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Abstract

In this paper, we investigate a general class of stochastic gradient descent (SGD) algorithms,
called conditioned SGD, based on a preconditioning of the gradient direction. Using a
discrete-time approach with martingale tools, we establish under mild assumptions the weak
convergence of the rescaled sequence of iterates for a broad class of conditioning matrices
including stochastic first-order and second-order methods. Almost sure convergence results,
which may be of independent interest, are also presented. Interestingly, the asymptotic
normality result consists in a stochastic equicontinuity property so when the conditioning
matrix is an estimate of the inverse Hessian, the algorithm is asymptotically optimal.

1 Introduction

Consider some unconstrained optimization problem of the following form:

min
θ∈Rd
{F (θ) = Eξ[f(θ, ξ)]},

where f is a loss function and ξ is a random variable. This key methodological problem, known under the
name of stochastic programming (Shapiro et al., 2014), includes many flagship machine learning applications
such as empirical risk minimization (Bottou et al., 2018), adaptive importance sampling (Delyon & Portier,
2018) and reinforcement learning (Sutton & Barto, 2018). When F is differentiable, a common appproach
is to rely on first-order methods. However, in many scenarios and particularly in large-scale learning,
the gradient of F may be hard to evaluate or even intractable. Instead, a random unbiased estimate of
the gradient is available at a cheap computing cost and the state-of-the-art algorithm, stochastic gradient
descent (SGD), just moves along this estimate at each iteration. It is an iterative algorithm, simple and
computationally fast, but its convergence towards the optimum is generally slow.
Conditioned SGD, which consists in multiplying the gradient estimate by some conditioning matrix at each
iteration, can lead to better performance as shown in several recent studies ranging from natural gradient
(Amari, 1998; Kakade, 2002) and stochastic second-order methods with quasi-Newton (Byrd et al., 2016)
and (L)-BFGS methods (Liu & Nocedal, 1989) to diagonal scaling methods such as AdaGrad (Duchi et al.,
2011), RMSProp (Tieleman et al., 2012), Adam (Kingma & Ba, 2014), AMSGrad (Reddi et al., 2018) and
adaptive coordinate sampling (Wangni et al., 2018; Leluc & Portier, 2022). These conditioning techniques
are based on different strategies: diagonal scaling rely on feature normalization, stochastic second-order
methods are concerned with minimal variance and adaptive coordinate sampling techniques aim at taking
advantage of particular data structure. Furthermore, these methods proved to be the current state-of-the-art
for training machine learning models (Zhang, 2004; LeCun et al., 2012) and are implemented in widely used
programming tools (Pedregosa et al., 2011; Abadi et al., 2016).
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Conditioned SGD generalizes standard SGD by adding a conditioning step to refine the descent direction.
Starting from θ0 ∈ Rd, the algorithm of interest is defined by the following iteration

θk+1 = θk − γk+1Ckg(θk, ξk+1), k ≥ 0,

where g(θk, ξk+1) is some unbiased gradient valued in Rd, Ck ∈ Rd×d is called conditioning matrix and
(γk)k≥1 is a decreasing learning rate sequence. An important question, which is still open to the best of
our knowledge, is to characterize the asymptotic variance of such algorithms for non-convex objective F and
general estimation procedure for the conditioning matrix Ck.

Related work. Seminal works around standard SGD (Ck = Id) were initiated by Robbins & Monro (1951)
and Kiefer et al. (1952). Since then, a large literature known as stochastic approximation, has developed. The
almost sure convergence is studied in Robbins & Siegmund (1971) and Bertsekas & Tsitsiklis (2000); rates of
convergence are investigated in Kushner & Huang (1979) and Pelletier (1998a); non-asymptotic bounds are
given in Moulines & Bach (2011). The asymptotic normality can be obtained using two different approaches:
a diffusion-based method is employed in Pelletier (1998b) and Benaïm (1999) whereas martingale tools are
used in Sacks (1958) and Kushner & Clark (1978). We refer to Nevelson & Khas’minskĭı (1976); Delyon
(1996); Benveniste et al. (2012); Duflo (2013) for general textbooks on stochastic approximation.

The aforementioned results do not apply directly to conditioned SGD because of the presence of the matrix
sequence (Ck)k≥0 involving an additional source of randomness in the algorithm. Seminal papers dealing
with the weak convergence of conditioned SGD are Venter (1967) and Fabian (1968). Within a restrictive
framework (univariate case d = 1 and strong assumptions on the function F ), their results are encouraging
because the limiting variance of the procedure is shown to be smaller than the limiting variance of standard
SGD. Venter’s and Fabian’s results have then been extended to more general situations (Fabian, 1973;
Nevelson & Khas’minskĭı, 1976; Wei, 1987). In Wei (1987), the framework is still restrictive not only because
the random errors are assumed to be independent and identically distributed but also because the objective
F must satisfy their assumption (4.10) which hardly extends to objectives other than quadratic.

More recently, Bercu et al. (2020) have obtained the asymptotic normality as well as the efficiency of certain
conditioned SGD estimates in the particular case of logistic regression. The previous approach has been
generalized not long ago in Boyer & Godichon-Baggioni (2022) where the use of the Woodbury matrix identity
is promoted to compute the Hessian inverse in the online setting. Several theoretical results, including
the weak convergence of conditioned SGD, are obtained for convex objective functions. An alternative
to conditioning, called averaging, developed by Polyak (1990) and Polyak & Juditsky (1992), allows to
recover the same asymptotic variance as conditioned SGD. When dealing with convex objectives, the theory
behind this averaging technique is a well-studied topic (Moulines & Bach, 2011; Gadat & Panloup, 2017;
Dieuleveut et al., 2020; Zhu et al., 2021). However, it is inevitably associated with a large bias caused by
poor initialization and requires some parameter tuning through the burn-in phase.

Contributions. The main result of this paper deals with the weak convergence of the rescaled sequence
of iterates. Interestingly, our asymptotic normality result consists of the following continuity property:
whenever the matrix sequence (Ck)k≥0 converges to a matrix C and the iterates (θk)k≥0 converges to a
minimizer θ?, the algorithm behaves in the same way as an oracle version in which C would be used
instead of Ck. We stress that contrary to Boyer & Godichon-Baggioni (2022), no convexity assumption is
needed on the objective function and no rate of convergence is required on the sequence (Ck)k≥0. This is
important because, in most studies, deriving a convergence rate on (Ck)k≥0 requires a specific convergence
rate on the iterates (θk)k≥0 which, in general, is unknown at this stage of the analysis. From a more
practical point of view, our main result claims that the impact of the approximation error resulting from
the conditioning matrices estimation assumes a secondary role. This finding promotes the use of simple
and cheap sequential algorithm to estimate the conditioning matrix which encompasses a broad spectrum of
conditioned SGD methods, highlighting the applicability and generalizability of the obtained result. Another
result of independent interest dealing with the almost sure convergence of the gradients is also provided.

In addition, for illustration purposes, we apply our results to the popular variational inference problem where
one seeks to approximate a target density out of a parametric family by solving an optimization problem.
In this framework, by optimizing the forward Kullback-Liebler divergence (Jerfel et al., 2021) and building
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stochastic gradients relying on importance sampling schemes (Delyon & Portier, 2018), we show that the
approach has some efficiency properties. For the sake of completeness, we present in appendix practical
ways to compute the conditioning matrix Ck and show that the resulting procedure satisfies the high-level
conditions of our main Theorem. This yields a feasible algorithm achieving minimum variance.

To obtain these results, instead of approximating the rescaled sequence of iterates by a continuous diffusion
(as for instance in Pelletier (1998b)), we rely on a discrete-time approach where the recursion scheme is
directly analyzed (as for instance in Delyon (1996)). More precisely, the sequence of iterates is studied with
the help of an auxiliary linear algorithm whose limiting distribution can be deduced from the central limit
theorem for martingale increments (Hall & Heyde, 1980). The limiting variance is derived from a discrete
time matrix-valued dynamical system algorithm. It corresponds to the solution of a Lyapunov equation
involving the matrix C. It allows a special choice for C which guarantees an optimal variance. Finally, a
particular recursion is identified to examine the remaining part. By studying it on a particular event, this
part is shown to be negligible.

Outline. Section 2 introduces the framework of standard SGD with asymptotic results. Section 3 is
dedicated to conditioned SGD: it first presents popular optimization methods that fall in the considered
framework and then presents our main results, namely the weak convergence and asymptotic optimality.
Section 4 gathers practical implications of the main results for machine learning models in the framework
of variational inference and Section 5 concludes the paper with a discussion of avenues for further research.
Technical proofs, additional propositions and numerical experiments are available in the appendix.

2 Mathematical background

In this section, the mathematical background of stochastic gradient descent (SGD) methods is presented and
illustrated with the help of some examples. Then, to motivate the use of conditioning matrices, we present
a known result from Pelletier (1998b) about the weak convergence of SGD.

2.1 Problem setup

Consider the problem of finding a minimizer θ? ∈ Rd of a function F : Rd → R, that is,

θ? ∈ arg min
θ∈Rd

F (θ).

In many scenarios and particularly in large scale learning, the gradient of F cannot be fully computed
and only a stochastic unbiased version of it is available. The SGD algorithm moves the iterate along this
direction. To increase the efficiency, the random generators used to derive the unbiased gradients might
evolve during the algorithm, e.g., using the past iterations. To analyse such algorithms, we consider the
following probabilistic setting.
Definition 1. A stochastic algorithm is a sequence (θk)k≥0 of random variables defined on a probability
space (Ω,F ,P) and valued in Rd. Define (Fk)k≥0 as the natural σ-field associated to the stochastic algorithm
(θk)k≥0, i.e., Fk = σ(θ0, θ1, . . . , θk), k ≥ 0. A policy is a sequence of random probability measures (Pk)k≥0,
each defined on a measurable space (S,S) that are adapted to Fk.

Given a policy (Pk)k≥0 and a learning rates sequence (γk)k≥1 of positive numbers, the SGD algorithm
(Robbins & Monro, 1951) is defined by the update rule

θk+1 = θk − γk+1g(θk, ξk+1) with ξk+1 ∼ Pk, (1)

where g : Rd×S → Rd is called the gradient generator. The choice of the policy (Pk)k≥0 in SGD is important
as it can impact the convergence speed, generalization performance, and efficiency of the optimization algo-
rithm. While most classical approaches rely on uniform sampling and mini-batch sampling, it may be more
efficient to use advanced selection sampling strategy such as stratified sampling or importance sampling (see
Example 1 for details). The policy (Pk)k≥0 is used at each iteration to produce random gradients through
the function g. Those gradients are assumed to be unbiased.

3



Published in Transactions on Machine Learning Research (08/2023)

Assumption 1 (Unbiased gradient). The gradient generator g : Rd × S → Rd is such that for all θ ∈ Rd,
g(θ, ·) is measurable, and we have: ∀k ≥ 0, E [g(θk, ξk+1)|Fk] = ∇F (θk).

We emphasize three important examples covered by the developed approach. In each case, explicit ways to
generate the stochastic gradient are provided.

Example 1. (Empirical Risk Minimization) Given some observed data z1, . . . , zn ∈ Rp and a differentiable
loss function ` : Rd×Rp → R, the objective function F approximates the true expected risk Ez[`(θ, z)] using
its empirical counterpart F (θ) = n−1∑n

i=1 `(θ, zi). Classically, the gradient estimates at θk are given by the
policy

g(θk, ξk+1) = ∇θ`(θk, ξk+1) with ξk+1 ∼
n∑
i=1

δzi/n.

Another one, more subtle, referred to as mini-batching (Gower et al., 2019), consists in generating uniformly
a set of nk samples (z1, . . . , znk) and computing the gradient as the average n−1

k

∑nk
j=1∇θ`(θk, zj). Note that

interestingly, we allow changes of the minibatch size throughout the algorithm. Our framework also includes
adaptive non-uniform sampling (Papa et al., 2015) and survey sampling (Clémençon et al., 2019), which use
Pk =

∑n
i=1 w

(k)
i δzi with Fk-adapted weights satisfying

∑n
i=1 w

(k)
i = 1 for each k ≥ 0.

Example 2. (Adaptive importance sampling for variational inference) Given a target density function f ,
which for instance might result from the posterior distribution of some observed data, and a parametric
family of samplers {qθ : θ ∈ Θ}, the aim is to find a good approximation of f out of the family of samplers.
A standard choice (Jerfel et al., 2021) for the objective function is the so called forward Kullback-Leibler
divergence given by F (θ) = −

∫
log(qθ(y)/f(y))f(y)dy. Then in the spirit of adaptive importance sampling

schemes (Delyon & Portier, 2018), gradient estimates are given by

g(θk, ξk+1) = −∇θ log(qθk(ξk+1)) f(ξk+1)
qθk(ξk+1) , ξk+1 ∼ qθk .

Other losses such as α-divergence (Daudel et al., 2021) or generalized method of moment (Delyon & Portier,
2018) may also be considered depending on the problem of interest. Some applications of conditioned SGD
algorithm to this particular framework are considered with more details in Section 4.

