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Abstract
Sparse phase retrieval aims to reconstruct an n-
dimensional k-sparse signal from its phaseless
measurements. For most of the existing recon-
struction algorithms, their sampling complexity is
known to be dominated by the initialization stage.
In this paper, in order to improve the sampling
complexity for initialization, we propose a novel
method termed exponential spectral pursuit (ESP).
Theoretically, our method offers a tighter bound
of sampling complexity compared to the state-of-
the-art ones, such as the truncated power method.
Moreover, it empirically outperforms the existing
initialization methods for sparse phase retrieval.

1. Introduction
Phase retrieval aims to reconstruct a signal x from the mea-
surements y = [y1, · · · , ym]⊤, where

yi = |a∗ix|, i = 1, 2, · · · ,m, (1)

and ai ∈ Cn is the measurement vector. This problem arises
in many fields of science and engineering (Bunk et al., 2007;
Millane, 1990; Shechtman et al., 2015; Zhang & Liang,
2016). For example, in astronomical imaging (Dainty &
Fienup, 1987; Guo et al., 2021), phase retrieval was em-
ployed to reconstruct high-resolution images from telescope
observations. While in electron microscopy (Miao et al.,
2008; Varnavides et al., 2023; Yu et al., 2010), it was used
to enhance the contrast and resolution of images. Generally,
if the number of samples equals the dimension of the target
signal, there will exist multiple non-trivial solutions (Bates,
1982; Bruck & Sodin, 1979; Hayes, 1982; Hofstetter, 1964)
to (1), making it highly ill-posed. Approaches to overcome
this under-determined issue mainly include using more mea-
surements (Bendory & Eldar, 2017; Candès et al., 2015a;
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Fu et al., 2021; Goldstein & Studer, 2018), or imposing
prior knowledge of the target signal, such as sparsity and
so forth (Cai et al., 2016; Ohlsson et al., 2012; Tong et al.,
2021; Xu et al., 2024; Zhang et al., 2022).

With the great success of random matrix theory in the field of
compressive sensing (Candes & Tao, 2005; Donoho, 2006),
it has been proposed to introduce random Gaussian measure-
ments in phase retrieval. For example, Candès et al. (2015b)
considered complex random Gaussian measurements and
solved the complex system via a gradient descent-like ap-
proach. Specifically, it starts from a careful initialization via
spectral method, while refining this solution iteratively by
means of an greedy principle. Theoretical analysis indicates
that at least

m = Ω(n log n)1 (2)

samples are required in order to recover x exactly.

In many practical scenarios, the target signal is naturally
sparse (such as images and radio signals), offering poten-
tial to obtain a lower sampling complexity by exploiting
sparsity (Moravec et al., 2007). Indeed, Eldar & Mendel-
son (2014); Truong & Scarlett (2020) showed that, in order
to recover an n-dimensional k-sparse signal (i.e., with at
most k non-zero entries) from its magnitude-only Gaussian
measurements, the information-theoretic bound of sampling
complexity is

m = Ω(k log n), (3)

which is significantly lower than (2). However, practical
algorithms for sparse phase retrieval, such as AltMin (Ne-
trapalli et al., 2015), SPARTA (Wang et al., 2018), and
SWF (Yuan et al., 2019), still require

m = Ω(k2 log n) (4)

samples to perform the recovery task.

The difference between (3) and (4) is known as the
statistical-to-computational gap, which results from the ini-
tialization stage. In particular, algorithms like SPARTA and

1Throughout this paper, we use Ω(·) for asymptotic lower
bound and Θ(·) for both asymptotic lower bound and upper bound,
i.e., m = Ω(f(s)) means |m/f(s)| ≤ C for some universal con-
stant C > 0 when s is sufficient large, while m = Θ(f(s)) means
C′ ≤ |m/f(s)| ≤ C′′ for some universal constant C′, C′′ > 0 in
the case when s is sufficient large.
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SWF require (4) to obtain a good estimate within the δ-
neighborhood of the target signal x. Whereas in the iterative
stage, they only need

m = Ω(k log n) (5)

samples to reconstruct x exactly. The difference of sampling
complexity between the initialization and iterative stages
also happens to SAM (Cai et al., 2022a), HTP (Cai et al.,
2022b), CoPRAM (Jagatap & Hegde, 2019), and so forth.
To date, the sampling complexity of practical phase retrieval
algorithms has been dominated by the initialization stage.

Recently, Wu and Rebeschini (Wu & Rebeschini, 2021)
presented a new method called Hadamard WF (HWF) for
initialization. They suggested that the sampling complexity
of initialization can be reduced, depending on the maximum
and minimum magnitudes of non-zeros in x, denoted by
|xmax| and |xmin|, respectively. In particular, when |xmin|
is on the order of ∥x∥√

k
, the sampling complexity in the ini-

tialization stage is

m = Ω

(
max

{
∥x∥2

|xmax|2
k log n,

∥x∥
|xmax|

√
k log3 n

})
.

(6)
Thus, if |xmax| is on the order of ∥x∥, the cost for initializa-
tion can be reduced to m = Ω(k log n) (ignoring the log3 n
term), which matches the information-theoretical bound (3).

More recently, Cai et al. (2022c) relaxed the condition on
|xmin| and proposed the truncated power (TP) method for
initialization. Specifically, TP uses the truncated spectrum

Y =

m∑
j=1

yj
21(η1∥x∥ ≤ yj ≤ η2∥x∥)aja∗j , (7)

where η1 and η2 are pre-specified hyper-parameters. They
suggested that given the sampling complexity in (6), TP pro-
duces a good initialization z falling into the δ-neighborhood
of x, without relying on any assumption on |xmin|.

In this paper, with an aim of enhancing the result in (6),
we develop a new algorithm termed Exponential Spectral
Pursuit (ESP). By employing an exponential-based spectrum
(see (9)), ESP provides a δ-neighborhood initialization if

m = Ω

(
∥x∥2

|xmax|2
k log n

)
. (8)

The advantage of our ESP method is threefold. First of all,
it eliminates the log3 n term in (6), offering a tighter bound
of sampling complexity. Second, it needs not to tune hyper-
parameters (e.g., η1, η2 in (7)), making the algorithm easier
to implement than TP. Third, while the aforementioned
results are based solely on the real case, our result applies
to the complex case as well.

Algorithm 1 Exponential Spectral Pursuit

Input: sparsity k, samples y, and sampling matrix A.
Step 1: Search an index imax corresponding to the largest
diagonal element of L.
Step 2: Select an index set S corresponding to the most
significant k entries in the imax-th column of L.
Step 3: Use the principle eigenvector of LS as the esti-
mate of z ∈ Cn and re-scale it to ∥z∥ = λ.
Output: z.

The remainder of the paper is organized as follows. In Sec-
tion 2, we introduce our algorithm and provide detailed
interpretation for it. Section 3 contains theoretical analy-
ses for each step of Algorithm 1 and a discussion on the
results. Numerical simulations and analysis are conducted
in Section 4. Finally, we conclude our paper in Section 5.

2. Algorithm
Before we proceed to the details of our ESP method, we
first explain some notations used throughout this paper. De-
note [n] as the set {1, 2, · · · , n}. For a set S ⊆ [n], let
CS be the subspace of Cn spanned by vectors supported
on S, i.e., {x ∈ Cn|supp(x) ⊆ S}. Define aS as a vector
keeping all elements of a indexed by S while setting others
to zero. For any matrix A, define AS as the matrix which
keeps all rows and columns of A indexed by S and sets
others to zero. For any vector x ∈ Cn, denote x∗, ∥x∥,
and ∥x∥0 as its conjugate transpose, ℓ2- and ℓ0-norm, re-
spectively. As an extension of Gaussian random vector, we
define the n-dimensional complex Gaussian random vector
u ∈ CN (n) as u = R(u) + iI(u), where i is the imagi-
nary unity. R(u) and I(u) ∈ N (0, 12I) are independent
n-dimensional Gaussian random vectors.

Define a spectrum L ∈ Cn×n as follows:

L :=
1

m

m∑
j=1

(
1

2
− exp

(
−
y2j
λ2

))
aja

∗
j , (9)

where λ2 := 1
m

∑m
j=1 y

2
j . Then, we introduce the proposed

ESP method, which is composed of three steps: 1) diagonal
search, 2) support recovery, and 3) signal estimation, as
specified in Algorithm 1. In each step, L plays an important
role. Since L involves an interaction between random vec-
tors aj’s and variables y2j /λ

2’s, it is natural to consider the
expected version for analysis. However, precisely deriving
the expectation of L is challenging. An alternative is to
consider a proxy spectrum of L:

L̃ :=
1

m

m∑
j=1

(
1

2
− exp

(
−

y2j
∥x∥2

))
aja

∗
j , (10)
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which has a closed-form expectation (Gao & Xu, 2017)

E[L̃] =
xx∗

4∥x∥2
. (11)

Noting that λ2 is close to ∥x∥2 (Appendix Lemma B.1), we
can roughly view xx∗

4∥x∥2 as the expectation of L. Based on
this approximation, ESP can be interpreted as follows:

1) Step 1 searches an index imax corresponding to the
largest diagonal element of L. Denote fi as the i-th
diagonal entry of L. Then, its expectation can be approx-
imated by that of the i-th diagonal entry of L̃. By (11),
we have

E[fi] ≈ E[f̃i]
(11)
=

|xi|2

4∥x∥2
, (12)

which means that the most significant diagonal ele-
ment fimax

of L is roughly |xmax|2
4∥x∥2 . In fact, this suf-

fices to establish a relationship between |ximax
| and

|xmax|. As will be shown in Proposition 3.3, given
Ω( ∥x∥2

|xmax|2 k log n) samples, |ximax
| > 1

2 |xmax| holds
with high probability.

