.drop(self.mamba(self.norm1(x_flat)))
## (2) EDR and residual connection
x_mamba = x_mamba * self.scale2 +

self.drop(self.edr(self.norm2(x_mamba), nf, H, W))
x_mambna = self.proj(x_mamba)
out = out.permute(0,2,3,4,1)
## (3) CA and residual connection
out = out * self.skip_scale3 +
self.ca(self.norm3(out).permute(0,4,1,2,3)).permute(0,2,3,4,1)
out = out.permute(0,4,1,2,3)

return out

PnP-FastDVDnet. This process converts the raw format images into RGB color images, facilitating
visual comparison. We provide moving images in GIF format for the various methods in Tab. 2.
Please refer to the folder ‘gif’ for further observation.

Demosaicing Process. As mentioned in the paper, previous model-based and PnP reconstruction
algorithms need to be paired with corresponding demosaicing algorithm to get RGB color videos.
However there are no available packages to use for quad-Bayer demosaicing, so the problem of how
to present the reconstructed color images is also addressed. As shown in Fig. 7(a), it’s a video frame
in raw format obtained after reconstruction, we use Algorithm. 2 to transform it into the form of
Fig. 7(b) and then use the off-the-shelf demosaicing algorithm to get the final color video frame
shown in Fig. 7(c).
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Algorithm 2 Code of Transformation

def mask_CFA_quad(shape: int) -> Tuple[NDArray, ...]:
channels = {channel: np.zeros(shape, dtype="bool") for channel in range(3)}

## Quad R (red)
channels[0][::4,::4] = 1
channels[0][1::4,1::4] = 1
channels[0][::4,1::4]=1
channels[0][1::4,::4] =1

## Quad G1 (grenn)
channels[1][::4,2::4] =1
channels[1][::4,3::4] =1
channels[1][1::4,2::4] =1
channels[1][1::4,3::4] =1

## Quad G2 (grenn)
channels[1][2::4,::4] =1
channels[1][2::4,1::4] =1
channels[1][3::4,::4] =1
channels[1][3::4,1::4] =1

## Quad B (blue)
channels[2][2::4,2::4] = 1
channels[2][3::4,2::4] = 1
channels[2][2::4,3::4] = 1
channels[2][3::4,3::4] = 1

return tuple(channels.values())

def CFA_quad (CFA):
CFA = as_float_array(CFA)
R_m, G_m, B_m = masks_CFA_Bayer(CFA.shape)
## obtain red channel
R = CFA * R_m
## obtain green channel
G = CFA * G_m
## obtain blue channel
B = CFA * B_m
RGB = tstack([B, G, R])
return RGB

(a) Reconstruction raw data (b) Quad-Bayer pattern data (c) Demosaicing RGB color data

Figure 7: Process of reconstruction from Raw to color RGB image.

Visual comparison. We conduct additional comparative experiments with current with current SOTA
methods and provide more visual comparison. As shown in Fig. 8, Fig. 9 and Fig. 10, our proposed
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Ground Truth

STFormer-B EfficientSCI-B MambaSCI-S MambaSCI-B

GAP-TV PnP-FFDNet PnP-FastDVDnet

Figure 8: Visual reconstruction results of different algorithms on middle-scale simulation color video Traffic
#16.

Ground Truth

STFormer-B EfficientSCI-B MambaSCI-S MambaSCI-B

GAP-TV PnP-FFDNet PnP-FastDVDnet

Figure 9: Visual reconstruction results of different algorithms on middle-scale simulation color video Runner
#7.