Example 3. (Policy-gradient methods) In reinforcement learning (Sutton & Barto, 2018), the goal of the
agent is to find the best action-selection policy to maximize the expected reward. Policy-gradient methods
(Baxter & Bartlett, 2001; Williams, 1992) use a parameterized policy {πθ : θ ∈ Θ} to optimize an expected
reward function F given by F (θ) = Eξ∼πθ [R(ξ)] where ξ is a trajectory including nature states and selected
actions. Using the policy gradient theorem, one has ∇F (θ) = Eξ∼πθ [R(ξ)∇θ log πθ(ξ)], leading to the
REINFORCE algorithm (Williams, 1992) given by

g(θk, ξk+1) = R(ξk+1)∇θ log πθk(ξk+1), ξk+1 ∼ πθk .

2.2 Weak convergence of SGD

This section is related to the weak convergence property of the normalized sequence of iterates (θk−θ?)/
√
γk.

The working assumptions include the almost sure convergence of the sequence of iterates (θk)k≥0 towards
a stationary point θ?. Note that, given Assumptions 1 and 2, there exist many criteria on the objective
function that give such almost sure convergence. For these results, we refer to Bertsekas & Tsitsiklis (2000);
Benveniste et al. (2012); Duflo (2013). In addition to this high-level assumption of almost sure convergence,
we require the following classical assumptions. Let S++

d (R) denote the space of real symmetric positive
definite matrices and define for all k ≥ 0,

wk+1 = ∇F (θk)− g(θk, ξk+1), Γk = E
[
wk+1w

>
k+1|Fk

]
.

The learning rates sequence (γk)k≥1 should decay to eventually anneal the noise but not too fast so that the
iterates (θk)k≥0 can reach interesting places in a finite time.
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Assumption 2 (Learning rates). The sequence of step-size is γk = αk−β with β ∈ (1/2, 1].

This classical form of the step-size ensures theoretical convergence guarantee through the Robbins-Monro
condition:

∑
k γk = ∞,

∑
k γ

2
k < ∞. However, note that in practice, the choice of learning rate is often

determined through experimentation and fine-tuning to achieve the best performance on the given task.
Assumption 3 (Hessian). The Hessian matrix at stationary point is positive definite, i.e., H = ∇2F (θ?) ∈
S++
d (R) and the mapping θ 7→ ∇2F (θ) is continuous at θ?.

The positive definiteness of the Hessian matrix provides stability and robustness guarantees in the optimiza-
tion process. It ensures that small perturbations or noise in the objective function or the training data do
not significantly affect the convergence behavior. The positive curvature helps in confining the optimization
trajectory near the minimum and prevents it from getting trapped in flat regions or saddle points.

The noise sequence (wk)k≥1 defines a sequence of conditional covariance matrices (Γk)k≥1 that is assumed
to converge so that one can identify the limiting covariance Γ = E[g(θ?, ξ)g(θ?, ξ)>].

Assumption 4 (Covariance matrix). There exists Γ ∈ S++
d (R) such that Γk

k→+∞−→ Γ a.s.

Finally, in order to derive a central limit theorem for the iterates of the algorithm, there is an extra need for
stability which is synonymous with a uniform bound on the noise around the minimizer.
Assumption 5 (Lyapunov bound). There exist δ, ε > 0 such that:

sup
k≥0

E[‖wk+1‖2+δ
2 |Fk]1{‖θk−θ?‖≤ε} <∞ a.s.

Note that all these assumptions are stated in the spirit of Pelletier (1998b) making them mild and general.
In particular, Assumptions 4 and 5 are similar to (A1.2) in Pelletier (1998b). More precisely, Assumption
4 is needed to identify the limiting distribution while Assumption 5 is a stability condition often referred
to as the Lyapunov condition. This last condition is technical but not that strong as it is similar to the
Lindeberg’s condition which is necessary (Hall & Heyde, 1980) for tightness. The following result can be
either derived from (Pelletier, 1998b, Theorem 1) or as a direct corollary of our main result, Theorem 2,
given in Section 3.2.
Theorem 1 (Weak convergence of SGD). Let (θk)k≥0 be obtained by the SGD rule (1). Suppose that
Assumptions 1, 2, 3, 4, 5 are fulfilled and that θk → θ? almost surely. If moreover, (H − ζI) is positive
definite with ζ = 1{β=1}/2α, it holds that

1
√
γk

(θk − θ?) N (0,Σ), as k →∞

where Σ satisfies the Lyapunov equation: (H − ζId)Σ + Σ(H − ζId)> = Γ.

Several remarks are to be explored. Since Γ and (H − ζI) are positive definite matrices, there exists a
unique solution Σ to the Lyapunov equation (H − ζId)Σ + Σ(H − ζId)> = Γ given by Σ =

∫ +∞
0 exp[−t(H −

ζId)]Γ exp[−t(H − ζId)>]dt. Second, the previous result can be expressed as kβ/2(θk − θ?)  N (0, αΣ).
Hence, the fastest rate of convergence is obtained when β = 1 for which we recover the classical 1/

√
k-rate

of a Monte Carlo estimate. In this case, the coefficient α should be chosen large enough to ensure the
convergence through the condition H − Id/(2α) � 0, but also such that the covariance matrix αΣ is small.
The choice of α is discussed in the next section and should be replaced with a matrix gain.

3 The asymptotics of conditioned stochastic gradient descent

This Section first presents practical optimization schemes that fall in the framework of conditioned SGD.
Then it contains our main results, namely the weak convergence and asymptotic optimality. Another result
of independent interest dealing with the almost sure convergence of the gradients and the iterates is also
provided.
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3.1 Framework and Examples

We introduce the general framework of conditioned SGD as an extension of the standard SGD presented in
Section 2. It is defined by the following update rule, for k ≥ 0,

θk+1 = θk − γk+1Ckg(θk, ξk+1), (2)

where the conditioning matrix Ck ∈ S++
d (R) is a Fk-measurable real symmetric positive definite matrix so

that the search direction always points to a descent direction. In convex optimization, inverse of the Hessian
is a popular choice but (1) it may be hard to compute, (2) it is not always positive definite and (3) it may
increase the noise of SGD especially when the Hessian is ill-conditioned.

Quasi-Newton. These methods build approximations of the Hessian Ck ≈ ∇2F (θk)−1 with gradient-only
information, and are applicable for convex and nonconvex problems. For scalability issue, variants with
limited memory are the most used in practice (Liu & Nocedal, 1989). Following Newton’s method idea
with the secant equation, the update rule is based on pairs (sk, yk) tracking the differences of iterates and
stochastic gradients, i.e., sk = θk+1 − θk and yk = g(θk+1, ξk+1) − g(θk, ξk+1). Let ρk = 1/(s>k yk) then the
Hessian updates are

Ck+1 = (I − ρkyks>k )>Ck(I − ρkyks>k ) + ρksks
>
k .

In the deterministic setting, the BFGS update formula above is well-defined as long as s>k yk > 0. Such con-
dition preserves positive definite approximations and may be obtained in the stochastic setting by replacing
the Hessian matrix with a Gauss-Newton approximation and using regularization.

Adaptive methods and Diagonal scalings. These methods adapt locally to the structure of the opti-
mization problem by setting Ck as a function of past stochastic gradients. General adaptive methods differ
in the construction of the conditioning matrix and whether or not they add a momentum term. Using
different representations such as dense or sparse conditioners also modify the properties of the underlying
algorithm. For instance, the optimizers Adam and RMSProp maintain an exponential moving average of
past stochastic gradients with a factor τ ∈ (0, 1) but fail to guarantee Ck+1 � Ck. Such behaviour can lead
to large fluctuations and prevent convergence of the iterates. Instead, AdaGrad and AMSGrad ensure the
monotonicity Ck+1 � Ck.

Optimizer Gradient matrix Gk+1 m
AdaFull Gk + gkg

>
k 0

AdaNorm Gk + ‖gk‖22 0
AdaDiag Gk + diag(gkg>k ) 0
RMSProp τGk + (1− τ)diag(gkg>k ) 0
Adam [τGk + (1− τ)diag(gkg>k )]/(1− τk) m

AMSGrad [τGk + (1− τ)diag(gkg>k )]/(1− τk) m

Table 1: Adaptive Gradient Methods.

Denote by gk = g(θk, ξk+1) and m ∈ [0, 1) a momentum parameter. General adaptive gradient methods are
defined by: θk+1 = θk− γk+1Ckĝk, ĝk = mĝk−1 + (1−m)gk. Different optimizers are summarized in Table
1 above. They all rely on a gradient matrix Gk which accumulates the information of stochastic gradients.
The conditioning matrix is equal to Ck = G

−1/2
k except for AMSGrad which uses Ck = max{Ck−1;G−1/2

k }.
Starting from G0 = δI with δ > 0, Gk+1 is updated either in a dense or sparse (diagonal) manner or using
an exponential moving average. Note that conditioned SGD methods also include schemes with general
estimation of the matrix Ck such as Hessian sketching (Gower et al., 2016) or Jacobian sketching (Gower
et al., 2021).

A common assumption made in the literature of adaptive methods is that conditioning matrices are well-
behaved in the sense that their eigenvalues are bounded in a fixed interval. This property is easy to check
for diagonal matrices and can always be implemented in practice using projection.
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3.2 Main result

Similarly to standard SGD, it is interesting to search for an appropriate rescaled process to obtain some
convergence rate and asymptotic normality results. In fact the only additional assumption needed, compared
to SGD, is the almost sure convergence of the sequence (Ck)k≥0. This makes Theorem 1 a particular case
of the following Theorem which is the main result of the paper (the proof is given in Appendix A.1).
Theorem 2 (Weak convergence of Conditioned SGD). Let (θk)k≥0 be obtained by conditioned SGD (2).
Suppose that Assumptions 1, 2, 3, 4, 5 are fulfilled and that θk → θ? almost surely. If moreover, Ck → C ∈
S++
d (R) almost surely and all the eigenvalues of (CH − ζI) are positive with ζ = 1{β=1}/2α, it holds that

1
√
γk

(θk − θ?) N (0,ΣC), as k →∞,

where ΣC satisfies: (CH − ζId) ΣC + ΣC (CH − ζId)> = CΓC>.

Sketch of the proof. The idea of the proof is to rely on the following bias-variance decomposition. Remark
that the difference ∆k = θk − θ? is subjected to the iteration:

∆k+1 = ∆k − γk+1Ck∇F (θk) + γk+1Ckwk+1, k ≥ 0.

In a similar spirit as in Delyon (1996), we use the Taylor approximation ∇F (θk) = ∇F (θ?) +H(θk − θ?) +
o(θk − θ?) ' H(θk − θ?) to define the following auxiliary linear stochastic algorithm which carries the same
variance as the main algorithm,

∆̃k+1 = ∆̃k − γk+1K∆̃k + γk+1Ckwk+1, k ≥ 1,

where K = CH. As a first step we establish the weak convergence of ∆̃k+1 using discrete martingale tools.
Note that the analysis is made possible because the matrix K is fixed along this algorithm. As a second
step, we prove that the difference (∆k − ∆̃k), which represents some bias term, is negligible.

Comparison with previous works. Theorem 2 stated above is comparable to Theorem 1 given in Pelletier
(1998b). However, our result on the weak convergence cannot be recovered from the one of Pelletier (1998b)
due to their Assumption (A1.2) about convergence rates. Indeed, this assumption would require that the
sequence (Ck)k≥0 converges towards C faster than √γk. This condition is either hardly meet in practice or
difficult to check. Unlike this prior work, our result only requires the almost sure convergence of the sequence
(Ck)k≥0. In a more restrictive setting of convex objective and online learning framework, i.e. in which data
becomes available in a sequential order, another way to obtain the weak convergence of the rescaled sequence
of iterates (θk−θ?)/

√
γk is to rely on the results of Boyer & Godichon-Baggioni (2022). However, once again,

their work rely on a particular convergence rate for the matrix sequence (Ck)k≥0. This implies the derivation
of an additional result on the almost sure convergence rate of the iterates. To overcome all these issues, we
show in Appendix B that our conditions on the matrices Ck are easily satisfied in common situations.

3.3 Asymptotic optimality of Conditioned SGD

The best conditioning matrix C that could be chosen regarding the asymptotic variance is specified in the
next proposition whose proof is given in the supplementary material (Appendix C.3).
Proposition 1 (Optimal choice). The choice C? = H−1 is optimal in the sense that ΣC∗ � ΣC for all
C ∈ CH . Moreover, we have ΣC? = H−1ΓH−1.

Another remarkable result, which directly follows from the Theorem 2 is now stated as a corollary.
Corollary 1 (Asymptotic optimality). Under the assumptions of Theorem 2, if γk = 1/k and C = H−1,
then √

k(θk − θ?) N (0, H−1ΓH−1), as k →∞.
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Moreover, let (Z1, . . . , Zd) ∼ N (0, Id) and (λk)k=1,...,d be the eigenvalues of the matrix H−1/2ΓH−1/2, we
have the convergence in distribution:

k(F (θk)− F (θ?)) 
d∑
k=1

λkZ
2
k , as k →∞.

This result shows the success of the proposed approach as the asymptotic variance is the optimal one. It
provides the user a practical choice for the sequence of rate, γk = 1/k and also removes the assumption that
2αH � Id which is usually needed in SGD (see Theorem 1). Concerning the almost sure convergence of the
conditioning matrices, we provide in Appendix B an explicit way to ensure that Ck → H−1.

The above statement also provides insights about the convergence speed. It claims that the convergence rate
of F (θk) towards the optimum F (θ?), in 1/k, is faster than the convergence rate of the iterates, in 1/

√
k.

Another important feature, which is a consequence of Proposition 1, is that the eigenvalues (λk)k=1,...,d that
appear in the limiting distribution are the smallest ones among all the other possible version of conditioned
SGD (defined by the matrix C).