2) Step 2 aims to recover supp(x) based on the imax-th
column of L determined in Step 1. Ideally, it requires
the imax-th column of L to have elements supported on
supp(x) being more significant than those supported on
[n]\ supp(x). To analyze this condition, we consider
the expectation of the imax-th column of L, denoted by
E(Leimax

), where eimax
∈ Rn denotes a vector with the

imax-th entry being one and zero otherwise. As before,
we use E(L̃eimax) to approximate E(Leimax):

E(Leimax)i ≈ E(L̃eimax
)i

(11)
=

{
x∗
imax

xi

4∥x∥2 i ∈ supp(x)

0, i /∈ supp(x)
,

(13)
which indicates a non-trivial gap

x∗
imax

xi

4∥x∥2 for distinguish-
ing whether an index i ∈ supp(x) or not. However, if
some nonzero elements xi’s are extremely small (e.g.,
|xi| = Θ(∥x∥k5 )), this gap may be too small to identify
those i’s. To address this issue, we slightly modify the
goal of Step 2. Instead of recovering all support indices
in supp(x), we only choose those in

Sγ :=

{
j ∈ supp(x)

∣∣∣∣|xj | ≥ γ∥x∥
2
√
k

}
, (14)

where γ ∈ (0, 1) is a constant to be specified. In fact,
identifying Sγ already suffices to produce a good es-
timate of x in Step 3 (see Theorem 3.6), yet with an
improved sampling complexity compared to (6).

3) Step 3 is designed to produce a good estimate of x.
It is trivial that x is the principle eigenvector of xx∗.

Thus, based on the recovered support set S in Step 2,
we perform eigenvalue decomposition on LS and let z
be the principle eigenvector with ℓ2-norm re-scaled to
λ. As long as S contains sufficient number of support
indices x, z falls into the δ-neighborhood of x, implying
a good estimation of x (see Theorem 3.6).

We mention that the spectrum L has been studied thoroughly
for the generic phase retrieval problem (Gao & Xu, 2017). In
this paper, we extend it to sparse phase retrieval and propose
the ESP method for the initialization based on L. Both in
theory and practice, ESP is demonstrated to outperform the
state-of-the-art ones in the sparse scenario.

3. Main results
3.1. Preliminaries

In this section, we provide theoretical results and the corre-
sponding sketch proofs. Before we start, we first define the
distance between two complex vectors.

Definition 3.1. Let u ∈ Cn and v ∈ Cn be two complex
vectors. Then, the distance between u and v is

dist(u,v) = min
ϕ∈[0,2π)

∥u− eiϕv∥.

Based on this definition, a good initialization z falling into
the δ-neighborhood of x satisfies

dist(x, z) < δ∥x∥. (15)

In the analyses of phase retrieval algorithms, (15) is often
the goal of initialization and also the prerequisite for the
iterative refining stage; See, e.g., (Wang et al., 2018).

In the following, we introduce the definition of the k-sparse
spectral norm of L, which is useful for analyzing the eigen-
value decomposition on LS in Step 3.

Definition 3.2. Let L ∈ Cn×n. Define the k-sparse spectral
norm of L as

τ(L, k) = max{|λmax(L, k)|, |λmin(L, k)|}, (16)

where λmax(L, k) = maxu∈Cn,∥u∥=1,∥u∥0≤k u
∗Au and

λmin(L, k) = minu∈Cn,∥u∥=1,∥u∥0≤k u
∗Lu, i.e., the

largest and smallest k-sparse eigenvector of L, respectively.

Next, we provide theoretical results for ESP. The fraction

s :=
|xmax|2

∥x∥2
(17)

characterizing the distribution of nonzero elements in x
plays an important role in our results.
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3.2. Step 1: Diagonal search

In Step 1 of Algorithm 1, we search a single index imax

corresponding to the largest diagonal element of L. The
following proposition quantitatively characterizes the rela-
tionship between |ximax

| and |xmax|.
Proposition 3.3. Consider Step 1 of the ESP algorithm. If
m ≥ C

s2 log n, then with probability at least 1− e−cm,

|ximax | >
|xmax|

2
, (18)

where c, C are constants.

Throughout the paper, we follow the convention that letters c
and C, and their indexed versions (e.g., c1) indicate positive,
universal constants that may vary at each appearance.

Sketch of Proof: Let f ∈ Rn and f̃ ∈ Rn be the vectors
consisting of the diagonal elements of L and L̃, respectively.
Then, observe that

|ximax
|2

4∥x∥2
=

|xi|2

4∥x∥2
+

(
f̃i−

|xi|2

4∥x∥2

)
−
(
f̃imax

− |ximax
|2

4∥x∥2

)
+
(
f̃imax

− f̃i
)

≥ |xi|2

4∥x∥2
− 2max

l∈[n]

∣∣∣∣f̃l − |xl|2

4∥x∥2

∣∣∣∣+ (f̃imax
− f̃i

)
.

(19)

If the second and the third term on the right-hand side of (19)
can be well bounded, we can establish the desired relation-
ship between |ximax

| and |xmax|.

For the second term, conducting an concentration analysis
for f̃ yields that for any η ∈ (0, 1),

max
i∈[n]

∣∣∣∣f̃i − |xi|2

4∥x∥2

∣∣∣∣ < η

3

|xmax|2

∥x∥2
(20)

holds with high probability.

For the third term in the bracket, however, it is difficult to
bound it directly, because imax is defined by f but used here
as an index for f̃ . Nevertheless, we can bound it by relating
f and f̃ and exploiting the definition of imax. Specifically,

f̃imax − f̃i = (f̃imax − f̃i)− (fimax − fi) + (fimax − fi)

≥ (f̃imax
− f̃i)− (fimax

− fi), (21)

which can be bounded via concentration analysis. That is,
for any η ∈ (0, 1), it holds with high probability that

max
1≤p ̸=q≤n

|(f̃p − f̃q)− (fp − fq)| ≤
η

3

|xmax|2

∥x∥2
, (22)

which implies that (f̃imax
− f̃i)−(fimax

−fi) ≥ −η
3
|xmax|2
∥x∥2 .

This, together with (19), (20) and (21), leads to that

|ximax |2

4∥x∥2
≥ |xi|2

4∥x∥2
− η

|xmax|2

∥x∥2
. (23)

Finally, by taking i = argmaxj |xj | and η = 3
16 , we arrive

at the desired result.

3.3. Step 2: Support recovery

In Step 2, we select a set S of k indices corresponding to the
largest k elements (in modulus) in the imax-th column of L.
The following proposition shows that S ⊇ Sγ , where Sγ is
defined in (14). That is, Step 2 recovers all support indices
of x except those of small nonzeros in (i.e., |xj | < γ∥x∥

2
√
k

),
implying that the recovered support is nearly exact.
Proposition 3.4. Suppose that ximax

satisfies (18). Then,
if m ≥ Cγ

s k log n, the recovered index set in Step 2 of the
ESP algorithm obeys S ⊇ Sγ with probability exceeding
1− exp(−cγm), where Cγ and cγ are numerical constant
depending on γ.

Sketch of Proof: Defineq := 1
m

∑m
j=1

(
1
2 − exp

(
− y2j
λ2

))
aja

∗
jeimax

,

q̃ := 1
m

∑m
j=1

(
1
2 − exp

(
− y2j

∥x∥2

))
aja

∗
jeimax

.
(24)

It is trivial to see that q and q̃ are the imax-th column of L
and L̃, respectively. To show S ⊇ Sγ , it suffices to prove
the following inequality:

|qi| > |qj | ∀i ∈ Sγ ,∀j /∈ supp(x). (25)

To that end, we conduct an concentration analysis for q̃i,
which yields that

max
l∈[n]

|q̃l − E[q̃l]| ≤
ϵ

2
× γ|xmax|

2
√
k∥x∥

(26)

holds with high probability.

Furthermore, we can bound maxl∈[n] |ql − q̃l| as

max
l∈[n]

|ql − q̃l| ≤
ϵ

2
× γ|xmax|

2
√
k∥x∥

. (27)

From (26) and (27),

max
l∈[n]

∣∣|ql| − |E[q̃l]|
∣∣ ≤ max

l∈[n]
|ql − E[q̃l]| ≤

ϵγ|xmax|
2
√
k∥x∥

(28)

holds with high probability.

Recalling (11) and also employing the result of Proposi-
tion 3.3 (i.e., |ximax

| > |xmax|
2 in (18)), we have

|E[q̃i]| =

{
|ximaxxi|
4∥x∥2

(18)
> |xmax||xi|

8∥x∥2 , i ∈ supp(x),

0, i /∈ supp(x).
(29)
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Plugging ϵ = 1
24 in (28) and also using the definition of Sγ ,

we further have{
|qi| > γ|xmax|

32
√
k∥x∥ , ∀i ∈ Sγ ,

|qj | ≤ γ|xmax|
32

√
k∥x∥ , ∀j /∈ supp(x).

(30)

Since S corresponds to the most significant k entries of q
and |Sγ | ≤ k, it is trivial that S ⊇ Sγ .

3.4. Step 3: Signal estimation

In Step 3, we employ spectral initialization with spectrum
LS to estimate x. The following proposition offers a con-
dition for the principle eigenvector z of LS to fall into the
δ-neighbourhood of x.