MambaSCI method achieves superior color fidelity and detailed reconstruction on middle-scale
benchmark simulation color video dataset, offering a significant visual advantage over previous
methods. Meanwhile, as shown in Fig. 11, even though our proposed MambaSCI method may not
surpass PnP-FastDVDFnet in terms of PSNR and SSIM metrics, it achieve superior reconstruction
visual quality. In comparison to the artifacts introduced by GAP-TV and PnP-FastDVDFnet as well
as the color distortions in STFormer-S and EfficientSCI-S, MambaSCI demonstrate significantly
better visual results. As shown in Fig. 12 and Fig. 13, our proposed method achieve pleasant visual
results.
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Ground Truth

STFormer-B EfficientSCI-B MambaSCI-S MambaSCI-B

GAP-TV PnP-FFDNet PnP-FastDVDnet

Figure 10: Visual reconstruction results of different algorithms on middle-scale simulation color video
Bosphrous #16.

Ground Truth PnP-FastDVDnet

EfficientSCI-S MambaSCI-S

GAP-TV

STFormer-S

Figure 11: Visual reconstruction results of different algorithms on large-scale simulation color video Messi #8.

A.4 Limitation.

The limitations of our approach are in two respects:

(i) One limitation is the trade-off between computational complexity and performance. As shown
in Table 6, to achieve better performance, we incorporate EDR and CA modules. However, the use
of Conv3d in the CA module significantly increases the number of parameters and computational
complexity.

(ii) The second limitation is that measurements based on quad-Bayer in real datasets are currently
unavailable, making it impossible to evaluate the performance of our proposed model in real-world
scenarios.

Given these limitations, we aim to investigate ways to simplify the internal modules while maintaining
performance, thereby reducing computational complexity and accelerating inference speed. Addi-
tionally, we will focus on collecting quad-Bayer-based SCI measurements in real-world scenarios to
verify the reliability of our method under real scene conditions.
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Ground Truth PnP-FastDVDnet

EfficientSCI-S MambaSCI-S

GAP-TV

STFormer-S

Figure 12: Visual reconstruction results of different algorithms on large-scale simulation color video Swinger
#30.

Ground Truth PnP-FastDVDnet

EfficientSCI-S MambaSCI-S

GAP-TV

STFormer-S

Figure 13: Visual reconstruction results of different algorithms on large-scale simulation color video Football
#38.

A.5 Broader Impacts

Video reconstruction is a fundamental task in snapshot compressive imaging (SCI), an area with a
research history spanning several decades. As artificial intelligence continues to evolve, the handling
of high-quality, high-dimensional data has emerged as a significant challenge for large-scale deep
learning models. Video SCI systems, which utilize low-speed cameras to capture high-speed video,
present several advantages including low memory requirements, low transmission bandwidth, low
cost, and low power consumption [17, 55]. Our proposed MambaSCI algorithm enables more efficient
high-quality reconstruction of videos captured with quad-Bayer pattern, significantly broadening the
application scenarios of video SCI.

To date, video reconstruction techniques have not demonstrated any negative social impact. Similarly,
our proposed MambaSCI algorithm does not present any foreseeable negative societal consequences.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We reflect the contribution and scope of the paper in detail in the Abstract and
Introduction sections.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitation of our work in Sec. A.4.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [No]
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Justification: We conduct experiments based on existing SCI theory and do not give a
complete mathematical proof.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We provide the detailed process of the network, and detailed parameter settings
for the training part for reproduction in Sec. 3.

Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We give the pytorch type pseudo-code of the core module in the supplementary
material Sec. A.2, and provide the corresponding gif format dynamic image. The code will
be publicly available soon.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We describe all the training and testing details needed to understand the results
in Sec. 4.2.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: The train/test split, initialisation in our approach does not affect the overall run
for a given experimental condition, while certain parameters are not randomly plotted.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the experimental platform GPU devices and memory, the number
of model parameters, the amount of computation and the corresponding inference time in
the paper Sec. 3.5.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the thesis complies in all respects with the NeurIPS
Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Broader impacts are in Sec. A.5.

Guidelines:

23

https://neurips.cc/public/EthicsGuidelines


• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our papers pose no such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The creators or original owners of assets used in the paper are properly credited,
and the licences and terms of use are are are clearly mentioned and properly respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: Our paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: Our paper does not deal with crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: Our paper does not deal with crowdsourcing or research with human subjects.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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