3.4 Convergence of the iterates (θk) of Conditioned SGD

To apply both Theorem 2 and Corollary 1, it remains to check the almost sure convergence of the iterates.
In a non-convex setting, the iterates of stochastic first-order methods can only reach local optima, i.e. the
iterates are expected to converge to the following set S = {θ ∈ Rd : ∇F (θ) = 0}. Going in this direction, we
first prove the almost sure convergence of the gradients towards zero for general conditioned SGD methods
under mild assumptions. This theoretical result may be of independent interest. Under a condition on S,
one may uniquely identify a limit point θ? and consider the event {θk → θ?} which is needed for the weak
convergence results. The next analysis is based on classical assumptions which are used in the literature to
obtain the convergence of standard SGD.
Assumption 6 (L-smooth). ∃L > 0 : ∀θ, η ∈ Rd, ‖∇F (θ)−∇F (η)‖2 ≤ L‖θ − η‖2.
Assumption 7 (Lower bound). ∃F ? ∈ R : ∀θ ∈ Rd, F ? ≤ F (θ).

To handle the noise of the stochastic estimates, we consider a weak growth condition, related to the notion
of expected smoothness as introduced in Gower et al. (2019) (see also Gazagnadou et al. (2019); Gower et al.
(2021)). In particular, we extend the condition of Gower et al. (2019) to our general context in which the
sampling distributions are allowed to change along the algorithm.
Assumption 8 (Growth condition). With probability 1, there exist 0 ≤ L, σ2 < ∞ such that for all θ ∈
Rd, k ∈ N, E

[
‖g(θ, ξk+1)‖22|Fk

]
≤ 2L(F (θ)− F ?) + σ2.

This almost-sure bound on the stochastic noise E
[
‖g(θ, ξk)‖22|Fk−1

]
is key in the analysis of the conditioned

SGD algorithm. This weak growth condition on the stochastic noise is general and can be achieved in practice
with a general Lemma available in the supplement (Appendix C.4). Note that Assumption 8, often referred to
as a growth condition, is mild since it allows the noise to be large when the iterate is far away from the optimal
point. In that aspect, it contrasts with uniform bounds of the form E

[
‖g(θk, ξk+1)‖22|Fk

]
≤ σ2 for some

deterministic σ2 > 0 (see Nemirovski et al. (2009); Nemirovski & Yudin (1983); Shalev-Shwartz et al. (2011)).
Observe that such uniform bound is recovered by taking L = 0 in Assumption 8 but cannot hold when the
objective function F is strongly convex (Nguyen et al., 2018). Besides, fast convergence rates have been
derived in Schmidt & Roux (2013) under the strong-growth condition: E[‖g(θ, ξk+1)‖22|Fk] ≤ M‖∇F (θ)‖22
for some M > 0. Similarly to our growth condition, Bertsekas & Tsitsiklis (2000) and Bottou et al. (2018)
performed an analysis under the condition E[‖g(θ, ξk+1)‖22|Fk] ≤ M‖∇F (θ)‖22 + σ2 for M,σ2 > 0. Under
Assumptions 6 and 7, we have ‖∇F (θ)‖22 ≤ 2L (F (θ)− F (θ?)) (Gower et al., 2019, Proposition A.1) so our
growth condition is less restrictive. If F satisfies the Polyak-Lojasiewicz condition (Karimi et al., 2016),
then our growth condition becomes a bit stronger. Another weak growth condition has been used for a
non-asymptotic study in Moulines & Bach (2011). The success of conditioned SGD relies on the following
extended Robbins-Monro condition which ensures a control on the eigenvalues of the conditioning matrices.
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Assumption 9 (Eigenvalues). Let (µk)k≥1 and (νk)k≥1 be positive sequences such that:
∀k ≥ 1, µkId � Ck−1 � νkId;

∑
k γkνk = +∞;

∑
k(γkνk)2 < +∞; lim supk νk/µk <∞ a.s.

The last condition deals with the ratio (νk/µk) which may be seen as a conditioned number and ensures
that the matrices Ck are well-conditioned. The following Theorem reveals that all these assumptions are
sufficient to ensure the almost sure convergence of the gradients towards zero.
Theorem 3 (Almost sure convergence). Suppose that Assumptions 1, 6, 7, 8, 9 are fulfilled. Then (θk)k≥0
obtained by conditioned SGD (2) satisfies ∇F (θk)→ 0 as k →∞ a.s.

Other convergence results concerning the sequence of iterates towards global minimizers may be obtained
by considering stronger assumptions such as convexity or that F is coercive and the level sets of stationary
point S ∩ {θ, F (θ) = y} are locally finite for every y ∈ Rd (see Gadat et al. (2018)). In our analysis, the
proof of Theorem 3 reveals that θk+1 − θk → 0 in L2 and almost surely. Thus, as soon as the stationary
points are isolated, the sequence of iterates will converge towards a unique stationary point θ? ∈ Rd. This
result is stated in the next Corollary.
Corollary 2 (Almost sure convergence). Under the assumptions of Theorem 3, assume that F is coercive
and let (θk)k≥0 be the sequence of iterates obtained by the conditioned SGD (2), then d(θk,S)→ 0 as k →∞.
In particular, if S is a finite set, (θk) converges to some θ? ∈ S.

4 Asymptotic optimality in Adaptive importance sampling

The aim of this section is to demonstrate that statistical efficiency can be ensured in variational inference
problems through the combination of adaptive importance sampling and conditioned SGD. While well-
known results regarding the asymptotic optimality of maximum likelihood estimates (MLE) obtained from
conditioned SGD (see for instance Amari (1998) or Bercu et al. (2020)) are initially revisited, attention is
subsequently shifted towards the variational inference topic relying on adaptive sampling schemes methods.
A novel result is then presented, asserting that even within this challenging framework, conditioned SGD
allows for the recovery of a certain statistical efficiency.

4.1 Maximum likelihood estimation

Assume that (Xk)k≥1 is an independent sequence of random variables with distribution q?. Consider a
parametric family {qθ : θ ∈ Θ} from which we aim to obtain an estimate of q?. We further assume that the
model is well-specified, i.e. q? = qθ? for some θ? ∈ Θ. The MLE is given by

θ̂n ∈ arg max
θ∈Θ

n∑
i=1

log(qθ(Xi)).

Under suitable condition (van der Vaart, 1998), it is well known that θ̂n is efficient, meaning it is asymptot-
ically unbiased and has the smallest achievable variance. The Cramer-Rao bound is given by the inverse of
the Fisher information matrix, denoted by I−1 and defined as

I =
∫
∇θ log(qθ?)∇θ log(qθ?)>qθ?dλ.

Unfortunately, the estimate θ̂n is often unknown in closed-form, requiring the use of a sequential procedure
for approximation. This raises the further question of whether the estimate obtained through the sequential
procedure achieves the efficiency bound. When using standard SGD without conditioning, the update rule
is θk+1 = θk − γk+1∇ log(qθk(Xk+1)). However, the optimal variance bound is not achieved in this case. To
recover efficiency, one can rely on conditioned SGD, incorporating a conditioning matrix that estimates the
inverse of the Hessian. In light of the definition of the Fisher information matrix, the conditioning matrix
can be estimated iteratively using at each step a new sample Xk+1 as follows

Ik+1 = (1− γk+1)Ik + γk+1∇ log(qθk(Xk))∇θ log(qθk(Xk))>

9
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and then relying on the CSGD algorithm with update rule θk+1 = θk − γk+1I−1
k ∇ log(qθk(Xk+1)). As a

consequence of Theorem 2, under stipulated assumptions, one can recover the optimal bound I−1 as the
asymptotic variance of

√
k(θk − θ∗).

4.2 Adaptive importance sampling

Consider the variational inference problem where the aim is to approximate a target distribution q? = qθ?

based on a family of density {qθ : θ ∈ Θ}. Unlike the previous statistical framework, one does not have access
to random variables distributed according to q?. Instead, one can usually evaluate the target function q?.
More background about this type of problem might be found in Zhang et al. (2018). In the following, we show
that conditioned SGD methods allow to achieve the same variance as the optimal variance described in the
previous statistical setting. To the best of our knowledge, this result is novel and has potential implications
in variational inference problems using forward KL (or α-divergence) as described in Jerfel et al. (2021) and
Section 5.2 in Zhang et al. (2018). Consider the objective function defined as the Kullback-Liebler divergence
between a sampler qθ and the target distribution q?, i.e.,

F (θ) = −
∫

log(qθ/q?)q?dλ.

Under regularity conditions, the gradient and Hessian are respectively written as ∇θF (θ) = −Eq? [∇θ log(qθ)]
and ∇2

θF (θ) = −Eq? [∇2
θ log(qθ)]. Stochastic gradients can be defined using adaptive importance sampling-

based estimate as in Delyon & Portier (2018). Given the current iterate θk, one needs to generate Xk+1 from
qθk and compute the (unbiased) stochastic gradient gk+1 = vk+1∇k+1 where vk+1 = q?(Xk+1)/qθk(Xk+1)
and ∇k+1 = ∇θ log(qθk(Xk+1)). Based on our almost sure convergence result, one can obtain that θk → θ∗

and then deduce
Γ = lim

k→∞
E[gk+1g

>
k+1] = lim

k→∞

∫
∇θ log(qθk)∇θ log(qθk)> q

?2

qθk
dλ = I,

where the value I for the limit comes from replacing qθk by its limit qθ∗ = q∗. The choice of the conditioning
matrix Ck may be done using an auxiliary algorithm of the following form

Ck+1 = (1− γk+1)Ck + γk+1vk+1∇k+1∇>k+1.

It can be shown that the sequence of conditioning matrices (Ck) converges to I. Thus, Theorem 2 implies that
conditioned SGD is efficient in this framework as it matches the lower bound of the previous less restrictive
statistical framework in which qk = q?. Similar computations, left for future work, may be performed to
investigate if the same optimal variance can be achieved with more general similarity measures such as
α-divergences (Daudel et al., 2021).

5 Conclusion and Discussion

We derived an asymptotic theory for Conditioned SGD methods in a general non-convex setting. Compared
to standard SGD methods, the only additional assumption required to obtain the weak convergence is the
almost sure convergence of the conditioning matrices. The use of appropriate conditioning matrices with
the help of Hessian estimates is the key to achieve asymptotic optimality. While our study focuses on the
weak convergence of the rescaled sequence of iterates - an appropriate tool to deal with efficiency issues
since algorithms can be easily compared through their asymptotic variances - it would be interesting to
complement our asymptotic results with concentration inequalities. This research direction, left for future
work, may be done at the cost of extra assumptions, e.g., strong convexity of the objective function combined
with bounded gradients. Furthermore, by using some recent results on the behavior of adaptive gradient
methods in non-convex settings (Daneshmand et al., 2018; Staib et al., 2019; Antonakopoulos et al., 2022),
another research direction would be to extend the current weak convergence analysis to edge cases where
the objective function possesses saddle points.

From a practical standpoint, the approach proposed in Appendix B may not be computationally optimal as
it requires eigenvalue decomposition. However, conditioned SGD methods and especially stochastic second-
order methods do not actually require the full computation of a matrix decomposition but rely on matrix-
vector products which may be performed in O(d2) operations. Futhermore, using low-rank approximation
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with BFGS algorithm (Broyden, 1970; Fletcher, 1970; Goldfarb, 1970; Shanno, 1970) and its variant L-BFGS
(Liu & Nocedal, 1989), those algorithms approximately invert Hessian matrices in O(d) operations. More
recently, this technique was extended to the online learning framework (Schraudolph et al., 2007) and a purely
stochastic setting (Moritz et al., 2016). Similarly, the different adaptive optimizers presented in Section 3.1
are concerned with both fast computations and high precision. Designing an efficient conditioned SGD
algorithm involves a careful trade-off between the low-memory storage of the scaling matrix representation
Ck and the quality of its approximation of either the inverse Hessian ∇2F (θ?)−1 or the information brought
in by the underlying geometry of the problem.
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Appendix: Asymptotic Analysis of
Conditioned Stochastic Gradient Descent

Appendix A contains the mathematical proofs of the main results while Appendix B is dedicated to a
practical procedure and numerical experiments for illustration purposes. Appendix C gathers some technical
auxiliary results and additional propositions.
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A Proofs of main results

A.1 Proof of the weak convergence (Theorem 2)

For any matrix A ∈ Rd×d, we denote by ‖A‖ = max‖u‖2=1 ‖Au‖2 the operator norm associated to the
Euclidian norm and by ρ(A) the spectral radius of A, i.e., ρ(A) = max{|λ1|, . . . , |λn|} where λ1, . . . , λn are
the eigenvalues of A. We also introduce λmin(A) = min{|λ1|, . . . , |λn|}. Note that when A is symmetric
‖A‖ = ρ(A) and recall that the spectral radius is a (submultiplicative) norm on the real linear space of
symmetric matrices.

Structure of the proof.

In virtue of Assumption 5, there exist δ, ε > 0 such that almost surely

sup
k≥0

E[‖wk+1‖2+δ
2 |Fk]1{‖θk−θ?‖2≤ε} <∞. (3)

An important event in the following is

Ak = {‖θk − θ?‖2 ≤ ε, ‖Ck‖ < 2‖C‖, ‖Γk‖ ≤ 2‖Γ‖}.

By assumption, this event has probability going to 1.