Proposition 3.5. For any δ > 0, let γ = δ
4 . Suppose the

recovered support set S in Step 2 of the ESP algorithm sat-
isfies |S| = k and S ⊇ Sγ . Then, Step 3 produces a signal
estimate z satisfying dist(z,x) < δ∥x∥ with probability at
least 1− exp(−cδm), provided that m ≥ Cδk log n.

Sketch of Proof: Noting that the principle eigenvector of
E(L̃) = xx∗

4∥x∥2 is a multiple of x, it is natural to estimate the

difference between L and E(L̃). To that end, we conduct
spectral analysis for L−E(L̃) and show that for any constant
t, it holds with high probability that

τ(L− E(L̃), k) ≤ τ(L− L̃, k) + τ(L̃− E(L̃), k) ≤ 6t.
(31)

Recall that z is the output of Step 3 and let{
z0 := z

λ ,

x0 := x
∥x∥ .

(32)

Then, noting that supp(z0) ⊆ S, we can decompose the
distance between z0 and x0 as

dist(z0,x0)2 = ∥x0
Sc∥2 + dist(z0, (x0)S)

2. (33)

For the first term on the right-hand side of (33), using the
definition of Sγ and recalling Sγ ⊆ S, it can be easily
derived that

∥x0
Sc∥2 <

γ2

4
. (34)

As for the second term, performing the spectral analysis
leads to

dist(z0, (x0)S)
2

≤ ∥x0
S∥2 + 1− 6∥x0

S∥√
9 + 1024τ2(L− E(L̃), k)

. (35)

Note that

1− γ2

4
≤ 1− ∥x0

Sc∥2 = ∥x0
S∥2 ≤ 1. (36)

Further, plugging (31) and (36) into (35) yields that

dist(z0,x0
S)

2 ≤ 8192t2 +
γ2

4
. (37)

By relating (34) and (37), we obtain

dist(z0,x0)2 = dist(z0,x0
S)

2 + ∥x0
Sc∥2

≤ 8192t2 +
γ2

2
. (38)

Finally, we need to bound the error between λ and ∥x∥, i.e.,
the length of z and x. It shall be shown that

∣∣λ − ∥x∥
∣∣ ≤

δ
2∥x∥ and λ ≤ 2∥x∥ hold with high probability. Therefore,
taking t = δ

512 , γ = δ
4 in (38), we derive that

dist(z,x) ≤ dist(λz0, λx0) + dist(λx0,x)

≤ λdist(z0,x0) +
∣∣λ− ∥x∥

∣∣
≤ δ

2
∥x∥+ δ

2
∥x∥ = δ∥x∥ (39)

holds with high probability, which completes the proof.

3.5. δ-neighbourhood initialization via ESP

By relating Propositions 3.3-3.5, the following theorem is
immediate.

Theorem 3.6. Considering the phase retrieval problem. For
any δ > 0, the output of ESP satisfies dist(z,x) < δ∥x∥
with probability at least 1 − exp(−cδm), provided that
m = Ω( ∥x∥2

|xmax|2 k log n).

The relationship between Propositions 3.3-3.5 and The-
orem 3.6 is illustrated in Figure 1. Specifically, via
concentration analysis, Proposition 3.3 demonstrates that
Step 1 yields the significant index imax such that |ximax

| >
1
2 |xmax|, which serves as the prerequisite of Step 2. Then,
Proposition 3.4 also utilizes concentration analysis to show
that Step 2 produces an estimated support set S containing
all indices in Sγ . Finally, through spectral analysis, Proposi-
tion 3.5 proves that given the estimated support set S, Step 3
generates a signal estimate falling into the δ-neighbourhood
of x. Combining three propositions leads to Theorem 3.6.

3.6. Discussion

We compare our sampling complexity with existing results.
As mentioned, the so far best sampling complexity for δ-
neighbourhood initialization of phase retrieval, obtained
by Cai et al. (2022c), is given by

m = Ω

(
max

{
k

s
log n,

√
k

s
log3 n

})
. (40)
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Concentration 
analysis on 𝐟

Concentration 
analysis on 𝐪 Spectral analysis

Diagonal search
(Proposition 3.3)

Support recovery
(Proposition 3.4)

Signal estimation
(Proposition 3.5)

𝛿-neighborhood initialization
(Theorem 3.6)

|𝑥!!"#| >
1
2
|𝑥"#$| 𝑆 ⊇ 𝑆!

Figure 1: Illustrative diagram of the proof structure for efficient initialization.

In comparison, the sampling complexity of ESP (i.e., (8)) is
precisely the former in the max-function of (40). When k <
s log4 n (i.e., when x is highly sparse), the latter term in the
max-function dominates the former, indicating superiority
of the proposed result.

We explain that the log3 n term in the sampling complexity
of TP results from the spectrum they utilize. Specifically,
TP seeks the maximal element of 1

m

∑m
j=1 y

2
j |aji|2, i ∈ [n],

a typical spectrum in phase retrieval algorithms (see, e.g.,
SPARTA and CoPRAM). However, this spectrum is heavily
tailed as it is the forth power of Gaussian. Thus, TP employs
a truncation argument to their analysis in order to derive re-
sults similar to Proposition 3.3, which therefore leads to the
log3 n term. The same phenomenon occurs to Wu & Rebes-
chini (2021) as well. Whereas in this paper, we introduce
a novel exponential spectrum, which has a sub-exponential
tail. This enables us to directly derive the concentration
inequalities, thus eliminating the log3 n term. Despite that,
obtaining the final result is not so straightforward. In fact,
the challenge lies in deriving the expectation of the proposed
spectrum. To address this, we introduce a proxy spectrum
that approximates the one used in the practical algorithm,
which requires a sophisticated analysis.

Finally, we would like to discuss the initialization relative
error δ, which will play an important role in the subsequent
stage (i.e., refining stage). In fact, it has been shown that if
δ < 1/10, then SPARTA can effectively recover the target
signal given sufficient samples (m = Ω(k log n)). Similar
phenomena also happen to other algorithms, such as SWF
(δ < 1/20) and HTP (δ < 1/12). Moreover, we hereby
point out the dependence on δ in the complexity. It can be
discovered from the analysis that ESP needs

m = Ω

(
∥x∥2

|xmax|2
δ−2k log n

)
(41)

samples to produce a desired estimate. This result can be

further improved to

m = Ω

(
max

{
∥x∥2

|xmax|2
, δ−2

}
k log n

)
(42)

if we apply the same truncated power method in Cai et al.
(2022c) to Step 3 of Algorithm 1.

4. Numerical Simulation
In this section, we conduct numerical experiments to evalu-
ate the performance of ESP.

4.1. Experiment settings

In our experiments, the sampling vectors {ai}mi=1 are n-
dimensional standard complex Gaussian random vectors.
The input k-sparse signal x ∈ Cn has supp(x) generated
at random and nonzero elements i) drawn from standard
complex Gaussian or ii) being 1’s, which are called sparse
Gaussian and sparse 0-1 signal, respectively. We consider
recovering 0-1 signals because it represents a challenging
case for phase retrieval.

Our first experiment aims at exploring the performance of
ESP and compare it with existing methods, including Co-
PRAM (Jagatap & Hegde, 2019), SPARTA (Wang et al.,
2018) and TP (Cai et al., 2022c). For SPARTA and Co-
PRAM, we only consider the initialization method while
ignoring the refining stage. As for the second experiment,
we investigate the effect of parameter s (= |xmax|2

∥x∥2 ), which
plays an important role in the sampling complexity of both
ESP and TP (see (8) and (6)). In particular, we consider
input signals with s = 1

k and s = 1√
k

, respectively. In
the third experiment, we further evaluate the performance
of ESP and TP under different combinations of sampling
number and sparsity. The result is displayed through the
phase transition plot.
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(c) Recovery of sparse 0-1 signal (k = 10)
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(d) Recovery of sparse 0-1 signal (k = 10)

Figure 2: Performance comparison of relative error and fraction of recovered support as a function of sampling ratio.

To compare the performance of different methods, we in-
troduce two metrics: i) relative error and ii) fraction of
recovered support. In (Cai et al., 2022c; Wang et al., 2018),
the relative error was employed to measure the normalized
distance between the signal estimate and ground truth:

Relative error :=
dist(z,x)

∥x∥
.

The fraction of recovered support evaluates the percentage
of support indices being selected:

Fraction of recovered support :=
|supp(z) ∩ supp(x)|

|supp(x)|
.

4.2. Recovery performance v.s. sampling ratio.

We fix the signal dimension n = 1, 000 and the sparsity
k = 10, while varying the sampling ratio (i.e., mn ) from 0.05

to 1 with step size 0.05. For each sampling ratio, we conduct
1, 000 independent trials and record the (averaged) relative
error and fraction of recovered support, respectively. Recall
that the original TP involves two hyper-parameters η1, η2.
We optimized them and set η1 = 0.2, η2 = 5. To show the
importance of optimization, we use TP-UD to represent TP
with un-designed hyper-parameters η1 = 0.9, η2 = 1.1 and
test its performance.

Figures 2a and 2b show the performance comparison of
different methods for recovering sparse Gaussian signals. It
can be observed that for all methods under test, the perfor-
mance improves as the sampling ratio increases. Overall,
ESP exhibits the best performance in terms of both the recov-
ery error and fraction of recovered support. CoPRAM and
SPARTA have comparable performance, which is inferior
to that of TP with optimized hyper-parameters, yet outper-
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Figure 3: Performance comparison of relative error as a function of sparsity. We omit CoPRAM since it uses the same
initialization method as SPARTA.

forms that of TP-UD, significantly. In particular, when the
sampling ratio is 30%, ESP already recovers 40% support
indices. In comparison, the fractions of recovered support
for TP, SPARTA and TP-UD are only 24%, 18% and 9%,
respectively. The superiority of ESP is due to its diagonal
search over the exponential spectral, which, in essence, en-
larges the gap between support and non-support elements of
the spectrum. Hence, more support indices can be selected.

Figures 2c and 2d depict the performance comparison in re-
covering sparse 0-1 signals. In general, one observes that all
testing methods exhibit a similar behavior as in Figures 2a
and 2b, except that the advantage of ESP over the com-
parative methods is slightly narrowed. In particular, ESP
performs better in the high sampling-ratio region, but has
comparable performance to TP when the sampling rate is
low. This is because the nonzero elements of sparse 0-1
signals have the same magnitude. Consequently, the gap be-
tween the support and non-support elements of the spectrum
for ESP is essentially in the same order of magnitude as that
for TP. In this case, the superiority of ESP in distinguishing
support elements becomes less obvious.

4.3. Effect of s

To explore how the fraction s := |xmax|2
∥x∥2 influences the

performance of signal recovery, we consider two different
cases: s = 1

k and s = 1√
k

. For the first case, we consider
sparse 0-1 signals. As for the second case, we construct
input signals in the following way: we first set ∥x∥2 = k +√
k and determine |xmax| according to s, that is, |xmax| =

(
√
k + 1)1/2. Then, the magnitudes of the remaining k − 1

nonzero elements in x are set to 1’s. Moreover, we fix

the signal dimension n = 2, 000 and sampling number
m = 1, 000, and vary the sparsity from 1 to 15.

The results of “Relative error v.s. Sparsity” are averaged
over 1000 independent trials and displayed in Figures 4a
and 4b. One can observe that for all testing algorithms, the
relative error goes large as the sparsity level increases. This
is consistent with Theorem 3.6 that the lower bound of prob-
ability (i.e., 1 − exp(−cδm) = 1 − exp(−cδ ks log n)) for
ESP to achieve a δ-neighbourhood initialization decreases
as k goes high. Moreover, while ESP has a similar perfor-
mance with TP when s = 1

k , it performs much better when
s = 1√

k
. This suggests superiority of our method when

s is relatively large, which also matches our discussion in

Section 3.6. Specifically, the term of
√

k
s log

3 n in (40)

dominates k
s log n when s is large. In this case, ESP re-

quires fewer samples than TP to recover the signal, which
in turn suggests better recovery performance of ESP, given
the same amount of samples.

4.4. Phase transition plot

With the aim of exploring the performance of ESP and
TP under different combinations of sampling number and
sparsity, we produce the phase transition plot for these two
algorithms. Specifically, we fix the signal dimension as
n = 1000 and obtain k-sparse target signals from standard
complex Gaussian distribution. Meanwhile, we vary the
sampling number from 100 to 1, 500 with step size 100 and
sparsity from 5 to 60 with step size 5, respectively. In order
to measure the performance of ESP and TP, we conduct 200
independent trials and employ the successful recovery rate
as the metric, which is defined as the fraction of successful
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Figure 4: The phase transition plots for ESP (left) and TP (right) with signal dimension n = 2000. We employ different
grey levels to represent different successful recovery rates for each block. Black means that the successful recovery rate is 0,
white 1, and gray between 0 and 1.

trials. In particular, a trial is considered to be successful if
the relative error does not exceed 0.75.

The phase transition plot is displayed in Figure 4a and 4b,
from which one can gain two observations. First of all, ESP
holds a noticeably higher successful rate than TP when the
sparsity is relatively small compared to the sampling number
(e.g., m = 1, 000, k = 30), which suggests superiority of
our method when k is relatively small. In fact, this aligns
with our theoretical result, which shows that eliminating the
log3n factor indeed leads to a reduced sampling complexity
empirically. Secondly, when the sparsity is extremely small
relative to the sampling number (e.g, m = 1, 000, k = 10),
ESP and TP share comparable successful rates. This perhaps
arises from that we use the fixed threshold to judge whether
one trial is successful. In this case, the fixed threshold
can be too large to distinguish the difference between the
performance of ESP and TP.

5. Conclusion
In this paper, we have proposed a novel initialization
method called ESP for sparse phase retrieval. Through
theoretical analysis, we have shown that ESP pro-
duces a δ-neighbourhood initialization of x when m =

Ω( ∥x∥2

|xmax|2 k log n), which improves upon some existing re-

sults that depend additionally on a log3 n term. Moreover,
through empirical simulations, we have demonstrated that
ESP has better recovery performance of sparse signals com-
pared to existing methods, while maintaining the ease of
implementation. Therefore, ESP is an attractive alternative
to TP for the initialization task in phase retrieval.

In Liu et al. (2021), an interesting algorithm was proposed to

achieve the information-theoretic sampling complexity (3).
However, this algorithm involves exhaustive search over all
possible k × k sub-matrices of an n × n matrix to find
one with the largest eigenvalue, which is NP hard. To
date, no practical algorithm has been reported to attain
the information-theoretic bound. Whether it is possible
to find one such algorithm and thus bridge the statistical-
to-computational gap for sparse phase retrieval remains an
interesting open question.

Acknowledgements
This work was supported in part by the National Natural
Science Foundation of China under Grant 61971146.

Impact Statement
This paper presents work involving with the sampling com-
plexity in the field of the sparse phase retrieval problem.
There are many potential societal consequences of our work,
none which we feel must be specifically highlighted here.

References
Bates, R. H. T. Fourier phase problems are uniquely solv-

able in more than one dimensional. i: Underlying theory.
Optik, 61(3):247–262, 1982.

Bendory, T. and Eldar, Y. C. Phase retrieval from stft mea-
surements via non-convex optimization. In Proc. IEEE
Int. Conf. Acoust. Speech Signal Process., pp. 4770–4774,
2017. doi: 10.1109/ICASSP.2017.7953062.

Bruck, Y. and Sodin, L. On the ambiguity of the image

9



Exponential Spectral Pursuit: An Effective Initialization Method for Sparse Phase Retrieval

reconstruction problem. Opt. Commun., 30(3):304–308,
1979. ISSN 0030-4018. doi: https://doi.org/10.1016/
0030-4018(79)90358-4.

Bunk, O., Diaz, A., Pfeiffer, F., David, C., Schmitt, B.,
Satapathy, D. K., and van der Veen, J. F. Diffractive
imaging for periodic samples: retrieving one-dimensional
concentration profiles across microfluidic channels. Acta
Crystallogr. A, 63 Pt 4:306–14, 2007.

Cai, J.-F., Jiao, Y., Lu, X., and You, J. Sample-efficient
sparse phase retrieval via stochastic alternating minimiza-
tion. IEEE Trans. Signal Process., 70:4951–4966, 2022a.
doi: 10.1109/TSP.2022.3214091.

Cai, J.-F., Li, J., Lu, X., and You, J. Sparse signal re-
covery from phaseless measurements via hard threshold-
ing pursuit. Appl. Comput. Harmon. Anal., 56:367–390,
2022b. ISSN 1063-5203. doi: https://doi.org/10.1016/j.
acha.2021.10.002.

Cai, J.-F., Li, J., and You, J. Provable sample-efficient sparse
phase retrieval initialized by truncated power method.
Inverse Probl., 39, 2022c.

Cai, T. T., Li, X., and Ma, Z. Optimal rates of convergence
for noisy sparse phase retrieval via thresholded Wirtinger
flow. Ann. Stat., 44(5):2221 – 2251, 2016. doi: 10.1214/
16-AOS1443.

Candes, E. and Tao, T. Decoding by linear programming.
IEEE Trans. Inf. Theory, 51(12):4203–4215, 2005. doi:
10.1109/TIT.2005.858979.

Candès, E. J., Eldar, Y. C., Strohmer, T., and Voroninski, V.
Phase retrieval via matrix completion. SIAM Rev., 57(2):
225–251, 2015a. doi: 10.1137/151005099.

Candès, E. J., Li, X., and Soltanolkotabi, M. Phase retrieval
via wirtinger flow: Theory and algorithms. IEEE Trans.
Inf. Theory, 61(4):1985–2007, 2015b. doi: 10.1109/TIT.
2015.2399924.

Dainty, J. and Fienup, J. Phase retrieval and image recon-
struction for astronomy. Image Recovery: Theory Appl.,
13, Jan. 1987.

Donoho, D. Compressed sensing. IEEE Trans. Inf. Theory,
52(4):1289–1306, 2006. doi: 10.1109/TIT.2006.871582.

Eldar, Y. C. and Mendelson, S. Phase retrieval: Stability
and recovery guarantees. Appl. Comput. Harmon. Anal.,
36(3):473–494, 2014.

Fu, N., Zheng, P., Li, X., and Qiao, L. Weighted phase
retrieval of fourier measurement with outliers: Measure-
ment structure and reconstruction algorithm. IEEE Trans.
Instrum. Meas., 70:1–14, 2021. doi: 10.1109/TIM.2020.
3032914.

Gao, B. and Xu, Z. Phaseless recovery using the
gauss–newton method. IEEE Trans. Signal Process., 65
(22):5885–5896, 2017. doi: 10.1109/TSP.2017.2742981.