Introduce the difference

∆k = θk − θ?,

and remark that ∆k is subjected to the iteration:

∆0 = θ0 − θ?,
∆k+1 = ∆k − γk+1Ck∇F (θk) + γk+1Ckwk+1, k ≥ 0,
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with wk+1 = ∇F (θk) − g(θk, ξk+1). We have by assumption that Ck → C almost surely and we can define
K = limk→∞ CkH = CH. The proof relies on the introduction of an auxiliary stochastic algorithm which
follows the iteration:

∆̃0 = θ0 − θ?

∆̃k+1 = ∆̃k − γk+1K∆̃k + γk+1Ckwk+11Ak , k ≥ 0

The previous algorithm is a linear approximation of the algorithm that defines ∆k in the sense that∇F (θk) =
∇F (θ?) +H(θk − θ?) + o(θk − θ?) ' H(θk − θ?) has been linearly expanded around θ?. Writing

∆k = ∆̃k + (∆k − ∆̃k),

and invoking the Slutsky lemma, the proof will be complete as soon as we obtain that

γ
−1/2
k ∆̃k  N (0,Σ), (4)

(∆k − ∆̃k) = oP(γ1/2
k ). (5)

Denote by
√
H the positive square root of the real symmetric positive definite matrix H and consider the

transformation Θk =
√
H∆̃k which satisfies

Θ0 =
√
H∆̃0

Θk+1 = Θk − γk+1K̃Θk + γk+1
√
HCkwk+11Ak , k ≥ 1,

where K̃ =
√
HC
√
H ∈ S++

d (R) is a real symmetric positive definite matrix. The sequence (Θk)k≥0 is easier
to study than ∆̃k because contrary to K̃, the matrix K = CH is not symmetric in general unless C and H
commute. In view of Assumption 3, the eigenvalues of K̃ are real and positive. Denote by λm (resp. λM )
the smallest (resp. the largest) eigenvalue of K̃, i.e.,

λm = λmin(K̃), λM = λmax(K̃).

Because CH is similar to K̃, they share the same eigenvalues. Since by assumption, the eigenvalues of
(CH − ζId) are positive, we have 2αλm > 1{β=1}. For all k ≥ 1, introduce the real symmetric matrix
Ak = I − γkK̃. Observe that all these matrices commute, i.e., for any i, j ≥ 0, we have AiAj = AjAi. For
any k, n ≥ 0, denote the matrices product{

Πn,k = An . . . Ak+1 if k < n
Πn,k = Id if k ≥ n,Πn = Πn,0

Since the matrices Ak commute, we have Π>n,k = Πn,k is also real symmetric.

Step 1. Proof of Equation (4).
The random process (Θk)k≥0 follows the recursion equation

Θk = AkΘk−1 + γk
√
HCk−1wk1Ak−1 .

We have by induction

Θn = ΠnΘ0 +
n∑
k=1

γkΠn,k

√
HCk−1wk1Ak−1 ,

and the rescaled process is equal to

Θn√
γn

= Πn√
γn

Θ0︸ ︷︷ ︸
initial error Yn

+
n∑
k=1

γk√
γn

Πn,k

√
HCk−1wk1Ak−1︸ ︷︷ ︸

sampling error Mn

.
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Bound on the initial error.
Define τn =

∑n
k=1 γk the partial sum of the learning rates. Since Πn is symmetric, we have ρ(ΠnΘ0) ≤

ρ(Πn)‖Θ0‖2. In view of Lemma 5, since γk → 0, there exists j ≥ 1 such that

ρ(Πn) ≤ ρ(Πj) exp(−λm(τn − τj)).

Therefore, the initial error is bounded by

ρ(Yn) ≤ ρ(Πj) exp(λmτj)‖Θ0‖2 exp(dn) with dn = −λmτn − log(√γn).

Using Lemma 6, we can treat the two cases β < 1 and β = 1. On the one hand, if β < 1 then we always have
dn → −∞. On the other hand, if β = 1, we have dn ∼

( 1
2 − γλm

)
log(n) and the condition 2αλm − 1 > 0

ensures dn → −∞. In both cases we get exp(dn)→ 0 and the initial error vanishes to 0.

Weak convergence of the sampling error.
Consider the random process

Mn = γ−1/2
n

n∑
k=1

γkΠn,k

√
HCk−1wk1Ak−1 .

Note that θk, Ak and Ck are Fk-measurable. As a consequence, Mn is a sum of martingale increments and
we may rely on the following central limit theorem for martingale arrays.
Theorem 4. (Hall & Heyde, 1980, Corollary 3.1) Let (Wn,i)1≤i≤n, n≥1 be a triangular array of random
vectors such that

E[Wn,i | Fi−1] = 0, for all 1 ≤ i ≤ n, (6)
n∑
i=1

E[Wn,iW
>
n,i | Fi−1]→ V ∗ ≥ 0, in probability, (7)

n∑
i=1

E[‖Wn,i‖21{‖Wn,i‖>ε} | Fi−1]→ 0, in probability, (8)

then,
∑n
i=1Wn,i  N (0, V ∗), as n→∞.

We start by verifying (7). Let Dk =
√
HCk−1Γk−1C

T
k−1
√
H1Ak−1 ∈ Sd(R). The quadratic variation of Mn

is given by

Σn = γ−1
n

n∑
k=1

γ2
kΠn,kDkΠ>n,k.

First we can check that Σn is bounded. Using the triangle inequality and since the operator norm is
submultiplicative, we have

‖Σn‖ ≤ γ−1
n

n∑
k=1

γ2
k‖Πn,kDkΠT

n,k‖ ≤ γ−1
n

n∑
k=1

γ2
k‖Dk‖‖Πn,k‖2 = γ−1

n

n∑
k=1

γ2
k‖Dk‖ρ(Πn,k)2,

where we use in the last equality that Πn,k is real symmetric so ‖Πn,k‖ = ρ(Πn,k). On the event Ak−1, the
matrices Ck−1 and Γk−1 are bounded as ‖Ck−1‖ ≤ 2‖C‖ and ‖Γk−1‖ ≤ 2‖Γ‖ leading to the following bound
for the matrix Dk,

‖Dk‖ = ‖
√
HCk−1Γk−1C

T
k−1
√
H1Ak−1‖

≤ ‖H‖‖Γk−1‖‖Ck−1‖21Ak−1

≤ 8‖H‖‖Γ‖‖C‖2 = UD.
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It follows that

‖Σn‖ ≤ UDγ−1
n

n∑
k=1

γ2
kρ(Πn,k)2.

In view of Lemma 5, we shall split the summation from k = 1, . . . , j and k = j + 1, . . . , n as

γ−1
n

n∑
k=1

γ2
kρ
(
Πn,k

)2 = γ−1
n

j∑
k=1

γ2
kρ
(
Πn,k

)2 + γ−1
n

n∑
k=j+1

γ2
kρ
(
Πn,k

)2
≤ γ−1

n

j∑
k=1

γ2
kρ
(
Πn,k

)2
︸ ︷︷ ︸

an

+ γ−1
n

n∑
k=j+1

γ2
k

n∏
i=k+1

(1− λmγi)2

︸ ︷︷ ︸
bn

.

For the first term an, we have for all k = 1, . . . , j

ρ(Πn,k) ≤ ρ(Πn,j) ≤
n∏

i=j+1
(1− λmγi) ≤ exp(−λm(τn − τj)),

which implies since (γk) is decreasing with γ1 = α that

j∑
k=1

γ2
kρ
(
Πn,k

)2 ≤ ατj exp(−2λm(τn − τj)).

Therefore, similarly to the initial error term, we get

an ≤ ατj exp(2λmτj)) exp(dn) with dn = −2λmτn − log(γn),

and the condition 2αλm− 1 > 0 ensures dn → −∞ so that an goes to 0 and is almost surely bounded by Ua.

For the second term bn, we can apply Lemma 3 and need to distinguish between the two cases:

• (β = 1) If γn = α/n, since 2αλm > 1, we can apply Lemma 3 (p = 1,m = 2, λ = λmα, xj = 0, εk = α2)
and obtain

bn ≤
α2

2αλm − 1 = Ub.

• (β < 1) If γn = γ/nβ , we deduce the same as before because λm > 0.

Finally in both cases, we get

‖Σn‖ ≤ UD (Ua + Ub) . (9)

We now derive the limit of Σn. We shall use a recursion equation to recover a stochastic approximation
scheme. Note that

γnΣn =
n∑
k=1

γ2
kΠn,kDkΠT

n,k (10)

= γ2
nDn +An

(
n−1∑
k=1

γ2
kΠn−1,kDkΠT

n−1,k

)
A>n , (11)

and recognize

γnΣn = γ2
nDn + γn−1AnΣn−1A

>
n .
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Replacing the symmetric matrix An = I − γnK̃, we get (because Σn is bounded almost surely)

γnΣn = γ2
nDn + γn−1(I − γnK̃)Σn−1(I − γnK̃)

= γ2
nDn + γn−1

[
Σn−1 − γnΣn−1K̃ − γnK̃Σn−1 +O(γ2

n)
]
.

Divide by γn to obtain

Σn = γnDn + γn−1

γn

[
Σn−1 − γn(K̃Σn−1 + Σn−1K̃) +O(γ2

n)
]
,

and we recognize a stochastic approximation scheme

Σn = Σn−1 − γn
[
K̃Σn−1 + Σn−1K̃ −Dn

]
+ γn−1 − γn

γn
Σn−1 +O(γn−1γn + |γn−1 − γn|)

Recall that when β < 1 we have

1
γn
− 1
γn−1

→ 0, i.e., γn−1 − γn
γn

= o(γn).

• (β = 1) If γn = α/n we get

Σn = Σn−1 −
α

n

[
K̃Σn−1 + Σn−1K̃ −

1
α

Σn−1 −Dn

]
+O(n−2)

Σn = Σn−1 −
α

n

[(
K̃ − I

2α

)
Σn−1 + Σn−1

(
K̃ − I

2α

)
−Dn

]
+O(n−2).

• (β < 1) If γn = α/nβ we get

Σn = Σn−1 − γn
[
K̃Σn−1 + Σn−1K̃ −Dn

]
+ o(γn).

Recall that ζ = 1{β=1}/(2α) and define K̃ζ = K̃ − ζI, so that in both cases, the recursion equation becomes

Σn = Σn−1 − γn
[
K̃ζΣn−1 + Σn−1K̃

>
ζ −Dn

]
+ o(γn).

We can vectorize this equation. The vectorization of an m × n matrix A = (ai,j), denoted vec(A), is the
mn× 1 column vector obtained by stacking the columns of the matrix A on top of one another:

vec(A) = [a1,1, . . . , am,1, a1,2, . . . , am,2, . . . , a1,n, . . . , am,n]T .

Applying this operator to our stochastic approximation scheme gives

vec(Σn) = vec(Σn−1)− γn
[
vec
(
K̃ζΣn−1 + Σn−1K̃

>
ζ

)
− vec(Dn)

]
+ o(γn).

Denote by ⊗ the Kronecker product, we have the following property

vec
(
KζΣn−1 + Σn−1K

>
ζ

)
=
(
Id ⊗Kζ +K>ζ ⊗ Id

)
vec(Σn−1).

Define D as the almost sure limit of Dn, i.e.

D = lim
n→∞

Dn =
√
HCΓC

√
H.

Introduce vn = vec(Σn) and Q =
(
Id ⊗ K̃ζ + K̃ζ ⊗ Id

)
. We have almost surely

vn = vn−1 − γn (Qvn−1 − vec(D)) + γnvec(Dn −D) + o(γn)
= vn−1 − γn (Qvn−1 − vec(D)) + εnγn
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where εn → 0 almost surely. This is a stochastic approximation scheme with the affine function h(v) = Qv−
vec(D) for v ∈ Rd2 . Let v? be the solution of h(v) = 0 which is well defined since Q =

(
Id ⊗ K̃ζ + K̃>ζ ⊗ Id

)
is invertible. Indeed, the eigenvalues of Q are µi + µj , 1 ≤ i, j ≤ d, where the µi, i = 1, . . . , d are the
eigenvalues of K̃ζ . Equivalently, the eigenvalues of Q are of the form (λi − ζ) + (λj − ζ) where the λi,
i = 1, . . . , d are the eigenvalues of K̃. Because λm > ζ, we have that Q � 0. As a consequence

(vn − v?) = (vn−1 − v?)− γn (h(vn−1)− h(v?)) + εnγn

= (vn−1 − v?)− γnQ (vn−1 − v?) + εnγn

= Bn (vn−1 − v?) + εnγn,

with Bn = (Id2 − γnQ). By induction, we obtain

(vn − v?) = (Bn . . . B1) (v0 − v?) +
n∑
k=1

γk (Bn . . . Bk+1) εk,

Define λQ = λmin(Q) > 0 and remark that

‖Bn . . . Bk+1‖ ≤
n∏

j=k+1
‖Bj‖ =

n∏
j=k+1

(1− γjλQ).

It follows that

‖vn − v?‖2 ≤ ‖Bn . . . B1‖‖v0 − v?‖2 +
n∑
k=1

γk‖Bn . . . Bk+1‖‖εk‖2

≤
n∏
j=1

(1− γjλQ)‖v0 − v?‖2 +
n∑
k=1

γk

n∏
j=k+1

(1− γjλQ)‖εk‖2

Applying Lemma 3 we obtain that the right-hand side term goes to 0. The left-hand side term goes to 0
under the effect of the product by definition of (γk)k≥1. We therefore conclude that vn → v? almost surely.
From easy manipulation involving vec(·) and ⊗, this is equivalent to Σn → Σ, where Σ is the solution of the
Lyapunov equation

(K̃ − ζI)Σ + Σ(K̃ − ζI) = D.