Goldstein, T. and Studer, C. Phasemax: Convex phase
retrieval via basis pursuit. IEEE Trans. Inf. Theory, 64
(4):2675–2689, 2018.

Guo, Y., Wu, Y., Li, Y., Rao, X., and Rao, C. Deep phase
retrieval for astronomical Shack–Hartmann wavefront
sensors. Mon. Not. R. Astron. Soc., 510(3):4347–4354,
12 2021. ISSN 0035-8711. doi: 10.1093/mnras/stab3690.

Hayes, M. The reconstruction of a multidimensional se-
quence from the phase or magnitude of its fourier trans-
form. IEEE Trans. Acoust. Speech Signal Processing, 30
(2):140–154, 1982. doi: 10.1109/tassp.1982.1163863.

Hofstetter, E. Construction of time-limited functions with
specified autocorrelation functions. IEEE Trans. Inf.
Theory, 10(2):119–126, 1964. doi: 10.1109/TIT.1964.
1053648.

Jagatap, G. and Hegde, C. Sample-efficient algorithms
for recovering structured signals from magnitude-only
measurements. IEEE Trans. Inf. Theory, 65(7):4434–
4456, 2019. doi: 10.1109/TIT.2019.2902924.

Langley, P. Crafting papers on machine learning. In Langley,
P. (ed.), Proceedings of the 17th International Conference
on Machine Learning (ICML 2000), pp. 1207–1216, Stan-
ford, CA, 2000. Morgan Kaufmann.

Liu, Z., Ghosh, S., and Scarlett, J. Towards sample-optimal
compressive phase retrieval with sparse and generative
priors. In Adv. Neural Inf. Process. Syst., 2021.

Miao, J., Ishikawa, T., Shen, Q., and Earnest, T. Extending x-
ray crystallography to allow the imaging of noncrystalline
materials, cells, and single protein complexes. Annual
review of physical chemistry, 59:387–410, 02 2008. doi:
10.1146/annurev.physchem.59.032607.093642.

Millane, R. P. Phase retrieval in crystallography and optics.
Journal of The Optical Society of America A-optics Image
Science and Vision, 7:394–411, 1990.

Moravec, M. L., Romberg, J. K., and Baraniuk, R. Com-
pressive phase retrieval. In SPIE Optical Engineering +
Applications, 2007.

Netrapalli, P., Jain, P., and Sanghavi, S. Phase retrieval using
alternating minimization. IEEE Trans. Signal Process., 63
(18):4814–4826, 2015. doi: 10.1109/TSP.2015.2448516.

Ohlsson, H., Yang, A. Y., Dong, R., and Sastry, S. S. Cprl –
an extension of compressive sensing to the phase retrieval
problem. In Adv. Neural Inf. Process. Syst., 2012.

10



Exponential Spectral Pursuit: An Effective Initialization Method for Sparse Phase Retrieval

Shechtman, Y., Eldar, Y. C., Cohen, O., Chapman, H. N.,
Miao, J., and Segev, M. Phase retrieval with application
to optical imaging: A contemporary overview. IEEE
Signal Process. Mag., 32(3):87–109, 2015. doi: 10.1109/
MSP.2014.2352673.

Tong, Z., Liu, Z., Hu, C., Wang, J., and Han, S. Precondi-
tioned deconvolution method for high-resolution ghost
imaging. Photonics Res., 9(11):1069, 6 2021.

Truong, L. V. and Scarlett, J. Support recovery in the phase
retrieval model: Information-theoretic fundamental limit.
IEEE Trans. Inf. Theory, 66(12):7887–7910, 2020. doi:
10.1109/TIT.2020.3031218.

Varnavides, G., Ribet, S. M., Zeltmann, S. E., Yu, Y., Sav-
itzky, B. H., Dravid, V. P., Scott, M. C., and Ophus, C.
Iterative phase retrieval algorithms for scanning transmis-
sion electron microscopy, 2023.

Vershynin, R. High-Dimensional Probability: An Introduc-
tion with Applications in Data Science. Cambridge Series
in Statistical and Probabilistic Mathematics. Cambridge
University Press, 2018. doi: 10.1017/9781108231596.

Wang, G., Zhang, L., Giannakis, G. B., Akçakaya, M., and
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A. Proofs of Propositions
In this section, we present the proof of each proposition. The lemmas used in the proof is deferred to Section B. In the
following, we define

fi :=
1

m

m∑
j=1

(1
2
− exp(−

y2j
λ2

)
)
|aji|2,

f̃i :=
1

m

m∑
j=1

(1
2
− exp(−

y2j
∥x∥2

)
)
|aji|2,

q :=
1

m

m∑
j=1

(
1

2
− exp

(
−
y2j
λ2

))
aja

∗
jeimax

,

q̃ :=
1

m

m∑
j=1

(
1

2
− exp

(
−

y2j
∥x∥2

))
aja

∗
jeimax

,

for notation simplicity.

A.1. Proof of Proposition 3.3

Proof. Taking η = 3
16 in Lemma B.3 and Lemma B.4 yields that

|ximax
|2

4∥x∥2
=

|xi|2

4∥x∥2
+ (f̃i −

|xi|2

4∥x∥2
)− (f̃imax −

|ximax
|2

4∥x∥2
) + (f̃imax − f̃i)− (fimax − fi) + (fimax − fi)

(a)

≥ |xi|2

4∥x∥2
− 2max

l∈[n]

∣∣∣∣f̃l − |xl|2

4∥x∥2

∣∣∣∣− max
1≤p ̸=q≤n

|(f̃p − f̃q)− (fp − fq)|

(b)

≥ |xi|2

4∥x∥2
− 3

4

|xmax|2

4∥x∥2
,

where (a) comes from the definition of imax and (b) uses Lemma B.3 and Lemma B.4 with η = 3
16 . Let i = argmaxj |xj |

and we can easily conclude that |ximax | > 1
2 |xmax|.

A.2. Proof of Proposition 3.4

Proof. Take ϵ = 1
16 in Lemma B.5 and employ the equation (13), we can conclude that for any l ∈ Sγ ,

|ql| = |E[q̃l] + ql − E[q̃l]|
(a)

≥ |E[q̃l]| −max
i∈[n]

|qi − E[q̃i]|

(b)

≥
|x∗imax

||xl|
4∥x∥2

− 1

16
× γ|xmax|

2
√
k∥x∥

(c)
>

γ|xmax|
16
√
k∥x∥

− 1

16
× γ|xmax|

2
√
k∥x∥

≥ γ|xmax|
32

√
k∥x∥

, (43)

where (a) comes from the triangle inequality, (b) employs Lemma B.5 with ϵ = 1
16 and (c) is based on the assumption that

|ximax
| > 1

2 |xmax| together with the definition of Sγ .

Similarly, for i /∈ supp(x), we can derive that

|qi| = |E[q̃i] + qi − E[q̃i]|
(a)

≤ |E[q̃i]|+max
l∈[n]

|ql − E[q̃l]|
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(b)

≤ 0 +
1

16
× γ|xmax|

2
√
k∥x∥

=
γ|xmax|
32

√
k∥x∥

, (44)

where (a) is from the triangle inequality and (b) is due to Lemma B.5 with ϵ = 1
16 .

Obviously, (43) and (44) indicate that |ql| > |qi| for any l ∈ Sγ and i /∈ supp(x). Therefore, ESP can definitely select all
indices in Sγ with probability at least 1− exp(−cγm) in the second step provided that m ≥ Cγk

s log n for sufficiently large
constant Cγ depending on γ.

A.3. Proof of Proposition 3.5

Proof. Define x0 = x
∥x∥ and z0 = z

λ . From the assumption (Sγ ⊆ S) and the definition of Sγ , we have ∥x0
Sc∥2 ≤

1 − ∥x0
Sγ
∥2 ≤ k × γ2

4k = γ2

4 . Recall that z0 is the unit eigenvector corresponding to the largest eigenvalue of LS and
τ(∆, k) ≤ 3

64 holds with probability at least 1− exp(−cm) when m ≥ Ck log n from Lemma B.7. Employing Lemma B.9
with Λ = S, we have

dist(z0,x0
S)

2 ≤∥x0
S∥2 + 1− 6∥x0

S∥√
9 + 1024τ2(∆, k)

(a)

≤ max

2− 2√
1 + 1024

9 τ2(∆, k)
, 2− γ2

4
−

2
√

1− γ2

4√
1 + 1024

9 τ2(∆, k)


(b)

≤ max

{
2− 2

1 + 1024
9 τ2(∆, k)

, 2− γ2

4
−

2(1− γ2

4 )

1 + 1024
9 τ2(∆, k)

}

=max

{
2− 18

9 + 1024τ2(∆, k)
, 2− γ2

4
−

18(1− γ2

4 )

9 + 1024τ2(∆, k)

}

≤ 2048τ2(∆, k)

9 + 1024τ2(∆, k)
+
γ2

4

≤ 2048

9
τ2(∆, k) +

γ2

4
(c)

≤ 2048

9
× 36t2 +

γ2

4

= 8192t2 +
γ2

4
, (45)

where (a) comes from 1 − γ2

4 ≤ ∥x0
S∥2 ≤ 1, (b) is because x2 − x ≥ 0, x ≥ 1, (c) uses Lemma B.7 and holds with

probability 1− exp(−c1,tm) provided that m ≥ C1,tk log n.