Now we turn our attention to (8). We need to show that almost surely,

γ−1
n

n∑
k=1

γ2
kE[‖Πn,k

√
HCk−1wk‖221{γk‖Πn,k

√
HCk−1wk‖2>εγ

1/2
n } | Fk−1]1Ak−1 → 0.

We have

E[γ−1
n γ2

k‖Πn,k

√
HCk−1wk‖221{γk‖Πn,k

√
HCk−1wk‖2>εγ

1/2
n } | Fk−1]

≤ ε−δE[(γ−1/2
n γk‖Πn,k

√
HCk−1wk‖2)2+δ | Fk−1]

≤ ε−δ(γ−1/2
n γk‖Πn,k

√
HCk−1‖2+δE[‖wk‖2+δ

2 | Fk−1].

Let U(ω) = supk≥1 E[‖wk‖2+δ
2 | Fk−1]1Ak−1 which is almost surely finite by Assumption 5. We get

E[γ−1
n γ2

k‖Πn,k

√
HCk−1wk‖221{γk‖Πn,k

√
HCk−1wk‖2>εγ

1/2
n } | Fk−1]1Ak−1

≤ ε−δ
(

2‖
√
H‖‖C‖

)2+δ
U(ω)(γ−1/2

n γkρ(Πn,k))2+δ
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Hence by showing that
n∑
k=1

(γ−1/2
n γkρ(Πn,k))2+δ → 0,

we will obtain (8). The previous convergence can be deduced from Lemma 3 with p = 1 + δ/2, m = 2 + δ,
εk = γ

δ/2
k , checking that (2 + δ)αλm > 1 + δ/2.

Step 2. Proof of Equation (5).

A preliminary step to the derivation of Equation (5) is to obtain that ∆̃k → 0 almost surely. For any θ and
η in Rd, we have

‖θ‖2 = ‖η‖2 + 2η>(θ − η) + ‖θ − η‖2

implying that for all k ≥ 0

E[‖Θk+1‖2|Fk] = ‖Θ̃k‖2 − 2γk+1Θ>k K̃Θk + γ2
k+1 E[‖K̃Θk − Ckwk+11Ak‖2|Fk].

Since (wk) is a martingale increment and because on Ak, ρ(Ck) ≤ 2ρ(C), we get

E[‖K̃Θk − Ckwk+11Ak‖2|Fk] = E[‖K̃Θk‖2|Fk] + E[‖Ckwk+11Ak‖2|Fk]
≤ λ2

M‖Θk‖2 + ρ(Ck)2 E[‖wk+11Ak‖2|Fk]
≤ λ2

M‖Θk‖2 + 4ρ(C)2 E[‖wk+11Ak‖2|Fk],

Injecting this bound in the previous equality yields

E[‖Θk+1‖2|Fk] ≤ ‖Θk‖2(1 + γ2
k+1λ

2
M )− 2γk+1Θ>k K̃Θk + 4ρ(C)2γ2

k+1 E[‖wk+1‖2|Fk]1Ak .

Since, using (3),

∑
k≥0

γ2
k+1 E[‖wk+1‖2|Fk]1Ak ≤

(
sup
k≥0

E[‖wk+1‖2|Fk]1Ak
)∑

k≥0
γ2
k+1

 <∞,

we are in position to apply the Robbins-Siegmund Theorem 6 and we obtain the almost sure convergence
of
∑
k γk+1Θ>k K̃Θk and ‖Θk‖22 → V∞. Because K̃ is positive definite, it gives that, with probability

1,
∑
k≥0 γk+1‖Θk‖2 < +∞, from which, we deduce lim infk ‖Θk‖2 = 0. Therefore one can extract a

subsequence Θk such that ‖Θk‖2 → 0. Using the above second condition yields V∞ = 0 and we conclude
that ∆̃k = H−1/2Θk → 0.

Define the difference

Ek = ∆k − ∆̃k.

Since θ 7→ ∇2F (θ) is continous at θ?, we can apply a coordinate-wise mean value theorem. Indeed, for any
θ ∈ Rd, we have ∇F (θ) = (∂1F (θ), . . . , ∂dF (θ)) where for all j = 1, . . . , d, the partial derivatives functions
∂jF : Rd → R are Lipschitz continuous. Denote by ∇(∂jF ) : Rd → Rd the gradient of the partial derivative
∂jF , i.e., ∇(∂jF )(θ) = (∂2

1,jF (θ), . . . , ∂2
d,jF (θ)). For any θ, η ∈ B(θ?, ε), there exists ξj ∈ Rd such that

∂jF (θ)− ∂jF (η) = ∇(∂jF )(ξj)(θ − η).

We construct a Hessian matrix by rows H(ξ) = H(ξ1, . . . , ξd) where the j-th row is equal to ∇(∂jF )(ξj) =
(∂2

1,jF (ξj), . . . , ∂2
d,jF (ξj))

H(ξ) =

∂
2
1,1F (ξ1) . . . ∂2

1,dF (ξ1)
...

. . .
...

∂2
d,1F (ξd) . . . ∂2

d,dF (ξd)


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and we can write

∇F (θ)−∇F (η) = H(ξ)(θ − η).

There exists ξk = (ξ(1)
k , . . . , ξ

(d)
k ) with ξ(j)

k ∈ [θ? + Ek, θk] and ξ′k = (ξ′(1)
k , . . . , ξ

′(d)
k ) with ξ′(j)k ∈ [θ? + Ek, θ

?]
such that

∇F (θ? + Ek)−∇F (θk) = −H(ξk)∆̃k (12)
∇F (θ? + Ek) = H(ξ′k)Ek. (13)

Let η > 0 such that 2αλm(1 − 3η) > 1. This choice will come clear at the end of the reasoning. On the
one hand, we have Ck → C. On the other hand, using Lemma 4, the spectrum of CkH is real and positive.
Hence, we have the convergence of the eigenvalues of CkH towards the eigenvalues of K = CH. This follows
from the definition of eigenvalues as roots of the characteristic polynomial and the fact that the roots of any
polynomial P ∈ C[X] are continuous functions of the coefficients (Zedek, 1965). Consequently, there exists
n1(ω) such that for all k ≥ n1(ω),

(1− η)λm ≤ λmin(CkH) ≤ λmax(CkH) ≤ (1 + η)λM . (14)

We can define n2(ω) such that for all k ≥ n2(ω)

Ak is realized. (15)

Since ‖
√
H−1H(ξ′k)

√
H−1 − Id‖ → 0 as k →∞, there is n3(ω) and n4(ω) such that for all k ≥ n3(ω)

‖
√
H−1H(ξ′k)

√
H−1 − Id‖ ≤

η

1 + η

λm
λM

, (16)

and for all k ≥ n4(ω),

‖
√
H−1H(ξ′k)

√
H−1‖ ≤ 1. (17)

Since γk → 0, there is n5 such that for all k ≥ n5

γk+1 ≤
2ηλm

(1 + η)2λ2
M

. (18)

To use the previous local properties, define n0(ω) = n1(ω) ∨ n2(ω) ∨ n3(ω) ∨ n4(ω) ∨ n5 and introduce the
set Ej along with its complement Ecj , defined by

Ej = {ω : j ≥ n0(ω)}.

Let δ > 0 and take j ≥ 1 large enough such that P(Ecj ) ≤ δ. Invoking the Markov inequality, we have for all
a > 0

P(γ−1/2
k ‖Ek‖ > a) = P(γ−1/2

k ‖Ek‖ > a, Ej) + P(γ−1/2
k ‖Ek‖ > a, Ecj )

≤ P(γ−1/2
k ‖Ek‖ > a, Ej) + δ

≤ γ−1/2
k a−1E[‖Ek‖1Ej ] + δ

Because δ is arbitrary, we only need to show that for any value of j ≥ 1,

ek := E[‖Ek‖1Ej ] = o(γ1/2
k ).

To prove this fact, we shall recognize a stochastic algorithm for the sequence ek.

Let k ≥ j and assume further that Ej is realized. We have, because of (15),

Ek+1 = ∆k − ∆̃k − γk+1Ck∇F (θk) + γk+1K∆̃k.
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Introducing Ẽk =
√
HEk, we find

Ẽk+1 = Ẽk − γk+1
√
HCk∇F (θk) + γk+1

√
HK∆̃k,

and using (12), it comes that

Ẽk+1 = Ẽk − γk+1
√
HCk∇F (θ? + Ek)− γk+1

√
HCkH(ξk)∆̃k + γk+1

√
HK∆̃k

= Ẽk − γk+1
√
HCk∇F (θ? + Ek) + γk+1

√
H(K − CkH(ξk))∆̃k.

Using Minkowski inequality, we have

‖Ẽk+1‖ ≤ ‖Ẽk − γk+1
√
HCk∇F (θ? + Ek)‖+ ‖γk+1

√
H(K − CkH(ξk))∆̃k‖.

We shall now focus on the first term. Still on the set Ej , we have

‖Ẽk − γk+1
√
HCk∇F (θ? + Ek)‖2

= ‖Ẽk‖2 − 2γk+1〈Ẽk,
√
HCk∇F (θ? + Ek)〉+ γ2

k+1‖
√
HCk∇F (θ? + Ek)‖2 (19)

We have on the one hand using (13)

〈Ẽk,
√
HCk∇F (θ? + Ek)〉 = 〈Ẽk,

√
HCkH(ξ′k)Ek〉

= 〈Ẽk,
√
HCkHEk〉+ 〈Ẽk,

√
HCk(H(ξ′k)−H)Ek〉

Due to (14), the first term satisfies

〈Ẽk,
√
HCkHEk〉 = 〈Ẽk,

√
HCk

√
HẼk〉

≥ λmin(CkH)‖Ẽk‖2

≥ (1− η)λm‖Ẽk‖2

The second term satisfies

〈Ẽk,
√
HCk(H(ξ′k)−H)Ek〉 = 〈Ẽk,

√
HCk

√
H(
√
H−1H(ξ′k)

√
H−1 − Id)Ẽk〉

≥ −
∣∣∣〈Ẽk,√HCk√H(

√
H−1H(ξ′k)

√
H−1 − Id)Ẽk〉

∣∣∣
Using Cauchy-Schwarz inequality, the submultiplicativity of the norm, (14) and (16), we have∣∣∣〈Ẽk,√HCk√H(

√
H−1H(ξ′k)

√
H−1 − Id)Ẽk〉

∣∣∣
≤ ‖
√
HCk

√
H‖‖
√
H−1H(ξ′k)

√
H−1 − Id‖‖Ẽk‖2

≤ ηλm‖Ẽk‖2.

Finally, it follows that

〈Ẽk,
√
HCk∇F (θ? + Ek)〉 ≥ (1− 2η)λm‖Ẽk‖2 (20)

On the other hand using (13), (14) and (17),

‖
√
HCk∇F (θ? + Ek)‖2 = ‖

√
HCkH(ξ′k)Ek‖2

= ‖
√
HCk

√
H(
√
H−1H(ξ′k)

√
H−1)Ẽk‖2

≤ λmax(CkH)2‖
√
H−1H(ξ′k)

√
H−1‖2‖Ẽk‖2

≤ (1 + η)2λ2
M‖Ẽk‖2 (21)
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Putting together (19), (20), (21) and using (18) gives that, on Ej ,

‖Ẽk − γk+1
√
HCk∇F (θ? + Ek)‖2

≤ ‖Ẽk‖2(1− 2γk+1(1− 2η)λm + γ2
k+1(1 + η)2λ2

M )

≤ ‖Ẽk‖2(1− 2γk+1(1− 3η)λm).

By the Minkowski inequality and the fact that (1− x)1/2 ≤ 1− x/2, on Ej , it holds

‖Ẽk+1‖ ≤ ‖Ẽk‖(1− 2γk+1(1− 3η)λm)1/2 + γk+1‖
√
H(K − CkH(ξk))∆̃k‖

≤ ‖Ẽk‖(1− γk+1(1− 3η)λm) + γk+1‖
√
H‖‖(K − CkH(ξk))∆̃k‖

Hence, we have shown that for any k ≥ j,

‖Ẽk‖1Ej ≤ ‖Ẽk‖1Ej (1− γk+1(1− 3η)λm) + γk+1‖
√
H‖‖(K − CkH(ξk))1Ej ∆̃k‖.

It follows that, for any k ≥ j,

ek+1 ≤ ek(1− γk+1(1− 3η)λm) + γk+1‖
√
H‖E[‖Uk∆̃k‖],

with Uk = (K − CkH(ξk))1Ej . Because with probability 1, ‖Uk‖ is bounded, we can apply the Lebesgue
dominated convergence theorem to obtain that εk = E[‖Uk‖2] → 0. From the Cauchy-Schwarz inequality,
we get

E[‖Uk∆̃k‖] ≤
√
εk

√
E[‖∆̃k‖22].

On the other hand, we have already shown in (9) that ρ(Σk) = ‖Σk‖ ≤ UD (Ua + Ub). Since ∆̃k =√
H−1Θk =

√
H−1√γk(Yk +Mk), we have

E[‖∆̃k‖22] ≤ 2(γk/λm)(‖Yk‖22 + E[‖Mk‖22]),

where the last term is the leading term and satisfies

E[‖Mk‖22]] = E[Tr(Σk)] ≤ dE[ρ(Σk)].