We then decompose the distance between z0 and x0 as

dist(z0,x0)2 = dist(z0,x0
S)

2 + ∥x0
Sc∥2

(a)

≤ 8192t2 +
γ2

2
.

where (a) is based on (45) and the fact ∥x0
Sc∥2 ≤ γ2

4 . Therefore, let t = δ
512 and γ = δ

4 , when m ≥ Cδk log n it holds with
probability at least 1− exp(−cδm) that

dist(z0,x0) ≤ δ

4
. (46)

13
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Based on Lemma B.8 and the definition of z0, if m ≥ Cδk log n, with probability exceeding 1− exp(−cδm),

dist(z,x) ≤ dist(λz0, λx0) + dist(λx0,x)

≤ λdist(z0,x0) +
∣∣λ− ∥x∥

∣∣
(a)

≤ δ

4
λ+

δ

2
∥x∥

(b)

≤ δ

2
∥x∥+ δ

2
∥x∥

= δ∥x∥,

where (a) comes from (46) and Lemma B.1 with β = δ
2 and (b) is based on Lemma B.1 with β = 1. Therefore, we complete

the proof.

B. Auxiliary lemmas
We first present two lemmas that are useful to characterize the difference between the spectrum L and L̃.

B.1. Difference between L and L̃

From (9) and (10), the difference between L and L̃ is due to the different denominators (i.e., λ2 and ∥x∥2) in their respective
exponential terms. The next lemma shows that this difference can be arbitrarily small, given sufficient samples.
Lemma B.1 (Lemma 7.8 of Candès et al. (2015b)). For any constant β > 0 and any set S satisfying |S| ≤ k, suppose aj’s
are n-dimensional complex Gaussian random vectors. Then, if m ≥ Cβk log k,

(1− β)∥x∥2 ≤ 1

m

m∑
j=1

|a∗jx|2 ≤ (1 + β)∥x∥2

holds for all x ∈ CS with probability at least 1− e−cβm, where cβ and Cβ are constant depending on β.

We can extend Lemma B.1 by relating β with |xmax|2
∥x∥2 .

Lemma B.2. For any constant β > 0 and any set S satisfying |S| ≤ k, suppose aj’s are n-dimensional complex Gaussian

random vectors. Then, if m ≥ k∥x∥2

C′
β |xmax|2 log n,(
1− β

√
s

k

)
∥x∥2 ≤ 1

m

m∑
j=1

|a∗jx|2 ≤
(
1 + β

√
s

k

)
∥x∥2

holds for all x ∈ CS with probability at least 1− e−c
′
βm, where c′β and C ′

β are constant related to β and |xmax|2
∥x∥2 .

Proof. For j = 1, 2, 3, · · · , n, since aj ∈ CN (n), we can derive that |a∗jx|2’s are an sub-exponential random variables with
ψ1 norm c∥x∥2 and expectations E(|a∗jx|2) = ∥x∥2. Hence, from Bernstein’s inequality, we have

P

∣∣∣∣∣∣ 1m
m∑
j=1

|a∗jx|2 − ∥x∥2
∣∣∣∣∣∣ > β

√
s

k
∥x∥2

 ≤ 2 exp

(
−C ′

βmmin{β
2s∥x∥4

k∥x∥4
,
β
√
s∥x∥2√
k∥x∥2

}
)
.

Recall that s = |xmax|2
∥x∥2 . Therefore, when m ≥ k

C′
βs

log n), with probability exceeding 1− e−c
′
βm, it holds that

(1− β

√
s

k
)∥x∥2 ≤ 1

m

m∑
j=1

|a∗jx|2 ≤ (1 + β

√
s

k
)∥x∥2.

Next, we shall establish several concentration and deviation inequalities on these random variables (vectors).

14
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B.2. Concentration and deviation analysis

Lemma B.3. Denote s = |xmax|2
∥x∥2 . For any constant 0 < η < 1 the inequality

max
i∈[n]

∣∣∣∣f̃i − |xi|2

4∥x∥2

∣∣∣∣ < η

3
s

holds with probability 1− exp(−cηm) provided that m ≥ Cη

s2 log n, where cη and Cη are constant depending on η.

Proof of Lemma B.3. From the definition of f̃i, we have

∣∣∣∣f̃i − |xi|2

4∥x∥2

∣∣∣∣ ≤
∣∣∣∣∣∣ 1

2m

m∑
j=1

|aji|2 −
1

2

∣∣∣∣∣∣+
∣∣∣∣∣∣ 1m

m∑
j=1

exp(−
y2j

∥x∥2
)
|aji|2−

1

2
+

|xi|2

4∥x∥2

∣∣∣∣∣∣ . (47)

It is revealed in (11) that E(f̃i) = |xi|2
4∥x∥2 . Note that |aji|2 and exp(− y2j

∥x∥2 )|aji|2 are both sub-exponential random variables.
Employing the Bernstein’s inequality yields

P

∣∣∣∣∣∣ 1

2m

m∑
j=1

|aji|2 −
1

2

∣∣∣∣∣∣ > η

6
s

 ≤ exp

(
−c1 min

{
η2ms2

36K2
1

,
ηms

6K1

})
, (48)

P

∣∣∣∣∣∣ 1m
m∑
j=1

exp(−
y2j

∥x∥2
)
|aji|2−

1

2
+

|xi|2

4∥x2∥

∣∣∣∣∣∣> η

6
s

 ≤ exp

(
−c2 min

{
η2ms2

36K2
2

,
ηms

6K2

})
, (49)

where c1, c2 are constants, K1 = maxj∈[m]

∥∥|aji|2∥∥ψ1
and K2 = maxj∈[m]

∥∥∥exp(− y2j
∥x∥2 )|aji|2

∥∥∥
ψ1

are sub-exponential

norms respectively. Denote the aforementioned probabilities in (48) and (49) as Pro1 and Pro2. Recall the definition of f̃i,
we derive from (47) that

P
(
|f̃i − E(f̃i)| >

η

3
s
)
≤ Pro1 + Pro2.

Taking the union bound for i ∈ [n] and employ the notation s = |xmax|2
∥x∥2 , we conclude that when m ≥ Cη

s2 log n, the
inequality

max
i∈[n]

{|f̃i − E(f̃i)|} ≤ η

3
s

holds with probability over 1− exp(−cηm), which is definitely the result of this lemma.

Lemma B.4. Denote s = |xmax|2
∥x∥2 . For any 0 < η < 1,

max
1≤p ̸=q≤n

|(f̃p − f̃q)− (fp − fq)| ≤
η

3
s

holds with probability exceeding 1− exp(−dηm) as long as m ≥ Dη

s2 log n, where dη and Dη are constant related to η.
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Proof of Lemma B.4. From the definition of f0, for any fixed p ̸= q,

|(f̃p − f̃q)− (fp − fq)| =

∣∣∣∣∣∣ 1m
m∑
j=1

(
exp(−

y2j
λ2

)− exp(−
y2j

∥x∥2
)
)(
|ajp|2 − |ajq|2

)∣∣∣∣∣∣
(a)
= max

j∈[m]
exp(−

y2j
ξ
)
1

ξ2
|λ2 − ∥x∥2|

∣∣∣∣∣∣ 1m
m∑
j=1

(
|ajp|2 − |ajq|2

)∣∣∣∣∣∣
(b)

≤ 1

ξ
|λ2 − ∥x∥2|

∣∣∣∣∣∣ 1m
m∑
j=1

(
|ajp|2 − |ajq|2

)∣∣∣∣∣∣
(c)

≤ 2

3∥x∥2
∥x∥2

2

∣∣∣∣∣∣ 1m
m∑
j=1

(
|ajp|2 − |ajq|2

)∣∣∣∣∣∣
=

1

3

∣∣∣∣∣∣ 1m
m∑
j=1

(
|ajp|2 − |ajq|2

)∣∣∣∣∣∣ , (50)

where (a) comes from Lagrange’s mean value formula with F (p) = exp(−y2j
p ), (b) is due to the numeric inequality

xe−x ≤ 1, for x ≥ 0 and (c) employs Lemma B.1 with δ = 1
2 . Note that for any j ∈ [m],|ajp|2−|ajq|2 is a sub-exponential

variable with constant sub-exponential norm. From Bernstein’s inequality,

P

∣∣∣∣∣∣ 1m
m∑
j=1

(
|ajp|2 − |ajq|2

)∣∣∣∣∣∣ > η

3
s

 ≤ exp

(
c3 min

{
η2ms2

9K2
3

,
ηms

3K3

})
, (51)

where K3 = maxj∈[m]

∥∥|ajp|2 − |ajq|2
∥∥
ψ1

is the sub-exponential norm and c3 is a constant. Take the union bound of (51),

it can be shown that when m ≥ Dη

s2 log n,

max
1≤p ̸=q≤n

|(f̃p − f̃q)− (fp − fq)| ≤
η

3
s

holds with probability exceeding 1− exp(−dηm).

Lemma B.5. Denote s = |xmax|2
∥x∥2 . Then for any ϵ > 0,

max
l∈[n]

|ql − E[q̃l]| ≤ ϵ
γ|xmax|
2
√
k∥x∥

(52)

holds with probability exceeding 1− exp(−dϵm) provided that m ≥ Dϵ
k
γ2s log n, where dϵ and Dϵ are constant depending

on ϵ.

Proof of Lemma B.5. The proof of this Lemma is divided into two cases: l = imax and l ̸= imax.

† Case 1: l ̸= imax

To begin with, we introduce q̃l as

q̃l =
1

m

m∑
j=1

(1
2
− exp(−

y2j
∥x∥2

)
)
ajla

∗
jimax

.

Note that both ajla∗jimax
and

(
1
2 − exp(− y2j

∥x∥2 )
)
ajla

∗
jimax

are sub-exponential random variables. Employing Bernstein’s
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inequality, we can derive

P

∣∣∣∣∣∣ 1m
m∑
j=1

ajla
∗
jimax

∣∣∣∣∣∣ > ϵ

2

γ|xmax|
2
√
k∥x∥

 ≤ exp

(
−c4 min

{
ϵ2γ2m|xmax|2

16K2
4k∥x∥2

,
ϵγm|xmax|
4K4

√
k∥x∥

})
, (53)

P

(
|q̃l − E[q̃l]| >

ϵ

2

γ|xmax|
2
√
k∥x∥

)
≤ exp

(
−c5 min

{
ϵ2γ2m|xmax|2

16K2
5k∥x∥2

,
ϵγm|xmax|
4K5

√
k∥x∥

})
, (54)

where K4 = maxj∈[m]

∥∥ajla∗jimax

∥∥
ψ1

, K5 = maxj∈[m]

∥∥∥exp(− y2j
∥x∥2 )ajla

∗
jimax

∥∥∥
ψ1

are sub-exponential norms and c4, c5

are two constant. Take the union bound of (54) for l ∈ [n], l ̸= imax and consider all possible cases for imax, we have

max
j∈[n]

max
l∈[n],l ̸=j

|q̃l − E[q̃l]| ≤
ϵ

2

γ|xmax|
2
√
k∥x∥

(55)

holds with probability at least 1− exp(−d1,ϵm) provided that m ≥ D1,ϵ
k
γ2s log n.

Next, through numerical analysis of ql − q̃l, we can derive that

|ql − q̃l| =

∣∣∣∣∣∣ 1m
m∑
j=1

(
exp(−

y2j
λ2

)− exp(−
y2j

∥x∥2
)
)
ajla

∗
jimax

∣∣∣∣∣∣
≤ max
j∈[m]

∣∣∣∣∣exp(− y2jλ2 )− exp(−
y2j

∥x∥2
)

∣∣∣∣∣
∣∣∣∣∣∣ 1m

m∑
j=1

ajla
∗
jimax

∣∣∣∣∣∣
(a)

≤

∣∣∣∣∣∣ 1m
m∑
j=1

ajla
∗
jimax

∣∣∣∣∣∣
(b)

≤ ϵ

2

γ|xmax|
2
√
k∥x∥

(56)

where (a) is based on the fact that exp(− y2j
λ2 ) ∈ [0, 1] and exp(− y2j

∥x∥2 ) ∈ [0, 1], (b) is based on (53) and holds for all indices
j ∈ [n], j ̸= imax with probability exceeding 1−exp(−d2,ϵm) by taking the union bound, provided thatm ≥ D2,ϵ

k
γ2s log n.

Combining (55) and (56), we complete the proof of Lemma B.5 in this case.

† Case 2: l = imax

Similar to (55), we can derive that

|q̃imax − E(q̃imax)| ≤
ϵ

2

γ|xmax|
2
√
k∥x∥

(57)

holds with probability exceeding 1− exp(d3,ϵm) when m ≥ D3,ϵ
k
γ2s . Moreover, since E( 1

m

∑m
j=1 |ajimax

|2) = 1, (53) is
transformed as

P

∣∣∣∣∣∣ 1m
m∑
j=1

|ajimax |2 − 1

∣∣∣∣∣∣ > ϵ

6

γ|xmax|
2
√
k∥x∥

 ≤ exp

(
−c

′

4 min

{
ϵ2γ2m|xmax|2

144(K
′
4)

2k∥x∥2
,
ϵγm|xmax|
12K

′
4

√
k∥x∥

})
, (58)

where K
′

4 =
∥∥|ajimax |2

∥∥
ψ1

is the sub-exponential norm. Take the union bound of (58), we can derive that

∣∣∣∣∣∣ 1m
m∑
j=1

|ajimax |2 − 1

∣∣∣∣∣∣ ≤ ϵ

6

γ|xmax|
2
√
k∥x∥

(59)

holds with probability exceeding 1 − exp(−cϵm) if m ≥ Cϵ
k
γ2s log n. Finally, we conduct the numerical analysis for
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|qimax
− q̃imax

| below.

|qimax − q̃imax | =

∣∣∣∣∣∣ 1m
m∑
j=1

(
exp(−

y2j
λ2

)− exp(−
y2j

∥x∥2
)
)
|ajimax |2

∣∣∣∣∣∣
(a)
= max

j∈[m]
exp(−

y2j
ξ
)
1

ξ2
|λ2 − ∥x∥2|

∣∣∣∣∣∣ 1m
m∑
j=1

|ajimax
|2
∣∣∣∣∣∣

(b)

≤ 1

ξ
|λ2 − ∥x∥2|

∣∣∣∣∣∣ 1m
m∑
j=1

|ajimax
|2
∣∣∣∣∣∣

(c)

≤ 1

(1− ϵγ
12

√
s√
k
)∥x∥2

ϵγ

12

√
s√
k
∥x∥2

(
1 +

ϵ

6

γ
√
s

2
√
k

)
(d)

≤ 3× ϵγ

12

√
s√
k
=
ϵγ
√
s

4
√
k
, (60)

where (a) is from Lagrange’s mean value formula with F (p) = exp(−y2j
p ), (b) is due to the numeric inequality xe−x ≤

1, for x ≥ 0, (c) employs Lemma B.2 with β = ϵγ
12 and (59), (d) is based on the fact that ϵγ12

√
s√
k
< 1

2 . It is worth noting that

(60) holds with probability exceeding 1− exp(−d4,ϵm) provided m ≥ D4,ϵ
k
γ2s log n. Therefore, combining (56) and (60),

we complete the proof.

Lemma B.6. The following sparse optimization problem

maxu∗
[

xx∗

4∥x∥2

]
u s.t. ∥u∥ =

1

m

m∑
j=1

y2j , ∥u∥0 ≤ k

attains its optimum provided that u is a multiple of x.

Proof of Lemma B.6. Suppose that supp(u) = T0 and supp(x) = T . The optimization problem can be rewrite as

max
|T0|≤k

max
supp(u)=T0

u∗
[
xT0x

∗
T0

4∥x∥2

]
u s.t. ∥u∥ =

1

m

m∑
j=1

y2j .

Obviously, the result of the inner maximization can be directly acquired as the maximal eigenvalue of
xT0

x∗
T0

4∥x∥2 , which is

∥u∥2 ∥xT0
∥2

4∥x∥2 . Hence, it suffices to optimize

max
|T0|≤k

 1

m

m∑
j=1

y2j

2

∥xT0
∥2

4∥x∥2

The optimal value is attained when T0 = T . Therefore, the solution of this problem is a multiple of the unit eigenvector
corresponding to the largest eigenvalue of xx∗

4∥x∥2 . Since eigenvectors for the largest eigenvalue of xx∗

4∥x∥2 are multiples of x.
We complete the proof by combining the above two claims.

Lemma B.7. Define ∆ = L− E(L̃). For any 0 < t < 1, when m ≥ Ctk log n,

τ(∆, k) ≤ 6t

holds with probability at least 1− exp(−ctm).

18



Exponential Spectral Pursuit: An Effective Initialization Method for Sparse Phase Retrieval

Proof of Lemma B.7. Divide ∆ as ∆ = L− L̃+ L̃− E(L̃) and suppose ∆1 = L− L̃,∆2 = L̃− E(L̃). Define the set
Cn,k = {x ∈ Cn

∣∣∥x∥0 ≤ k, ∥x∥ = 1}, we then separately analyze ∆1 and ∆2.

Recall that ∆1 = 1
m

∑m
j=1{exp(−

y2j
λ2 ) − exp(− y2j

∥x∥2 )}aja∗j , we first construct the ϵ-net Nϵ (0 < ϵ < 1
2 ) for Cn,k (i.e.,

for any u ∈ Cn,k, there exists an u
′ ∈ Nϵ such that ∥u − u

′∥ ≤ ϵ). From the covering theory, |Nϵ| ≤
(
n
k

)
( 3ϵ )

k ≤
( 3enϵk )k (Vershynin, 2018, Corollary 4.2.13). Moreover, using the definition of τ(∆1, k), we assume that there exists an
eigenvector u0 ∈ Cn,k such that

τ(∆1, k) = u∗
0∆1u0.