Therefore, we have

E[‖∆̃k‖22] ≤ γkA

for some A > 0. Consequently, for all k ≥ j,

ek+1 ≤ ek(1− γk+1(1− 3η)λm) + γ
3/2
k+1A

′‖
√
H‖ε1/2

k .

The condition 2αλm(1 − 3η) > 1 ensures that we can apply Lemma 3 with (mλ > p),m = 1, p = 1/2, λ =
α(1− 3η)λm. we finally get

lim sup
k

(ek/γ1/2
k ) = 0.

As a consequence, ek = o(√γk), which concludes the proof.

Since γ−1/2
k

√
H∆̃k → N (0,Σ), we have γ−1/2

k ∆̃k → N (0, Σ̃) where Σ̃ =
√
H−1Σ

√
H−1. Recall that Σ

satisfies the Lyapunov equation

(
√
HC
√
H − ζId)Σ + Σ(

√
HC
√
H − ζId) =

√
HCΓC

√
H.

Multiplying on the left and right sides by
√
H−1, we get

C
√
HΣ
√
H−1 − ζ

√
H−1Σ

√
H−1 +

√
H−1Σ

√
HC − ζ

√
H−1Σ

√
H−1 = CΓC,

where we recognize the following Lyapunov equation

(CH − ζId)Σ̃ + Σ̃(CH − ζId)> = CΓC.
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A.2 Proof of the almost sure convergence (Theorem 3)

The idea behind the proof of the almost sure convergence is to apply the Robbins-Siegmund Theorem
(Theorem 6) (which can be found in Appendix C) in combination with the following key deterministic
result.
Lemma 1 (Deterministic result). Let F : Rd → R be a L-smooth function and (θt) a random sequence
obtained by the SGD update rule θt+1 = θt− γt+1Ctgt where (γ)t≥1 a positive sequence of learning rates and
Ct−1 � νtId are such that

∑
t γtνt =∞. Let ω ∈ Ω such that the following limits exist:

(i)
∑
t≥0

γt+1νt+1‖∇F (θt(ω))‖22 <∞ (ii)
∑
t≥1

γtCt−1(gt−1(ω)−∇F (θt−1(ω))) <∞

then ∇F (θt(ω))→ 0 as t→∞.

Proof. The proof (and in particular the reasoning by contradiction) is inspired from the proof of Proposition
1 in Bertsekas & Tsitsiklis (2000). For ease of notation we omit the ω in the proof. Note that condition (i)
along with

∑
t γtνt = ∞ implie that lim inft ‖∇F (θt)‖ = 0. Now, by contradiction, let ε > 0 and assume

that

lim sup
t
‖∇F (θt)‖ > ε

We have that there is infinitely many t such that ‖∇F (θt)‖ < ε/2 and also infinitely many t such that
‖∇F (θt)‖ > ε. It follows that there is infinitely many crossings between the sets {t ∈ N : ‖∇F (θt)‖ < ε/2}
and {t ∈ N : ‖∇F (θt)‖ > ε}. A crossing is a collection of indexes Ik = {Lk, Lk+1, . . . , Uk−1} with Lk ≤ Uk
(Ik = ∅ when Lk = Uk) such that for all t ∈ Ik,

‖∇F (θLk−1)‖ < ε/2 ≤ ‖∇F (θt)‖ ≤ ε < ‖∇F (θUk)‖.

Define the following partial Cauchy sequence Rk =
∑Uk
t=Lk γt(gt−1 −∇F (θt−1)) and note that condition (ii)

implies that Rk → 0 as k →∞. For all k ≥ 1,

ε/2 ≤ ‖∇F (θUk)‖2 − ‖∇F (θLk−1)‖2
≤ ‖∇F (θUk)−∇F (θLk−1)‖2
≤ L‖θUk − θLk−1‖2,

where we use that ∇F is L-Lipschitz. Then using the update rule θt− θt−1 = −γtCt−1gt−1, we have by sum

ε/2 ≤ L‖
Uk∑
t=Lk

θt − θt−1‖2 = L‖
Uk∑
t=Lk

γtCt−1gt−1‖2

≤ L‖
Uk∑
t=Lk

γtCt−1∇F (θt−1)‖2 + L‖
Uk∑
t=Lk

γtCt−1(gt−1 −∇F (θt−1))‖2

≤ L
Uk∑
t=Lk

γtνt‖∇F (θt−1)‖2 + L‖Rk‖2

Since in the previous equation ‖∇F (θt−1)‖2 > ε/2, we get

(ε/2)2 ≤ L
Uk∑
t=Lk

γtνt‖∇F (θt−1)‖22 + (ε/2)L‖Rk‖2

But since
∑
t≥0 γt+1νt+1‖∇F (θt)‖2 is finite and limk Rk = 0, the previous upper bound goes to 0 and implies

a contradiction.
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It remains to show that points (i) and (ii) in Lemma 1 are valid with probability one. Since θ 7→ F (θ) is
L-smooth, we have the quadratic bound (see Nesterov (2013))

∀θ, η ∈ Rd F (η) ≤ F (θ) + 〈∇F (θ), η − θ〉+ L

2 ‖η − θ‖
2
2.

Using the update rule θk+1 = θk − γk+1Ckg(θk, ξk+1), we get

F (θk+1) ≤ F (θk) + 〈∇F (θk), θk+1 − θk〉+ L

2 ‖θk+1 − θk‖22

= F (θk)− γk+1〈∇F (θk), Ckg(θk, ξk+1)〉+ L

2 γ
2
k+1‖Ckg(θk, ξk+1)‖22.

The last term can be upper bounded using the matrix norm and Assumption 9 as

‖Ckg(θk, ξk+1)‖22 ≤ ‖Ck‖2‖g(θk, ξk+1)‖22 ≤ ν2
k+1‖g(θk, ξk+1)‖22,

and we have the inequality

F (θk+1) ≤ F (θk)− γk+1〈∇F (θk), Ckg(θk, ξk+1)〉+ L

2 (γk+1νk+1)2‖g(θk, ξk+1)‖22.

Introduce uk = γkνk and vk = γkµk, we have
∑
k≥1 vk = +∞ and

∑
k≥1 u

2
k < +∞ a.s. in virtue of

Assumption 9. The random variables F (θk), Ck are Fk-measurable and the gradient estimate is unbiased
with respect to Fk. Taking the conditional expectation denoted by Ek leads to

Ek
[
F (θk+1)

]
− F (θk) ≤ −γk+1〈∇F (θk),Ek [Ckg(θk, ξk+1)]〉+ L

2 u
2
k+1 Ek

[
‖g(θk, ξk+1)‖22

]
= −γk+1∇F (θk)>Ck∇F (θk) + L

2 u
2
k+1 Ek

[
‖g(θk, ξk+1)‖22

]
.

On the one hand for the first term, using Assumption 9 ,

∇F (θk)>Ck∇F (θk) ≥ λmin(Ck)‖∇F (θk)‖22 ≥ µk+1‖∇F (θk)‖22.

On the other hand, using Assumption 8, there exist 0 ≤ L, σ2 <∞ such that almost surely

∀k ∈ N, Ek
[
‖g(θk, ξk+1)‖22

]
≤ 2L (F (θk)− F ?) + σ2.

Inject these bounds in the previous inequality and substract F (θ?) on both sides to have

Ek [F (θk+1)− F ?] ≤ (1 + LLu2
k+1)(F (θk)− F ?)− vk+1‖∇F (θk)‖22 + (L/2)u2

k+1σ
2.

Introduce Vk = F (θk)−F ?,Wk = vk+1‖∇F (θk)‖22, ak = LLu2
k+1 and bk = (L/2)u2

k+1σ
2. These four random

sequences are non-negative Fk-measurable sequences with
∑
k ak < ∞ and

∑
k bk < ∞ almost surely.

Moreover we have

∀k ∈ N, E [Vk+1|Fk] ≤ (1 + ak)Vk −Wk + bk.

We can apply Robbins-Siegmund Theorem 6 to have

(a)
∑
k≥0

Wk <∞ a.s. (b) Vk
a.s.−→ V∞,E [V∞] <∞. (c) sup

k≥0
E [Vk] <∞.

Therefore we have the almost sure convergence of the series
∑
vk+1‖∇F (θk)‖22 which, given that

lim supk νk/µk exists, implies that
∑
uk+1‖∇F (θk)‖22 is finite. Hence we obtain (i) in Lemma 1. We now

show that (ii) in Lemma 1 is also valid. The term of interest is a sum of martingale increments. The
quadratic variation is given by∑

t≥1
γ2
t Et[‖Ct−1(gt−1(ω)−∇f(θt−1(ω)))‖22] ≤

∑
t≥1

γ2
t ν

2
t Et[‖(gt−1(ω)−∇F (θt−1(ω)))‖22]

≤
∑
t≥1

γ2
t ν

2
t Et[‖gt−1(ω)‖22]

≤
∑
t≥1

γ2
t ν

2
t (2L(F (θt−1)− F ?) + σ2).
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Now we can use that Vk = F (θk) − F ? a.s.−→ V∞ (which was deduced from Robbins-Siegmund Theorem) to
obtain that the previous series converges. Invoking Theorem 2.17 in Hall & Heyde (1980), we obtain (ii) in
Lemma 1. Furthermore we can prove that θk+1 − θk → 0 almost surely and in L2. Indeed, we have

E
[
‖θk+1 − θk‖22

]
= E

[
‖γk+1Ckg(θk, ξk+1‖22

]
≤ u2

k+1
(
2L (F (θk)− F ?) + σ2) .

In virtue of the almost sure convergence of Vk = F (θk) − F ?, the last term in parenthesis is upper
bounded by a constant so that in view of the convergence of

∑
u2
k+1, we have the convergence of the

series
∑

E
[
‖θk+1 − θk‖22

]
. We then deduce that E

[
‖θk+1 − θk‖22

]
→ 0 and

∑[
‖θk+1 − θk‖22

]
< +∞ almost

surely. In particular, θk+1 − θk → 0 in L2 and almost surely. The last point follows from the fact that, for
every δ > 0,

lim
n→∞

P
(

sup
k≥n
‖θk+1 − θk‖ ≥ δ

)
≤ δ−2 lim

n→∞

∑
k≥n

E
[
‖θk+1 − θk‖22

]
= 0.

A.3 Proof of Corollary 2

First observe that since F is coercive, the convergence of (F (θk)) obtained by Robbins-Siegmund theorem
implies that the sequence of iterates (θk)k≥0 remains in a compact subset K ⊂ Rd. Let ε > 0. Since
θ 7→ d(θ,S) is continuous, the set D(ε) = {θ ∈ Rd : d(θ,S) ≥ ε} is closed and the set K(ε) = K ∩ D(ε) is
compact. On this set, the map θ 7→ ‖∇F (θ)‖2 is stricly positive and there exists ηε > 0 such that: θ ∈ K(ε)⇒
‖∇F (θ)‖2 > ηε. Thus, P(θ ∈ K(ε)) ≤ P(‖∇F (θ)‖2 > ηε) and this last quantity goes to zero which proves
the convergence in probability d(θk,S)→ 0. Actually the almost sure convergence ∇F (θk)→ 0 implies the
convergence of the distances. Define Ak(ε) = {ω : θk(ω) ∈ K(ε)} and Bk(ε) = {ω : ‖∇F (θk(ω))‖2 > ηε}.
We have Ak(ε) ⊂ Bk(ε) then ∪n≥1 ∩k≥n Ak(ε) ⊂ ∪n≥1 ∩k≥n Bk(ε). Conclude by using the almost sure
convergence P(∪n≥1 ∩k≥n Bk(ε)) = 0 for each ε > 0. If S is finite, it is in particular a compact set so the
distance is attained for every k ≥ 0, d(θk,S) = mins∈S d(θk, s) → 0. Since θk+1 − θk → 0, the sequence of
iterates can only converge to a single point of S.

B Practical procedure

For the sake of completeness, the aim of this Section is to derive a feasible procedure that achieves the
optimal asymptotic variance described in Corollary 1. First, we present a practical way to compute the
conditioning matrix Ck and then we show that the resulting algorithm satisfies the high-level conditions of
Theorem 2. This method is considered in a numerical illustration along with a novel variant of AdaGrad.

B.1 Construction of the conditioning matrix Ck

Similarly to the unavailability of gradients, one may not have access to values of the Hessian matrix but
only stochastic versions of it (see details in numerical experiments below). As a consequence, we consider
the following framework which involves random Hessian matrices. As for gradients, a policy (P ′k)k≥0 is used
at each iteration to produce random Hessians through H(θk, ξ′k+1) with ξ′k+1 ∼ P ′k.
Assumption 10 (Unbiased and bounded Hessians). The Hessian generator H : Rd×S → Rd×d is uniformly
bounded around the minimizer and is such that for all θ ∈ Rd, H(θ, ·) is measurable and we have:
∀k ≥ 0, E

[
H(θk, ξ′k+1)|Fk

]
= ∇2F (θk).

An estimate of the Hessian matrix H = ∇2F (θ?) is now introduced as the weighted average

Φk =
k∑
j=0

ωj,kH(θj , ξ′j+1) with
k∑
j=0

ωj,k = 1. (22)

The previous estimate has two advantages. First, thanks to averaging, the noise associated to each evaluation
H(θj , ξ′j+1) will eventually vanished due to the sum of martingale increments. Second, the weights ωj,k may
help to give more importance to most recent iterates. In the idea that θk lies near θ? eventually, it might be
helpful to reduce the bias when estimating H = ∇2F (θ?).
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Proposition 2. Let (Φk)k≥0 be obtained by (22). Suppose that Assumptions 3 and 10 are fulfilled and that
θk → θ? a.s. If sup0≤j≤k ωj,k = O(1/k), then we have Φk → H = ∇2F (θ?) a.s.

A natural choice is to take equal weights ωj,k = (k+ 1)−1. However, since the last iterates are more likely to
bring more relevant information through their Hessian estimates, we advocate the use of adaptive weights of
the form ωj,k ∝ exp(−η‖θj−θk‖1) with a parameter η ≥ 0 that recovers equal weights with η = 0. These two
weights sequences satisfy the assumption of Proposition 2. They are considered in the numerical illustration
of the next Section. While inverting Φk would produce a simple estimate of H−1, such an approach might
result in a certain instability in practice caused by large jumps towards wrong directions (large eigenvalues)
or a too restrictive visit along other components (vanishing eigenvalues). To overcome this issue, we rely
on the following filter which clamps the eigenvalues of a symmetric matrix. For any symmetric matrix S
and two positive numbers 0 < a < b, denote by S[a, b] the associated matrix where all the eigenvalues are
clamped to [a, b], i.e., any eigenvalue λ of S is modified as λ← max{a,min{λ, b}}.

Let (λ(m)
k )k≥1 and (λ(M)

k )k≥1 be two sequence of positive numbers such that λ(m)
k ≤ λ

(M)
k for all k ≥ 1.

Define the matrices

∀k ∈ N, Ck =
(

Φk[(λ(M)
k+1)−1, (λ(m)

k+1)−1]
)−1

. (23)

Such a definition guarantees two properties. First, Ck ∈ S++
d (R) with λ

(m)
k+1Id � Ck � λ

(M)
k+1Id. Second,

in virtue of Proposition 2, Φk → H a.s. so that, as soon as (λ(m)
k )k≥1 and (λ(M)

k )k≥1 go to 0 and +∞
respectively, the matrix Ck converges almost surely to H−1 (as recommended by Corollary 1). Therefore,
we obtain a feasible procedure leading to asymptotic optimality.
Theorem 5 (Asymptotic optimality of the iterates). Let (θk)k≥0 be obtained by conditioned SGD (2) with
γk = 1/k, Φk defined by (22), λ(m)

k → 0, λ(M)
k → +∞ and Ck given by (23). Suppose that Assumptions 1 to

9 are fulfilled and sup0≤j≤k ωj,k = O(1/k). We have
√
k(θk − θ?) N (0, H−1ΓH−1), as k →∞.

This algorithm is theoretically asymptotically optimal. However in practice, adaptive gradient methods
described in Table 1 have become the workhorse for training deep learning models as they take advantage
of low rank-approximations and diagonal scalings. Interestingly, the conditioned matrices involved in these
methods are linked to gradient estimates and thus to covariance matrices Γk (see Assumption 4) rather than
the Hessian H. Indeed, since θ? ∈ S, we have for the limiting covariance Γ = Eξ[g(θ?, ξ)g(θ?, ξ)>]. Consider
a variant of AdaGrad which accumulates the average gradients Gk = δI+ (1/k)

∑k
i=1 gig

>
i and Ck = G

−1/2
k .

Averaging allows to anneal the stochastic noise of the gradient estimate. By the law of large numbers, the
limiting matrix in our Theorem 2 will be C = (Γ + δI)−1/2.

B.2 Numerical illustration

Consider the empirical risk minimization framework applied to Generalized Linear Models. Given a data
matrix X = (xi,j) ∈ Rn×d with labels y ∈ Rn and a regularization parameter λ > 0, we are interested in
solving minθ∈Rd F (θ) with

F (θ) = 1
n

n∑
i=1

fi(θ), fi(θ) = L(x>i θ, yi) + λΩ(θ),

L : R×R→ R is smooth loss function and Ω : Rd → R+ is a smooth convex regularizer chosen as Tikhonov
regularization Ω(θ) = 1

2‖θ‖
2
2. The gradient and Hessian of each component fi are given for all i = 1, . . . , n

by

∇fi(θ) = L′(x>i θ, yi)xi + λθ

∇2fi(θ) = L′′(x>i θ, yi)xix>i + λId,
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where L′(·, ·) and L′′(·, ·) are the first and second derivative of L(·, ·) with respect to the first argument.
Consider two well-known losses, namely least-squares and logistic. These losses are respectively associated
to the Ridge regression problem with y ∈ Rn and the binary classication task with y ∈ {−1,+1}n. The
regularization parameter is set to the classical value λ = 1/n. Denote by σ(z) = 1/(1+exp(−z)) the sigmoid
function, we have the following closed-form equations

(Ridge Regression) L(x>i θ, yi) = 1
2 (yi − x>i θ)2

L′(x>i θ, yi) = x>i θ − yi
L′′(x>i θ, yi) = 1

(Logistic Regression) L(x>i θ, yi) = log(1 + exp(−yix>i θ))
L′(x>i θ, yi) = σ(x>i θ)− yi
L′′(x>i θ, yi) = σ(x>i θ)(1− σ(x>i θ))

As stated in Example 1 of Section 2, stochastic versions of both the gradient and the Hessian of the objective
F can be easily computed using only a batch B ⊂ {1, . . . , n} of data and ∇BF (θ) =

∑
i∈B ∇fi(θ)/|B| (resp.

∇2
BF (θ) =

∑
i∈B ∇2fi(θ)/|B|) for the gradient (resp. Hessian) estimate. Note that these random generators

meet Assumptions 1 and 10 as they produce unbiased estimates of the gradient and the Hessian matrix
respectively.

For the sake of completeness and illustrative purposes, we compare the performance of classical stochastic
gradient descent (sgd) and the conditionned variant (csgd) presented in Appendix B where the matrix
Φk is an averaging of past Hessian estimates as given in Equation (22). We shall compare equal weights
ωj,k = (k + 1)−1 and adaptive weights ωj,k ∝ exp(−η‖θj − θk‖1) with η > 0 to give more importance to
Hessian estimates associated to iterates which are closed to the current point. Furthermore, for computational
reason, we consider a novel adaptive stochastic first-order method which is a variant of Adagrad.

Starting from the null vector θ0 = (0, . . . , 0) ∈ Rd, we use optimal learning rate of the form γk = α/(k+ k0)
(Bottou et al., 2018) and set λ(m)

k ≡ 0, λ(M)
k = Λ

√
k in the experiments where γ, k0 and Λ are tuned using

a grid search. The means of the optimality ratio k 7→ [F (θk) − F (θ?)]/[F (θ0) − F (θ?)], obtained over 100
independent runs, are presented in Figures below.

Methods in competition. The different methods in the experiments are:

• sgd: standard stochastic gradient descent.

• sgd_avg: Polyak-averaging stochastic gradient descent , with a burn-in period (n0 = 15 for d = 20
and n0 = 30 for d = 100) to avoid the poor performance of bad initialization.

• csgd(η = 0) and csgd(η > 0): conditioned stochastic gradient descent methods with equal and
adaptive weights where the matrix Φk is an averaging of past Hessian estimates as given in Equation
(22).

• adafull_avg: The variant of Adagrad presented in Appendix B where the gradient matrix Gk is
updated as an average Gk = δI + (1/k)

∑k
i=1 gig

>
i and Ck = G

−1/2
k instead of the cumulative sum

provided in the literature of Adagrad. Note that averaging here allows to anneal the stochastic noise
whereas classical versions of Adagrad often rely on true gradients and may use cumulative sums.
The parameter δ is also tuned using a grid search.

We focus on Ridge regression on simulated data with n = 10, 000 samples in dimensions d ∈ {20; 100}.
Stochastic gradient methods are known to greatly benefit from mini-batch instead of picking a single random
sample when computing the gradient estimate. We use a batch-size equal to |B| = 16. In Figure 1, we can
see that conditioned SGD outperforms standard SGD. Furthermore, adaptive weights (η > 0) improve the
convergence speed of conditioned SGD methods. Interestingly, the novel approach adafull_avg offers great
performance at a cheap computing cost. Indeed, the update of Ck+1 relies on the inverse of an average. This
operation can be carried out in an efficient way thanks to Woodbury matrix identity.

Real-world data. We now turn our attention to real-world data and consider again the Ridge regression
problem on the following datasets: Boston Housing dataset (Harrison Jr & Rubinfeld, 1978) (n = 506; d = 14)
and Diabetes dataset (Dua & Graff, 2017) (n = 442; d = 10).
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(a) Ridge d = 20
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(b) Ridge d = 100

Figure 1: Optimality ratio k 7→ [F (θk) − F (θ?)]/[F (θ0) − F (θ?)] for Ridge regression in dimension d ∈
{20; 100}.

• Boston Housing dataset (Harrison Jr & Rubinfeld, 1978): This dataset contains information collected
by the U.S Census Service concerning housing in the area of Boston Mass. It contains n = 506
samples in dimension d = 14.

• Diabetes dataset (Dua & Graff, 2017): Ten baseline variables, age, sex, body mass index, average
blood pressure, and six blood serum measurements were obtained for each of n = 442 diabetes
patients, as well as the response of interest, a quantitative measure of disease progression one year
after baseline.

The means of the optimality ratio k 7→ [F (θk)−F (θ?)]/[F (θ0)−F (θ?)], obtained over 100 independent runs,
are presented in Figure 2. Once again, the conditioned SGD methods offer better performance than plain
SGD. For these datasets, it is the conditioning matrix with adaptive weights as given in Equation (22) which
presents the best results.
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Figure 2: Optimality ratio k 7→ [F (θk)−F (θ?)]/[F (θ0)−F (θ?)] for Ridge regression on datasets Boston and
Diabetes.
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C Auxiliary results

C.1 Robbins-Siegmund Theorem

Theorem 6. (Robbins & Siegmund (1971)) Consider a filtration (Fn)n≥0 and four sequences of random
variables(Vn)n≥0 , (Wn)n≥0 , (an)n≥0 and (bn)n≥0 that are adapted and non-negative. Assume that almost
surely

∑
k ak < ∞ and

∑
k bk < ∞. Assume moreover that E [V0] < ∞ and for all n ∈ N, E[Vn+1|Fn] ≤

(1 + an)Vn −Wn + bn. Then it holds

(a)
∑
k

Wk <∞ a.s. (b) Vn
a.s.−→ V∞,E [V∞] <∞. (c) sup

n≥0
E [Vn] <∞.

C.2 Auxiliary lemmas

Lemma 2. Let (un)n≥1, (vn)n≥1 and (γn)n≥1 be non-negative sequences such that γn → 0 and
∑
n γn = +∞.

Assume that there exists a real number m ≥ 1 and j ≥ 1 such that for all n ≥ j, un ≤ (1−γn)mun−1+γnvn.
Then it holds that lim sup

n→+∞
un ≤ lim sup

n→+∞
vn.

Proof. Denote x+ = max(x, 0). One has (x+ y)+ ≤ x+ + y+. Set ε > 0 and v = lim supn vn + ε. Then there
exists an integer N ≥ 1 such that (1− γn)m ≤ (1− γn) and vn < v, i.e., (vn − v)+ = 0 for n ≥ N . We have
for large enough n ≥ N ∨ j,

un − v ≤ (1− γn)(un−1 − v) + γn(vn − v),

and taking the positive part gives

(un − v)+ ≤ (1− γn)(un−1 − v)+ + γn(vn − v)+ = (1− γn)(un−1 − v)+.

Since
∑
n γn = +∞, this inequality implies that (un − v)+ tends to zero, but this is true for all ε > 0 so v

is arbitrarily close to lim supn vn and the result follows.

Lemma 3. Let (γn)n≥1 be a non-negative sequence converging to zero, and λ,m and p three real numbers
with λ > 0,m ≥ 1, p ≥ 0. Consider two non-negative sequences (xn), (εn) and an integer j ≥ 1 such that

∀n ≥ j, xn = (1− λγn)mxn−1 + γp+1
n εn,

i.e., xn =
n∏
i=j

(1− λγi)mxj−1 +
n∑
k=j

γp+1
k

(
n∏

i=k+1
(1− λγi)m

)
εk.

The following holds
• if γn = n−β , β ∈ (1/2, 1), then for any p

lim sup
n→+∞

xn
γpn
≤ 1
mλ

lim sup
n→+∞

εn.

• if γn = 1/n, then for any p < mλ

lim sup
n→+∞

xn
γpn
≤ 1
mλ− p

lim sup
n→+∞

εn.

In particular, when εn → 0 with j = 1 and x0 = 0,

lim
n→+∞

n∑
k=1

γk

n∏
i=k+1

(1− λγi)mεk = 0,

(mλ > 1) lim
n→+∞

1
γn

n∑
k=1

γ2
k

n∏
i=k+1

(1− λγi)mεk = 0.
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Before proving this result, note that if we consider γn = γ/nβ then we can write

xn = (1− λγn)mxn−1 + γp+1
n εn = (1− (λγ)n−β)mxn−1 + (n−β)p+1(γp+1εn)

and apply the result with λ̃ = γλ and ε̃n = γp+1εn.