From the definition of Nϵ, we can find an u
′

0 ∈ Nϵ such that ∥u0 − u
′

0∥ ≤ ϵ. Hence, we have

τ(∆1, k) = u∗
0∆1u0

= (u0 − u
′

0)
∗∆1u

′

0 + u∗
0∆1(u0 − u

′

0) + (u
′

0)
∗∆1u

′

0

(a)

≤ 2ϵτ(∆1, k) + (u
′

0)
∗∆1u

′

0,

where (a) is due to the property ∥u0 − u
′

0∥ ≤ ϵ and the definition of τ(∆1, k). This relationship can be equivalently
expressed as

τ(∆1, k) ≤
1

1− 2ϵ
max
u∈Nϵ

u∗∆1u. (61)

For any fixed u ∈ Nϵ, we can derive that

P

 1

m

m∑
j=1

|a∗ju|2 > ∥u∥2 + t

2

 (a)

≤ exp

(
−c6 min

{
t2m

4K2
6

,
tm

2K6

})
, (62)

where (a) comes from the fact that ∥u∥ = 1 and K6 = maxj∈[m] ∥|a∗ju|2∥ψ1
is the sub-exponential norm. Taking the

union bound for u ∈ Nϵ yield

P

max
u∈Nϵ

1

m

m∑
j=1

|a∗ju|2 > ∥u∥2 + t

2

 ≤ (
3en

ϵk
)k exp

(
−c6 min

{
t2m

4K2
6

,
tm

2K6

})
, (63)

which indicates that when m = Ctk log(n/k), with probability exceeding 1− exp(−ctm), it holds that

max
u∈Nϵ

1

m

m∑
j=1

|a∗ju|2 ≤ 1 +
t

2
. (64)

Finally, we can estimate τ(∆1, k) as

(1− 2ϵ)τ(∆1, k)
(61)

≤ max
u∈Nϵ

u∗∆1u

= max
u∈Nϵ

u∗

 1

m

m∑
j=1

{
exp(−

y2j
λ2

)− exp(−
y2j

∥x∥2
)

}
aja

∗
j

u

= max
u∈Nϵ

1

m

m∑
j=1

{
exp(−

y2j
λ2

)− exp(−
y2j

∥x∥2
)

}
|a∗ju|2

≤ max
u∈Nϵ

max
j∈[m]

∣∣∣∣∣exp(− y2jλ2 )− exp(−
y2j

∥x∥2
)

∣∣∣∣∣ ( 1m
m∑
j=1

|a∗ju|2
)

(a)
= max

j∈[m]
exp(−

y2j
ξ
)
y2j
ξ2

|λ2 − ∥x∥2| max
u∈Nϵ

1

m

m∑
j=1

|a∗ju|2

(b)

≤ 1

ξ
|λ2 − ∥x∥2|(1 + t

2
)
(c)

≤
t
2∥x∥

2

(1− t
2 )∥x∥2

(1 +
t

2
) ≤ 2t.
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where (a) is from Lagrange’s mean value formula with F (p) = exp(−y2j
p ), (b) comes from the inequality xe−x ≤ 1, x ≥ 0

and (64), (c) employs Lemma B.1 with ξ ∈ [(1− t
2 )∥x∥

2, (1 + t
2 )∥x∥

2]. Let ϵ = 1
4 , we can conclude that

τ(∆1, k) ≤ 4t (65)

holds with probability exceeding 1 − exp(c1,tm) provided that m ≥ C1,tk log n. Next, we analyze τ(∆2, k). Similar
to (61), we can get

τ(∆2, k) ≤
1

1− 2ϵ
max
u∈Nϵ

u∗∆2u. (66)

Recall that ∆2 = 1
m

∑m
j=1

(
1
2 − exp(− y2j

∥x∥2 )
)
aja

∗
j − xx∗

4∥x∥2 . Then, it holds that

(1− 2ϵ)τ(∆2, k)
(66)

≤ max
u∈Nϵ

u∗∆2u

= max
u∈Nϵ

 1

m

m∑
j=1

(1
2
− exp(−

y2j
∥x∥2

)
)
|a∗ju|2 −

|x∗u|2

4∥x∥2

 . (67)

Since for any j ∈ [m],
(
1
2 − exp(− y2j

∥x∥2 )
)
|a∗ju|2 is sub-exponential random variable with constant norm, employing

Bernstein’s inequality and taking the union bound for u ∈ Nϵ yield that

P

max
u∈Nϵ

 1

m

m∑
j=1

(1
2
− exp(−

y2j
∥x∥2

)
)
|a∗ju|2 −

|x∗u|2

4∥x∥2

 > t

 ≤ (
3en

ϵk
)k exp

(
−c7 min

{
t2m

K2
7

,
tm

K7

})
. (68)

Combining (67) and (68) and let ϵ = 1
4 , we conclude that when m ≥ C2,tk log n,

τ(∆2, k) ≤ 2t (69)

holds with probability exceeding 1− exp(c2,tm). Hence, we get

τ(∆, k) ≤ τ(∆1, k) + τ(∆2, k) ≤ 6t. (70)

B.3. Eigen decomposition

Lemma B.8. Suppose wj ∈ Cn, j = 1, 2, 3, then we have

dist(w1,w2) ≤ dist(w1,w3) + dist(w2,w3).

Proof of Lemma B.8. From the definition of dist(w1,w2), we assume ϕ1,3 ∈ [0, 2π) to be

dist(w1,w3) = min
ϕ∈[0,2π)

∥w1 − eiϕw3∥ = ∥w1 − eiϕ1,3w3∥.

Then, from the triangle inequality of norm,

dist(w1,w2) = min
ϕ∈[0,2π)

∥w1 − eiϕw2∥

≤ min
ϕ∈[0,2π)

[
∥w1 − eiϕ1,3w3∥+ ∥eiϕ1,3w3 − eiϕw2∥

]
= dist(w1,w3) + min

ϕ∈[0,2π)
∥w3 − ei(ϕ−ϕ1,3)w2∥

= dist(w1,w3) + dist(w2,w3).

The proof is thus complete.
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Lemma B.9. Define ∆ = L−E(L̃) and x0 = x
∥x∥ . Suppose supp(x) = T and Λ ⊂ [n] satisfying |Λ| = k,Λ∩T ̸= ∅, and

∥x0
Λ∥ ≥

√
3
2 . z0 is the unit eigenvector corresponding to the largest eigenvalue of LΛ. If τ(∆, k) ≤ 3

64 , then the distance
between x0

Λ and z0Λ can be bounded as

dist(z0Λ,x
0
Λ)

2 ≤ ∥x0
Λ∥2 + 1− 6∥x0

Λ∥√
9 + 1024τ2(∆, k)

(71)

Proof of Lemma B.9. We first estimate the eigenvalue of LΛ. For the largest eigenvalue λmax = λ1(LΛ), we have

λmax = λ1(LΛ)

(a)

≥ λ1(E[(L̃)Λ]) + λn(∆Λ)

(b)

≥ ∥xΛ∥2

4∥x∥2
− τ(∆, k)

(c)

≥ 3

16
− τ(∆, k), (72)

where (a) comes from LΛ = E[(L̃)Λ] +∆Λ and Weyl’s inequality, (b) is due to the definition of τ(∆, k) and (c) is because
∥x0

Λ∥ ≥
√
3
2 .

For other eigenvalues, we can similarly derive that for j ∈ [n],

λj(LΛ) ≤ λj(E[(L̃)Λ]) + λ1(∆Λ) ≤ τ(∆, k). (73)

Since ∥z0Λ∥ = 1 and ∥x0
Λ∥ ≤ 1, we can employ space decomposition technique and get

z0Λ = r1
x0
Λ

∥x0
Λ∥

+ r2u, (74)

where u∗x0
Λ = 0, ∥u∥ = 1, |r1|2 + |r2|2 = 1 and supp(u) ⊂ Λ. Multiple both sides with λmax, the relationship becomes

λmaxz
0
Λ = r1

λmaxx
0
Λ

∥x0
Λ∥

+ r2λmaxu. (75)

Recall that λmaxz
0
Λ = LΛz

0
Λ since z0Λ is the eigenvector of LΛ with λmax as the eigenvalue. Therefore,

λmaxz
0
Λ = LΛz

0
Λ = r1

LΛx
0
Λ

∥x0
Λ∥

+ r2LΛu. (76)

Combining (75) and (76), we have

r1
λmaxx

0
Λ

∥x0
Λ∥

+ r2λmaxu = r1
LΛx

0
Λ

∥x0
Λ∥

+ r2LΛu.

By taking the inner product with u, it becomes

r2λmax = r1
u∗LΛx

0
Λ

∥x0
Λ∥

+ r2u
∗LΛu.

This is equivalent to

|r2| = |r1|
|u∗(E[(L̃)Λ] +∆Λ)x

0
Λ|/∥x0

Λ∥
|λmax − u∗LΛu|

(a)
= |r1|

|u∗∆Λx
0
Λ|/∥x0

Λ∥
|λmax − u∗LΛu|

, (77)
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where (a) is because x0
Λ is the eigenvector of E[(L̃)Λ] and u∗x0

Λ = 0. Since u is perpendicular to x0
Λ, we estimate u∗LΛu

as

u∗LΛu = u∗E[(L̃)Λ]u+ u∗∆Λu

≤ λ2(E[(L̃)Λ]) + τ(∆, k)

= τ(∆, k) (78)

Combining (72), (73) and (78) and define β =
|u∗∆Λx0

Λ|/∥x0
Λ∥

|λmax−u∗LΛu| we have

β ≤ τ(∆, k)
3
16 − 2τ(∆, k)

≤ 32τ(∆, k)

3
, (79)

where the second inequality comes from the assumption τ(∆, k) ≤ 3
64 . From (77) and using |r1|2 + |r2|2 = 1, we have

|r1|2 = 1/(1 + β2). Therefore,

dist(z0Λ,x
0
Λ)

2 = min
ϕ

∥z0Λ − eiϕx0
Λ∥2 (80)

= min
ϕ

∥x0
Λ∥2 + 1− 2R

[
eiϕ(x0

Λ)
∗z0Λ
]

= ∥x0
Λ∥2 + 1− 2

∣∣(x0
Λ)

∗z0Λ
∣∣

(74)
= ∥x0

Λ∥2 + 1− 2|r1|∥x0
Λ∥

(79)
≤ ∥x0

Λ∥2 + 1− 2
∥x0

Λ∥√
1 + 1024

9 τ2(∆, k)

= ∥x0
Λ∥2 + 1− 6∥x0

Λ∥√
9 + 1024τ2(∆, k)

, (81)

Hence, we complete the proof.
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