Proof. We apply Lemma 2 to the sequence un = xn
γpn

. We have for all n ≥ j,

un = 1
γpn

(
(1− λγn)mxn−1 + γp+1

n εn
)

=
(
γn−1

γn

)p
(1− λγn)mun−1 + γnεn

= exp
(
p log

(
γn−1

γn

)
+m log(1− λγn)

)
un−1 + γnεn.

Define

λn = 1
γn

(
1− exp

(
p log

(
γn−1

γn

)
+m log(1− λγn)

))
,

so we get the recursion equation

∀n ≥ j, un = (1− λnγn)un−1 + λnγn
εn
λn
.

• if γn = n−β , β ∈ (1/2, 1) then 1/γn − 1/γn−1 → 0 and the ratio γn−1/γn tends to 1 with

log
(
γn−1

γn

)
=
(
γn−1

γn
− 1
)

(1 + o(1)) = γn−1

(
1
γn
− 1
γn−1

)
(1 + o(1)) = o(γn).

Besides, m log(1− λγn) = −mλγn + o(γn) when n→ +∞ and we get

λn = 1
γn

[1− exp (−mλγn + o(γn))] ,

which implies that λn converges to mλ. We conclude with Lemma 2.
• if γn = 1/n then the ratio γn−1/γn tends to 1 with

log
(
γn−1

γn

)
= log

(
1 + 1

n− 1

)
= γn + o(γn).

We still have m log(1− λγn) = −mλγn + o(γn) when n→ +∞ and therefore

λn = 1
γn

[1− exp ((p−mλ)γn + o(γn))] ,

which implies λn converges to (mλ− p) and we conclude in the same way.

Lemma 4. Let A,B ∈ S++
d (R) then the eigenvalues of AB are real and positive with Sp(AB) ⊂

[λmin(A)λmin(B);λmax(A)λmax(B)].

Proof. Denote by
√
B the unique positive square root of B. The matrix AB is similar to the real symmetric

positive definite matrix
√
BA
√
B. Therefore its eigenvalues are real and positive. Since A 7→ λmax(A) is

a sub-multiplicative matrix norm on S++
d (R), λmax(AB) ≤ λmax(A)λmax(B) which gives λmax((AB)−1) ≤

λmax(A−1)λmax(B−1), i.e., λmin (AB)−1 ≤ λmin(A)−1λmin(B)−1, and finally λmin(A)λmin(B) ≤ λmin (AB) .
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Lemma 5. Let S ∈ S++
d (R) be a real symmetric positive definite matrix. Let (γk)k≥1 be a positive decreasing

sequence converging to 0 such that
∑
k γk = +∞. Denote by λm the smallest eigenvalue of S. It holds that

there exists j ≥ 1 such that for any k > j, all the eigenvalues of the real symmetric matrix Ak = I − γkS
are positive and we have

ρ(Πn) = ρ(An . . . A1) n→+∞−→ 0,

∀k > j, ρ(Πn,k) = ρ(An . . . Ak+1) ≤
n∏

i=k+1
(1− γiλm).

Proof. For any k ∈ N, the eigenvalues of the real symmetric matrix Ak = I − γkS are given by Sp(Ak) =
{(1− γkλ), λ ∈ Sp(S)}. Since γk → 0, there exists j ≥ 1 such that γkλm < 1 for all k > j. Therefore for any
k > j, we have Sp(Ak) ⊂ R?+ and the largest eigenvalue is ρ(Ak) = 1− γkλm. Since ρ is a sub-multiplicative
norm for real symmetric matrices, we get ρ(Πn) ≤

∏n
k=1 ρ(Ak) =

∏j
k=1 ρ(Ak)

∏n
k=j+1 ρ(Ak). The second

product can be upper bounded with the convexity of exponential,
n∏

k=j+1
ρ(Ak) =

n∏
k=j+1

(1− γkλm) ≤
n∏

k=j+1
exp (−γkλm) = exp (−λm(τn − τj))

n→+∞−→ 0.

Similarly we have for all k > j, ρ(Πn,k) ≤
∏n
i=k+1 ρ(Ai) ≤

∏n
i=k+1(1− γiλm).

Lemma 6. Let γn = αn−β with β ∈ (1/2, 1] then it holds

(β < 1)
n∑
k=1

γk ∼
nγn

1− β = α

1− βn
1−β , (β = 1)

n∑
k=1

γk ∼ α log(n).

Proof. By series-integral comprison,
∫ n+1

1 t−βdt ≤
∑n
k=1 k

−β ≤ 1 +
∫ n

1 t−βdt.

Theorem 7. (Delyon & Portier, 2021, Theorem 17)(Freedman inequality) Let (Xj)1≤j≤n be random vari-
ables such that E[Xj |Fj−1] = 0 for all 1 ≤ j ≤ n then, for all t ≥ 0 and v,m > 0,

P

∣∣∣ n∑
j=1

Xj

∣∣∣ ≥ t, max
j=1,...,n

|Xj | ≤ m,
n∑
j=1

E
[
X2
j | Fj−1

]
≤ v

 ≤ 2 exp
(
− t2/2
v + tm/3

)
.

Lemma 7. Let A ∈ Rn×n be a symmetric positive semi-definite matrix. Then for any B ∈ Rm×n, the
matrix BAB> ∈ Rm×m is symmetric positive semi-definite.

Proof. First note that (BAB>)> = (B>)>A>B> = BAB> because A is symmetric. Then for any vector
x ∈ R, we have x>(BAB>)x = (B>x)>A(B>x) ≥ 0 since A is positive semi-definite.

Proposition 3. (Khalil, 2002, Theorem 4.6) Let H be a positive definite matrix and Γ a symmetric positive
definite matrix of same dimension. Then there exists a symmetric positive definite matrix Σ, unique solution
of the Lyapunov equation HΣ + ΣH> = Γ, which is given by Σ =

∫ +∞
0 e−tHΓe−tH>dt.

The results remains true if the matrix Γ is only symmetric positive semi-definite: in that case the matrix Σ
is also symmetric positive semi-definite and is the solution of the Lyapunov equation.

C.3 Additional propositions

This section gathers the proofs of Proposition 1 about the optimal choice for the conditioning matrix and of
Proposition 2 about the almost sure convergence of the conditioning matrices.

Proposition 1. The choice C? = H−1 is optimal in the sense that ΣC∗ � ΣC , ∀C ∈ CH . Moreover,
ΣC? = H−1ΓH−1.
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Proof. Define ∆C = ΣC −H−1ΓH−1 and check that ∆C satisfies

(CH − Id/2) ∆C + ∆C (CH − Id/2)> = (C −H−1)Γ(C −H−1).

Because Γ is symmetric positive semi-definite, we have using Lemma 7 that the term on the right side is
symmetric positive semi-definite. Therefore, in view of Proposition 3, we get that ∆C is symmetric positive
semi-definite ∆C � 0 which implies ΣC � H−1ΓH−1 for all C ∈ CH . The equality is reached for C? = H−1

with ∆C = 0,ΣC? = H−1ΓH−1.

Proposition 2. Let (Φk)k≥0 be obtained by (22). Suppose that Assumptions 3 and 10 are fulfilled and that
θk → θ? almost surely . If sup0≤j≤k ωj,k = O(1/k), then we have Φk → H = ∇2F (θ?) almost surely.

Proof. We use the decomposition

Φk −H =
k∑
j=0

ωj,k
(
∇2F (θj)−H

)
+

k∑
j=0

ωj,k
(
H(θj , ξ′j+1)−∇2F (θj)

)
.

The continuity of ∇2F at θ? and the fact that θj → θ? a.s. implie that
∥∥∇2F (θj)−H

∥∥ → 0 a.s. Since
sup0≤j≤k ωj,k = O(1/k), there exists a > 0 such that∥∥∥∥∥∥

k∑
j=0

ωj,k
(
∇2F (θj)−H

)∥∥∥∥∥∥ ≤ a

k + 1

k∑
j=0

∥∥∇2F (θj)−H
∥∥ ,

which goes to 0 in virtue of Cesaro’s Lemma, therefore limk→∞
∑k
j=0 ωj,k

(
∇2F (θj)−H

)
= 0. The second

term is a sum of martingale increments and shall be treated with Freedman inequality and Borel-Cantelli
Lemma. Introduce the martingale increments

∀0 ≤ j ≤ k, Xj+1,k = ωj,k
(
H(θj , ξ′j+1)−∇2F (θj)

)
.

For a fixed k, we have Xj+1,k =
(
x

(i,l)
j+1

)
1≤i,l≤d

where we remove the index k for the sake of clarity. Because
the Hessian generator is unbiased, we have for all coordinates

E
[
x

(i,l)
j+1|Fj

]
= 0 for all 0 ≤ j ≤ k.

By definition of the Hessian generator and using that (∇2F (θj)) is bounded, we get that∥∥H(θj , ξ′j+1)−∇2F (θj)
∥∥ = O(1) for all j ≥ 0. For any b > 0, consider the following event

Ωb =
{

sup
k≥0

max
j=0,...,k

(k + 1)
∣∣∣x(i,l)
j+1

∣∣∣ ≤ b} ,
and note that since ωj,k = O(1/k) we have P(Ωb)→ 1 as b→∞. On this event, the martingale increments
and the variance term are bounded as

max
j=0,...,k

∣∣∣x(i,l)
j+1

∣∣∣ ≤ b(k + 1)−1,

k∑
j=0

E
[(
x

(i,l)
j+1

)2
| Fj

]
≤ b2(k + 1)−1.

Using Freedman inequality (Theorem 7), we have for all coordinates i, l = 1, . . . , d,

P

∣∣∣∣∣∣
k∑
j=0

x
(i,l)
j+1

∣∣∣∣∣∣ > ε,Ωb

 ≤ 2 exp
(
−ε

2(k + 1)
2b(b+ ε)

)
.

The last term is the general term of a convergent series. Apply Borel-Cantelli Lemma (Borel, 1909) to
finally get almost surely on Ωb that limk→∞

∑k
j=0 x

(i,l)
j+1 = 0. Since b > 0 is arbitrary and P(Ωb) → 1 when
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b→∞, we have almost surely limk→∞
∑k
j=0 x

(i,l)
j+1 = 0. This is true for all the coordinates of the martingale

increments and therefore

lim
k→∞

k∑
j=0

ωj,k
(
H(θj , ξ′j+1)−∇2F (θj)

)
= 0 a.s.

C.4 Auxiliary results on expected smoothness

The following Lemma gives sufficient conditions to meet the weak growth condition on the stochastic noise
as stated in Assumption 8.
Lemma 8. Suppose that for all k ≥ 1, θ ∈ Rd, F (θ) = E [f(θ, ξk)|Fk−1] with ξk ∼ Pk−1. Assume that for
all ξk ∼ Pk−1, the function θ 7→ f(θ, ξk) is L-smooth almost surely and there exists m ∈ R such that for all
θ ∈ Rd, f(θ, ξk) ≥ m. Then a gradient estimate is given by g(θ, ξ) = ∇f(θ, ξ) and the growth condition of
Assumption 8 is satisfied with σ2 = 2L(F ? −m) and

∀θ ∈ Rd,∀k ∈ N, E
[
‖g(θ, ξk)‖22|Fk−1

]
≤ 2L (F (θ)− F ?) + σ2.

Proof. For all ξk ∼ Pk−1, Lipschitz continuity of the gradient θ 7→ ∇f(θ, ξk) implies (see Nesterov (2013))

f(y, ξk) ≤ f(θ, ξk) + 〈∇f(θ, ξk), y − θ〉+ (L/2)‖y − θ‖22.

Plug y = θ − (1/L)∇f(θ, ξk) and use the lower bound f(y, ξk) ≥ m to obtain

1
2L‖∇f(θ, ξk)‖22 ≤ f(θ, ξk)− f(y, ξk) ≤ f(θ, ξk)−m,

which gives,

‖g(θ, ξk)‖22 ≤ 2L (f(θ, ξk)− f(θ?, ξk)) + 2L (f(θ?, ξk)−m)

and conclude by taking the conditional expectation with respect to Fk−1.

The next Lemma links our weak growth condition with the notion of expected smoothness as introduced in
Gower et al. (2019). In particular, this notion can be extended to our general context where the sampling
distribution can evolve through the stochastic algorithm.
Lemma 9. (Expected smoothness) Assume that with probability one,

sup
k≥1

sup
x 6=x?

E
[
‖g(θ, ξk)− g(θ?, ξk)‖22|Fk−1

]
F (θ)− F ? <∞ and sup

k≥1
E
[
‖g(θ?, ξk)‖22|Fk−1

]
<∞.

Then there exist 0 ≤ L, σ2 <∞ such that

∀θ ∈ Rd,∀k ∈ N, E
[
‖g(θ, ξk)‖22|Fk−1

]
≤ 2L (F (θ)− F ?) + 2σ2.

Proof. For all θ ∈ Rd and all k ∈ N, we have

‖g(θ, ξk)‖22 = ‖g(θ, ξk)− g(θ?, ξk) + g(θ?, ξk)‖22
≤ 2‖g(θ, ξk)− g(θ?, ξk)‖22 + 2‖g(θ?, ξk)‖22.

Using the expected smoothness, with probability one, there exists 0 ≤ L <∞ such that

E
[
‖g(θ, ξk)− g(θ?, ξk)‖22|Fk−1

]
≤ L (F (θ)− F ?) .

Since the noise at optimal point is almost surely finite there exists 0 ≤ σ2 <∞ such that

E
[
‖g(θ?, ξk)‖22|Fk−1

]
≤ σ2,

which allows to conclude by taking the conditional expectation.
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